JP5380892B2 - Wear-resistant steel plate with excellent workability and method for producing the same - Google Patents
Wear-resistant steel plate with excellent workability and method for producing the same Download PDFInfo
- Publication number
- JP5380892B2 JP5380892B2 JP2008113529A JP2008113529A JP5380892B2 JP 5380892 B2 JP5380892 B2 JP 5380892B2 JP 2008113529 A JP2008113529 A JP 2008113529A JP 2008113529 A JP2008113529 A JP 2008113529A JP 5380892 B2 JP5380892 B2 JP 5380892B2
- Authority
- JP
- Japan
- Prior art keywords
- wear
- phase
- resistant steel
- less
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 75
- 239000010959 steel Substances 0.000 title claims description 75
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000005299 abrasion Methods 0.000 claims description 19
- 229910052719 titanium Inorganic materials 0.000 claims description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 8
- 229910001562 pearlite Inorganic materials 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000006185 dispersion Substances 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 38
- 238000005452 bending Methods 0.000 description 28
- 230000000694 effects Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- 238000005098 hot rolling Methods 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 238000009864 tensile test Methods 0.000 description 8
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、建設、土木、鉱山等の分野で使用される、例えば、パワーショベル、ブルドーザー、ホッパー、バケットなどの産業機械や運搬機器等で、土砂との接触による磨耗が問題となるような部材用として好適な耐磨耗鋼板およびその製造方法に係り、特に、曲げ加工性に優れるものに関する。 The present invention is used in the fields of construction, civil engineering, mining, etc., for example, members such as power shovels, bulldozers, hoppers, buckets, etc., where wear due to contact with earth and sand becomes a problem The present invention relates to a wear-resistant steel plate suitable for use and a method for producing the same, and particularly to a material excellent in bending workability.
土、砂等による磨耗を受ける部材には、長寿命化のため、耐磨耗性に優れた鋼材が使用される。鋼材の耐磨耗性は、高硬度化することにより、向上することが知られ、耐磨耗性が要求される部材には、Cr、Mo等の合金元素を大量に添加した鋼材に焼入等の熱処理を施し、高硬度化した鋼材が使用されてきた。 For members that receive wear due to soil, sand, etc., steel materials having excellent wear resistance are used to extend the life. It is known that the wear resistance of steel materials is improved by increasing the hardness, and for materials that require wear resistance, quenching is performed on steel materials to which a large amount of alloy elements such as Cr and Mo are added. Steel materials that have been subjected to a heat treatment such as that have been hardened have been used.
例えば、特許文献1には、C:0.10〜0.19%を含み、Si、Mnを適正量含有し、Ceqを0.35〜0.44%に限定した鋼を、熱間圧延後直接焼入れし、あるいは900〜950℃に再加熱したのち焼入れし、300〜500℃で焼戻し、鋼板表面硬さを300HV以上とする耐磨耗鋼板の製造方法が提案されている。 For example, Patent Document 1 includes C: 0.10 to 0.19%, steel containing appropriate amounts of Si and Mn, and Ceq limited to 0.35 to 0.44%, after hot rolling. There has been proposed a method for producing a wear-resistant steel sheet that is directly quenched or reheated to 900 to 950 ° C. and then quenched, tempered at 300 to 500 ° C., and having a steel sheet surface hardness of 300 HV or higher.
特許文献2には、C:0.10〜0.20%を含み、Si、Mn、P、S、N、Alを適正量に調整し、あるいは更にCu、Ni、Cr、Mo、Bの1種以上を含有する鋼に、熱間圧延後直接焼入れし、あるいは圧延後放冷した後、再加熱して焼入れし、340HB以上の硬さを付与する、耐磨耗厚鋼板の製造方法が提案されている。 Patent Document 2 includes C: 0.10 to 0.20%, and Si, Mn, P, S, N, and Al are adjusted to appropriate amounts, or 1 of Cu, Ni, Cr, Mo, and B is further added. Proposed method for manufacturing wear-resistant thick steel plates that harden steels containing more than seeds directly after hot rolling or after cooling and then reheat and quench to give a hardness of 340HB or more Has been.
特許文献3には、C:0.07〜0.17%を含み、Si、Mn、P、S、N、Alを適正量に調整し、あるいは更にCu、Ni、Cr、Mo、Bの1種以上を含有する鋼に、熱間圧延後直ちに焼入れ、あるいは一旦空冷した後に、再加熱して焼入れし、表面硬さが321HB以上で、曲げ加工性に優れた鋼板とする耐磨耗鋼板の製造方法が提案されている。 Patent Document 3 includes C: 0.07 to 0.17%, and Si, Mn, P, S, N, and Al are adjusted to appropriate amounts, or 1 of Cu, Ni, Cr, Mo, and B is further added. A steel containing more than seeds is immediately quenched after hot rolling, or once air-cooled and then re-heated and quenched, and the surface hardness is 321 HB or more, and the steel is excellent in bending workability. Manufacturing methods have been proposed.
特許文献1〜3に記載された技術は、合金元素を多量に添加して、固溶硬化、変態硬化、析出硬化等を活用して、高硬度化することで、耐磨耗特性を向上させている。しかし、合金元素を多量に添加して、固溶硬化、変態硬化、析出硬化等を活用して、高硬度化した場合には、溶接性、加工性が低下するようになり、更に製造コストが高騰する。 The techniques described in Patent Documents 1 to 3 improve wear resistance characteristics by adding a large amount of alloy elements and utilizing solid solution hardening, transformation hardening, precipitation hardening, etc. to increase the hardness. ing. However, when a large amount of alloy elements are added and solid solution hardening, transformation hardening, precipitation hardening, etc. are utilized to increase the hardness, the weldability and workability will decrease, and the manufacturing cost will be further reduced. Soaring.
ところで、耐磨耗性が要求される部材の場合、使用条件によっては、表面近傍のみを高硬度化して、耐磨耗性を向上させるだけでも良い場合があり、このような場合に用いられる鋼材は、Cr、Mo等の合金元素を多量に添加する必要はなく、焼入れ処理等の熱処理を施して、表面近傍のみを焼入れ組織とすることが考えられる。 By the way, in the case of a member that requires wear resistance, depending on the use conditions, there may be a case where only the vicinity of the surface is hardened to improve the wear resistance, and the steel material used in such a case In this case, it is not necessary to add a large amount of alloying elements such as Cr and Mo, and it is considered that only the vicinity of the surface is made a quenched structure by performing a heat treatment such as a quenching process.
しかし、焼入れ組織の高硬度化のためには、一般に、鋼材の固溶C量を増加させる必要があるが、固溶C量の増加は、溶接性の低下、曲げ加工性の低下などを招き、特に曲げ加工性の低下は部材として必要な曲げ加工が制限され使用条件が限定される。 However, in order to increase the hardness of the hardened structure, it is generally necessary to increase the solid solution C amount of the steel material. However, the increase in the solid solution C amount causes a decrease in weldability, a decrease in bending workability, and the like. Particularly, the decrease in bending workability restricts the bending work necessary as a member and restricts the use conditions.
このため、過度に高硬度化を図ることなく、耐磨耗特性を向上させることが可能な耐磨耗鋼板が要望され、特許文献4には、C:0.10〜0.45%を含み、Si、Mn、P、S、Nを適正量に調整し、さらにTi:0.10〜1.0%含有し、平均粒径0.5μm以上のTiC析出物あるいはTiCとTiN、TiSとの複合析出物を400個/mm2以上を含み、Ti*が0.05%以上0.4%未満とする表面性状に優れた耐磨耗鋼が提案されている。 For this reason, there is a demand for a wear-resistant steel sheet capable of improving the wear resistance without excessively increasing the hardness. Patent Document 4 includes C: 0.10 to 0.45%. , Si, Mn, P, S, N are adjusted to appropriate amounts, and further Ti: 0.10 to 1.0%, TiC precipitates having an average particle size of 0.5 μm or more, or TiC and TiN, TiS A wear-resistant steel excellent in surface properties that includes 400 / mm 2 or more of composite precipitates and Ti * of 0.05% or more and less than 0.4% has been proposed.
更に、特許文献5には、C:0.05〜0.45%、Si:0.1〜1.0%、Mn:0.1〜1.0%、Ti:0.05〜1.5%を含有し、表面硬度をブリネル硬さで401以下とすることにより、曲げ加工性を向上させた耐磨耗鋼板の製造方法が提案されている。 Further, in Patent Document 5, C: 0.05 to 0.45%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Ti: 0.05 to 1.5 %, And a surface hardness of 401 or less in terms of Brinell hardness has been proposed for producing a wear-resistant steel sheet with improved bending workability.
