[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5378862B2 - Resin composition and optical laminate - Google Patents

Resin composition and optical laminate Download PDF

Info

Publication number
JP5378862B2
JP5378862B2 JP2009087431A JP2009087431A JP5378862B2 JP 5378862 B2 JP5378862 B2 JP 5378862B2 JP 2009087431 A JP2009087431 A JP 2009087431A JP 2009087431 A JP2009087431 A JP 2009087431A JP 5378862 B2 JP5378862 B2 JP 5378862B2
Authority
JP
Japan
Prior art keywords
acrylate
poly
optical
resin composition
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009087431A
Other languages
Japanese (ja)
Other versions
JP2010235860A (en
Inventor
和也 大石
力 村田
将臣 桑原
英輝 森内
直樹 芹澤
崇之 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2009087431A priority Critical patent/JP5378862B2/en
Publication of JP2010235860A publication Critical patent/JP2010235860A/en
Application granted granted Critical
Publication of JP5378862B2 publication Critical patent/JP5378862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical laminate and a resin composition which can achieve excellent antistatic characteristics and antifouling properties. <P>SOLUTION: The resin composition contains &pi;-conjugated electroconductive polymer, a polymer dopant and an ionizing radiation-curable fluorinated acrylate. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)等のディスプレイ表面に設ける光学積層体に関し、特に帯電防止性と防汚性を有する光学積層体に関する。   The present invention relates to an optical laminate provided on a display surface such as a liquid crystal display (LCD) or a plasma display (PDP), and more particularly to an optical laminate having antistatic properties and antifouling properties.

液晶ディスプレイ、CRTディスプレイ、プロジェクションディスプレイ、プラズマディスプレイ、エレクトロルミネッセンスディスプレイ等の画像表示装置における画像表示面は、取り扱い時に傷がつかないように、耐擦傷性を付与することが要求される。そのため、ディスプレイ表面には、これに対して、基材フィルムにハードコート層を形成させたハードコートフィルムや、防眩性等光学機能を付与したハードコートを利用することにより、画像表示装置の画像表面の耐擦傷性を向上させることが一般的になされている。   An image display surface in an image display device such as a liquid crystal display, a CRT display, a projection display, a plasma display, or an electroluminescence display is required to be provided with scratch resistance so as not to be damaged during handling. Therefore, on the display surface, by using a hard coat film in which a hard coat layer is formed on a base film or a hard coat having an optical function such as antiglare property, an image of an image display device is used. It is common to improve the scratch resistance of the surface.

ディスプレイの大型化、高精細化、高コントラスト化が進み機能性フィルムに求められる性能の向上の要求が出てきている。ここで、ディスプレイの視認性を低下させる塵埃が付着するのを防止するために、帯電防止性が要求される。帯電防止性を付与するために、透光性基体上に、導電層、ハードコート層を順に積層させることが知られている(特許文献1)。   The demand for functional performance required for functional films has been increasing as the size of displays has increased, the definition has been increased, and the contrast has been increased. Here, an antistatic property is required in order to prevent adhesion of dust that lowers the visibility of the display. In order to impart antistatic properties, it is known to sequentially laminate a conductive layer and a hard coat layer on a translucent substrate (Patent Document 1).

また、ディスプレイ表面への汚れが付着しにくい、汚れが拭き取りやすいなどの防汚性の要求が出てきている。防汚性を付与するために、ハードコート層上に防汚層を設けることが知られている(特許文献2)。   In addition, there is a demand for antifouling properties such that dirt on the display surface is difficult to adhere and dirt is easy to wipe off. In order to impart antifouling properties, it is known to provide an antifouling layer on a hard coat layer (Patent Document 2).

特開2005−67118号公報Japanese Patent Laid-Open No. 2005-67118 特開2007−297543号公報JP 2007-297543 A

上記のように帯電防止性と防汚性を満足するハードコートフィルムを得るためには、複数の層を設ける必要があった。しかしながら、複数の層を設けるとコストが高くなる問題を有していた。そこで、本発明は、良好な帯電防止性、防汚性を発現する光学積層体及び樹脂組成物を提供することを第一の目的とする。また、本発明は、1層構成であり、低コストな光学積層体を提供することを第二の目的とする。   In order to obtain a hard coat film satisfying antistatic properties and antifouling properties as described above, it was necessary to provide a plurality of layers. However, the provision of a plurality of layers has a problem that the cost is increased. Therefore, a first object of the present invention is to provide an optical laminate and a resin composition that exhibit good antistatic properties and antifouling properties. The second object of the present invention is to provide a low-cost optical laminate having a single-layer structure.

本発明(1)は、π共役系導電性高分子と、高分子ドーパントと、電離放射線硬化型フッ化アクリレートと、前記電離放射線硬化型フッ化アクリレートとは異なる多官能ウレタンアクリレートと、を含有し、
前記電離放射線硬化型フッ化アクリレートが、フッ素化アルキル基含有ウレタンアクリレートであり、
前記π共役系導電性高分子の配合量は、固形成分の全重量に対して、0.5〜5.0重量%であり、
前記高分子ドーパントに対する、前記π共役系導電性高分子の割合としては、質量比として前記高分子ドーパント成分:前記π共役系導電性高分子成分が5:95〜99:1の範囲であり、
前記電離放射線硬化型フッ化アクリレートの配合量は、固形成分の全重量に対して、0.05〜50重量%であり、
前記多官能ウレタンアクリレートの使用割合は、固形成分の全重量に対して、10〜80重量%であることを特徴とする樹脂組成物である。
The present invention (1) contains a π-conjugated conductive polymer, a polymer dopant, an ionizing radiation curable fluorinated acrylate, and a polyfunctional urethane acrylate different from the ionizing radiation curable fluorinated acrylate. ,
The ionizing radiation curable fluorinated acrylate is a fluorinated alkyl group-containing urethane acrylate,
The amount of the π-conjugated conductive polymer is 0.5 to 5.0% by weight based on the total weight of the solid component,
The ratio of the π-conjugated conductive polymer to the polymer dopant is such that the polymer dopant component: π-conjugated conductive polymer component is in the range of 5:95 to 99: 1 as a mass ratio.
The blending amount of the ionizing radiation curable fluorinated acrylate is 0.05 to 50% by weight based on the total weight of the solid component,
The use ratio of the polyfunctional urethane acrylate is 10 to 80% by weight based on the total weight of the solid component.

本発明(2)は、無機透光性微粒子を含有することを特徴とする前記発明(1)の樹脂組成物である。 The present invention (2) is the resin composition according to the invention (1), characterized by containing inorganic light-transmitting fine particles.

本発明(3)は、有機透光性微粒子を含有することを特徴とする前記発明(1)又は(2)の樹脂組成物である。 The present invention (3) is the resin composition according to the invention (1) or (2), wherein the resin composition contains organic translucent fine particles.

本発明(4)は、透光性基体の片面または両面に、直接又は他の層を介して、光学機能層を設けた光学積層体であって、
前記光学機能層が、前記発明(1)〜(3)のいずれかの樹脂組成物を硬化させて得られるものであることを特徴とする光学積層体である。
The present invention (4) is an optical laminate in which an optical functional layer is provided on one side or both sides of a translucent substrate, directly or via another layer,
The optical functional layer is obtained by curing the resin composition according to any one of the inventions (1) to (3).

本発明(5)は、前記光学機能層を構成する樹脂組成物のフッ素含有量が500〜500000ppm以下であることを特徴とする前記発明(4)の光学積層体である。 This invention (5) is the optical laminated body of the said invention (4) characterized by the fluorine content of the resin composition which comprises the said optical function layer being 500-500000 ppm or less.

本発明(6)は、前記放射線硬化型フッ化アクリレートの官能基数が3個以上であることを特徴とする前記発明(4)又は(5)の光学積層体である。 The present invention (6) is the optical laminate according to the invention (4) or (5) , wherein the radiation-curable fluorinated acrylate has 3 or more functional groups.

本発明によれば、硬化物が、良好な帯電防止性、防汚性を発現するという効果を奏する。 According to the onset bright achieves cured product, good antistatic properties, the effect of expressing the antifouling property.

《光学積層体》
本最良形態に係る光学積層体は、透光性基体上に、光学機能層が積層されたものを基本構成とする。光学機能層は、π共役系導電性高分子と、高分子ドーパントと、電離放射線硬化型フッ化アクリレートと、を含有する樹脂組成物を硬化させて得られるものである。ここで、前記光学機能層は透光性基体の片面に積層されていても両面に積層されていてもよい。更には、当該光学積層体は他の層を有していてもよい。ここで他の層としては、例えば、偏光基体、ハードコート層、他の機能付与層(例えば、近赤外線(NIR)、吸収層、ネオンカット層、電磁波シールド層、光学機能層)、を挙げることができる。また、当該他の層の位置は、例えば、偏光基体の場合には前記光学機能層とは反対面の前記透光性基体上とし、他の機能性付与層の場合には前記光学機能層の下層とする。以下、本最良形態に係る光学積層体の各構成要素(透光性基体、光学機能層等)を詳述する。
<Optical laminate>
The optical laminate according to the best mode has a basic configuration in which an optical functional layer is laminated on a translucent substrate. The optical functional layer is obtained by curing a resin composition containing a π-conjugated conductive polymer, a polymer dopant, and an ionizing radiation curable fluorinated acrylate. Here, the optical functional layer may be laminated on one side of the translucent substrate or on both sides. Furthermore, the optical layered body may have other layers. Examples of the other layers include a polarizing substrate, a hard coat layer, and other function-imparting layers (for example, near infrared (NIR), absorption layer, neon cut layer, electromagnetic wave shielding layer, optical functional layer). Can do. The position of the other layer is, for example, on the light-transmitting substrate opposite to the optical function layer in the case of a polarizing substrate, and on the optical function layer in the case of another functional layer. The lower layer. Hereafter, each component (a translucent base | substrate, an optical function layer, etc.) of the optical laminated body which concerns on this best form is explained in full detail.

(透光性基体)
はじめに、本最良形態に係る透光性基体としては、透光性である限り特に限定されず、石英ガラスやソーダガラス等のガラスも使用可能であるが、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ポリエチレンナフタレート(PEN)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、シクロオレフィンコポリマー(COC)、含ノルボルネン樹脂、ポリエーテルスルホン、セロファン、芳香族ポリアミド等の各種樹脂フィルムを好適に使用することができる。これらのフィルムは無延伸のものも、延伸加工を施したものも使用可能である。特に二軸延伸加工されたポリエチレンテレフタレートフィルムが、機械的強度や寸法安定性に優れる点で好ましく、無延伸のトリアセチルセルロース(TAC)はフィルム面内の位相差が非常に少ないという点で好ましい。なお、PDP、LCDに用いる場合は、これらのPET、TACフィルムがより好ましい。
(Translucent substrate)
First, the translucent substrate according to the best mode is not particularly limited as long as it is translucent, and glass such as quartz glass and soda glass can also be used, but polyethylene terephthalate (PET), triacetyl cellulose ( TAC), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate (PC), polyimide (PI), polyethylene (PE), polypropylene (PP), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Various resin films such as cycloolefin copolymer (COC), norbornene-containing resin, polyethersulfone, cellophane, and aromatic polyamide can be suitably used. These films can be unstretched or stretched. In particular, a biaxially stretched polyethylene terephthalate film is preferable from the viewpoint of excellent mechanical strength and dimensional stability, and unstretched triacetyl cellulose (TAC) is preferable from the viewpoint of very little in-plane retardation. In addition, when using for PDP and LCD, these PET and TAC films are more preferable.

これら透光性基体の透明性は高いものほど良好であるが、全光線透過率(JIS K7105)としては80%以上、より好ましくは90%以上が良い。また、透光性基体の厚さとしては、軽量化の観点からは薄い方が好ましいが、その生産性やハンドリング性を考慮すると、1〜700μmの範囲のもの、好ましくは20〜250μmを使用することが好適である。本発明の光学積層体をLCD用途に使用する場合、透光性基体として20〜80μmのTACを使用することが好ましい。本発明の光学積層体においては、特に透光性基体として20〜80μmのTACを使用した場合において、カールを防止することができるため、薄型軽量化が求められているLCD用途に好適に使用することができる。   The higher the transparency of these translucent substrates, the better. However, the total light transmittance (JIS K7105) is 80% or more, more preferably 90% or more. Further, the thickness of the translucent substrate is preferably thinner from the viewpoint of weight reduction, but considering the productivity and handling properties, the thickness of the translucent substrate is in the range of 1 to 700 μm, preferably 20 to 250 μm. Is preferred. When the optical laminate of the present invention is used for LCD applications, it is preferable to use TAC having a thickness of 20 to 80 μm as the translucent substrate. In the optical layered body of the present invention, curling can be prevented particularly when 20 to 80 μm TAC is used as a light-transmitting substrate, so that it is suitably used for LCD applications that are required to be thin and lightweight. be able to.

また、透光性基体に、アルカリ処理、コロナ処理、プラズマ処理、スパッタ処理、ケン化処理等の表面処理や、界面活性剤、シランカップリング剤等の塗布、またはSi蒸着などの表面改質処理を行うことにより、透光性基体と光学機能層との密着性を向上させることができる。これらの処理を行うことによって、透光性基体と光学機能層との密着性が向上するため、当該光学機能層における耐スクラッチ性、表面硬度及び耐薬品性が向上する。   In addition, surface treatment such as alkali treatment, corona treatment, plasma treatment, sputtering treatment, saponification treatment, application of surfactant, silane coupling agent, etc., or surface modification treatment such as Si deposition on the translucent substrate. By performing this, the adhesion between the translucent substrate and the optical functional layer can be improved. By performing these treatments, the adhesion between the translucent substrate and the optical functional layer is improved, so that the scratch resistance, surface hardness and chemical resistance in the optical functional layer are improved.

(光学機能層及び樹脂組成物)
次に、本最良形態に係る光学機能層について詳述する。本最良形態に係る樹脂組成物は、π共役系導電性高分子と、高分子ドーパントと、電離放射線硬化型フッ化アクリレートとを含有する。本最良形態にかかる光学機能層は、前記樹脂組成物を硬化させることにより形成される。π共役系導電性高分子の配合量は、光学機能層中の固形成分の全重量に対して、0.5〜5.0重量%が必須に含有され、0.8〜3.0重量%が特に好適である。π共役系導電性高分子の配合量が0.5重量%よりも少ないと、帯電防止性が発現しにくくなる。π共役系導電性高分子の配合量が5重量%よりも多いと、π共役系導電性高分子自体が着色しているためヘイズが上昇し、光学特性が損なわれる場合がある。高分子ドーパントに対する、π共役系導電性高分子の割合としては、質量比として高分子ドーパント成分:π共役系導電性高分子成分が5:95〜99:1の範囲が好ましい。高分子ドーパントの割合が5よりも少ないと、π共役系導電性高分子へのドーピング効果が弱くなる傾向にあり、帯電防止性が不足することがある。高分子ドーパントの割合が95よりも多いと、π共役系導電性高分子の含有割合が少なくなり、やはり十分な帯電防止性が得られにくい。電離放射線硬化型フッ化アクリレートの配合量は、光学機能層中の固形成分の全重量に対して、0.05〜50重量%が好適であり、0.1〜40重量%が特に好適である。電離放射線硬化型フッ化アクリレートの配合量が0.05重量%よりも少ないと、撥水効果、滑り性が低下し、耐スクラッチ性、防汚性、耐薬品性が悪くなる。電離放射線硬化型フッ化アクリレートの配合量が50重量%よりも多いと、製膜性が悪くなる可能性がある。フッ素含有量は、光学機能層中の固形成分の全重量に対して、500〜500000ppmが好適であり、1000〜450000ppmが特に好適である。フッ素含有量が500ppmよりも少ないと、撥水効果、滑り性が低下し、耐スクラッチ性、防汚性、耐薬品性が悪くなる。フッ素含有量が500000ppmより多いと製膜性が悪くなる可能性がある。
(Optical functional layer and resin composition)
Next, the optical functional layer according to the best mode will be described in detail. The resin composition according to the best mode contains a π-conjugated conductive polymer, a polymer dopant, and an ionizing radiation curable fluorinated acrylate. The optical functional layer according to the best mode is formed by curing the resin composition. The blending amount of the π-conjugated conductive polymer is essentially 0.5 to 5.0% by weight and 0.8 to 3.0% by weight with respect to the total weight of the solid component in the optical functional layer. Is particularly preferred. When the blending amount of the π-conjugated conductive polymer is less than 0.5% by weight, the antistatic property is hardly exhibited. If the blending amount of the π-conjugated conductive polymer is more than 5% by weight, the π-conjugated conductive polymer itself is colored, so that the haze increases and the optical properties may be impaired. The ratio of the π-conjugated conductive polymer to the polymer dopant is preferably in the range of 5:95 to 99: 1 in terms of mass ratio of polymer dopant component: π-conjugated conductive polymer component. When the ratio of the polymer dopant is less than 5, the doping effect on the π-conjugated conductive polymer tends to be weak, and the antistatic property may be insufficient. When the ratio of the polymer dopant is more than 95, the content ratio of the π-conjugated conductive polymer decreases, and it is difficult to obtain sufficient antistatic properties. The compounding amount of the ionizing radiation curable fluorinated acrylate is preferably 0.05 to 50% by weight, particularly preferably 0.1 to 40% by weight based on the total weight of the solid component in the optical functional layer. . When the blending amount of the ionizing radiation curable fluorinated acrylate is less than 0.05% by weight, the water repellent effect and the slipping property are lowered, and the scratch resistance, antifouling property and chemical resistance are deteriorated. When the blending amount of the ionizing radiation curable fluorinated acrylate is more than 50% by weight, the film forming property may be deteriorated. The fluorine content is preferably 500 to 500,000 ppm, particularly preferably 1000 to 450,000 ppm, based on the total weight of the solid component in the optical functional layer. When the fluorine content is less than 500 ppm, the water repellent effect and slipperiness are lowered, and the scratch resistance, antifouling property and chemical resistance are deteriorated. If the fluorine content is more than 500,000 ppm, the film forming property may be deteriorated.

π共役系導電性高分子
π共役系導電性高分子は、主鎖がπ共役系で構成されている高分子であれば特に限定されず、例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。これらの中でも、重合の容易さ、空気中での安定性の点からは、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましい。
π-conjugated conductive polymer π-conjugated conductive polymer is not particularly limited as long as the main chain is a polymer having a π-conjugated system. For example, polypyrroles, polythiophenes, polyacetylenes, polyphenylenes , Polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof. Among these, polypyrroles, polythiophenes, and polyanilines are preferable from the viewpoint of ease of polymerization and stability in air.

π共役系導電性高分子の具体例としては、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(チオフェン)、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。   Specific examples of the π-conjugated conductive polymer include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), poly (3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole) , Poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3 -Hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyl) Ruoxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (thiophene), poly (3-methylthiophene), poly (3-ethylthiophene) ), Poly (3-propylthiophene), poly (3-butylthiophene), poly (3-hexylthiophene), poly (3-heptylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), Poly (3-dodecylthiophene), poly (3-octadecylthiophene), poly (3-bromothiophene), poly (3-chlorothiophene), poly (3-iodothiophene), poly (3-cyanothiophene), poly ( 3-phenylthiophene), poly (3,4-dimethylthiophene), poly (3,4-dibutylthio) Phen), poly (3-hydroxythiophene), poly (3-methoxythiophene), poly (3-ethoxythiophene), poly (3-butoxythiophene), poly (3-hexyloxythiophene), poly (3-heptyloxy) Thiophene), poly (3-octyloxythiophene), poly (3-decyloxythiophene), poly (3-dodecyloxythiophene), poly (3-octadecyloxythiophene), poly (3,4-dihydroxythiophene), poly (3,4-dimethoxythiophene), poly (3,4-diethoxythiophene), poly (3,4-dipropoxythiophene), poly (3,4-dibutoxythiophene), poly (3,4-dihexyloxy) Thiophene), poly (3,4-diheptyloxythiophene), poly (3,4- Octyloxythiophene), poly (3,4-didecyloxythiophene), poly (3,4-didodecyloxythiophene), poly (3,4-ethylenedioxythiophene), poly (3,4-propylenedioxy) Thiophene), poly (3,4-butenedioxythiophene), poly (3-methyl-4-methoxythiophene), poly (3-methyl-4-ethoxythiophene), poly (3-carboxythiophene), poly (3 -Methyl-4-carboxythiophene), poly (3-methyl-4-carboxyethylthiophene), poly (3-methyl-4-carboxybutylthiophene), polyaniline, poly (2-methylaniline), poly (3-isobutyl Aniline), poly (2-aniline sulfonic acid), poly (3-aniline sulfonic acid) and the like. That.

これらのπ共役系導電性高分子の中でも、ポリピロール、ポリチオフェン、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)から選ばれる1種又は2種からなる(共)重合体が抵抗値、反応性の点から好適に用いられる。さらには、ポリピロール、ポリ(3,4−エチレンジオキシチオフェン)は、導電性がより高い上に、耐熱性が向上する点から、より好ましい。アルキル基の中では導電性に悪影響を与えることがないため、メチル基が好ましい。さらに、ポリスチレンスルホン酸をドープしたポリ(3,4−エチレンジオキシチオフェン)(PEDOT−PSSと略す)は、比較的熱安定性が高く、重合度が低いことから塗膜成形後の透明性が有利となる点で好ましい。PEDOT−PSSと、電離放射線硬化型フッ化アクリレートとの組合せにより、耐薬品性試験前後の特性の変化が少なくなるというメリットがある。   Among these π-conjugated conductive polymers, polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene), poly (3,4-ethylenedioxythiophene) 1) or 2 types of (co) polymers are preferably used from the viewpoint of resistance and reactivity. Furthermore, polypyrrole and poly (3,4-ethylenedioxythiophene) are more preferable because they have higher conductivity and improved heat resistance. Among the alkyl groups, a methyl group is preferred because it does not adversely affect the conductivity. Furthermore, poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (abbreviated as PEDOT-PSS) has relatively high thermal stability and low polymerization degree, and thus has transparency after coating film formation. This is preferable because it is advantageous. The combination of PEDOT-PSS and ionizing radiation curable fluorinated acrylate has the advantage that the change in properties before and after the chemical resistance test is reduced.

高分子ドーパント
高分子ドーパントとは、電子供与性あるいは電子受容性を持つ高分子を指す。高分子ドーパントは、特に分子内にアニオン性基を有するポリアニオンをドーパントとすることが特に好ましい。以下、ポリアニオンからなるドーパントを「ポリアニオンドーパント」とする。このポリアニオンドーパントは、導電性高分子に化学酸化ドープして塩を形成して複合体を形成する。
Polymer dopant A polymer dopant refers to a polymer having an electron donating property or an electron accepting property. The polymer dopant is particularly preferably a polyanion having an anionic group in the molecule. Hereinafter, a dopant composed of a polyanion is referred to as a “polyanion dopant”. This polyanion dopant forms a complex by chemically oxidizing and doping a conductive polymer to form a salt.

ポリアニオンドーパントのアニオン基としては、π共役系導電性高分子への化学酸化ドープが起こり、かつアニオン基のプロトン酸がビニル基、グリシジル基、ヒドロキシル基のいずれかと結合可能な官能基であることが好ましい。具体的には、硫酸基、リン酸基、スルホン酸基、カルボキシル基、ホスホ基等が好ましく、さらに、化学酸化ドープの観点から、スルホン酸基、カルボキシル基がより好ましい。   As the anion group of the polyanion dopant, chemical oxidation doping to the π-conjugated conductive polymer occurs, and the proton acid of the anion group is a functional group that can be bonded to any of a vinyl group, a glycidyl group, and a hydroxyl group. preferable. Specifically, a sulfuric acid group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, a phospho group, and the like are preferable, and a sulfonic acid group and a carboxyl group are more preferable from the viewpoint of chemical oxidation doping.

スルホン酸基を有するポリアニオンドーパントとしては、例えば、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸、ポリイソプレンスルホン酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。   Examples of the polyanion dopant having a sulfonic acid group include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene. A sulfonic acid etc. are mentioned. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.

カルボキシル基を有するポリアニオンドーパントとしては、例えば、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ−2−アクリルアミド−2−メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。   Examples of the polyanion dopant having a carboxyl group include polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, and polyisoprene carboxylic acid. An acid, polyacrylic acid, etc. are mentioned. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.

本最良形態に係る樹脂組成物は、電気伝導性と熱安定性をより向上させるために高分子ドーパント以外のドーパントを含有してもよい。そのドーパントとしては、ハロゲン化合物、ルイス酸、プロトン酸などが挙げられ、具体的には、有機カルボン酸、有機スルホン酸等の有機酸、有機シアノ化合物、フラーレン化合物などが挙げられる。   The resin composition according to the best mode may contain a dopant other than the polymer dopant in order to further improve electrical conductivity and thermal stability. Examples of the dopant include halogen compounds, Lewis acids, proton acids, and the like. Specific examples include organic acids such as organic carboxylic acids and organic sulfonic acids, organic cyano compounds, and fullerene compounds.