特許文献4、5に記載された技術によれば、凝固時に粗大なTiCを主体とする析出物を生成させ、過度に高硬度化させることなく安価に耐磨耗性を向上させることが可能である。
しかしながら、特許文献4に記載された技術では、焼入れ熱処理を実施し、組織を焼入れままのマルテンサイト組織としているため、強度が高く、その結果、曲げ加工時の変形抵抗が高くなるため、曲げ加工が容易であるとは云い難く、曲げ加工性に問題を残していた。 However, in the technique described in Patent Document 4, since quenching heat treatment is performed and the structure is a martensitic structure as it is quenched, the strength is high and, as a result, the deformation resistance during bending is increased. However, it was difficult to say that it was easy, and left a problem in bending workability.
特許文献5に記載された技術は、曲げ加工性を確保するため、表面硬度をブリネル硬さで401以下に規定しているが、合金元素の添加量が多いため、引張強度は780MPaを超え、加工荷重を低減させる観点からは、十分な曲げ加工性が達成されているわけではない。 In the technique described in Patent Document 5, in order to ensure bending workability, the surface hardness is specified to be 401 or less in terms of Brinell hardness, but since the added amount of the alloy element is large, the tensile strength exceeds 780 MPa, From the viewpoint of reducing the processing load, sufficient bending workability is not achieved.
また、特許文献1〜4のいずれに記載の耐磨耗鋼でも熱処理を実施することが必須であり、製造工期、製造コスト面で課題を残していた。 Moreover, it is indispensable to implement heat treatment even in the wear-resistant steel described in any one of Patent Documents 1 to 4, and problems remain in terms of manufacturing period and manufacturing cost.
そこで、本発明は、熱間圧延ままで、熱処理を施さずに製造可能で、耐磨耗性および曲げ加工性に優れた耐磨耗鋼板およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a wear-resistant steel plate that can be produced without being subjected to heat treatment while being hot-rolled, and has excellent wear resistance and bending workability, and a method for producing the same.
発明者らは、上記した目的を達成するために、耐磨耗性と曲げ加工性に影響する各種要因について、鋭意研究を重ね、TiとCを含有する成分系を有し、金属組織が圧延ままのフェライト−パーライト組織の複合組織を基地相とし、かつ、マトリクス中に硬質な第二相(硬質相:TiC)を分散させることにより、耐磨耗性を確保したまま、曲げ加工時の加工荷重低減が可能、つまり、曲げ加工性の改善が可能であることを見出した。 In order to achieve the above-mentioned object, the inventors have conducted intensive research on various factors affecting wear resistance and bending workability, have a component system containing Ti and C, and the metal structure is rolled. The composite structure of the ferrite-pearlite structure is used as the base phase, and the hard second phase (hard phase: TiC) is dispersed in the matrix to ensure wear resistance while processing during bending. It has been found that the load can be reduced, that is, the bending workability can be improved.
本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、C:0.05〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、Ti:0.1〜0.8%、Al:0.1%以下、Mo:0.05〜1.0%、更に、Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、W:0.05〜1.0%、B:0.0003〜0.0030%の1種または2種以上を含有し、(1)式で示されるDI*が60未満であり、残部Feおよび不可避的不純物からなる組成を有し、更に、金属組織が、フェライト−パーライト相を基地相とし、該基地相中に硬質相が分散することを特徴とする、引張強さ(TS)が800MPa未満である加工性に優れた耐磨耗鋼板。
DI*=33.85×(0.1×C*)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo*+1)×(1.5×W*+1)・・・・・(1)
但し、C*=C−1/4×(Ti−48/14N)、Mo*=Mo×(1−0.5×(Ti−48/14N)、W*=W×(1−0.5×(Ti−48/14N)、
C,Si,Mn,Cu,Ni,Cr,Mo,W,Ti,Nは含有量(質量%)
2.更に、質量%でNb:0.005〜1.0%、V:0.005〜1.0%の1種または2種を含有することを特徴とする1記載の耐磨耗鋼板。
3.更に、前記硬質相の分散密度が、400個/mm2以上であることを特徴とする1または2に記載の耐磨耗鋼板。
4.1または2記載の組成を有する鋼片を熱間圧延後、2℃/s以下の冷却速度で400℃以下まで冷却することを特徴とする、金属組織が、フェライト−パーライト相を基地相とし、該基地相中に硬質相が分散する、引張強さ(TS)が800MPa未満である加工性に優れた耐磨耗鋼板の製造方法。
5.更に、熱間圧延での、920℃以下での圧下率を30%以上とし、圧延終了温度を900℃以下とすることを特徴とする4記載の加工性に優れた耐磨耗鋼の製造方法。
The present invention was made by further study based on the obtained knowledge, that is, the present invention is
1. In mass%, C: 0.05 to 0.35%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, Ti: 0.1 to 0.8 %, Al: 0.1% or less, Mo: 0.05 to 1.0%, Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.0 % , W: 0.05 to 1.0%, B: 0.0003 to 0.0030%, or one or more of them, and DI * represented by the formula (1) is less than 60, and the balance The tensile strength (TS) is characterized in that it has a composition comprising Fe and inevitable impurities , and the metal structure has a ferrite-pearlite phase as a matrix phase and a hard phase is dispersed in the matrix phase. A wear-resistant steel plate with excellent workability of less than 800 MPa .
DI * = 33.85 × (0.1 × C *) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo * + 1) × (1.5 × W * + 1) (1)
However, C * = C-1 / 4 * (Ti-48 / 14N), Mo * = Mo * (1-0.5 * (Ti-48 / 14N), W * = W * (1-0.5 X (Ti-48 / 14N),
C, Si, Mn, Cu, Ni, Cr, Mo, W, Ti, and N content (mass%)
2. The wear-resistant steel sheet according to 1, further comprising one or two of Nb: 0.005 to 1.0% and V: 0.005 to 1.0% by mass%.
3 . Furthermore, the abrasion-resistant steel plate according to 1 or 2 , wherein the dispersion density of the hard phase is 400 pieces / mm 2 or more.
4 . The steel structure having the composition of 1 or 2 is hot-rolled and then cooled to 400 ° C. or less at a cooling rate of 2 ° C./s or less, and the metal structure has a ferrite-pearlite phase as a base phase, A method for producing a wear-resistant steel plate having excellent workability in which a hard phase is dispersed in the matrix phase and the tensile strength (TS) is less than 800 MPa .
5 . The method for producing wear-resistant steel having excellent workability according to 4 , wherein the rolling reduction at 920 ° C. or lower in hot rolling is 30% or more and the rolling end temperature is 900 ° C. or lower. .
本発明によれば、耐磨耗性を劣化させること無く曲げ加工性を向上した耐磨耗鋼板が
熱間圧延後、熱処理を施さずに得られるので、熱処理コスト低減、製造工期短縮などの合理的な生産が可能で産業上格段の効果を奏する。
According to the present invention, a wear-resistant steel sheet having improved bending workability without deteriorating the wear resistance can be obtained without performing heat treatment after hot rolling. Production is possible, and it has a remarkable industrial effect.
本発明に係る耐磨耗鋼板で成分組成、金属組織を規定した理由について説明する。
[成分組成]以下の%表示は、いずれも質量%とする。
The reason why the component composition and the metal structure are defined in the wear-resistant steel sheet according to the present invention will be described.
[Ingredient composition] In the following%, all are mass%.
C:0.05〜0.35%
Cは、金属組織においてマトリクスの硬度を向上させて耐磨耗性を向上させるとともに、硬質な第二相(以下、硬質相ともいう)としてのTi炭化物を形成し、耐磨耗性の向上に、有効な元素であり、このような効果を得るためには、0.05%以上の含有を必要とする。
C: 0.05 to 0.35%
C improves the wear resistance by improving the hardness of the matrix in the metal structure, and forms Ti carbide as a hard second phase (hereinafter also referred to as a hard phase), thereby improving the wear resistance. In order to obtain such an effect, it is necessary to contain 0.05% or more.
一方、0.35%を超える含有は、硬質相としての炭化物が粗大になり、曲げ加工時に炭化物を起点として割れが発生する。このため、Cは0.05〜0.35%の範囲に規定した。なお、好ましくは0.15〜0.30%である。 On the other hand, if the content exceeds 0.35%, the carbide as the hard phase becomes coarse, and cracks are generated starting from the carbide during bending. For this reason, C was specified in the range of 0.05 to 0.35%. In addition, Preferably it is 0.15-0.30%.
Ti:0.1〜1.2%
Tiは、Cとともに本発明における重要な元素であり、耐磨耗性向上に寄与する硬質相としてTi炭化物を形成する必須の元素である。このような効果を得るためには、0.1%以上の含有を必要とする。
Ti: 0.1-1.2%
Ti, together with C, is an important element in the present invention, and is an essential element that forms Ti carbide as a hard phase that contributes to improved wear resistance. In order to obtain such an effect, the content of 0.1% or more is required.
図1に耐磨耗性に及ぼすTi添加量の影響を、図2に引張り強度(YS,TS)に及ぼすTi添加量の影響を示す。図1において縦軸はラバーホイール磨耗試験における磨耗量を軟鋼(SS400)の磨耗量と比較した耐磨耗比を示す。 FIG. 1 shows the influence of the Ti addition amount on the wear resistance, and FIG. 2 shows the influence of the Ti addition amount on the tensile strength (YS, TS). In FIG. 1, the vertical axis represents the wear resistance ratio in which the amount of wear in the rubber wheel wear test is compared with the amount of wear of mild steel (SS400).
Ti添加量が0.1%以上で、耐磨耗性が一般的な耐磨耗鋼と同程度以上の特性が得られ、かつ、TSが800MPa以下まで低下している。すなわち、従来の焼入れ熱処理をした耐磨耗鋼板と同等の磨耗特性を有しつつ、加工性を改善することが可能となる。 When the Ti addition amount is 0.1% or more, the wear resistance is as high as that of a general wear-resistant steel, and TS is reduced to 800 MPa or less. That is, it is possible to improve workability while having wear characteristics equivalent to those of a conventional wear-resistant steel plate subjected to quenching heat treatment.
ラバーホイール磨耗試験における供試鋼は、Mass%で、0.33%C−0.35%Si−0.82%Mn−0.05〜1.2%Tiを含む鋼片を、19mmtに圧延後、冷却速度:0.5℃/sで空冷して製造した。 The test steel in the rubber wheel abrasion test is Mass%, and a steel piece containing 0.33% C-0.35% Si-0.82% Mn-0.05 to 1.2% Ti is rolled to 19 mmt. Then, it manufactured by cooling at a cooling rate: 0.5 degree-C / s.
得られた鋼板について、引張特性、磨耗試験を実施した。引張試験は、JISZ2201の規定に準拠して、JIS5号試験片を採取して引張試験を実施し、引張特性(引張強さ:TS、降伏強さ:YS)を求めた。 About the obtained steel plate, the tensile characteristic and the abrasion test were implemented. In the tensile test, a JIS No. 5 test piece was taken and a tensile test was performed in accordance with the provisions of JISZ2201, and tensile properties (tensile strength: TS, yield strength: YS) were obtained.
磨耗試験は、ASTMG65に準拠したラバーホイール磨耗試験によって実施し、試験結果を軟鋼(SS400)の磨耗量と各供試鋼板の磨耗量の比を耐磨耗比として整理した。耐磨耗比が大きいほど、磨耗特性に優れていることを示す。 The abrasion test was performed by a rubber wheel abrasion test in accordance with ASTM G65, and the test result was arranged as a wear resistance ratio in which the ratio of the abrasion amount of the mild steel (SS400) and the abrasion amount of each test steel plate. The larger the wear resistance ratio, the better the wear characteristics.
比較試験として、一般的な熱処理で製造する耐磨耗鋼板についても上記と同様の試験を実施した。得られた結果を、図1と図2に従来鋼で示す。ここでいう、一般的な耐磨耗鋼板とは、0.15mass%C−0.35mass%Si−1.50mass%Mn−0.13mass%Cr−0.13mass%Mo−0.01mass%Ti−0.0010mass%Bの組成の鋼板を熱間圧延した後、900℃に再加熱後、焼入れ熱処理を施した材料であり、ブリネル硬さで400HB程度の鋼板をさす。 As a comparative test, the same test as described above was carried out for wear-resistant steel sheets produced by general heat treatment. The obtained results are shown in FIGS. 1 and 2 for conventional steel. Here, a general wear-resistant steel sheet is 0.15 mass% C-0.35 mass% Si-1.50 mass% Mn-0.13 mass% Cr-0.13 mass% Mo-0.01 mass% Ti-. A steel sheet having a composition of 0.0010 mass% B is hot-rolled, then reheated to 900 ° C., and then subjected to quenching heat treatment, and refers to a steel sheet having a Brinell hardness of about 400 HB.
一方、1.2%を越えるTiの含有は、硬質相(Ti系炭化物)が粗大化し、曲げ加工時に粗大な硬質相を起点として割れが発生する。このため、Tiは0.1〜1.2%、好ましくは、0.1〜0.8%の範囲に限定した。 On the other hand, if the Ti content exceeds 1.2%, the hard phase (Ti-based carbide) becomes coarse, and cracks occur starting from the coarse hard phase during bending. For this reason, Ti was limited to 0.1 to 1.2%, preferably 0.1 to 0.8%.
Si:0.05〜1.0%
Siは、脱酸元素として有効な元素であり、このような効果を得るためには0.05%以上の含有を必要とする。また、Siは、鋼に固溶して固溶強化により高硬度化に寄与する有効な元素であるが、1.0%を超える含有は、延性、靭性を低下させ、さらに介在物量が増加するなどの問題を生じる。このため、Siは0.05〜1.0%の範囲に限定することが好ましい。なお、より好ましくは0.05〜0.40%である。
Si: 0.05-1.0%
Si is an effective element as a deoxidizing element, and in order to obtain such an effect, the content of 0.05% or more is required. Si is an effective element that contributes to high hardness by solid solution strengthening by solid solution in steel. However, if the content exceeds 1.0%, ductility and toughness are reduced, and the amount of inclusions is further increased. Cause problems. For this reason, it is preferable to limit Si to 0.05 to 1.0% of range. In addition, More preferably, it is 0.05 to 0.40%.
Mn:0.1〜2.0%
Mnは、固溶強化により高硬度化に寄与する有効な元素であり、このような効果を得るためには、0.1%以上の含有を必要とする。一方、2.0%を超える含有は、溶接性を低下させる。このため、Mnは0.1〜2.0%の範囲に限定することが好ましい。なお、より好ましくは0.1〜1.60%である。
Mn: 0.1 to 2.0%
Mn is an effective element that contributes to high hardness by solid solution strengthening, and in order to obtain such an effect, it needs to be contained in an amount of 0.1% or more. On the other hand, the content exceeding 2.0% reduces weldability. For this reason, it is preferable to limit Mn to the range of 0.1 to 2.0%. In addition, More preferably, it is 0.1 to 1.60%.
Al:0.1%以下
Alは、脱酸材として作用し、このような効果は、0.0020%以上の含有で認められるが、0.1%を超える多量の含有は、鋼の清浄度を低下させる。このため、Alは0.1%以下に限定することが好ましい。
Al: 0.1% or less Al acts as a deoxidizer, and such an effect is recognized with a content of 0.0020% or more, but a large content exceeding 0.1% is the cleanliness of steel. Reduce. For this reason, it is preferable to limit Al to 0.1% or less.
Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:0.1〜1.0%、Mo:0.05〜1.0%、W:0.05〜1.0%、B:0.0003〜0.0030%の1種または2種以上
Cu:0.1〜1.0%
Cuは、固溶することにより焼入れ性を向上させる元素であり、この効果を得るためには0.1%以上の含有を必要とする。一方、1.0%を超える含有は、熱間加工性を低下させる。このため、Cuは0.1〜1.0%の範囲に限定することが好ましい。なお、より好ましくは0.1〜0.5%である。
Cu: 0.1-1.0%, Ni: 0.1-2.0%, Cr: 0.1-1.0%, Mo: 0.05-1.0%, W: 0.05- 1.0%, B: 0.0003 to 0.0030%, one or more Cu: 0.1 to 1.0%
Cu is an element that improves the hardenability by dissolving in a solid solution, and the content of 0.1% or more is necessary to obtain this effect. On the other hand, the content exceeding 1.0% decreases the hot workability. For this reason, it is preferable to limit Cu to 0.1 to 1.0% of range. In addition, More preferably, it is 0.1 to 0.5%.