ハロゲン化合物としては、例えば、塩素、臭素、ヨウ素、塩化ヨウ素、臭化ヨウ、フッ化ヨウ素等が挙げられる。プロトン酸としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウフッ化水素酸、フッ化水素酸、過塩素酸等の無機酸や、有機カルボン酸、フェノール類、有機スルホン酸等が挙げられる。さらに、有機カルボン酸としては、例えば、ギ酸、酢酸、ショウ酸、安息香酸、フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ニトロ酢酸、トリフェニル酢酸等が挙げられる。有機スルホン酸としては、例えば、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルナフタレンジスルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、ナフタレンジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸、ピレンスルホン酸などが挙げられる。また、これらの金属塩も使用できる。有機シアノ化合物としては、例えば、ジクロロジシアノベンゾキノン(DDQ)、テトラシアノキノジメタンテトラシアノアザナフタレンなどが挙げられる。フラーレン化合物としては、例えば、水素化フラーレン、水酸化フラーレン、カルボン酸化フラーレン、スルホン酸化フラーレンなどが挙げられる。   Examples of the halogen compound include chlorine, bromine, iodine, iodine chloride, iodine bromide, iodine fluoride, and the like. Examples of the protic acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, borofluoric acid, hydrofluoric acid, and perchloric acid, organic carboxylic acids, phenols, and organic sulfonic acids. Furthermore, examples of the organic carboxylic acid include formic acid, acetic acid, succinic acid, benzoic acid, phthalic acid, maleic acid, fumaric acid, malonic acid, tartaric acid, citric acid, lactic acid, succinic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid. Trifluoroacetic acid, nitroacetic acid, triphenylacetic acid and the like. Examples of the organic sulfonic acid include alkylbenzene sulfonic acid, alkyl naphthalene sulfonic acid, alkyl naphthalene disulfonic acid, naphthalene sulfonic acid formalin polycondensate, melamine sulfonic acid formalin polycondensate, naphthalene disulfonic acid, naphthalene trisulfonic acid, dinaphthylmethane. Examples include disulfonic acid, anthraquinone sulfonic acid, anthraquinone disulfonic acid, anthracene sulfonic acid, and pyrene sulfonic acid. These metal salts can also be used. Examples of the organic cyano compound include dichlorodicyanobenzoquinone (DDQ) and tetracyanoquinodimethanetetracyanoazanaphthalene. Examples of the fullerene compound include hydrogenated fullerene, hydroxylated fullerene, carboxylated fullerene, and sulfonated fullerene.

本最良形態に係るπ共役系導電性高分子は、溶媒中、π共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と前記高分子ドーパント(好適にはポリアニオン)の存在下で化学酸化重合することによって製造することが好適である。以下、π共役系導電性高分子と高分子ドーパントの複合体においてポリアニオンドーパントを例にとって説明する。   The π-conjugated conductive polymer according to the best mode includes a precursor monomer that forms a π-conjugated conductive polymer in a solvent, an appropriate oxidizing agent, an oxidation catalyst, and the polymer dopant (preferably a polyanion). It is preferable to produce by chemical oxidative polymerization in the presence of. Hereinafter, a polyanion dopant in a complex of a π-conjugated conductive polymer and a polymer dopant will be described as an example.

複合体の形成の際には、導電性高分子の主鎖の成長と共にポリアニオンドーパントのアニオン基が導電性高分子と塩を形成するため、導電性高分子の主鎖はポリアニオンドーパントに沿って成長する。よって、得られた導電性高分子とポリアニオンドーパントは無数に塩を形成した複合体になる。この複合体においては、導電性高分子のモノマー3ユニットに対して1ユニットのアニオン基が塩を形成し、短く成長した導電性高分子の数本が長いポリアニオンドーパントに沿って塩を形成しているものと推定されている。   During the formation of the composite, the main chain of the conductive polymer grows along the polyanion dopant because the anionic group of the polyanion dopant forms a salt with the conductive polymer along with the growth of the main chain of the conductive polymer. To do. Therefore, the obtained conductive polymer and polyanion dopant become a complex in which an infinite number of salts are formed. In this composite, one unit of anionic group forms a salt with respect to three units of the conductive polymer monomer, and several shortly grown conductive polymers form a salt along a long polyanion dopant. It is estimated that

導電性高分子とポリアニオンドーパントとを複合した複合体を形成する方法としては、例えば、ポリアニオンドーパントの存在下、導電性高分子を形成するモノマーを化学酸化重合する方法などが挙げられる。   Examples of a method for forming a complex in which a conductive polymer and a polyanion dopant are combined include a method in which a monomer that forms a conductive polymer is chemically oxidatively polymerized in the presence of a polyanion dopant.

化学酸化重合においてモノマーを重合するために使用される酸化剤、酸化触媒としては、前記前駆体モノマーを酸化させてπ共役系導電性高分子を得ることができるものであればよく、例えば、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム等のペルオキソ二硫酸塩、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、塩化第二銅等の遷移金属化合物、三フッ化ホウ素、塩化アルミニウムなどの金属ハロゲン化合物、酸化銀、酸化セシウム等の金属酸化物、過酸化水素、オゾン等の過酸化物、過酸化ベンゾイル等の有機過酸化物、酸素等が挙げられる。   The oxidizing agent and oxidation catalyst used for polymerizing the monomer in chemical oxidative polymerization may be any one that can oxidize the precursor monomer to obtain a π-conjugated conductive polymer. Peroxodisulfates such as ammonium disulfate, sodium peroxodisulfate, potassium peroxodisulfate, transition metal compounds such as ferric chloride, ferric sulfate, ferric nitrate, cupric chloride, boron trifluoride, chloride Examples thereof include metal halide compounds such as aluminum, metal oxides such as silver oxide and cesium oxide, peroxides such as hydrogen peroxide and ozone, organic peroxides such as benzoyl peroxide, and oxygen.

また、化学酸化重合は溶媒中で行われてもよい。その際に使用される溶媒としては、ポリアニオンドーパントおよび導電性高分子を溶解するものであれば特に制限されず、例えば、水、メタノール、エタノール、プロピレンカーボネート、クレゾール、フェノール、キシレノール、アセトン、メチルエチルケトン、ヘキサン、ベンゼン、トルエン、ジオキサン、ジエチルエーテル、アセトニトリル、ベンゾニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホリックトリアミド、1,3−ジメチル−2−イミダゾリジン、ジメチルイミダゾリン、酢酸エチル、2−メチルテトラヒドロフラン、ジオキサン、ジメチルスルホキシド、スルホラン、ジフェニルスルホン等が挙げられる。これら溶媒は必要に応じて、1種類もしくは2種類以上の混合溶媒で用いることができる。   Chemical oxidative polymerization may be performed in a solvent. The solvent used in that case is not particularly limited as long as it dissolves the polyanion dopant and the conductive polymer. For example, water, methanol, ethanol, propylene carbonate, cresol, phenol, xylenol, acetone, methyl ethyl ketone, Hexane, benzene, toluene, dioxane, diethyl ether, acetonitrile, benzonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, hexamethylphosphoric triamide, 1,3-dimethyl Examples include 2-imidazolidine, dimethylimidazoline, ethyl acetate, 2-methyltetrahydrofuran, dioxane, dimethyl sulfoxide, sulfolane, and diphenyl sulfone. These solvents can be used as a single solvent or a mixture of two or more solvents as required.

π共役系導電性高分子のユニットあたりの分子量と、高分子ドーパントのユニットあたりの分子量の比が1:1〜1:5であることが好ましく、1:1〜1:2であることがより好ましい。   The ratio of the molecular weight per unit of the π-conjugated conductive polymer to the molecular weight per unit of the polymer dopant is preferably 1: 1 to 1: 5, more preferably 1: 1 to 1: 2. preferable.

電離放射線硬化型フッ化アクリレート
電離放射線硬化型樹脂とは、紫外線、可視光線、赤外線、電子線などの電離放射線の照射を受けた時に直接、又は開始剤の作用を受けて間接的に、重合や二量化等の大分子化を進行させる反応を起す硬化反応性官能基を有するモノマー、オリゴマー及びポリマー等をいう。具体的には、(メタ)アクリロイル基、ビニル基、アリル基などのエチレン性不飽和結合を有するラジカル重合成のモノマー、オリゴマーなどがある。フッ化アクリレートとは、分子内にフッ素成分を含有するアクリレートをいい、具体的にはアクリレートのアルキル基をフッ化アルキル基に置き換えたものなどがある。フッ化アクリレートは、電離放射線硬化型であることにより、分子間での架橋が起きるため耐薬品性に優れ、ケン化処理後にも十分な防汚性を発現する、分子間で架橋が起きるため、硬化後にフッ素成分のブリードアウトが生じず、帯電防止性を阻害しないといった効果が奏される。電離放射線硬化型フッ化アクリレートとしては、例えば、2−(パーフルオロデシル)エチルメタクリレート、2−(パーフルオロ−7−メチルオクチル)エチルメタクリレート、3−(パーフルオロ−7−メチルオクチル)−2−ヒドロキシプロピルメタクリレート、2−(パーフルオロ−9−メチルデシル)エチルメタクリレート、3−(パーフルオロ−8−メチルデシル)−2−ヒドロキシプロピルメタクリレート、3−パーフルオロオクチル−2−ヒドロキシルプロピルアクリレート、2−(パーフルオロデシル)エチルアクリレート、2−(パーフルオロ−9−メチルデシル)エチルアクリレート、ペンタデカフルオロオクチル(メタ)アクリレート、ウナデカフルオロヘキシル(メタ)アクリレート、ノナフルオロペンチル(メタ)アクリレート、ヘプタフルオロブチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、トリフルオロ(メタ)アクリレート、トリイソフルオロイソプロピル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、下記化合物(i)〜(xxx)などを用いることができる。尚、下記化合物はいずれもアクリレートの場合を示したものであり、式中のアクリロイル基はいずれもメタクリロイル基に変更可能である。
The ionizing radiation curable fluorinated acrylate ionizing radiation curable resin is a polymerized or directly polymerized when irradiated with ionizing radiation such as ultraviolet rays, visible rays, infrared rays, electron beams, or indirectly by the action of an initiator. Monomers, oligomers, polymers, and the like having a curing reactive functional group that causes a reaction that causes a large molecule such as dimerization to proceed. Specific examples include radical polysynthetic monomers and oligomers having an ethylenically unsaturated bond such as a (meth) acryloyl group, a vinyl group, and an allyl group. The fluorinated acrylate refers to an acrylate containing a fluorine component in the molecule, and specifically includes an acrylate alkyl group replaced with a fluorinated alkyl group. Since the fluorinated acrylate is ionizing radiation curable, cross-linking between molecules occurs, so it has excellent chemical resistance and sufficient anti-fouling properties after saponification treatment. Cross-linking occurs between molecules. After curing, the fluorine component does not bleed out, and the effect of preventing the antistatic property from being impaired is exhibited. Examples of the ionizing radiation curable fluorinated acrylate include 2- (perfluorodecyl) ethyl methacrylate, 2- (perfluoro-7-methyloctyl) ethyl methacrylate, 3- (perfluoro-7-methyloctyl) -2- Hydroxypropyl methacrylate, 2- (perfluoro-9-methyldecyl) ethyl methacrylate, 3- (perfluoro-8-methyldecyl) -2-hydroxypropyl methacrylate, 3-perfluorooctyl-2-hydroxylpropyl acrylate, 2- (per Fluorodecyl) ethyl acrylate, 2- (perfluoro-9-methyldecyl) ethyl acrylate, pentadecafluorooctyl (meth) acrylate, unadecafluorohexyl (meth) acrylate, nonafluoropentyl (meth) ) Acrylate, heptafluorobutyl (meth) acrylate, octafluoropentyl (meth) acrylate, pentafluoropropyl (meth) acrylate, trifluoro (meth) acrylate, triisofluoroisopropyl (meth) acrylate, trifluoroethyl (meth) acrylate The following compounds (i) to (xxx) can be used. The following compounds all show the case of acrylate, and any acryloyl group in the formula can be changed to a methacryloyl group.

Figure 0005378862
Figure 0005378862

Figure 0005378862
Figure 0005378862

Figure 0005378862
Figure 0005378862

Figure 0005378862
Figure 0005378862

Figure 0005378862
Figure 0005378862

上記化合物(i)〜(xxxi)は、下記一般式(1)中のRとして水素原子のもののみを記載しており、カルボニル炭素に結合するメチレン基中の水素原子の1つはいずれもメチル基に変更可能である。   In the compounds (i) to (xxxi), R in the following general formula (1) describes only a hydrogen atom, and one of the hydrogen atoms in the methylene group bonded to the carbonyl carbon is methyl. It can be changed on the basis.

Figure 0005378862
Figure 0005378862

これらは、単独若しくは複数種類混合して使用することも可能である。フッ化アクリレートの内、ウレタン結合を持つフッ化アルキル基含有ウレタンアクリレートが、硬化物の耐磨耗性と伸び及び柔軟性の点より好ましい。また、フッ化アクリレートの中でも、多官能フッ化アクリレートが好適である。尚、ここでの多官能フッ化アクリレートとは2個以上(好適には3個以上、より好適には4個以上)の(メタ)アクリロイルオキシ基を有するものを意味する。   These can be used alone or in combination. Of the fluorinated acrylates, a fluorinated alkyl group-containing urethane acrylate having a urethane bond is preferred from the viewpoint of wear resistance, elongation and flexibility of the cured product. Of the fluorinated acrylates, polyfunctional fluorinated acrylates are preferred. Here, the polyfunctional fluorinated acrylate means one having 2 or more (preferably 3 or more, more preferably 4 or more) (meth) acryloyloxy groups.