Ni:0.1〜2.0%
Niは、固溶することにより焼入れ性を向上させる元素であり、このような効果は0.1%以上の含有で顕著となる。一方、2.0%を越える含有は、材料コストを著しく上昇させる。このため、Niは0.1〜2.0%の範囲に限定することが好ましい。なお、より好ましくは0.1〜1.0%である。
Ni: 0.1 to 2.0%
Ni is an element that improves hardenability by solid solution, and such an effect becomes remarkable when the content is 0.1% or more. On the other hand, the content exceeding 2.0% significantly increases the material cost. For this reason, it is preferable to limit Ni to 0.1 to 2.0% of range. In addition, More preferably, it is 0.1 to 1.0%.
Cr:0.1〜1.0%
Crは、焼入れ性を向上させる効果を有し、このような効果を得るためには、0.1%以上の含有を必要とするが、0.1%を超える含有は、溶接性を低下させる。このため、Crは0.1〜1.0%の範囲に限定することが好ましい。なお、より好ましくは0.1〜0.8%である。さらに好ましくは0.4〜0.7%である。
Cr: 0.1 to 1.0%
Cr has the effect of improving hardenability, and in order to obtain such an effect, the content of 0.1% or more is required, but the content exceeding 0.1% lowers the weldability. . For this reason, it is preferable to limit Cr to 0.1 to 1.0% of range. In addition, More preferably, it is 0.1 to 0.8%. More preferably, it is 0.4 to 0.7%.
Mo:0.05〜1.0%
Moは、焼入れ性を向上させる元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.0%を越えて含有すると溶接性を低下させる。そのため、Moは0.05〜1.0%の範囲に限定することが好ましい。なお、より好ましくは、0.05〜0.40%である。
Mo: 0.05-1.0%
Mo is an element that improves hardenability. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if it exceeds 1.0%, weldability is lowered. Therefore, Mo is preferably limited to a range of 0.05 to 1.0%. In addition, More preferably, it is 0.05 to 0.40%.
W:0.05〜1.0%
Wは、焼入れ性を向上させる元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.0%を越えて含有すると溶接性を低下させる。そのため、Wは0.05〜1.0%の範囲に限定することが好ましい。なお、より好ましくは、0.05〜0.40%である。なお、MoやWは、TiCに固溶するため、硬質相量を増加させる効果も有する。
W: 0.05-1.0%
W is an element that improves hardenability. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if it exceeds 1.0%, weldability is lowered. Therefore, W is preferably limited to a range of 0.05 to 1.0%. In addition, More preferably, it is 0.05 to 0.40%. In addition, since Mo and W are dissolved in TiC, they also have an effect of increasing the amount of hard phase.
B:0.0003〜0.0030%
Bは、粒界に偏析し、粒界を強化して、靭性向上に有効に寄与する元素であり、このような効果を得るためには、0.0003%以上の含有が必要である。一方、0.0030%を超える含有は、溶接性を低下させる。このため、Bは、0.0003〜0.0030%の範囲に限定することが好ましい。なお、より好ましくは、0.0003〜0.0015%である。
B: 0.0003 to 0.0030%
B is an element that segregates at the grain boundary, strengthens the grain boundary, and contributes effectively to improvement of toughness. In order to obtain such an effect, the content of 0.0003% or more is necessary. On the other hand, the content exceeding 0.0030% lowers the weldability. For this reason, it is preferable to limit B to 0.0003 to 0.0030% of range. In addition, More preferably, it is 0.0003 to 0.0015%.
DI*<60
本発明でDI*(焼入れ性指標値)は、DI*=33.85×(0.1×C*)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo*+1)×(1.5×W*+1)、ここでC*=C−1/4×(Ti−48/14N)、Mo*=Mo×(1−0.5×(Ti−48/14N)、W*=W×(1−0.5×(Ti−48/14N)で定義し、DI*<60とする。ここで、C,Si,Mn,Cu,Ni,Cr,Mo,W,Ti,Nは含有量(質量%)である。
DI * <60
In the present invention, DI * (hardenability index value) is DI * = 33.85 × (0.1 × C *) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0 .35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo * + 1) × (1.5 × W * + 1), where C * = C−1 / 4 × (Ti−48 / 14N), Mo * = Mo × (1-0.5 × (Ti−48 / 14N), W * = W × (1−0.5 × (Ti−48 / 14N)) And DI * <60, where C, Si, Mn, Cu, Ni, Cr, Mo, W, Ti, and N are contents (mass%).
図3に、耐磨耗性に及ぼすDI*の影響を、図4に引張り強度(YS,TS)に及ぼすDI*の影響を示す。図3において縦軸はラバーホイール磨耗試験における磨耗量を軟鋼(SS400)の磨耗量と比較した耐磨耗比を示す。耐磨耗比が大きいほど、磨耗特性に優れていることを示す。 FIG. 3 shows the effect of DI * on wear resistance, and FIG. 4 shows the effect of DI * on tensile strength (YS, TS). In FIG. 3, the vertical axis shows the wear resistance ratio in which the wear amount in the rubber wheel wear test is compared with the wear amount of mild steel (SS400). The larger the wear resistance ratio, the better the wear characteristics.
図3,4より、DI*が60未満の場合、引張強さ:TSが800MPa以下と低強度であるにもかかわらず、磨耗量が一般的な耐磨耗鋼と同程度であることが認められる。 3 and 4, when DI * is less than 60, it is recognized that the wear amount is comparable to that of general wear-resistant steel, despite the low tensile strength: TS of 800 MPa or less. It is done.
一方、DI*が60以上では、磨耗性には優れているものの、引張強さが800MPa以上で、加工性に劣る。DI*が60以上の場合、フェライト‐ベイナイト組織となるためと推測される。 On the other hand, when DI * is 60 or more, the wear resistance is excellent, but the tensile strength is 800 MPa or more and the workability is poor. When DI * is 60 or more, it is assumed that a ferrite-bainite structure is formed.
ラバーホイール磨耗試験における供試鋼は、mass%で0.34%C−0.22%Si−0.55%Mn−0.22%Tiに更にCu、Ni、Cr、Mo、Wの1種あるいは2種以上含み、DI*が40〜120の鋼片を、8mmtに圧延後、空冷(冷却速度:1.2℃/s)して製造した。 The test steel in the rubber wheel abrasion test is 0.34% C-0.22% Si-0.55% Mn-0.22% Ti in mass%, and one of Cu, Ni, Cr, Mo, W Alternatively, a steel slab containing 2 or more types and having a DI * of 40 to 120 was rolled to 8 mmt and then air-cooled (cooling rate: 1.2 ° C./s).
得られた鋼板について、引張特性、磨耗試験を実施した。引張試験は、JISZ2201の規定に準拠して、JIS5号試験片を採取して引張試験を実施し、引張特性(引張強さTS、降伏強さYS)を求めた。 About the obtained steel plate, the tensile characteristic and the abrasion test were implemented. In the tensile test, a JIS No. 5 test piece was sampled and a tensile test was performed in accordance with the provisions of JISZ2201, and tensile properties (tensile strength TS, yield strength YS) were obtained.
ラバーホイール磨耗試験はASTMG65に準拠して実施し、試験結果は軟鋼(SS400)の磨耗量と各鋼板の磨耗量の比を耐磨耗比として整理した。 The rubber wheel wear test was conducted in accordance with ASTM G65, and the test results were organized as the wear resistance ratio in terms of the ratio between the wear amount of mild steel (SS400) and the wear amount of each steel plate.
上記した成分が基本成分で優れた耐磨耗性が得られるが、本発明では、更に耐磨耗性を向上させるため、硬質な第二相を形成し、耐磨耗性に寄与する元素であるNb,Vを選択元素として含有することができる。 The above-described components are basic components, and excellent wear resistance can be obtained. In the present invention, in order to further improve the wear resistance, a hard second phase is formed, which is an element that contributes to wear resistance. Certain Nb and V can be contained as selective elements.
Nb:0.005〜1.0%、
Nbは、Tiと複合して添加することにより、Ti、Nbの複合炭化物((NbTi)C)を形成し、硬質な第二相として分散し、耐磨耗性向上に有効に寄与する元素である。このような耐磨耗性向上効果を得るためには、0.005以上の含有を必要とする。一方、1.0%を越える含有は、硬質な第二相(Ti,Nbの複合炭化物)が粗大化し、曲げ加工時に硬質な第二相(Ti,Nbの複合炭化物)を起点として割れが発生する。このため、添加する場合は、Nbは0.005〜1.0%の範囲に限定することが好ましい。なお、より好ましくは0.1〜0.5%である。
Nb: 0.005 to 1.0%,
Nb is an element that, when added in combination with Ti, forms a composite carbide of Ti and Nb ((NbTi) C), disperses as a hard second phase, and contributes effectively to improved wear resistance. is there. In order to obtain such an effect of improving wear resistance, it is necessary to contain 0.005 or more. On the other hand, if the content exceeds 1.0%, the hard second phase (Ti, Nb composite carbide) becomes coarse, and cracks start from the hard second phase (Ti, Nb composite carbide) during bending. To do. For this reason, when adding, it is preferable to limit Nb to 0.005 to 1.0% of range. In addition, More preferably, it is 0.1 to 0.5%.
V:0.005〜1.0%
Vは、Tiと複合して添加することにより、Nbと同様に、Ti、Vの複合炭化物((VTi)C)を形成し、硬質な第二相として分散し、耐磨耗性向上に有効に寄与する元素である。このような耐磨耗性向上効果を得るためには、0.005%以上の含有を必要とする。
V: 0.005-1.0%
V is added in combination with Ti to form Ti and V composite carbides ((VTi) C) and is dispersed as a hard second phase in the same way as Nb, and is effective in improving wear resistance. Is an element that contributes to In order to obtain such an effect of improving wear resistance, a content of 0.005% or more is required.
一方、1.0%を超える含有は、硬質な第二相(Ti,Vの複合炭化物)が粗大化し、曲げ加工時に硬質な第二相(Ti,Vの複合炭化物)を起点として割れが発生する。このため、添加する場合は、Vは0.005〜1.0%の範囲に限定することが好ましい。なお、より好ましくは0.1〜0.5%である。 On the other hand, if the content exceeds 1.0%, the hard second phase (Ti, V composite carbide) becomes coarse, and cracking occurs starting from the hard second phase (Ti, V composite carbide) during bending. To do. For this reason, when adding, it is preferable to limit V to 0.005 to 1.0% of range. In addition, More preferably, it is 0.1 to 0.5%.
なお、NbとVを複合して添加する場合には、硬質な第二相が(NbVTi)Cとなるだけで、同様に耐磨耗性を向上させる効果を有する。なお、Nを含有する場合には、炭化物の他に、炭窒化物が形成される場合もあるが、同様の効果が得られる。 When Nb and V are added in combination, the hard second phase is merely (NbVTi) C, and the effect of improving the wear resistance is obtained. When N is contained, carbonitrides may be formed in addition to carbides, but the same effect can be obtained.
但し、N添加量が0.01%を超える場合には、炭窒化物中のNの割合が増加し、硬質第二相の硬度が低下するため、耐磨耗性の劣化が懸念される。従って、N添加量は0.01%以下とすることが好ましい。
[金属組織]
本発明に係る耐磨耗鋼板は、金属組織を、フェライト−パーライト相を基地相とし、当該基地相中に硬質相(硬質な第二相)が分散した組織とする。基地相とは体積率で90%以上有することを意味しており、本発明に係る鋼板は、フェライトとパーライトの2つの相が全体の90%以上を占めている。
However, when the amount of N added exceeds 0.01%, the proportion of N in the carbonitride increases and the hardness of the hard second phase decreases, so there is a concern about deterioration of wear resistance. Therefore, the N addition amount is preferably 0.01% or less.
[Metal structure]
The wear-resistant steel sheet according to the present invention has a metal structure having a ferrite-pearlite phase as a base phase and a hard phase (hard second phase) dispersed in the base phase. The base phase means having a volume ratio of 90% or more, and in the steel sheet according to the present invention, two phases of ferrite and pearlite occupy 90% or more of the whole.
更に、そのうち、フェライト相の体積率は70%以上であり、且つ、円相当径で平均粒径20μmのフェライト相であることが望ましい。基地相は加工性を考慮して、ブリネル硬度で300HB以下とすることが好ましい。 Furthermore, among these, it is desirable that the ferrite phase has a volume fraction of 70% or more and a ferrite phase having an equivalent circle diameter and an average particle diameter of 20 μm. In consideration of workability, it is preferable that the base phase has a Brinell hardness of 300 HB or less.
硬質相としては、TiCなどのTi系炭化物とすることが好ましく、TiC、(NbTi)C、(VTi)C、あるいはTiC中にMo、Wが固溶したものが例示できる。 The hard phase is preferably a Ti-based carbide such as TiC, and examples include TiC, (NbTi) C, (VTi) C, or TiC in which Mo and W are dissolved.
なお、硬質相の大きさは、特に限定しないが、耐磨耗性の観点からは、0.5μm以上50μm以下程度とすることが好ましい。また、硬質相の分散密度は、耐磨耗性の観点から、400個/mm2以上とすることが好ましい。 In addition, although the magnitude | size of a hard phase is not specifically limited, From a viewpoint of abrasion resistance, it is preferable to set it as about 0.5 micrometer or more and 50 micrometers or less. Moreover, it is preferable that the dispersion density of a hard phase shall be 400 pieces / mm < 2 > or more from a viewpoint of abrasion resistance.
尚、硬質相の大きさは、各硬質相の面積を測定し、同面積から円相当直径を算出し、得られた円相当直径を算術平均して平均値をその鋼板における硬質相の大きさ(平均粒径)とする。
[製造方法]
本発明に係る耐磨耗鋼板は、上記した組成の溶鋼を、公知の溶製方法で溶製し、連続鋳造法あるいは造塊−分解圧延法により、所定寸法のスラブ等の鋼素材とすることが好ましい。
The size of the hard phase is determined by measuring the area of each hard phase, calculating the equivalent circle diameter from the same area, arithmetically averaging the obtained equivalent circle diameter, and calculating the average value as the size of the hard phase in the steel sheet. (Average particle diameter).
[Production method]
The wear-resistant steel sheet according to the present invention is prepared by melting the molten steel having the above-described composition by a known melting method and using a continuous casting method or an ingot-decomposition rolling method as a steel material such as a slab having a predetermined size. Is preferred.
硬質相を所定の大きさおよび個数に調整するためには、例えば、連続鋳造法を用いた場合、厚み200〜400mmの鋳片の1500〜1200℃の温度域における冷却速度0.2〜10℃/sの範囲と成るように冷却を調整することが好ましい。 In order to adjust the hard phase to a predetermined size and number, for example, when a continuous casting method is used, a cooling rate of 0.2 to 10 ° C. in a temperature range of 1500 to 1200 ° C. of a slab having a thickness of 200 to 400 mm. It is preferable to adjust the cooling so as to be in the range of / s.
なお、造塊法を用いる場合にも、インゴットの大きさおよび冷却条件を、硬質相を所望の大きさおよび個数になるように、調整する必要があることはいうまでもない。 Even when the ingot-making method is used, it goes without saying that the size of the ingot and the cooling conditions need to be adjusted so that the desired size and number of hard phases can be obtained.
次いで、鋼素材を、冷却することなく、直ちに熱間圧延し、または冷却後、950〜1250℃に再加熱したのち、熱間圧延し、所望の板厚の鋼板とする。熱間圧延後は、熱処理することなく、平均冷却速度2℃/s以下で冷却する。 Next, the steel material is immediately hot-rolled without being cooled, or after being cooled, re-heated to 950 to 1250 ° C. and then hot-rolled to obtain a steel plate having a desired thickness. After hot rolling, it is cooled at an average cooling rate of 2 ° C./s or less without heat treatment.
冷却速度が2℃/sを超えると、フェライト‐パーライト組織が得られず、引張強さが800MPa以上となり、鋼板曲げ加工時の加工荷重が上昇し、加工性が劣化する。従って、2℃/s以下とする。 When the cooling rate exceeds 2 ° C./s, a ferrite-pearlite structure cannot be obtained, the tensile strength becomes 800 MPa or more, the working load at the time of bending the steel sheet increases, and the workability deteriorates. Therefore, it shall be 2 degrees C / s or less.
なお、熱間圧延条件は、所望の寸法形状の鋼板とすることができればよく、とくに限定しないが、鋼板として具備すべき性能である、靭性を考慮すると、表面温度で、920℃以下での圧下率を30%以上とし、且つ、圧延終了温度を900℃以下とすることが必要である。 The hot rolling condition is not particularly limited as long as it can be a steel plate having a desired size and shape, but considering the toughness, which is a performance to be provided as a steel plate, the surface temperature is reduced at 920 ° C. or less. It is necessary that the rate is 30% or more and the rolling end temperature is 900 ° C. or less.