多官能アクリレート
本発明において、硬度、基材との密着性などを付与するために、多官能アクリレートを添加することが好ましい。多官能アクリレートとは、1分子中に3(より好ましくは4、更に好ましくは5)個以上の(メタ)アクリロイルオキシ基を有する単量体若しくはオリゴマー、プレポリマーである。このような組成物としては、1分子中に3個以上のアルコール性水酸基を有する多価アルコールの該水酸基が、3個以上の(メタ)アクリル酸のエステル化合物となっている化合物などを挙げることができる。
Polyfunctional acrylate In the present invention, it is preferable to add a polyfunctional acrylate in order to impart hardness, adhesion to the substrate, and the like. The polyfunctional acrylate is a monomer, oligomer, or prepolymer having 3 (more preferably 4, more preferably 5) or more (meth) acryloyloxy groups in one molecule. Examples of such a composition include compounds in which the hydroxyl group of a polyhydric alcohol having 3 or more alcoholic hydroxyl groups in one molecule is an ester compound of 3 or more (meth) acrylic acids. Can do.

具体的な例としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、などを用いることができる。これらは、1種又は2種以上を混合して使用することができる。   Specific examples include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, and the like can be used. These can be used 1 type or in mixture of 2 or more types.

多官能アクリレートの使用割合は、光学機能層構成成分総量に対して、20〜80重量%が好ましく、より好ましくは30〜70重量%である。多官能アクリレートの含有量が、20%未満の場合十分な耐磨耗性が得られない可能性がある。   The use ratio of the polyfunctional acrylate is preferably 20 to 80% by weight, more preferably 30 to 70% by weight, based on the total amount of the constituent components of the optical functional layer. When the content of the polyfunctional acrylate is less than 20%, sufficient wear resistance may not be obtained.

ウレタンアクリレート
本最良形態に係る樹脂組成物は、ウレタンアクリレートを含有することが好適である。
ウレタンアクリレートとしては、ウレタン結合部とアクリロイル基とを有するウレタンアクリレートモノマーが重合してなるものであれば特に限定されない。ここで、当該ウレタンアクリレートモノマーに含まれるアクリロイル基の数は、1つであっても良く、または、複数であっても良い。また、上記ウレタンアクリレートモノマーに含まれるウレタン結合部の数は、1つであってもよく、または、複数であってもよい。
Urethane acrylate The resin composition according to the best mode of the present invention preferably contains urethane acrylate.
The urethane acrylate is not particularly limited as long as the urethane acrylate monomer having a urethane bond portion and an acryloyl group is polymerized. Here, the number of acryloyl groups contained in the urethane acrylate monomer may be one or plural. Further, the number of urethane bond portions contained in the urethane acrylate monomer may be one or plural.

ウレタンアクリレートは、ジイソシアナートとポリエステルまたはポリエーテルポリオールとを反応させることによって合成される。この反応によってイソシアナート末端基をもつウレタンが生じる。柔軟性がより高い。対照的に、芳香族ウレタンアクリレートはより硬質で耐薬品性に優れている。また、ポリオール主鎖は硬化速度の決定及び硬化フィルムの特性に重要な役割を果たす。ポリマーフィルムの柔軟性は例えばポリオールの分子量及び官能価の関数であり、ジオールの分子量が高いほど柔軟性が大きくなる。   Urethane acrylate is synthesized by reacting diisocyanate with a polyester or polyether polyol. This reaction yields urethanes with isocyanate end groups. More flexible. In contrast, aromatic urethane acrylates are harder and have better chemical resistance. The polyol backbone also plays an important role in determining the cure rate and the properties of the cured film. The flexibility of the polymer film is, for example, a function of the molecular weight and functionality of the polyol. The higher the diol molecular weight, the greater the flexibility.

本発明において、ウレタンアクリレートを添加することが好ましい、特に、下記式(1)及び(2)で表されるウレタン(メタ)アクリレート化合物が基材との密着性、耐磨耗性、耐薬品性に優れていることから好ましい。以下、これらの化合物について説明する。

Figure 0005378862
(式中、R1は水素原子またはCH3、R2は多価アルコール残基、Xはイソシアネート残基、Yは多価アルコール残基を表す。kは1〜5の整数、lは1〜3の整数、mは1〜2の整数、nは1〜6の整数を表す。但し、kとl、kとmとnは同時に1ではない。) In the present invention, it is preferable to add urethane acrylate. In particular, the urethane (meth) acrylate compound represented by the following formulas (1) and (2) has adhesion to a substrate, abrasion resistance, chemical resistance. It is preferable because of its superiority. Hereinafter, these compounds will be described.
Figure 0005378862
Wherein R 1 is a hydrogen atom or CH 3 , R 2 is a polyhydric alcohol residue, X is an isocyanate residue, Y is a polyhydric alcohol residue, k is an integer of 1 to 5, and l is 1 to 1 3 is an integer, m is an integer of 1 to 2, and n is an integer of 1 to 6. However, k and l, and k, m, and n are not 1 at the same time.)

式(1)のウレタン(メタ)アクリレート化合物は、水酸基含有(メタ)アクリレート化合物とイソシアネート化合物の反応生成物であって、(メタ)アクリレート基を少なくとも2個有する化合物である。また、式(2)のウレタン(メタ)アクリレート化合物は、水酸基含有(メタ)アクリレート化合物とポリイソシアネート化合物とポリオール化合物の反応生成物であって、(メタ)アクリレート基を少なくとも2個有する化合物である。また、上記ウレタン(メタ)アクリレートを得る方法としては、いずれの公知の方法も用いることができる。   The urethane (meth) acrylate compound of the formula (1) is a reaction product of a hydroxyl group-containing (meth) acrylate compound and an isocyanate compound, and is a compound having at least two (meth) acrylate groups. The urethane (meth) acrylate compound of the formula (2) is a reaction product of a hydroxyl group-containing (meth) acrylate compound, a polyisocyanate compound, and a polyol compound, and is a compound having at least two (meth) acrylate groups. . Moreover, as a method of obtaining the said urethane (meth) acrylate, any well-known method can be used.

水酸基含有(メタ)アクリレート化合物としては、グリセリン(メタ)アクリレート、トリメチロール(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等を挙げることができる。これらは単独でも複数組み合わせて使用することも可能である。   Examples of the hydroxyl group-containing (meth) acrylate compound include glycerin (meth) acrylate, trimethylol (meth) acrylate, pentaerythritol (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri ( And (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and the like. These can be used alone or in combination.

イソシアネート化合物としては、o−トリルイソシアネート、p−トリルイソシアネート、4−ジフェニルメタンイソシアネートや、ポリイソシアネートとして2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4−ジフェニルメタンジイソシアネート、m−キシリレンジイソシアネート、p−キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ビフェニレンジイソシアネート、1,5−ナフチレンジイソシアネート、o−トリジンジイソシアネート、ヘキサメチレンジイソシアネート、4,4’−メチレンビスシクロヘキシルイソシアネート、イソホロンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3−(イソシアナートメチル)シクロヘキサン、およびこれらのビュレット化物、ヌレート化物等の重縮合物を挙げることができる。これらは単独でも複数組み合わせて使用することも可能である。特に好ましくは、トリレンジイソシアネート、キシリレンジイソシアネートおよびヘキサメチレンジイソシアネートのヌレート化物、イソホロンジイソシアネートのヌレート化物等が挙げられる。   As isocyanate compounds, o-tolyl isocyanate, p-tolyl isocyanate, 4-diphenylmethane isocyanate, and polyisocyanates as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4-diphenylmethane diisocyanate, m-xylyl. Diisocyanate, p-xylylene diisocyanate, tetramethylxylylene diisocyanate, biphenylene diisocyanate, 1,5-naphthylene diisocyanate, o-tolidine diisocyanate, hexamethylene diisocyanate, 4,4'-methylenebiscyclohexyl isocyanate, isophorone diisocyanate, trimethylhexa Methylene diisocyanate, 1,3- (isocyanatomethyl) cyclohexane, and this Burette product, may be mentioned polycondensation products such as isocyanurate product of. These can be used alone or in combination. Particularly preferable examples include tolylene diisocyanate, xylylene diisocyanate and hexamethylene diisocyanate nurate, isophorone diisocyanate nurate.

ポリオール化合物としては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,6−ヘキサンジオール、グリセリン、トリメチロールプロパン、カルボン酸含有ポリオール等の脂肪族多価アルコール、各種ビスフェノールのエチレンオキサイドおよびプロピレンオキサイド反応物、ビスフェノールフルオレンのエチレンオキサイドおよびプロピレンオキサイド反応物等の芳香族多価アルコール、また脂肪族、芳香族に拘らず、式(2)で表されるような、分子中に(メタ)アクリロイル基を有するポリオールが挙げられる。特に好ましくは、ジメチロールプロピオン酸、ジメチロールブタン酸、ビスフェノキシエタノールフルオレン等が挙げられる。   Polyol compounds include ethylene glycol, propylene glycol, neopentyl glycol, 1,6-hexanediol, glycerin, trimethylolpropane, carboxylic acid-containing polyols and other aliphatic polyhydric alcohols, ethylene oxide and propylene oxide reactants of various bisphenols Aromatic polyhydric alcohols such as ethylene oxide and propylene oxide reactants of bisphenolfluorene, and also having a (meth) acryloyl group in the molecule as represented by formula (2) regardless of aliphatic or aromatic A polyol is mentioned. Particularly preferred are dimethylolpropionic acid, dimethylolbutanoic acid, bisphenoxyethanol fluorene and the like.

これらのウレタンアクリレートは、単独若しくは複数種混合して使用することも可能である。上記のウレタンアクリレートの中でも、多官能ウレタンアクリレートが好適である。尚、ここでの多官能ウレタンアクリレートとは2個以上(好適には3個以上、より好適には4個以上)の(メタ)アクリロイルオキシ基を有するものを意味する。   These urethane acrylates can be used alone or in combination. Among the above urethane acrylates, polyfunctional urethane acrylates are preferable. Here, the polyfunctional urethane acrylate means one having 2 or more (preferably 3 or more, more preferably 4 or more) (meth) acryloyloxy groups.

具体的な例としては、ペンタエリスリトールトリ(メタ)アクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリ(メタ)アクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリ(メタ)アクリレートイソホロンイソシアネートウレタンプレポリマーなどを用いることができる。これらは、1種又は2種以上を混合して使用することができる。   As specific examples, use of pentaerythritol tri (meth) acrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol tri (meth) acrylate toluene diisocyanate urethane prepolymer, pentaerythritol tri (meth) acrylate isophorone isocyanate urethane prepolymer, etc. Can do. These can be used 1 type or in mixture of 2 or more types.

ウレタンアクリレートは粘度が高いため、π共役系導電性高分子の分散性を向上させることができ、良好な導電性が得られる点で好ましい。   Since urethane acrylate has a high viscosity, the dispersibility of the π-conjugated conductive polymer can be improved, and this is preferable in terms of obtaining good conductivity.

ウレタンアクリレートの使用割合は、光学機能層構成成分総量に対して、10〜80重量%が好ましく、より好ましくは30〜70重量%である。ウレタンアクリレートの含有量が、10%以下の場合十分な柔軟性が得られない可能性がある。   The proportion of urethane acrylate used is preferably 10 to 80% by weight, more preferably 30 to 70% by weight, based on the total amount of the constituent components of the optical functional layer. If the content of urethane acrylate is 10% or less, sufficient flexibility may not be obtained.

上記の樹脂組成物を硬化せしめる電離放射線としては、紫外線、可視光線、赤外線、電子線のいずれであってもよい。また、これらの放射線は、偏光であっても無偏光であってもよい。特に、設備コスト、安全性、ランニングコスト等の観点から紫外線が好適である。紫外線のエネルギー線源としては、例えば、高圧水銀ランプ、ハロゲンランプ、キセノンランプ、メタルハライドランプ、窒素レーザー、電子線加速装置、放射性元素などが好ましい。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、100〜5,000mJ/cmの範囲が好ましく、300〜3,000mJ/cm照射量が、100mJ/cm未満の場合は、硬化が不十分となるため、光学機能層の硬度が低下する場合がある。また5,000mJ/cmを超えると、光学機能層が着色して透明性が低下する。紫外線照射による硬化を行う場合は、光重合開始剤の添加が必要である。光重合開始剤としては、従来公知のものを用いることができる。例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、N,N,N,N−テトラメチル−4,4’−ジアミノベンゾフェノン、ベンジルメチルケタールなどのベンゾインとそのアルキルエーテル類;アセトフェノン、3−メチルアセトフェノン、4−クロロベンゾフエノン、4,4’−ジメトキシベンゾフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1−ヒドロキシシクロへキシルフェニルケトンなどのアセトフェノン類;メチルアントラキノン、2−エチルアントラキノン、2−アミルアントラキノンなどのアントラキノン類;キサントン;チオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4,4−ビスメチルアミノベンゾフェノンなどのベンゾフェノン類;その他、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン等を例示できる。これらは単独でまたは2種以上の混合物として使用できる。光重合開始剤の使用量は、放射線硬化型樹脂組成物に対して、全固形分比で5%以下程度、さらには1〜4%が好ましい。 The ionizing radiation that cures the resin composition may be any of ultraviolet rays, visible rays, infrared rays, and electron beams. Further, these radiations may be polarized or non-polarized. In particular, ultraviolet rays are suitable from the viewpoints of equipment cost, safety, running cost, and the like. As the ultraviolet energy beam source, for example, a high-pressure mercury lamp, a halogen lamp, a xenon lamp, a metal halide lamp, a nitrogen laser, an electron beam accelerator, a radioactive element, and the like are preferable. The amount of irradiation with the energy radiation source of accumulative exposure at an ultraviolet wavelength of 365 nm, preferably in the range of 100~5,000mJ / cm 2, 300~3,000mJ / cm 2 irradiation amount, of less than 100 mJ / cm 2 Since the curing becomes insufficient, the hardness of the optical functional layer may be lowered. Moreover, when it exceeds 5,000 mJ / cm < 2 >, an optical function layer will color and transparency will fall. When curing by ultraviolet irradiation, it is necessary to add a photopolymerization initiator. A conventionally well-known thing can be used as a photoinitiator. For example, benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, N, N, N, N-tetramethyl-4,4′-diaminobenzophenone, benzylmethyl ketal; acetophenone, 3 -Acetophenones such as methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone; methylanthraquinone, 2-ethylanthraquinone Anthraquinones such as 2-amylanthraquinone; xanthone; thioxanthones such as thioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone; Ketals such as tophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone and 4,4-bismethylaminobenzophenone; and others, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane-1- ON etc. can be illustrated. These can be used alone or as a mixture of two or more. The use amount of the photopolymerization initiator is preferably about 5% or less, more preferably 1 to 4% in terms of the total solid content ratio with respect to the radiation curable resin composition.

上記放射線硬化型樹脂組成物の系に、その重合硬化を妨げない範囲で高分子樹脂を添加使用することができる。この高分子樹脂は、後述する光学機能層塗料に使用される有機溶剤に可溶な熱可塑性樹脂であり、具体的にはアクリル樹脂、アルキッド樹脂、ポリエステル樹脂、セルロース誘導体等が挙げられ、これらの樹脂中には、カルボキシル基やリン酸基、スルホン酸基等の酸性官能基を有することが好ましい   A polymer resin can be added and used in the radiation-curable resin composition system as long as the polymerization and curing are not hindered. This polymer resin is a thermoplastic resin that is soluble in an organic solvent used in the optical functional layer coating described later, and specifically includes acrylic resins, alkyd resins, polyester resins, cellulose derivatives, and the like. The resin preferably has an acidic functional group such as a carboxyl group, a phosphoric acid group, or a sulfonic acid group.

また、レベリング剤、増粘剤、帯電防止剤、充填剤、体質顔料等の添加剤を使用することができる。レベリング剤は、塗膜表面の張力均一化を図り塗膜形成前に欠陥を直す働きがあり、上記放射線硬化型樹脂組成物より界面張力、表面張力共に低い物質が用いられる。   In addition, additives such as a leveling agent, a thickener, an antistatic agent, a filler, and an extender can be used. The leveling agent has a function of uniforming the tension on the surface of the coating film and correcting defects before forming the coating film, and a substance having lower interfacial tension and surface tension than the radiation curable resin composition is used.

光学機能層は、主に上述の樹脂組成物などの硬化物により構成されるが、その形成方法は、樹脂組成物と有機溶剤からなる塗料を塗工し、有機溶剤を揮発させた後に放射線(例えば電子線または紫外線照射)や熱により硬化せしめるものである。ここで使用される有機溶剤としては、樹脂組成物を溶解するのに適したものを選ぶ必要がある。具体的には、透光性基体への濡れ性、粘度、乾燥速度といった塗工適性を考慮して、アルコール系、エステル系、ケトン系、エーテル系、芳香族炭化水素から選ばれた単独または混合溶剤を使用することができる。特に、π共役系導電性高分子及び高分子ドーパントを良好に溶解させることができる有機溶剤を選択することにより、良好な導電性を得ることができる。π共役系導電性高分子及び高分子ドーパントを良好に溶解させることができる有機溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール等のアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、酢酸エチル等のエステル系溶剤などが挙げられる。これらの中では、アルコール系溶剤、ケトン系溶剤が、π共役系導電性高分子及び高分子ドーパントを良好に溶解させることができるため好ましく、特に、イソプロパノール、エタノールが好ましい。   The optical functional layer is mainly composed of a cured product such as the above-described resin composition, but the formation method is to apply a paint composed of the resin composition and an organic solvent, volatilize the organic solvent, and then apply radiation ( For example, it is cured by electron beam or ultraviolet irradiation) or heat. As the organic solvent used here, it is necessary to select an organic solvent suitable for dissolving the resin composition. Specifically, in consideration of coating suitability such as wettability to a light-transmitting substrate, viscosity, and drying speed, an alcohol type, an ester type, a ketone type, an ether type, or an aromatic hydrocarbon is used alone or in combination. Solvents can be used. In particular, good conductivity can be obtained by selecting an organic solvent that can dissolve the π-conjugated conductive polymer and the polymer dopant satisfactorily. Examples of the organic solvent that can satisfactorily dissolve the π-conjugated conductive polymer and the polymer dopant include alcohol solvents such as methanol, ethanol, propanol, and isopropanol, ketone solvents such as acetone and methyl ethyl ketone, and diethyl ether. And ether solvents such as tetrahydrofuran, and ester solvents such as ethyl acetate. Among these, alcohol solvents and ketone solvents are preferable because they can dissolve the π-conjugated conductive polymer and polymer dopant well, and isopropanol and ethanol are particularly preferable.

光学機能層の厚さは3〜50μmの範囲であることが必要であり、より好ましくは5〜30μmの範囲であり、更に好ましくは7〜20μmの範囲である。光学機能層が3μmより薄い場合は、耐擦傷性が劣化するとともに、干渉ムラが顕著に現れるため好ましくない。50μmより厚い場合は、光学機能層の硬化収縮によりカールが発生したり、光学機能層表面にマイクロクラックが発生したり、透光性基体との密着性が低下したり、さらには光透過性が低下したりする。そして、膜厚の増加に伴う必要塗料量の増加によるコストアップの原因ともなる。   The thickness of the optical functional layer needs to be in the range of 3 to 50 μm, more preferably in the range of 5 to 30 μm, and still more preferably in the range of 7 to 20 μm. When the optical functional layer is thinner than 3 μm, the scratch resistance is deteriorated and interference unevenness appears remarkably, which is not preferable. When it is thicker than 50 μm, curling occurs due to curing shrinkage of the optical functional layer, micro cracks occur on the surface of the optical functional layer, adhesion to the translucent substrate is reduced, and light transmittance is further reduced. Or drop. And it becomes a cause of the cost increase by the increase in the amount of required coating materials accompanying the increase in film thickness.

光学機能層には透光性微粒子を添加してもよい。透光性微粒子としては、例えば、アクリル樹脂、ポリスチレン樹脂、スチレン−アクリル共重合体、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン、ポリフッ化エチレン系樹脂等よりなる有機透光性微粒子や、酸化チタン、酸化ケイ素(シリカ)、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化カルシウム、酸化インジウム、酸化アンチモン、又はこれらの複合物等の無機透光性微粒子(無機の超微粒子)を使用することができる。尚、これら微粒子は1種を単独で用いてもよく、2種以上を併用してもよい。透光性微粒子として、架橋された有機透光性微粒子と無機透光性微粒子を使用することが好適である。これにより、硬化後のハードコートフィルム(光学積層体)の鉛筆硬度を向上させるとともに、カールを防ぐことができる。また、透光性微粒子として、シリカを用いると、光学機能層の屈折率が低下し、ディスプレイの画質に影響する干渉ムラが軽減されるため好ましい。更に、シリカをシリケート系の材料(例えば、ビニル基、メタクリル基、アミノ基、エポキシ基などの官能基を有するアルコキシシランなどのシランカップリング剤)で処理すると、ケン化処理の際にシリカの溶出を防ぐことができる。透光性微粒子の粒径は1〜100nmが好適であり、10〜50nmがより好適である。粒径が1nmより小さい場合、耐薬品性が低下したり、粒子の生産コストが高くなったりする。100nmより大きい場合には、透過率が低下したり、ヘイズが上昇したり、コントラストが低下するといった光学特性に影響が発生する。「粒径」は、電子顕微鏡で実測した100個の粒子の直径の平均値を指す。尚、全個数の内、当該微粒子の製造工程において混入する微細粉及び粗大粉は、5%未満(より好ましくは1%未満)である。透光性微粒子の配合量は、5〜70重量%が好適であり、10〜50重量%がより好適である。配合量が5重量%より少ない場合、カール防止効果、鉛筆硬度が低下する。配合量が70重量%よりも多い場合、耐スクラッチ性が悪くなる。透光性微粒子はゾル化して使用することが好ましく、塗料化が行ないやすくなるとともに、塗料中の透光性微粒子の分散性が向上する。ゾル化した透光性微粒子としては、例えば、アルミナゾルやシリカゾル等を使用することができる。   Translucent fine particles may be added to the optical functional layer. As the translucent fine particles, for example, organic translucent fine particles made of acrylic resin, polystyrene resin, styrene-acrylic copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, polyfluoroethylene-based resin, Uses inorganic translucent fine particles (inorganic ultrafine particles) such as titanium oxide, silicon oxide (silica), aluminum oxide, zinc oxide, tin oxide, zirconium oxide, calcium oxide, indium oxide, antimony oxide, or a composite thereof. can do. In addition, these fine particles may be used individually by 1 type, and may use 2 or more types together. As the light-transmitting fine particles, it is preferable to use crosslinked organic light-transmitting fine particles and inorganic light-transmitting fine particles. Thereby, while improving the pencil hardness of the hard coat film (optical laminated body) after hardening, curling can be prevented. In addition, it is preferable to use silica as the light-transmitting fine particles because the refractive index of the optical functional layer is reduced and interference unevenness affecting the image quality of the display is reduced. Further, when silica is treated with a silicate-based material (for example, a silane coupling agent such as alkoxysilane having a functional group such as vinyl group, methacryl group, amino group, epoxy group, etc.), the silica is eluted during the saponification treatment. Can be prevented. The particle diameter of the translucent fine particles is preferably 1 to 100 nm, and more preferably 10 to 50 nm. When the particle size is smaller than 1 nm, the chemical resistance is lowered or the production cost of the particles is increased. When the thickness is larger than 100 nm, the optical characteristics such as a decrease in transmittance, an increase in haze, and a decrease in contrast occur. “Particle size” refers to the average value of the diameters of 100 particles measured with an electron microscope. Of the total number, the fine powder and coarse powder mixed in the production process of the fine particles are less than 5% (more preferably less than 1%). The blending amount of the translucent fine particles is preferably 5 to 70% by weight, and more preferably 10 to 50% by weight. When the blending amount is less than 5% by weight, the curl prevention effect and pencil hardness are lowered. When there are more compounding quantities than 70 weight%, scratch resistance will worsen. The translucent fine particles are preferably used in the form of a sol, which facilitates the formation of a paint and improves the dispersibility of the translucent fine particles in the paint. For example, alumina sol, silica sol, or the like can be used as the solubilized translucent fine particles.

本発明の光学積層体において、透光性基体の屈折率と光学機能層の屈折率の差([透光性基体の屈折率]−[光学機能層の屈折率])が、0.10以下であることが好ましく、光学機能層の屈折率が、透光性基体の屈折率以下であることがより好ましい。前記屈折率差を前記範囲となるように制御することにより、表面での光の反射を低く抑えることができる。   In the optical laminate of the present invention, the difference between the refractive index of the translucent substrate and the refractive index of the optical functional layer ([refractive index of the translucent substrate] − [refractive index of the optical functional layer]) is 0.10 or less. It is preferable that the refractive index of the optical functional layer be less than or equal to the refractive index of the translucent substrate. By controlling the refractive index difference to be in the above range, reflection of light on the surface can be suppressed to a low level.