本発明に係る耐磨耗鋼板は、熱間圧延後に熱処理を実施する必要が無く、熱間圧延ままで曲げ加工を必要とする種々の用途に使用可能である。 The wear-resistant steel plate according to the present invention does not need to be subjected to heat treatment after hot rolling, and can be used for various applications that require bending while hot rolling.
表1に示す組成の溶鋼を、真空溶解炉で溶製し、小型鋼塊(50kg)(鋼素材)とした後、1050〜1250℃に加熱し、熱間圧延を施して板厚6〜100mmの供試鋼板とした。各供試鋼板について組織観察、引張試験、磨耗試験、シャルピー衝撃試験、曲げ試験を実施した。
[組織観察]
組織観察用試験片は、研磨後、ナイタール腐食して、表層下1mmの位置について、光学顕微鏡(倍率:400倍)を用いて、組織の同定,フェライト粒径および硬質相の大きさ、個数を測定した。なお、観察視野において、90%以上を占める組織を基地相とし、硬質相の大きさは、前述の方法により求めた平均粒径とした。
[引張試験]
JISZ2201の規定に準拠して、JIS5号試験片を採取し、JISZ2241の規定に準拠して引張試験を実施し、引張特性(降伏強さ:YS、引張強さ:TS)を求めた。引張強さ(TS)<800MPa、降伏強さ(YS)<600MPaを本発明範囲とする。
[磨耗試験]
試験片はt(板厚)×20×75(mm)とし、ASTM G 65の規定に準拠して、ラバーホイール磨耗試験を、磨耗砂を使用して実施した。試験後、試験片の磨耗量を測定した。
Molten steel having the composition shown in Table 1 is melted in a vacuum melting furnace to form a small steel ingot (50 kg) (steel material), and then heated to 1050 to 1250 ° C. and hot-rolled to obtain a thickness of 6 to 100 mm. This was a test steel plate. Each steel plate was subjected to a structure observation, a tensile test, an abrasion test, a Charpy impact test, and a bending test.
[Tissue observation]
The test specimen for structure observation was subjected to nital corrosion after polishing, and the position of 1 mm below the surface layer was determined by using an optical microscope (magnification: 400 times) to identify the structure, the ferrite particle diameter and the size and number of the hard phase. It was measured. In the observation field of view, the structure occupying 90% or more was defined as the base phase, and the size of the hard phase was the average particle diameter determined by the method described above.
[Tensile test]
In accordance with JISZ2201, the JIS No. 5 test piece was sampled and subjected to a tensile test in accordance with JISZ2241 to determine tensile properties (yield strength: YS, tensile strength: TS). Tensile strength (TS) <800 MPa and yield strength (YS) <600 MPa are within the scope of the present invention.
[Abrasion test]
The test piece was t (plate thickness) × 20 × 75 (mm), and a rubber wheel abrasion test was performed using abrasion sand in accordance with ASTM G65. After the test, the amount of wear of the test piece was measured.
試験結果は、軟鋼(SS400)板の磨耗量を基準(1.0)として、耐磨耗比=(軟鋼板の磨耗量)/(各鋼板の磨耗量)で評価した。耐磨耗比が大きいほど、耐磨耗性に優れていることを意味し、本発明範囲は耐磨耗比:4.0以上とした。
[シャルピー衝撃試験]
JISZ2202の規定に準拠し、板厚方向1/4の位置から、L方向にVノッチ衝撃試験片を採取し、JISZ2242の規定に準拠し、試験温度0℃でシャルピー衝撃試験を実施し、シャルピー吸収エネルギーを求めた。試験本数は3本とし、平均値を求めた。
[曲げ試験]
JISZ2204の規定に準拠し、幅は50mmで、供試鋼板の板厚が45mm以上の場合は、片面側より研削して板厚25mmに減厚した試験片を採取し、供試鋼板の板厚が45mm未満の場合は板厚ままの試験片を採取し、JISZ2248の規定に準拠し、曲げ試験を実施した。曲げ試験は押し曲げ法で曲げ半径をr=1.5tとして実施した。
The test results were evaluated by the wear resistance ratio = (abrasion amount of mild steel plate) / (abrasion amount of each steel plate) with the wear amount of the mild steel (SS400) plate as a reference (1.0). The larger the wear resistance ratio, the better the wear resistance, and the scope of the present invention is the wear resistance ratio: 4.0 or more.
[Charpy impact test]
In accordance with JISZ2202, the V-notch impact test specimen is taken in the L direction from the position of 1/4 in the plate thickness direction, and in accordance with JISZ2242, the Charpy impact test is performed at a test temperature of 0 ° C. to absorb Charpy. Seeking energy. The number of test pieces was three, and the average value was obtained.
[Bending test]
If the width is 50 mm and the thickness of the test steel sheet is 45 mm or more in accordance with the provisions of JISZ2204, a test piece ground from one side and reduced to a thickness of 25 mm is collected, and the thickness of the test steel sheet When the thickness was less than 45 mm, a specimen having the same thickness was collected, and a bending test was performed in accordance with the provisions of JISZ2248. The bending test was carried out by a push bending method with a bending radius of r = 1.5 t.
表2に組織観察、引張試験、磨耗試験の結果を示す。本発明例(鋼板No.1〜6、鋼板No.8,9)は、引張強さ(TS)<800MPa、降伏強さ(YS)<600MPaにも関わらず、耐磨耗性が非常に優れた鋼板となっている。 Table 2 shows the results of the structure observation, tensile test, and wear test. Examples of the present invention (steel plates No. 1 to 6, steel plates No. 8 and 9) have excellent wear resistance despite the tensile strength (TS) <800 MPa and the yield strength (YS) <600 MPa. Steel plate.
また、シャルピー吸収エネルギーは、圧延仕上温度が900℃以下の場合は27J以上であった。一方、比較例は、本発明例に比較して耐磨耗性が劣るか、耐磨耗性は同等であってもYS、TSが高いため、曲げ加工性に劣る。 The Charpy absorbed energy was 27 J or higher when the rolling finishing temperature was 900 ° C. or lower. On the other hand, the comparative example is inferior in bending workability because the YS and TS are high even if the wear resistance is inferior to that of the present invention example or the wear resistance is equivalent.
Claims (5)
DI*=33.85×(0.1×C*)0.5 ×(0.7×Si+1)×(3.33×Mn+1)×(0.35×Cu+1)×(0.36×Ni+1)×(2.16×Cr+1)×(3×Mo*+1)×(1.5×W*+1)・・・・・(1)
但し、C*=C−1/4×(Ti−48/14N)、Mo*=Mo×(1−0.5×(Ti−48/14N)、W*=W×(1−0.5×(Ti−48/14N)、
C,Si,Mn,Cu,Ni,Cr,Mo,W,Ti,Nは含有量(質量%) In mass%, C: 0.05 to 0.35%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, Ti: 0.1 to 0.8 %, Al: 0.1% or less, Mo: 0.05 to 1.0%, Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Cr: 0.1 to 1.0 % , W: 0.05 to 1.0%, B: 0.0003 to 0.0030%, or one or more of them, and DI * represented by the formula (1) is less than 60, and the balance The tensile strength (TS) is characterized in that it has a composition comprising Fe and inevitable impurities , and the metal structure has a ferrite-pearlite phase as a matrix phase and a hard phase is dispersed in the matrix phase. A wear-resistant steel plate with excellent workability of less than 800 MPa .
DI * = 33.85 × (0.1 × C *) 0.5 × (0.7 × Si + 1) × (3.33 × Mn + 1) × (0.35 × Cu + 1) × (0.36 × Ni + 1) × (2.16 × Cr + 1) × (3 × Mo * + 1) × (1.5 × W * + 1) (1)
However, C * = C-1 / 4 * (Ti-48 / 14N), Mo * = Mo * (1-0.5 * (Ti-48 / 14N), W * = W * (1-0.5 X (Ti-48 / 14N),
C, Si, Mn, Cu, Ni, Cr, Mo, W, Ti, and N content (mass%)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008113529A JP5380892B2 (en) | 2007-05-29 | 2008-04-24 | Wear-resistant steel plate with excellent workability and method for producing the same |
EP08764952.1A EP2154262B1 (en) | 2007-05-29 | 2008-05-26 | Abrasion-resistant steel sheet having excellent processability, and method for production thereof |
BRPI0812277-6A2A BRPI0812277A2 (en) | 2007-05-29 | 2008-05-26 | STEEL RESISTANT TO EXCELLENT ABRASION IN CONFORMING CAPACITY AND ITS PRODUCTION METHOD. |
CN2008800161928A CN101688283B (en) | 2007-05-29 | 2008-05-26 | Abrasion-resistant steel sheet having excellent processability, and method for production thereof |
MX2009012820A MX2009012820A (en) | 2007-05-29 | 2008-05-26 | Abrasion-resistant steel sheet having excellent processability, and method for production thereof. |
US12/600,891 US20100147424A1 (en) | 2007-05-29 | 2008-05-26 | Abrasion-resistant steel excellent in formability and production method thereof |
AU2008255706A AU2008255706B2 (en) | 2007-05-29 | 2008-05-26 | Abrasion resistant steel excellent in formability and production method thereof |
PCT/JP2008/060096 WO2008146929A1 (en) | 2007-05-29 | 2008-05-26 | Abrasion-resistant steel sheet having excellent processability, and method for production thereof |
CA2685710A CA2685710C (en) | 2007-05-29 | 2008-05-26 | Abrasion resistant steel excellent in formability and production method thereof |
KR1020097021902A KR101165654B1 (en) | 2007-05-29 | 2008-05-26 | Abrasion-resistant steel sheet having excellent processability, and method for production thereof |
CL200801542A CL2008001542A1 (en) | 2007-05-29 | 2008-05-28 | STEEL RESISTANT TO ABRASION THAT INCLUDES (MASS PERCENTAGES) 0.05-0.35% C, 0.05-1.0% SI, 0.1-2.0% MN, 0.1-1 , 2% OF IT, 0.1% OR LESS THAN AN ELEMENT OF 0.1-1.0% CU, 0.1-2.0% NI, 0.1-1.0% CR , 0.05-1.0% of MO, 0.05-1.0% of W, 0 |
PE2008000905A PE20090342A1 (en) | 2007-05-29 | 2008-05-28 | STEEL RESISTANT TO ABRASION, WITH EXCELLENT CONFORMABILITY AND METHOD FOR ITS PRODUCTION |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007142003 | 2007-05-29 | ||
JP2007142003 | 2007-05-29 | ||
JP2008113529A JP5380892B2 (en) | 2007-05-29 | 2008-04-24 | Wear-resistant steel plate with excellent workability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009007665A JP2009007665A (en) | 2009-01-15 |
JP5380892B2 true JP5380892B2 (en) | 2014-01-08 |
Family
ID=40075158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008113529A Active JP5380892B2 (en) | 2007-05-29 | 2008-04-24 | Wear-resistant steel plate with excellent workability and method for producing the same |
Country Status (12)
Country | Link |
---|---|
US (1) | US20100147424A1 (en) |
EP (1) | EP2154262B1 (en) |
JP (1) | JP5380892B2 (en) |
KR (1) | KR101165654B1 (en) |
CN (1) | CN101688283B (en) |
AU (1) | AU2008255706B2 (en) |
BR (1) | BRPI0812277A2 (en) |
CA (1) | CA2685710C (en) |
CL (1) | CL2008001542A1 (en) |
MX (1) | MX2009012820A (en) |
PE (1) | PE20090342A1 (en) |
WO (1) | WO2008146929A1 (en) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5458624B2 (en) * | 2009-03-25 | 2014-04-02 | Jfeスチール株式会社 | Wear-resistant steel plate with excellent workability and method for producing the same |
FR2960883B1 (en) * | 2010-06-04 | 2012-07-13 | Vallourec Mannesmann Oil & Gas | LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH STRENGTH RESISTANCE TO SULFIDE-CONTAMINATED CRACKING |
KR101253897B1 (en) * | 2010-12-23 | 2013-04-16 | 주식회사 포스코 | Steel sheet for oil sands slurry transportation system having excellent wear resistance and corrosion resistance and method for manufacturing the same |
KR101271781B1 (en) * | 2010-12-23 | 2013-06-07 | 주식회사 포스코 | Steel sheet for oil sands slurry transportation system having excellent wear resistance, corrosion resistance and low temperature toughness, and method for manufacturing the same |
CN102296234A (en) * | 2011-09-07 | 2011-12-28 | 柳州钢铁股份有限公司 | Abrasion-resistant steel plate and production device and production method thereof |
JP5375981B2 (en) * | 2012-01-10 | 2013-12-25 | Jfeスチール株式会社 | Wear-resistant welded steel pipe with excellent weld crack resistance and method for producing the same |
KR101382790B1 (en) * | 2012-03-16 | 2014-04-08 | 주식회사 포스코 | Steel sheet for oil sands slury pipe having excellent erosion resistance and low temperature toughness and method for manufacturing the same |
KR101382833B1 (en) * | 2012-03-16 | 2014-04-08 | 주식회사 포스코 | Steel sheet for oil sands slurry pipe having excellent erosion resistance and method for manufacturing the same |
KR101382675B1 (en) | 2012-03-19 | 2014-04-07 | 주식회사 포스코 | Low alloy hot-rolled steel sheet having excellent wear-resistant and workability and method for manufacturing the same |
CN102876993A (en) * | 2012-10-24 | 2013-01-16 | 章磊 | High-strength corrosion-resisting steel material and manufacturing method thereof |
KR101461741B1 (en) * | 2012-12-21 | 2014-11-14 | 주식회사 포스코 | Thick hot rolled steel plate for steel pipe and steel pipe produced therefrom having excellent impact toughness and method for manufacturing thereof |
CN103898420A (en) * | 2012-12-25 | 2014-07-02 | 隆英(金坛)特钢科技有限公司 | Wear-resisting steel plate and manufacturing method thereof |
CN103272851A (en) * | 2013-05-20 | 2013-09-04 | 浙江朋诚科技有限公司 | High-speed mill roller box |
CN103272848B (en) * | 2013-05-20 | 2015-12-02 | 浙江朋诚科技有限公司 | A kind of fast mill roll shaft |
CN103266270A (en) * | 2013-05-23 | 2013-08-28 | 江苏久联冶金机械制造有限公司 | Boron-containing iron-based wear-resistant material |
CN103409695B (en) * | 2013-08-16 | 2015-04-08 | 洛阳钢丰机械制造有限公司 | Composite material pouring-casted bucket and its production technology and production device |
CN103469077B (en) * | 2013-09-30 | 2015-12-02 | 济钢集团有限公司 | A kind of high silicon rolled sheet material and preparation technology thereof |
CN104561823B (en) * | 2013-10-09 | 2016-12-07 | 宝钢特钢有限公司 | A kind of deep-draw superhigh intensity steel hot rolled steel plate and manufacture method |
KR101828199B1 (en) | 2014-01-28 | 2018-02-09 | 제이에프이 스틸 가부시키가이샤 | Abrasion-resistant steel plate and method for manufacturing the same |
CN103882331A (en) * | 2014-02-25 | 2014-06-25 | 南通东方科技有限公司 | High-strength and high-wear-resistant supporting wheel for large type excavator |
KR101955839B1 (en) * | 2014-10-17 | 2019-03-07 | 신닛테츠스미킨 카부시키카이샤 | Rolled steel for cracked connecting rods |
CN105779885B (en) * | 2014-12-23 | 2018-03-27 | 上海梅山钢铁股份有限公司 | A kind of wear-resistant hot rolling sheet metal and its manufacture method with excellent machinability |
CN105018848A (en) * | 2015-08-05 | 2015-11-04 | 启东市佳宝金属制品有限公司 | Abrasion-resistant alloy |
CN105063497B (en) * | 2015-09-17 | 2017-10-17 | 东北大学 | A kind of high-wear resistance easy processing low alloy wear resistance steel plate and its manufacture method |
CN105349896B (en) * | 2015-10-28 | 2017-03-22 | 安徽省三方新材料科技有限公司 | Preparation method for low-alloy excavator bucket tooththereof |
CN105220077B (en) * | 2015-11-11 | 2017-05-10 | 武汉钢铁(集团)公司 | High surface quality hot rolled steel plate for manufacturing excavator bucket and manufacturing method |
CN105695861B (en) * | 2016-04-22 | 2018-04-24 | 柳州凯通新材料科技有限公司 | A kind of wear-resisting Rolling compund steel plate |
CN105779895A (en) * | 2016-04-22 | 2016-07-20 | 柳州凯通新材料科技有限公司 | Manganese-tungsten-titanium wear-resisting cast steel and machining process thereof |