前記屈折率の制御は、無機透光性微粒子を光学機能層中に適宜含有させしめることでできる。無機透光性微粒子は、その配合量に応じて光学機能層の見かけの屈折率を調整する機能を有する。透光性基体の屈折率と光学機能層の屈折率は上述の通り、近似していることが好ましい。そのため、光学機能層形成材料の調製にあたっては、前記透光性基体の屈折率と光学機能層の屈折率の差が小さくなるように、無機透光性微粒子の配合量を適宜に調整するのが好ましい。前記屈折率差が大きいと、光学積層体に入射した外光の反射光が虹色の色相を呈する干渉ムラと呼ばれる現象が発生し、表示品位を落としてしまう。特に、光学積層体を備えた画像表示装置が使用される頻度の高いオフィスでは、蛍光灯として、三波長蛍光灯が非常に増加してきている。三波長蛍光灯は、特定の波長の発光強度が強く、物がはっきり見える特徴を有するが、この三波長蛍光灯下では更に干渉ムラが顕著に現れることが判っている。   The refractive index can be controlled by appropriately incorporating inorganic translucent fine particles in the optical functional layer. The inorganic translucent fine particles have a function of adjusting the apparent refractive index of the optical functional layer according to the blending amount. As described above, it is preferable that the refractive index of the translucent substrate and the refractive index of the optical functional layer are approximate. Therefore, in the preparation of the optical functional layer forming material, the blending amount of the inorganic translucent fine particles is appropriately adjusted so that the difference between the refractive index of the translucent substrate and the refractive index of the optical functional layer is reduced. preferable. When the refractive index difference is large, a phenomenon called interference unevenness occurs in which reflected light of external light incident on the optical laminate exhibits a rainbow hue, and the display quality is deteriorated. In particular, three-wavelength fluorescent lamps have been greatly increased as fluorescent lamps in offices where an image display device including an optical laminate is frequently used. The three-wavelength fluorescent lamp has a characteristic that the emission intensity of a specific wavelength is strong and the object can be clearly seen, but it has been found that interference unevenness appears more significantly under this three-wavelength fluorescent lamp.

(偏光基体)
本発明においては、光学機能層とは反対面の透光性基体上に、偏光基体を積層してもよい。ここで、当該偏光基体は、特定の偏光のみを透過し他の光を吸収する光吸収型の偏光フィルムや、特定の偏光のみを透過し他の光を反射する光反射型の偏光フィルムを使用することが出来る。光吸収型の偏光フィルムとしては、ポリビニルアルコール、ポリビニレン等を延伸させて得られるフィルムが使用可能であり、例えば、2色性素子として沃素または染料を吸着させたポリビニルアルコールを一軸延伸して得られたポリビニルアルコール(PVA)フィルムが挙げられる。光反射型の偏光フィルムとしては、例えば、延伸した際に延伸方向の屈折率が異なる2種類のポリエステル樹脂(PEN及びPEN共重合体)を、押出成形技術により数百層交互に積層し延伸した構成の3M社製「DBEF」や、コレステリック液晶ポリマー層と1/4波長板とを積層してなり、コレステリック液晶ポリマー層側から入射した光を互いに逆向きの2つの円偏光に分離し、一方を透過、他方を反射させ、コレステリック液晶ポリマー層を透過した円偏光を1/4波長板により直線偏光に変換させる構成の日東電工社製「ニポックス」やメルク社製「トランスマックス」等が挙げられる。
(Polarizing substrate)
In the present invention, a polarizing substrate may be laminated on a light transmitting substrate opposite to the optical functional layer. Here, the polarizing substrate uses a light-absorbing polarizing film that transmits only specific polarized light and absorbs other light, or a light reflective polarizing film that transmits only specific polarized light and reflects other light. I can do it. As the light-absorbing polarizing film, a film obtained by stretching polyvinyl alcohol, polyvinylene or the like can be used. For example, it can be obtained by uniaxially stretching polyvinyl alcohol adsorbed with iodine or a dye as a dichroic element. Polyvinyl alcohol (PVA) film. As the light reflection type polarizing film, for example, two kinds of polyester resins (PEN and PEN copolymer) having different refractive indexes in the stretching direction when stretched are alternately laminated and stretched by several hundreds of extrusion techniques. "DBEF" manufactured by 3M, or a cholesteric liquid crystal polymer layer and a quarter-wave plate are laminated, and light incident from the cholesteric liquid crystal polymer layer side is separated into two circularly polarized light beams that are opposite to each other. Nitto Denko's “Nipox” and Merck's “Transmax”, which are configured to convert circularly polarized light that is transmitted through the cholesteric liquid crystal polymer layer and converted into linearly polarized light by a quarter-wave plate, and the like. .

《製造方法》
本発明の層を形成する方法としては、例えば、上記で述べた成分中、および水或いは有機溶剤と共に、ペイントシェーカー、サンドミル、パールミル、ボールミル、アトライター、ロールミル、高速インペラー分散機、ジェットミル、高速衝撃ミル、超音波分散機等によって分散した塗料又はインキを、エアドクターコーティング、ブレードコーティング、ナイフコーティング、リバースコーティング、トランスファロールコーティング、グラビアロールコーティング、キスコーティング、キャストコーティング、スプレーコーティング、スロットオリフイスコーティング、カレンダーコーティング、電着コーティング、ディップコーティング、ダイコーティング等のコーティングや、フレキソ印刷等の凸版印刷、ダイレクトグラビア印刷、オフセットグラビア印刷等の凹版印刷、オフセット印刷等の平板印刷、スクリーン印刷等の孔版印刷等の印刷により透明基材の片面若しくは両面上に、直接或いは他の層を介し、単層若しくは多層に分けて設け、溶剤を含んでいる場合は、熱乾燥工程を経て、紫外線(紫外線の場合、開始剤が必要)又は電子線照射により塗工層もしくは印刷層を硬化させることによって形成する方法等が挙げられる。尚、電子線による場合はコックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000KeVのエネルギーを有する電子線等が使用され、紫外線の場合は、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光源から発する紫外線が利用できる。
尚、本発明は下記構成であってもよい。
本発明(i)は、π共役系導電性高分子と、高分子ドーパントと、電離放射線硬化型フッ化アクリレートと、を含有することを特徴とする樹脂組成物である。
本発明(ii)は、ウレタンアクリレートを含有することを特徴とする前記発明(i)の樹脂組成物である。
本発明(iii)は、透光性基体の片面または両面に、直接又は他の層を介して、光学機能層を設けた光学積層体であって、
前記光学機能層が、π共役系導電性高分子と、高分子ドーパントと、電離放射線硬化型フッ化アクリレートと、を含有する樹脂組成物を硬化させて得られるものであることを特徴とする光学積層体である。
本発明(iv)は、前記光学機能層を構成する樹脂組成物のフッ素含有量が500〜500000ppm以下であることを特徴とする前記発明(iii)の光学積層体である。
本発明(v)は、前記放射線硬化型フッ化アクリレートの官能基数が3個以上であることを特徴とする前記発明(iii)又は(iv)の光学積層体である。
本発明(vi)は、前記電離放射線硬化型フッ化アクリレートが、フッ素化アルキル基含有ウレタンアクリレートであることを特徴とする前記発明(iii)〜(v)の光学積層体である。
本発明(i)によれば、硬化物が、良好な帯電防止性、防汚性を発現するという効果を奏する。
本発明(ii)によれば、硬化物の密着性、耐磨耗性、耐薬品性が優れるという効果を奏する。
本発明(iii)によれば、1層構成であり、低コストでありながら、良好な帯電防止性、防汚性を発現するという効果を奏する。
本発明(iv)によれば、耐スクラッチ性、防汚性、耐薬品性が向上するという効果を奏する。
本発明(v)によれば、分子間での架橋がより密になるため、より高い耐薬品性を発揮するという効果を奏する。
本発明(vi)によれば、より高い耐磨耗性と伸び及び柔軟性を有するという効果を奏する。
"Production method"
Examples of the method for forming the layer of the present invention include paint shakers, sand mills, pearl mills, ball mills, attritors, roll mills, high-speed impeller dispersers, jet mills, high-speed components in the above-described components and with water or organic solvents. Paint or ink dispersed by impact mill, ultrasonic disperser, etc., air doctor coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, slot orifice coating, Calendar coating, electrodeposition coating, dip coating, die coating, etc., relief printing such as flexographic printing, direct gravure printing, Separated into single layer or multiple layers on one or both sides of the transparent substrate directly or through other layers by printing such as intaglio printing such as offset gravure printing, flat printing such as offset printing, stencil printing such as screen printing, etc. In the case of containing a solvent, a method of forming by curing a coating layer or a printing layer by ultraviolet rays (in the case of ultraviolet rays, an initiator is necessary) or electron beam irradiation is given through a heat drying step. It is done. In the case of using an electron beam, energy of 50 to 1000 KeV emitted from various electron beam accelerators such as a Cockloft Walton type, a bandegraph type, a resonant transformation type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type is used. In the case of ultraviolet rays, ultraviolet rays emitted from a light source such as an ultra high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, or a metal halide lamp can be used.
The present invention may have the following configuration.
The present invention (i) is a resin composition comprising a π-conjugated conductive polymer, a polymer dopant, and an ionizing radiation curable fluorinated acrylate.
This invention (ii) is a resin composition of the said invention (i) characterized by containing urethane acrylate.
The present invention (iii) is an optical laminate in which an optical functional layer is provided on one side or both sides of a translucent substrate, directly or via another layer,
The optical functional layer is obtained by curing a resin composition containing a π-conjugated conductive polymer, a polymer dopant, and an ionizing radiation curable fluorinated acrylate. It is a laminate.
The present invention (iv) is the optical laminate according to the invention (iii), wherein the resin composition constituting the optical functional layer has a fluorine content of 500 to 500,000 ppm or less.
The present invention (v) is the optical laminate according to the invention (iii) or (iv), wherein the radiation-curable fluorinated acrylate has 3 or more functional groups.
The present invention (vi) is the optical laminate according to any one of the inventions (iii) to (v), wherein the ionizing radiation curable fluorinated acrylate is a fluorinated alkyl group-containing urethane acrylate.
According to this invention (i), there exists an effect that hardened | cured material expresses favorable antistatic property and antifouling property.
According to this invention (ii), there exists an effect that the adhesiveness of a hardened | cured material, abrasion resistance, and chemical resistance are excellent.
According to the present invention (iii), it has a one-layer structure, and has the effect of exhibiting good antistatic properties and antifouling properties while being low in cost.
According to this invention (iv), there exists an effect that scratch resistance, antifouling property, and chemical resistance improve.
According to the present invention (v), since cross-linking between molecules becomes denser, there is an effect of exhibiting higher chemical resistance.
According to this invention (vi), there exists an effect that it has higher abrasion resistance, elongation, and a softness | flexibility.

(製造例1)フッ化アクリレート A液の合成
500mlの反応フラスコ中、イソホロンジイソシアナート22.2g(0.1モル)のMIBK(メチルイソブチルケトン)100ml溶液に、エアーバブリングを行いながらペンタエリスリトールトリアクリレート59.6g(0.20モル)のMIBK50ml溶液を25℃で滴下した。滴下終了後、ジブチル錫ジラウレート0.3gを加え更に70℃で4時間加熱攪拌を行った。反応終了後、反応溶液を5%塩酸100mlで洗浄した。有機層を分取した後、40℃以下で溶媒を減圧留去することで無色透明粘調液体のウレタンアクリレート80.5gを得た。200ml反応フラスコに、調製したウレタンアクリレート40.8g(0.05モル)、パーフルオロヘプチルエチルメルカプタン64.2g(0.15モル)、MIBK60gを投入し均一とした。この混合溶液に25℃でトリエチルアミン1.0gを徐々に加えた。加え終わった後、さらに50℃で3時間撹拌した。反応終了後、50℃以下の条件でエバポレーターを用いて、トリエチルアミンを減圧留去し、さらに真空ポンプで乾燥することで、構造式1で示されるフッ素化アルキル基含有ウレタンアクリレートを含有し、アクリロイル基とパーフルオロヘプチルエチルメルカプタンとの付加反応の位置が前記構造式1とは異なる化合物を更に含む混合物からなる生成物A液を得た。
(Production Example 1) Synthesis of fluorinated acrylate solution A solution of 22.2 g (0.1 mol) of isophorone diisocyanate in 100 ml of MIBK (methyl isobutyl ketone) in a 500 ml reaction flask while performing air bubbling and pentaerythritol tri A solution of 59.6 g (0.20 mol) of acrylate in 50 ml of MIBK was added dropwise at 25 ° C. After completion of dropping, 0.3 g of dibutyltin dilaurate was added, and the mixture was further stirred with heating at 70 ° C. for 4 hours. After completion of the reaction, the reaction solution was washed with 100 ml of 5% hydrochloric acid. After separating the organic layer, the solvent was distilled off under reduced pressure at 40 ° C. or less to obtain 80.5 g of a colorless transparent viscous liquid urethane acrylate. Into a 200 ml reaction flask, 40.8 g (0.05 mol) of the prepared urethane acrylate, 64.2 g (0.15 mol) of perfluoroheptylethyl mercaptan, and 60 g of MIBK were added to make uniform. To this mixed solution, 1.0 g of triethylamine was gradually added at 25 ° C. After the addition was completed, the mixture was further stirred at 50 ° C. for 3 hours. After completion of the reaction, triethylamine is distilled off under reduced pressure using an evaporator under conditions of 50 ° C. or lower, and further dried with a vacuum pump, thereby containing a fluorinated alkyl group-containing urethane acrylate represented by Structural Formula 1, and an acryloyl group. A product A solution was obtained comprising a mixture further containing a compound different from the structural formula 1 in the position of the addition reaction between and perfluoroheptylethyl mercaptan.

Figure 0005378862
Figure 0005378862

(製造例2)ポリスチレンスルホン酸の合成
1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を12時間攪拌した。得られたスチレンスルホン酸ナトリウム含有溶液に10質量%に希釈した硫酸を1000ml添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約1000ml溶液を除去し、残液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。さらに、得られたろ液に約2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この限外ろ過操作を3回繰り返した。得られた溶液中の水を減圧除去して、無色の固形物を得た。
(Production Example 2) Synthesis of polystyrene sulfonic acid 206 g of sodium styrene sulfonate was dissolved in 1000 ml of ion-exchanged water, and 1.14 g of ammonium persulfate oxidizing agent solution previously dissolved in 10 ml of water was stirred at 80 ° C. The solution was added dropwise for 20 minutes, and the solution was stirred for 12 hours. To the obtained sodium styrenesulfonate-containing solution, 1000 ml of sulfuric acid diluted to 10% by mass was added, about 1000 ml of the polystyrenesulfonic acid-containing solution was removed using an ultrafiltration method, and 2000 ml of ion-exchanged water was added to the remaining liquid. And about 2000 ml solution was removed using ultrafiltration. The above ultrafiltration operation was repeated three times. Further, about 2000 ml of ion-exchanged water was added to the obtained filtrate, and about 2000 ml of solution was removed using an ultrafiltration method. This ultrafiltration operation was repeated three times. Water in the obtained solution was removed under reduced pressure to obtain a colorless solid.

(製造例3)ポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)(PSS−PEDOT)の合成
14.2gの3,4−エチレンジオキシチオフェンと、36.7gのポリスチレンスルホン酸を2000mlのイオン交換水に溶かした溶液とを20℃で混合した。これにより得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。得られた反応液に2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。そして、得られた溶液に200mlの10質量%に希釈した硫酸と2000mlのイオン交換水とを加え、限外ろ過法を用いて約2000mlの溶液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの液を除去した。この操作を3回繰り返した。さらに、得られた溶液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの溶液を除去した。この操作を5回繰り返し、1.5質量%の青色のポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)(PSS−PEDOT)の水溶液を得た。
Production Example 3 Synthesis of Polystyrenesulfonic Acid Doped Poly (3,4-ethylenedioxythiophene) (PSS-PEDOT) 14.2 g of 3,4-ethylenedioxythiophene and 36.7 g of polystyrenesulfonic acid in 2000 ml The solution dissolved in ion-exchanged water was mixed at 20 ° C. While maintaining the mixed solution thus obtained at 20 ° C. and stirring, 29.64 g of ammonium persulfate dissolved in 200 ml of ion exchange water and 8.0 g of ferric sulfate oxidation catalyst solution were slowly added, The reaction was stirred for 3 hours. 2000 ml of ion-exchanged water was added to the resulting reaction solution, and about 2000 ml of solution was removed using an ultrafiltration method. This operation was repeated three times. Then, 200 ml of sulfuric acid diluted to 10% by mass and 2000 ml of ion-exchanged water are added to the resulting solution, and about 2000 ml of solution is removed using an ultrafiltration method, and 2000 ml of ion-exchanged water is added thereto. About 2000 ml of liquid was removed using an ultrafiltration method. This operation was repeated three times. Furthermore, 2000 ml of ion-exchanged water was added to the obtained solution, and about 2000 ml of the solution was removed using an ultrafiltration method. This operation was repeated 5 times to obtain an aqueous solution of 1.5% by mass of blue polystyrenesulfonic acid doped poly (3,4-ethylenedioxythiophene) (PSS-PEDOT).

(製造例4)ポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)(PSS−PEDOT)のイソプロピルアルコール分散液 B液の作成
ポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)(PSS−PEDOT)の1.5質量%の水分散液100gをフラスコにとり、イソプロピルアルコール100gを添加、撹拌しながら、10%塩酸を0.5ml添加した。その後30分撹拌を継続した後、1時間放置した。得られたゲル状物を、グラスフィルターを用いて減圧ろ過、その後イソプロピルアルコール200gを添加、減圧ろ過という操作を8回繰り返した。固形分が完全に乾燥しない状態でグラスフィルターから取り出し、加熱重量減少から固形分重量を算出、固形分7.8%の湿潤青色固体15gを得た。イソプロピルアルコール15gをビーカーにとり、アミンアルキレンオキシド付加物(商品名:エソミン
C/15、ライオンアクゾ社製)0.4gを添加した後、得られた湿潤青色固体15gを加えて、乳化分散機(商品名:TKホモディスパー、特殊機化工業製)を用い、回転数4000rpmで10分処理を行い、PSS−PEDOTイソプロピルアルコール分散液を得た(固形分濃度5%、水含有量20%以下)。
(Production Example 4) Polystyrenesulfonic acid-doped poly (3,4-ethylenedioxythiophene) (PSS-PEDOT) in isopropyl alcohol dispersion B Production of liquid B Polystyrenesulfonic acid-doped poly (3,4-ethylenedioxythiophene) (PSS- 100 g of a 1.5 mass% aqueous dispersion of PEDOT) was placed in a flask, 100 g of isopropyl alcohol was added, and 0.5 ml of 10% hydrochloric acid was added with stirring. Thereafter, stirring was continued for 30 minutes, and then left for 1 hour. The obtained gel-like product was filtered under reduced pressure using a glass filter, and then 200 g of isopropyl alcohol was added, followed by vacuum filtration for 8 times. The solid content was removed from the glass filter in a state where the solid content was not completely dried, and the solid content weight was calculated from the decrease in heating weight to obtain 15 g of a wet blue solid having a solid content of 7.8%. After taking 15 g of isopropyl alcohol in a beaker and adding 0.4 g of an amine alkylene oxide adduct (trade name: Esomine C / 15, manufactured by Lion Akzo), 15 g of the obtained wet blue solid is added, and an emulsifying disperser (product) Name: TK Homo Disper (manufactured by Tokushu Kika Kogyo Co., Ltd.) was used for 10 minutes at a rotational speed of 4000 rpm to obtain a PSS-PEDOT isopropyl alcohol dispersion (solid content concentration 5%, water content 20% or less).

(製造例5)フッ素系界面活性剤 C液の合成
攪拌装置、コンデンサ−、温度計を備えたガラスフラスコにフッ素化アルキル基含有(メタ)アクリレ−ト単量体(構造式2)19重量部、分岐状脂肪族炭化水素基を有するエチレン性不飽和単量体(構造式3)30重量部、分子量400のエチレンオキシドとプロピレンオキシドとの共重合体を側鎖にもつモノアクリレ−ト化合物39重量部、テトラエチレングリコ−ルの両末端がメタクリレ−ト化された化合物4重量部、メチルメタクリレ−ト8重量部、そしてイソプロピルアルコ−ル(以下、IPAと略す)350重量部を仕込み、窒素ガス気流中、還流下で、重合開始剤としてアゾビスイソブチロニトリル(以下、AIBNと略す)1重量部と、連載移動剤としてラウリルメルカプタン10重量部を添加した後、85℃にて7時間還流し重合を完成させた。この重合体のGPCによるポリスチレン換算分子量はMn=5,500であった。この共重合体をフッ素系界面活性剤C液とする。
(Production Example 5) Fluorine Surfactant A fluorinated alkyl group-containing (meth) acrylate monomer (Structural Formula 2) 19 parts by weight in a glass flask equipped with a C solution synthesis stirrer, condenser and thermometer , 30 parts by weight of an ethylenically unsaturated monomer having a branched aliphatic hydrocarbon group (Structural Formula 3), 39 parts by weight of a monoacrylate compound having a side chain with a copolymer of ethylene oxide and propylene oxide having a molecular weight of 400 4 parts by weight of a compound in which both ends of tetraethylene glycol were methacrylated, 8 parts by weight of methyl methacrylate, and 350 parts by weight of isopropyl alcohol (hereinafter abbreviated as IPA) were charged with nitrogen gas. 1 part by weight of azobisisobutyronitrile (hereinafter abbreviated as AIBN) as a polymerization initiator and lauryl mercaptan 1 as a continuous transfer agent under reflux in an air stream After addition of parts, to complete the refluxing was polymerized for 7 hours at 85 ° C.. The molecular weight of this polymer in terms of polystyrene by GPC was Mn = 5,500. This copolymer is referred to as fluorinated surfactant C solution.

Figure 0005378862
Figure 0005378862

Figure 0005378862
Figure 0005378862

<実施例1>
前記A液、およびB液を含む表1記載の所定の混合物をディスパーにて30分間攪拌することによって得られた光学機能層用の塗料を、膜厚80μm、全光線透過率92%からなる透明基体のTAC(富士フィルム;TD80UL)の片面上にロールコーティング方式にて塗布(ラインスピード;20m/分)し、30〜50℃で20秒間予備乾燥を経た後、100℃で1分間乾燥し、窒素雰囲気(窒素ガス置換)中で紫外線照射(ランプ;集光型高圧水銀灯、ランプ出力;120W/cm、灯数:4灯、照射距離;20cm)を行うことで塗工膜を硬化させた。このようにして、厚さ6.4μmの光学機能層を有する実施例1の光学積層体を得た。
<Example 1>
A coating for an optical functional layer obtained by stirring the predetermined mixture shown in Table 1 containing the liquid A and the liquid B with a disper for 30 minutes is a transparent film having a film thickness of 80 μm and a total light transmittance of 92%. The substrate was coated on one side of TAC (Fuji Film; TD80UL) by a roll coating method (line speed; 20 m / min), pre-dried at 30-50 ° C. for 20 seconds, and then dried at 100 ° C. for 1 minute. The coating film was cured by performing ultraviolet irradiation (lamp; condensing high-pressure mercury lamp, lamp output: 120 W / cm, number of lamps: 4 lamps, irradiation distance: 20 cm) in a nitrogen atmosphere (nitrogen gas replacement). In this way, an optical laminate of Example 1 having an optical functional layer with a thickness of 6.4 μm was obtained.

<実施例2>
光学機能層用塗料を表1記載の所定の混合液に変更した以外は、実施例1と同様にして、厚さ5.7μmの実施例2の光学積層体を得た。
<Example 2>
An optical laminate of Example 2 having a thickness of 5.7 μm was obtained in the same manner as in Example 1 except that the coating material for the optical functional layer was changed to the predetermined mixed solution shown in Table 1.

<実施例3>
光学機能層用塗料を表1記載の所定の混合液に変更した以外は、実施例1と同様にして、厚さ6.3μmの実施例3の光学積層体を得た。
<Example 3>
An optical layered body of Example 3 having a thickness of 6.3 μm was obtained in the same manner as Example 1 except that the coating material for the optical function layer was changed to the predetermined mixed solution shown in Table 1.

<実施例4>
光学機能層用塗料を表1記載の所定の混合液に変更した以外は、実施例1と同様にして、厚さ5.8μmの実施例4の光学積層体を得た。
<Example 4>
An optical laminate of Example 4 having a thickness of 5.8 μm was obtained in the same manner as in Example 1 except that the coating material for the optical functional layer was changed to the predetermined mixed solution shown in Table 1.

<比較例1>
光学機能層用塗料を表1記載の所定の混合液に変更した以外は、実施例1と同様にして、厚さ6.0μmの比較例1の光学積層体を得た。
<Comparative Example 1>
An optical layered body of Comparative Example 1 having a thickness of 6.0 μm was obtained in the same manner as in Example 1 except that the coating material for the optical functional layer was changed to the predetermined mixed solution shown in Table 1.

<比較例2>
光学機能層用塗料を表1記載の所定の混合液に変更した以外は、実施例1と同様にして、厚さ5.8μmの比較例2の光学積層体を得た。
<Comparative example 2>
An optical laminate of Comparative Example 2 having a thickness of 5.8 μm was obtained in the same manner as in Example 1 except that the coating material for the optical function layer was changed to the predetermined mixed solution shown in Table 1.

<比較例3>
光学機能層用塗料を表1記載の所定の混合液に変更した以外は、実施例1と同様にして、厚さ5.7μmの比較例3の光学積層体を得た。
<Comparative Example 3>
An optical layered body of Comparative Example 3 having a thickness of 5.7 μm was obtained in the same manner as in Example 1 except that the coating material for the optical functional layer was changed to the predetermined mixed solution shown in Table 1.

<比較例4>
光学機能層用塗料を表1記載の所定の混合液に変更し放射線硬化型でないフッ化アクリレートを使用した以外は、実施例1と同様にして、厚さ5.4μmの比較例4の光学積層体を得た。
<Comparative example 4>
The optical lamination of Comparative Example 4 having a thickness of 5.4 μm was performed in the same manner as in Example 1 except that the coating material for the optical functional layer was changed to the predetermined mixed solution shown in Table 1 and a non-radiation curable fluorinated acrylate was used. Got the body.

ヘイズ値
ヘイズ値は、JIS K7105に従い、ヘイズメーター(商品名:NDH2000、日本電色社製)を用いて測定した。尚、表3中の透明性(ヘイズ値)の判断基準は、○は1%未満、△は1〜2%未満、×は2%以上である。
Haze value The haze value was measured using a haze meter (trade name: NDH2000, manufactured by Nippon Denshoku Co., Ltd.) according to JIS K7105. The criteria for determining the transparency (haze value) in Table 3 are: ◯ is less than 1%, Δ is less than 1-2%, and x is 2% or more.

フッ素含有量
フッ素含有量は、ボンベ燃焼―イオンクロマトグラフ法にて行った。測定は、ボンベ中で高圧酸素とともに塗料の固形成分を燃焼させ、フッ素を吸収させる。この吸収液中のF(フッ化物イオン)をイオンクロマトグラフにて定量し、塗料の固形成分中のフッ素(F)含有量を算出した。前処理は、規格BN EN 14582に準拠して実施した。
測定装置:イオンクロマトグラフ QIC(ダイオネクス社製)
Fluorine content The fluorine content was measured by a cylinder combustion-ion chromatography method. In the measurement, the solid component of the paint is burned together with the high-pressure oxygen in the cylinder to absorb the fluorine. F (fluoride ion) in the absorption liquid was quantified by ion chromatography, and the fluorine (F) content in the solid component of the coating was calculated. The pretreatment was carried out according to the standard BN EN 14582.
Measuring device: Ion chromatograph QIC (manufactured by Dionex)

表面抵抗値
表面抵抗値は、JIS K6911に従い、高抵抗率計(商品名:Hiresta−UP、三菱化学製)を用いて測定した。測定は、サンプルを20℃ 65%RH環境下で1時間調湿した後、20℃ 65%RHの条件で行った。測定は、印加電圧250V 印加時間 10秒で実施した。表面抵抗値が、1E+11Ω/□未満を○、1E+11Ω/□未満以上1E+12Ω/□未満を△、1E+12Ω/□以上を×とした。
Surface resistance value The surface resistance value was measured using a high resistivity meter (trade name: Hiresta-UP, manufactured by Mitsubishi Chemical Corporation) in accordance with JIS K6911. The measurement was carried out under conditions of 20 ° C. and 65% RH after conditioning the sample for 1 hour in an environment of 20 ° C. and 65% RH. The measurement was performed with an applied voltage of 250 V and an application time of 10 seconds. A surface resistance value of less than 1E + 11 Ω / □ was evaluated as ◯, 1E + 11 Ω / □ or more and less than 1E + 12Ω / □ as Δ, and 1E + 12Ω / □ or more as x.

水の接触角(θ/2法)
まず、光学機能層表面の水の接触角を測定した。次にケン化処理された光学機能層表面の水の接触角を測定した。水の接触角は、JIS R3257(基板ガラス表面のぬれ性試験方法)に準拠し、接触角計(商品名;エルマG−1型接触角計、エルマ社製)を使用して、測定した。
光学積層体のケン化処理は以下の手順に従う。
(1)55℃、6%の水酸化ナトリウム水溶液に2分間浸漬。
(2)30秒間水洗。
(3)35℃、0.1規定の硫酸に30秒間浸漬。
(4)30秒間水洗。
(5)120℃、1分間、熱風乾燥。
接触角の値が大きければ撥水効果が上がり、耐薬品性、耐摩耗性、防汚性が良くなる。ケン化処理前の接触角は90°以上、好ましくは100°以上で、ケン化処理後の接触角は70°以上、好ましくは80°以上が良い。ここで、ケン化後の水の接触角が85°以上を○、ケン化処理後の水の接触角が70°以上85°未満を△、ケン化処理後の水の接触角が70°未満のものを×とした。
Water contact angle (θ / 2 method)
First, the contact angle of water on the optical functional layer surface was measured. Next, the contact angle of water on the surface of the saponified optical functional layer was measured. The contact angle of water was measured using a contact angle meter (trade name; Elma G-1 type contact angle meter, manufactured by Elma) in accordance with JIS R3257 (method for testing the wettability of the substrate glass surface).
The saponification process of an optical laminated body follows the following procedures.
(1) Immerse in a 6% sodium hydroxide aqueous solution at 55 ° C. for 2 minutes.
(2) Wash with water for 30 seconds.
(3) Immerse in 0.1 N sulfuric acid at 35 ° C. for 30 seconds.
(4) Wash with water for 30 seconds.
(5) Hot air drying at 120 ° C. for 1 minute.
If the value of the contact angle is large, the water repellent effect is improved, and the chemical resistance, abrasion resistance and antifouling property are improved. The contact angle before saponification treatment is 90 ° or more, preferably 100 ° or more, and the contact angle after saponification treatment is 70 ° or more, preferably 80 ° or more. Here, the contact angle of water after saponification is 85 ° or more, the contact angle of water after saponification treatment is 70 ° or more and less than 85 °, and the contact angle of water after saponification treatment is less than 70 °. Was marked with x.

防汚性 マッキー(登録商標)試験
作製した光学積層体の光学機能層上に油性ペン(商品名;マッキー(登録商標)、ZEBRA製)で3cm長さの線を引き、1分間放置後、クリーンワイパー(品番;FF−390C クラレクラフレックス株式会社製)により拭き取る方法で評価した。500g/cm2荷重で20回往復擦った後、完全に拭き取れた場合を○、拭き取れない部分があった場合を△、全く拭き取れない場合を×とした。
Antifouling property Mackey (registered trademark) test Draw a 3 cm long line with an oil-based pen (trade name; McKee (registered trademark), manufactured by ZEBRA) on the optical functional layer of the optical laminate produced. Evaluation was carried out by a method of wiping with a wiper (product number; FF-390C, manufactured by Kuraray Laflex Co., Ltd.). After rubbing 20 times with a load of 500 g / cm 2 , the case where it was completely wiped was indicated as “◯”, the case where there was a part that could not be wiped was indicated as “△”, and the case where it was not wiped out was indicated as “X”.

Figure 0005378862
Figure 0005378862

Figure 0005378862
Figure 0005378862

Figure 0005378862
Figure 0005378862

Claims (6)

π共役系導電性高分子と、高分子ドーパントと、電離放射線硬化型フッ化アクリレートと、前記電離放射線硬化型フッ化アクリレートとは異なる多官能ウレタンアクリレートと、を含有し、
前記電離放射線硬化型フッ化アクリレートが、フッ素化アルキル基含有ウレタンアクリレートであり、
前記π共役系導電性高分子の配合量は、固形成分の全重量に対して、0.5〜5.0重量%であり、
前記高分子ドーパントに対する、前記π共役系導電性高分子の割合としては、質量比として前記高分子ドーパント成分:前記π共役系導電性高分子成分が5:95〜99:1の範囲であり、
前記電離放射線硬化型フッ化アクリレートの配合量は、固形成分の全重量に対して、0.05〜50重量%であり、
前記多官能ウレタンアクリレートの使用割合は、固形成分の全重量に対して、10〜80重量%であることを特徴とする樹脂組成物。
containing a π-conjugated conductive polymer, a polymer dopant, an ionizing radiation curable fluorinated acrylate, and a polyfunctional urethane acrylate different from the ionizing radiation curable fluorinated acrylate,
The ionizing radiation curable fluorinated acrylate is a fluorinated alkyl group-containing urethane acrylate,
The amount of the π-conjugated conductive polymer is 0.5 to 5.0% by weight based on the total weight of the solid component,
The ratio of the π-conjugated conductive polymer to the polymer dopant is such that the polymer dopant component: π-conjugated conductive polymer component is in the range of 5:95 to 99: 1 as a mass ratio.
The blending amount of the ionizing radiation curable fluorinated acrylate is 0.05 to 50% by weight based on the total weight of the solid component,
The use ratio of the polyfunctional urethane acrylate is 10 to 80% by weight based on the total weight of the solid component.
無機透光性微粒子を含有することを特徴とする請求項1に記載の樹脂組成物。   The resin composition according to claim 1, comprising inorganic translucent fine particles. 有機透光性微粒子を含有することを特徴とする請求項1又は2に記載の樹脂組成物。   The resin composition according to claim 1, comprising organic light-transmitting fine particles. 透光性基体の片面または両面に、直接又は他の層を介して、光学機能層を設けた光学積層体であって、
前記光学機能層が、請求項1〜3のいずれかに記載された樹脂組成物を硬化させて得られるものであることを特徴とする光学積層体。
An optical laminate in which an optical functional layer is provided on one or both surfaces of a light-transmitting substrate, directly or via another layer,
An optical layered body, wherein the optical functional layer is obtained by curing the resin composition according to any one of claims 1 to 3.
前記光学機能層を構成する樹脂組成物のフッ素含有量が500〜500000ppm以下であることを特徴とする請求項4に記載の光学積層体。   The optical laminate according to claim 4, wherein the resin composition constituting the optical functional layer has a fluorine content of 500 to 500,000 ppm or less. 前記放射線硬化型フッ化アクリレートの官能基数が3個以上であることを特徴とする請求項4又は5に記載の光学積層体。   6. The optical laminate according to claim 4, wherein the radiation-curable fluorinated acrylate has 3 or more functional groups.
JP2009087431A 2009-03-31 2009-03-31 Resin composition and optical laminate Active JP5378862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087431A JP5378862B2 (en) 2009-03-31 2009-03-31 Resin composition and optical laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087431A JP5378862B2 (en) 2009-03-31 2009-03-31 Resin composition and optical laminate

Publications (2)

Publication Number Publication Date
JP2010235860A JP2010235860A (en) 2010-10-21
JP5378862B2 true JP5378862B2 (en) 2013-12-25

Family

ID=43090491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087431A Active JP5378862B2 (en) 2009-03-31 2009-03-31 Resin composition and optical laminate

Country Status (1)

Country Link
JP (1) JP5378862B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512568A (en) * 2016-03-03 2019-05-16 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Fluorinated ester compound additive for architectural coatings
TW202210542A (en) 2020-09-02 2022-03-16 日商荒川化學工業股份有限公司 Active energy ray curable resin composition, cured film and film excellent in storage stability and can form a cured film having excellent antistatic properties, solvent resistance, and adhesion to a plastic substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225019A (en) * 2003-01-27 2004-08-12 Daikin Ind Ltd Fluorine-containing polyether mono- or di-(meth)acrylates
JP4779293B2 (en) * 2003-10-21 2011-09-28 Tdk株式会社 Hard coating agent composition and optical information medium using the same
JP3697636B2 (en) * 2003-11-21 2005-09-21 大日本インキ化学工業株式会社 Fluorine-containing photocurable composition
JP4786206B2 (en) * 2004-11-22 2011-10-05 信越ポリマー株式会社 Antistatic paint, antistatic film and antistatic film, optical filter, optical information recording medium
CN101506691B (en) * 2006-08-18 2011-11-16 大日本印刷株式会社 Method for manufacturing optical laminate, manufacturing equipment, optical laminate, polarizing plate, and image display apparatus
WO2008078698A1 (en) * 2006-12-22 2008-07-03 Dai Nippon Printing Co., Ltd. Optical laminated body, method for manufacturing the optical laminated body, and composition for antistatic layer
KR100926222B1 (en) * 2007-12-28 2009-11-09 제일모직주식회사 Polarizing film comprising the antistatic coating layer

Also Published As

Publication number Publication date
JP2010235860A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US20190324598A1 (en) Optical film and front panel of image display apparatus, image display apparatus, mirror with image display function, resistive film-type touch panel, and capacitance-type touch panel having optical film
JP5297633B2 (en) Method for producing antireflection film
JP5271575B2 (en) Antireflection film, polarizing plate, and image display device
CN101893728B (en) Anti-glare film, method of manufacturing same, and display device
US20190091970A1 (en) Laminate and front panel of image display apparatus, image display apparatus, mirror with image display function, resistive film-type touch panel, and capacitance-type touch panel having laminate
JP5651400B2 (en) Laminated body, antireflection film, polarizing plate, and image display device
JP3515447B2 (en) Antireflection material and polarizing film using the same
JP5377283B2 (en) Polarizing plate, image display device, and manufacturing method of polarizing plate
KR20110025146A (en) Optical laminate, polarizing plate, and display apparatus using the same
US20180072028A1 (en) Hardcoat film, front plate of image display element, resistive film-type touch panel, capacitance-type touch panel, and image display
JP2012027401A (en) Hard coat film and antireflection film
JP2004091618A (en) Hard coat film
JP5254118B2 (en) Resin composition, antiglare layer-forming coating, antiglare film and display device using the same
US11435502B2 (en) Optical film and front panel of image display apparatus, image display apparatus, mirror with image display function, resistive film-type touch panel, and capacitance-type touch panel having optical film
JP5378862B2 (en) Resin composition and optical laminate
JP4821152B2 (en) Process for producing cured conductive resin and composition for cured conductive resin
JP5490487B2 (en) Optical laminate
JP5753285B2 (en) Optical laminate
JP2006176681A (en) Electrically conductive coating composition and molded product
JP2011215424A (en) Antireflection film, polarizing plate, and image display device
TW201840431A (en) Antireflection laminate, and polarizing plate and image display device including same
JP2012078538A (en) Antireflection film having hard coat layer, production method of the antireflection film, polarizing plate including the antireflection film, and liquid crystal display device
JP5426329B2 (en) Optical laminate
JP2008056716A (en) Transparent crosslinked film
US20170106637A1 (en) Optical film, polarizing plate, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250