CN105671438B (en) * | 2016-04-22 | 2018-06-29 | 柳州凯通新材料科技有限公司 | A kind of manganese-tungsten-titanium alloy steel and its processing technology |
CN105695878A (en) * | 2016-04-22 | 2016-06-22 | 柳州凯通新材料科技有限公司 | Manganese-tungsten-titanium wear-resistant cast steel and preparation method thereof |
CN108034940B (en) * | 2017-11-24 | 2020-08-25 | 宁波祥福机械科技有限公司 | Turbine supercharging rotor shaft and preparation method thereof |
CN108588573A (en) * | 2018-04-28 | 2018-09-28 | 江苏恒加机械工程有限公司 | A kind of production technology of metallic support |
CN109881120A (en) * | 2019-03-15 | 2019-06-14 | 重庆明高机械制造有限公司 | A kind of husky bucket of digging |
CN110387499A (en) * | 2019-06-27 | 2019-10-29 | 扬州市海纳源科技服务有限责任公司 | It is a kind of to mix low-alloyed metal material and preparation method |
CN112442635B (en) * | 2020-11-13 | 2022-03-29 | 唐山钢铁集团高强汽车板有限公司 | High-performance low-alloy high-strength steel plate with strength of above 800MPa and preparation method thereof |
CN112553543A (en) * | 2020-11-30 | 2021-03-26 | 攀钢集团研究院有限公司 | Bainite-based wear-resistant steel and production method thereof |
CN112813362B (en) * | 2020-12-14 | 2023-03-28 | 内蒙古科技大学 | Manufacturing method of high-strength steel and high-strength steel track shoe |
CN114774799B (en) * | 2022-03-02 | 2023-04-18 | 河钢乐亭钢铁有限公司 | Wear-resistant round bar for agricultural machinery and production method thereof |
CN114737136B (en) * | 2022-03-30 | 2023-05-16 | 鞍钢股份有限公司 | Production method of high-strength high-toughness hot continuous rolling thin steel plate with Brinell hardness of 400HBW |
CN115612923B (en) * | 2022-09-13 | 2023-11-14 | 攀钢集团攀枝花钢铁研究院有限公司 | Wear-resistant steel with good forming and welding performances and production method thereof |
CN115558864B (en) * | 2022-10-19 | 2023-10-24 | 湖南华菱涟源钢铁有限公司 | High-strength steel plate and preparation method thereof |
CN115838897A (en) * | 2022-11-18 | 2023-03-24 | 莱芜钢铁集团银山型钢有限公司 | Martensite wear-resistant corrosion-resistant steel pipe for 415 HB-level sediment conveying pipeline and preparation method thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62142726A (en) | 1985-12-18 | 1987-06-26 | Kobe Steel Ltd | Manufacture of wear resistant steel sheet having satisfactory weldability |
JPS63169359A (en) | 1986-12-29 | 1988-07-13 | Sumitomo Metal Ind Ltd | Thick steel plate having high toughness and wear resistance |
JPH01142023A (en) | 1987-11-30 | 1989-06-02 | Kobe Steel Ltd | Manufacture of wear-resistant steel plate having superior bendability |
JPH04228536A (en) * | 1990-06-06 | 1992-08-18 | Nkk Corp | Steel excellent in wear resistance |
JPH0441616A (en) * | 1990-06-06 | 1992-02-12 | Nkk Corp | Production of low-hardness water-resistant steel excellent in wear resistance and bendability |
US5284529A (en) * | 1990-06-06 | 1994-02-08 | Nkk Corporation | Abrasion-resistant steel |
JPH0834684B2 (en) * | 1990-11-30 | 1996-03-29 | 財団法人鉄道総合技術研究所 | Magnetic levitation vehicle propulsion device |
JP3089882B2 (en) * | 1993-03-09 | 2000-09-18 | 日本鋼管株式会社 | Abrasion-resistant steel having excellent surface properties and method for producing the same |
JPH04308058A (en) * | 1991-04-02 | 1992-10-30 | Nkk Corp | Steel having superior wear resistance |
JPH05239591A (en) * | 1992-02-27 | 1993-09-17 | Nkk Corp | Steel excellent in wear resistance |
JP4239257B2 (en) * | 1998-11-02 | 2009-03-18 | Jfeスチール株式会社 | Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance |
JP3940301B2 (en) * | 2002-02-27 | 2007-07-04 | 新日本製鐵株式会社 | Blasting weathering high-strength steel plate with excellent bending resistance and method for producing the same |
FR2847272B1 (en) * | 2002-11-19 | 2004-12-24 | Usinor | METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET |
JP4257539B2 (en) * | 2003-09-01 | 2009-04-22 | 住友金属工業株式会社 | Non-tempered steel for soft nitriding |
JP5017937B2 (en) * | 2005-12-28 | 2012-09-05 | Jfeスチール株式会社 | Wear-resistant steel plate with excellent bending workability |
JP4899874B2 (en) * | 2007-01-12 | 2012-03-21 | Jfeスチール株式会社 | Wear-resistant steel plate with excellent workability and method for producing the same |
-
2008
- 2008-04-24 JP JP2008113529A patent/JP5380892B2/en active Active
- 2008-05-26 KR KR1020097021902A patent/KR101165654B1/en active IP Right Grant
- 2008-05-26 AU AU2008255706A patent/AU2008255706B2/en active Active
- 2008-05-26 MX MX2009012820A patent/MX2009012820A/en active IP Right Grant
- 2008-05-26 WO PCT/JP2008/060096 patent/WO2008146929A1/en active Application Filing
- 2008-05-26 CA CA2685710A patent/CA2685710C/en active Active
- 2008-05-26 BR BRPI0812277-6A2A patent/BRPI0812277A2/en not_active Application Discontinuation
- 2008-05-26 US US12/600,891 patent/US20100147424A1/en not_active Abandoned
- 2008-05-26 CN CN2008800161928A patent/CN101688283B/en active Active
- 2008-05-26 EP EP08764952.1A patent/EP2154262B1/en active Active
- 2008-05-28 CL CL200801542A patent/CL2008001542A1/en unknown
- 2008-05-28 PE PE2008000905A patent/PE20090342A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US20100147424A1 (en) | 2010-06-17 |
CA2685710A1 (en) | 2008-12-04 |
WO2008146929A9 (en) | 2009-11-12 |
CL2008001542A1 (en) | 2008-09-05 |
BRPI0812277A2 (en) | 2014-11-18 |
EP2154262B1 (en) | 2018-03-07 |
EP2154262A4 (en) | 2016-01-20 |
MX2009012820A (en) | 2009-12-15 |
AU2008255706A1 (en) | 2008-12-04 |
KR20090123006A (en) | 2009-12-01 |
CN101688283A (en) | 2010-03-31 |
JP2009007665A (en) | 2009-01-15 |
CA2685710C (en) | 2012-07-31 |
EP2154262A1 (en) | 2010-02-17 |
WO2008146929A1 (en) | 2008-12-04 |
PE20090342A1 (en) | 2009-03-29 |
KR101165654B1 (en) | 2012-07-16 |
AU2008255706B2 (en) | 2011-10-13 |
CN101688283B (en) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5380892B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
JP5186809B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
JP5866820B2 (en) | Wear-resistant steel plate with excellent weld toughness and delayed fracture resistance | |
JP5655356B2 (en) | Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking | |
WO2014020891A1 (en) | Abrasion-resistant steel plate and manufacturing process therefor | |
JP4899874B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
WO2012002563A1 (en) | Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties | |
JP5683327B2 (en) | Wear-resistant steel plate with excellent low-temperature toughness | |
JP6540764B2 (en) | Wear-resistant steel plate and method of manufacturing the same | |
KR100920536B1 (en) | High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof | |
JP5458624B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
JP4735167B2 (en) | Method for producing wear-resistant steel sheet with excellent low-temperature toughness | |
JP4735191B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
JP6217671B2 (en) | Thick steel plate with excellent wear resistance in high temperature environments | |
JP5217191B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
JP4238832B2 (en) | Abrasion-resistant steel plate and method for producing the same | |
JP5348392B2 (en) | Wear resistant steel | |
JP4259145B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
JP5017937B2 (en) | Wear-resistant steel plate with excellent bending workability | |
JP4894297B2 (en) | Wear-resistant steel plate | |
JP4894296B2 (en) | Wear-resistant steel plate | |
JP2007262429A (en) | Wear-resistant steel sheet excellent in bendability | |
JP2007277590A (en) | Wear resistant steel sheet having excellent bending workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110128 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130916 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5380892 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |