[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5376356B2 - Electronic element mounting method and electronic component mounted by the mounting method - Google Patents

Electronic element mounting method and electronic component mounted by the mounting method Download PDF

Info

Publication number
JP5376356B2
JP5376356B2 JP2008211067A JP2008211067A JP5376356B2 JP 5376356 B2 JP5376356 B2 JP 5376356B2 JP 2008211067 A JP2008211067 A JP 2008211067A JP 2008211067 A JP2008211067 A JP 2008211067A JP 5376356 B2 JP5376356 B2 JP 5376356B2
Authority
JP
Japan
Prior art keywords
copper
thin layer
tin
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008211067A
Other languages
Japanese (ja)
Other versions
JP2010050163A (en
Inventor
公三 藤本
篤志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2008211067A priority Critical patent/JP5376356B2/en
Publication of JP2010050163A publication Critical patent/JP2010050163A/en
Application granted granted Critical
Publication of JP5376356B2 publication Critical patent/JP5376356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining method by which copper is joined suitably even at a fine junction part without using lead, and a junction section exhibits good mechanical properties. <P>SOLUTION: The mounting method of the electronic element includes a tin thin film forming process for forming tin thin film layers 2 on a copper electrode 1a and copper electrode 1b, and in addition, a heating process in which the tin thin film layers 2 formed on the copper electrode 1a and copper electrode 1b are in contact with each other, and are heated and pressurized at a temperature at which tin is molten and the copper is dissolved in the tin. Thereby, the copper in the copper electrode 1a and copper electrode 1b is dissolved in the tin in the tin thin film layer 2, and the copper electrode 1a and copper electrode 1b are electrically joined by mutual diffusion of the tin in the tin thin film layer 2 and the copper in the copper electrode 1a and copper electrode 1b. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電子素子の実装方法および該実装方法によって実装された電子部品に関する。   The present invention relates to an electronic device mounting method and an electronic component mounted by the mounting method.

従来、電子デバイスの実装における電極同士の接合などには、ソルダリングが用いられており、現在においても主流の接合方法として採用されている。近年、電子デバイスの高密度化、高機能化および小型化が進展しており、これに伴い、電子デバイスを実装する際に接合が必要な空間である接合部もより小型化が進んでいる。このため、接合部が小さくとも好適な条件で接合が可能であって、接合処理後の合金にて形成される接合箇所が良好な機械特性を有する接合方法が求められている。   Conventionally, soldering has been used for joining electrodes in mounting electronic devices, and is still used as the mainstream joining method even today. 2. Description of the Related Art In recent years, electronic devices have been increased in density, functionality, and miniaturization. Accordingly, joints, which are spaces that need to be joined when electronic devices are mounted, are further miniaturized. For this reason, there is a need for a joining method in which joining is possible under suitable conditions even if the joining portion is small, and the joining location formed by the alloy after the joining treatment has good mechanical properties.

また、電子デバイスの実装としては、回路配線の接続だけではなく、基板上にケイ素チップをダイボンディングにより接合することも多いが、この際には鉛を多く含む高温はんだが用いられることが多い。環境に与える負荷を考慮すると、このような鉛を含む高温はんだを用いることは適切ではないため、鉛フリーなはんだのペレットなどが開発されている(引用文献1を参照)。   In mounting electronic devices, not only circuit wiring connections but also silicon chips are often bonded to a substrate by die bonding. In this case, high-temperature solder containing a large amount of lead is often used. Considering the load applied to the environment, it is not appropriate to use such a high-temperature solder containing lead, and lead-free solder pellets and the like have been developed (see Reference 1).

ここで、好適な条件とは、接合するに際して接合部付近に係る熱量が小さく、低温にて実装可能なことをいう。また、良好な機械特性とは、電子機器の実使用環境下において、接合箇所の強度が高く、ある程度の伸びを有することをいう。伸びが低ければ接合に応力がかかった場合、接合箇所は脆く、破損し易くなるからである。
国際公開第2005/119755号パンフレット(2005年12月15日公開)
Here, the preferable condition means that the amount of heat in the vicinity of the joint is small when joining and mounting is possible at a low temperature. In addition, good mechanical properties means that the strength of the joint portion is high and has a certain degree of elongation under the actual use environment of the electronic device. This is because if the elongation is low, when stress is applied to the joint, the joint portion is brittle and easily damaged.
International Publication No. 2005/119755 (December 15, 2005)

しかしながら、上記従来の接合方法では、小さな接合部であっても好適な条件で接合ができ、接合処理後の接合箇所が良好な機械特性を有する要求を満たすことができないという問題点を有している。   However, the above-described conventional joining method has a problem that even a small joining portion can be joined under suitable conditions, and the joined portion after the joining process cannot satisfy the requirement of having good mechanical properties. Yes.

具体的には、上記のソルダリングを用いた方法では、通常厚さで15μm以上の多量のはんだを接合部に供給する必要がある。また、接合部の間隔としては、300μm以上の接合間隔が必要であり、微細な接合部分に対して接合を行なうことが困難である。さらに、ソルダリングでは、はんだ材料を溶融させるために300℃程度の高温が必要である場合もあり、接合部に大きな熱量が加えられることとなる。   Specifically, in the method using the above-described soldering, it is necessary to supply a large amount of solder having a thickness of 15 μm or more to the joint. Moreover, as a space | interval of a junction part, the joining space | interval of 300 micrometers or more is required, and it is difficult to join to a fine junction part. Furthermore, in soldering, a high temperature of about 300 ° C. may be required to melt the solder material, and a large amount of heat is applied to the joint.

また、その他の接合方法として、電極同士、例えば、銅同士を直接接合する方法があるが、接合部分の平坦性、および、高真空および高加圧の接合条件が要求されるため、実用的ではない。   As another bonding method, there is a method of directly bonding electrodes, for example, copper to each other. However, since the flatness of the bonding portion and bonding conditions of high vacuum and high pressure are required, it is not practical. Absent.

本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、鉛を用いることなく、微細な接合部分であっても好適に銅同士の接合が可能であり、接合箇所が良好な機械特性を有する接合方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and the object thereof is to allow copper to be suitably bonded even if a minute bonding portion without using lead, and the bonding portion is An object of the present invention is to provide a bonding method having good mechanical properties.

本発明の電子素子の実装方法は、上記課題を解決するために、回路基板上に形成された銅からなる回路電極と、電子素子上に形成された銅からなる素子電極とを接合して、上記電子素子を上記回路基板に実装する電子素子の実装方法およびケイ素チップのダイボンディングなどのデバイス実装方法において、上記回路電極および素子電極にスズ薄層を形成するスズ薄層形成工程を行なった後、上記回路電極および素子電極に形成されたスズ薄層同士を接触させ、スズの溶融および銅のスズへの溶解が可能な温度において加熱および加圧を行なう加熱工程を行なうことにより、上記回路電極および素子電極の銅を上記スズ薄層中のスズへ溶解させ、スズ薄層中のスズと上記回路電極および素子電極の銅との相互拡散により回路電極と素子電極とを電気的に接合することを特徴としている。   In order to solve the above-described problem, the electronic element mounting method of the present invention joins a circuit electrode made of copper formed on a circuit board and an element electrode made of copper formed on the electronic element, In the electronic element mounting method for mounting the electronic element on the circuit board and the device mounting method such as die bonding of a silicon chip, after performing a tin thin layer forming step for forming a tin thin layer on the circuit electrode and the element electrode The circuit electrode is subjected to a heating step in which tin thin layers formed on the circuit electrode and the element electrode are brought into contact with each other and heated and pressurized at a temperature at which tin can be melted and dissolved in tin. And the copper of the element electrode is dissolved in tin in the tin thin layer, and the circuit electrode and the element electrode are interdiffused by tin in the tin thin layer and the circuit electrode and the copper of the element electrode. It is characterized in that electrically joined.

上記の発明によれば、スズ薄層を銅からなる回路電極および素子電極に形成できれば、当該方法を実施できるため、接合部分が微細であっても電子素子を実装することができる。また、スズを薄層にて用いるので、スズの銅との合金化を効率的に行なうことができ、上記回路電極および素子電極とスズとを合金として一体的に形成することができる。このため、接合箇所となる合金層の機械特性を優れたものとすることができる。   According to the above invention, if the tin thin layer can be formed on the circuit electrode and the element electrode made of copper, the method can be carried out, so that the electronic element can be mounted even if the joining portion is fine. Moreover, since tin is used in a thin layer, alloying of tin with copper can be performed efficiently, and the circuit electrode, element electrode, and tin can be integrally formed as an alloy. For this reason, the mechanical property of the alloy layer used as a joining location can be made excellent.

さらに、スズの溶融および銅のスズへの溶解が可能な温度で加熱を行なうため、比較的低温での電子素子の実装が可能であり、電子素子への熱的負荷を低減させることができる。また、銅からなる回路電極および素子電極にスズ薄層を形成するため、電極表面の銅の酸化皮膜形成を阻止できる。このため、フラックスを用いることなく、電子素子の実装を行なうことができる。また、鉛を用いることなく銅電極同士の接合ができるため、本発明の電子素子の実装方法は、環境面からも好ましい。   Furthermore, since heating is performed at a temperature at which tin can be melted and copper can be dissolved into tin, the electronic device can be mounted at a relatively low temperature, and the thermal load on the electronic device can be reduced. Moreover, since the tin thin layer is formed on the circuit electrode and the element electrode made of copper, the formation of an oxide film of copper on the electrode surface can be prevented. For this reason, an electronic element can be mounted without using a flux. In addition, since the copper electrodes can be joined together without using lead, the electronic element mounting method of the present invention is preferable from the viewpoint of the environment.

また、本発明の電子素子の実装方法では、上記回路電極および素子電極に形成されたスズ薄層の少なくとも一方に、銅薄層、スズ薄層の順序にて形成される薄層体を少なくとも1層積層する積層工程を行なうことが好ましい。   In the electronic element mounting method of the present invention, at least one thin layer formed in the order of a copper thin layer and a tin thin layer is formed on at least one of the tin thin layers formed on the circuit electrode and the element electrode. It is preferable to perform a lamination process of laminating layers.

これにより、加熱工程において、積層体中のスズと銅の合金層が形成され易くなる。これにより、形成される合金層の機械特性を向上させることができる。   Thereby, in the heating step, an alloy layer of tin and copper in the laminated body is easily formed. Thereby, the mechanical characteristics of the alloy layer to be formed can be improved.

また、本発明の電子素子の実装方法では、実装された電子デバイスの使用環境において要求される品質および信頼性に応じて、上記スズ薄層上に、亜鉛、銀、ニッケル、ゲルマニウム、鉄およびコバルトからなる群から選ばれる1種類の元素からなる第三薄層を少なくとも1層形成した後、銅薄層を形成する工程、および、上記銅薄層上に、上記第三薄層を少なくとも1層形成した後、スズ薄層を形成する工程のうち、少なくとも一方を行なう第三薄層形成工程をさらに含むこともある。これら第三薄層は、接合部の機械的特性(靱性、耐クリープ特性、耐疲労特性など)を向上させる効果がある。   In the electronic element mounting method of the present invention, zinc, silver, nickel, germanium, iron, and cobalt are formed on the tin thin layer according to the quality and reliability required in the usage environment of the mounted electronic device. Forming at least one third thin layer made of one element selected from the group consisting of: a step of forming a copper thin layer; and at least one third thin layer on the copper thin layer. After the formation, a third thin layer forming step of performing at least one of the steps of forming the tin thin layer may be further included. These third thin layers have the effect of improving the mechanical properties (toughness, creep resistance, fatigue resistance, etc.) of the joint.

また、本発明の電子部品は、上記電子素子の実装方法によって、回路基板上に形成された銅からなる回路電極と、電子素子上に形成された銅からなる素子電極とを電気的に接合されることによって、上記電子素子が上記回路基板に実装されているものである。   Further, according to the electronic component of the present invention, the circuit electrode made of copper formed on the circuit board and the element electrode made of copper formed on the electronic device are electrically joined by the electronic element mounting method. Thus, the electronic element is mounted on the circuit board.

さらに、本発明に係る実装方法はケイ素チップの基板へのダイボンディング、電子デバイスのパッケージングにおける封止法にも適用することができる。この場合、本発明の実装方法は、ケイ素チップを基板へ実装するダイボンディング、または、電子デバイスのパッケージングにおける封止法に用いられる電子素子の実装方法において、接合対象となる第1接合対象部材および第2接合対象部材の表面に銅薄層を形成する銅薄層形成工程を行った後、上記第1接合対象部材および第2接合対象部材にスズ薄層を形成するスズ薄層形成工程を行い、上記第1接合対象部材および第2接合対象部材に形成されたスズ薄層同士を接触させ、スズの溶融および銅のスズへの溶解が可能な温度において加熱および加圧を行なう加熱工程を行なうことにより、上記第1接合対象部材および第2接合対象部材の表面に形成された銅が上記スズ薄層中のスズへ溶解し、スズ薄層中のスズと上記銅との相互拡散により上記第1接合対象部材および第2接合対象部材を接合する構成を有する。   Furthermore, the mounting method according to the present invention can also be applied to a sealing method in die bonding of a silicon chip to a substrate and packaging of an electronic device. In this case, the mounting method of the present invention is a first bonding target member to be bonded in a die bonding method for mounting a silicon chip on a substrate or an electronic element mounting method used for a sealing method in packaging of an electronic device. And after performing the copper thin layer formation process which forms a copper thin layer on the surface of a 2nd joining object member, the tin thin layer formation process which forms a tin thin layer in the said 1st joining object member and a 2nd joining object member Performing a heating step in which the tin thin layers formed on the first joining target member and the second joining target member are brought into contact with each other, and heating and pressurization are performed at a temperature at which tin can be melted and dissolved in copper tin. By performing, the copper formed in the surface of the said 1st joining object member and the 2nd joining object member melt | dissolves in the tin in the said tin thin layer, and the mutual diffusion of the tin and the said copper in a tin thin layer is carried out Ri has the structure for joining the first joining target members and the second joining target members.

上記構成によれば、電子素子を上記回路基板に実装する電子素子の実装方法と同様の効果を奏することができる。また、積層工程、第三薄層形成工程を備える構成にできることも同様である。   According to the said structure, there can exist an effect similar to the mounting method of the electronic element which mounts an electronic element on the said circuit board. Moreover, it is the same also that it can be set as the structure provided with a lamination process and a 3rd thin layer formation process.

上記の実装方法にて実装された電子部品は、上記回路電極および素子電極とスズとが合金として一体的に形成されている。このため、接合箇所となる合金層の機械特性が優れた電子部品を提供することができる。   In the electronic component mounted by the above mounting method, the circuit electrode, the element electrode, and tin are integrally formed as an alloy. For this reason, it is possible to provide an electronic component in which the mechanical properties of the alloy layer serving as a joint location are excellent.

本発明の電子素子の実装方法は、以上のように、上記回路電極および素子電極にスズ薄層を形成するスズ薄層形成工程を行なった後、上記回路電極および素子電極に形成されたスズ薄層同士を接触させ、スズの溶融および銅のスズへの溶解が可能な温度において加熱および加圧を行なう加熱工程を行なうことにより、上記回路電極および素子電極の銅を上記スズ薄層中のスズへ溶解させ、スズ薄層中のスズと上記回路電極および素子電極の銅との相互拡散により回路電極と素子電極とを接合する方法である。   As described above, the electronic device mounting method of the present invention includes a tin thin layer formed on the circuit electrode and the element electrode after the tin thin layer forming step for forming the tin thin layer on the circuit electrode and the element electrode. The copper of the circuit electrode and the element electrode is changed to tin in the tin thin layer by performing a heating process in which the layers are brought into contact with each other and heated and pressed at a temperature at which tin can be melted and dissolved in tin. The circuit electrode and the element electrode are joined by mutual diffusion of tin in the tin thin layer and the above-mentioned circuit electrode and copper of the element electrode.

それゆえ、接合部分が微細であっても電子素子を実装することができる。また、スズを薄層にて用いるので、上記回路電極および素子電極の銅とスズとの溶解および拡散を効率的に行なうことができ、上記回路電極および素子電極とスズとを合金として一体的に形成することができる。このため、接合箇所となる合金層の機械特性を優れたものとすることができる。さらに、スズの溶融および銅のスズへの溶解が可能な温度で加熱を行なうため、比較的低温での電子素子の実装が可能であり、電子素子への熱的負荷を低減させることができる。また、銅からなる回路電極および素子電極にスズ薄層を形成するため、電極表面の銅の酸化皮膜形成を阻止できる。このため、フラックスを用いることなく、電子素子の実装を行なうことができる。また、鉛を用いることなく銅電極同士の接合ができるため、本発明の電子素子の実装方法は、環境面からも好ましいという効果を奏する。   Therefore, an electronic element can be mounted even if the joint portion is fine. Also, since tin is used in a thin layer, the circuit electrode and element electrode can be efficiently dissolved and diffused with copper and tin, and the circuit electrode, element electrode and tin can be integrated as an alloy. Can be formed. For this reason, the mechanical property of the alloy layer used as a joining location can be made excellent. Furthermore, since heating is performed at a temperature at which tin can be melted and copper can be dissolved into tin, the electronic device can be mounted at a relatively low temperature, and the thermal load on the electronic device can be reduced. Moreover, since the tin thin layer is formed on the circuit electrode and the element electrode made of copper, the formation of an oxide film of copper on the electrode surface can be prevented. For this reason, an electronic element can be mounted without using a flux. In addition, since the copper electrodes can be joined without using lead, the electronic element mounting method of the present invention has an effect that it is preferable from the viewpoint of the environment.

本発明の一実施形態について図1ないし図7に基づいて説明すれば、以下の通りである。本発明の電子素子の実装方法は、回路基板上に形成された銅からなる回路電極と、電子素子上に形成された銅からなる素子電極とを接合して、上記電子素子を上記回路基板に実装する方法である。   An embodiment of the present invention will be described with reference to FIGS. 1 to 7 as follows. The electronic device mounting method according to the present invention includes a circuit electrode made of copper formed on a circuit board and a device electrode made of copper formed on the electronic element, and the electronic device is attached to the circuit board. How to implement.

上記電子素子の実装方法では、上記回路電極および素子電極にスズ薄層を形成するスズ薄層形成工程を行なった後、上記回路電極および素子電極に形成されたスズ薄層同士を接触させ、スズの溶融および銅のスズへの溶解が拡散可能な温度において加熱および加圧を行なう加熱工程を行なうことにより、上記スズ薄層中のスズと上記回路電極および素子電極の銅とを溶解および拡散させて回路電極と素子電極とを接合する。   In the electronic element mounting method, after performing a tin thin layer forming step of forming a tin thin layer on the circuit electrode and the element electrode, the tin thin layers formed on the circuit electrode and the element electrode are brought into contact with each other, By heating and pressurizing at a temperature at which melting and dissolution of copper into tin can be diffused, thereby dissolving and diffusing tin in the tin thin layer and copper in the circuit electrode and element electrode. Then, the circuit electrode and the element electrode are joined.

図1は、本発明における、銅電極1aおよび銅電極1bにスズ薄層2を積層した状態を示す模式図である。図1の(a)は、上記スズ薄層形成工程を説明するためのものであり、銅電極1aおよび銅電極1bにスズ薄層2を形成した状態を示す模式図である。図1の(a)に示す銅電極1aは素子電極であり、銅電極1bは回路電極である。このため、図示しないが銅電極1aは電子素子に設置されており、銅電極1bは、回路基板に設置されている。   FIG. 1 is a schematic diagram showing a state in which a thin tin layer 2 is laminated on a copper electrode 1a and a copper electrode 1b in the present invention. (A) of FIG. 1 is for demonstrating the said tin thin layer formation process, and is a schematic diagram which shows the state which formed the tin thin layer 2 in the copper electrode 1a and the copper electrode 1b. The copper electrode 1a shown in FIG. 1A is an element electrode, and the copper electrode 1b is a circuit electrode. For this reason, although not shown in figure, the copper electrode 1a is installed in the electronic element, and the copper electrode 1b is installed in the circuit board.

電子素子としては、例えば、半導体チップが挙げられるが、銅電極が形成される電子素子であれば、半導体チップに限定されるものではない。また、回路基板としては、従来公知のプリント基板等の配線板が使用でき、特に限定されるものではない。なお、上記電子素子および回路基板を総称して電子部品と称する。さらに、電気的接続を目的とした実装だけではなく、ケイ素チップの基板へのダイボンディング、電子素子の封止に用いられる接続実装において、接合対象部材の表面に銅の薄層が形成されたものでもよい。接合対象部材としては、ケイ素チップ、セラミック基板、ケイ素基板、ヒートシンクなどが挙げられる。   Examples of the electronic element include a semiconductor chip, but the electronic element is not limited to the semiconductor chip as long as the electronic element is formed with a copper electrode. Moreover, as a circuit board, wiring boards, such as a conventionally well-known printed circuit board, can be used, and it is not specifically limited. The electronic element and the circuit board are collectively referred to as an electronic component. In addition to mounting for the purpose of electrical connection, a thin layer of copper is formed on the surface of the member to be joined in die bonding to a silicon chip substrate and connection mounting used for sealing electronic elements. But you can. Examples of the bonding target member include a silicon chip, a ceramic substrate, a silicon substrate, and a heat sink.

銅電極1aおよび銅電極1b(以下、銅電極1a・1bと適宜略する)は、銅から構成されている。銅電極1a・1bの形成方法としては、従来公知の蒸着法、エッチング法等によるパターン形成方法、または、バンプとして銅電極を形成する方法などを挙げることができ、特に限定されない。   The copper electrode 1a and the copper electrode 1b (hereinafter abbreviated as copper electrodes 1a and 1b as appropriate) are made of copper. Examples of the method for forming the copper electrodes 1a and 1b include, but are not limited to, a pattern formation method by a conventionally known vapor deposition method, an etching method, or the like, or a method of forming a copper electrode as a bump.

なお、銅電極1a・1bの表面粗さはより平滑である場合、接合状態が良好となるため好ましいが、本発明の電子素子の実装方法は、銅電極1a・1bの表面粗さRaが0.4μm以上、10μm以下の粗面であっても実施が可能である。   In addition, when the surface roughness of copper electrode 1a * 1b is smoother, since a joining state becomes favorable, it is preferable, but the surface roughness Ra of copper electrode 1a * 1b is 0 in the mounting method of the electronic device of this invention. It can be carried out even with a rough surface of 4 μm or more and 10 μm or less.

また、本発明をダイボンディングまたは封止法に適用する場合、電子素子および銅電極1aを接合対象部材である第1接合対象部材および銅薄層に、回路基板および銅電極1bを接合対象部材である第2接合対象部材および銅薄層に置き換えて説明することができる。この場合、電子素子および回路基板を接合する場合とは異なり、第1接合対象部材および第2接合部材の表面に銅薄層を形成する銅薄層形成工程を行なう。銅薄層形成工程は、従来公知の蒸着法、エッチング法等によるパターン形成方法により行なうことができる。銅薄層の厚さは1μm以上の厚さに形成すればよい。
銅薄層形成工程以降のスズ薄層形成工程、積層工程、第三薄層形成工程および加熱工程については、銅電極1a・1bを接合する場合と同様である。
When the present invention is applied to die bonding or a sealing method, the electronic element and the copper electrode 1a are bonded to the first bonding target member and the copper thin layer, and the circuit board and the copper electrode 1b are bonded to the bonding target member. It can be described by replacing with a certain second joining target member and a copper thin layer. In this case, unlike the case where the electronic element and the circuit board are bonded, a copper thin layer forming step of forming a copper thin layer on the surfaces of the first bonding target member and the second bonding member is performed. The copper thin layer forming step can be performed by a conventionally known pattern forming method such as vapor deposition or etching. The thin copper layer may be formed to a thickness of 1 μm or more.
The tin thin layer forming step, the laminating step, the third thin layer forming step, and the heating step after the copper thin layer forming step are the same as when the copper electrodes 1a and 1b are joined.

(スズ薄層形成工程)
本発明の電子素子の接合方法では、まず、銅電極1a・1b上にスズ薄層2を形成する。スズ薄層2の形成は、図1の(a)に示すように銅電極1a・1bの対向面に対して行なう。スズ薄層2の形成方法としては、蒸着、スパッタリング、メッキ、エッチング等を適宜用いることができる。また、メタルマスクを用いた蒸着や、フォトレジストを用いたエッチング等により、必要に応じてパターン形成して設けることができる。
(Tin thin layer forming process)
In the electronic element bonding method of the present invention, first, the tin thin layer 2 is formed on the copper electrodes 1a and 1b. The tin thin layer 2 is formed on the opposing surfaces of the copper electrodes 1a and 1b as shown in FIG. As a method for forming the tin thin layer 2, vapor deposition, sputtering, plating, etching, or the like can be used as appropriate. Further, a pattern can be formed as necessary by vapor deposition using a metal mask, etching using a photoresist, or the like.

スズ薄層2は薄層であり、銅電極上にスズ薄層2を1層形成する場合、0.5μm以上、3μm以下が望ましい。最薄値の0.5μmは、銅電極1a・1bが水平からわずかな角度分ずれた場合、スズ薄層2同士を接触させる際に、非接触部分が広範囲で生じない限界の厚みであり、実装機の精度等によるものである。また、最厚値の3μmは、銅のスズへの溶解・拡散により合金を形成し難くなる厚みであり、この値は、実装温度、実装時間等による。なお、銅電極1a・1bの2箇所に形成された2層のスズ薄層2はそれぞれの厚さが異なっていてもよい。   The tin thin layer 2 is a thin layer, and when the thin tin layer 2 is formed on the copper electrode, it is preferably 0.5 μm or more and 3 μm or less. The thinnest value of 0.5 μm is the limit thickness at which a non-contact portion does not occur in a wide range when the tin thin layers 2 are brought into contact with each other when the copper electrodes 1a and 1b are displaced by a slight angle from the horizontal. This is due to the accuracy of the mounting machine. The maximum thickness value of 3 μm is a thickness at which it is difficult to form an alloy due to dissolution / diffusion of copper into tin, and this value depends on the mounting temperature, mounting time, and the like. The two tin thin layers 2 formed at two locations of the copper electrodes 1a and 1b may have different thicknesses.

(積層工程)
本発明の電子素子の実装方法では、上記スズ薄層形成工程の後に、積層工程を行なうことが好ましい。積層工程は、銅電極1a・1bに形成されたスズ薄層2の少なくとも一方に、銅薄層、スズ薄層の順序にて形成される薄層体を少なくとも1層積層する工程である。
(Lamination process)
In the electronic device mounting method of the present invention, it is preferable to perform a laminating step after the tin thin layer forming step. The lamination step is a step of laminating at least one thin layer formed in the order of a copper thin layer and a tin thin layer on at least one of the tin thin layers 2 formed on the copper electrodes 1a and 1b.

図1の(b)は、銅電極1a・1b上にスズ薄層2、銅薄層3、および、スズ薄層2の順序にて薄層が形成された銅電極1a・1bを示す断面図である(Sn2−Cu1)。すなわち、積層体は1層形成されている。このように、スズ薄層2および銅薄層3が複数層にて形成されている場合、後述する加熱工程において、これら薄層中のスズと銅の合金化を促進させ、合金層を形成し易くなる。これにより、形成される合金層の機械特性が向上されるので好ましい。   FIG. 1B is a sectional view showing copper electrodes 1a and 1b in which thin layers are formed in the order of a thin tin layer 2, a thin copper layer 3 and a thin tin layer 2 on the copper electrodes 1a and 1b. (Sn2-Cu1). That is, one layer of the laminated body is formed. Thus, when the tin thin layer 2 and the copper thin layer 3 are formed in a plurality of layers, in the heating step described later, alloying of tin and copper in these thin layers is promoted to form an alloy layer. It becomes easy. This is preferable because the mechanical properties of the formed alloy layer are improved.

また、積層体の形成数は特に限定されるものではない。積層体の形成数は多い方が、合金化が容易となり、形成される合金層の機械特性がさらに向上されるので好ましい。形成数が多くなることによって、積層工程の実施は複雑となるが、スズ薄層2および銅薄層3の総計が20層程度であれば、問題が生じることなく形成が可能である。   Moreover, the number of laminated bodies formed is not particularly limited. A larger number of laminated bodies is preferable because alloying is facilitated and the mechanical properties of the formed alloy layer are further improved. The increase in the number of formations makes the execution of the laminating process complicated, but if the total of the tin thin layer 2 and the copper thin layer 3 is about 20 layers, the formation can be performed without any problem.

例えば、図1の(c)に示すように、スズ薄層2を8層、銅薄層3を7層形成して総計15層の薄層を銅電極1a・1bに形成することもできる(Sn8‐Cu7)。このように、積層体の形成数が多い方が、積層体中のスズおよび銅の合金化が容易となるので、合金を非常に好ましく形成することができる。   For example, as shown in FIG. 1C, eight thin tin layers 2 and seven thin copper layers 3 can be formed to form a total of 15 thin layers on the copper electrodes 1a and 1b (see FIG. 1C). Sn8-Cu7). Thus, since the one where the number of formations of the laminated body is larger facilitates the alloying of tin and copper in the laminated body, the alloy can be formed very preferably.

また、スズ薄層2および銅薄層3を積層する場合、その総厚さは、スズ薄層2を1層形成する場合(図1の(a))と同様に、0.5μm以上、3μm以下である。複数形成された各薄層は、総厚さを薄層の形成数で除した平均の膜厚で形成されているが、各薄層の膜厚を増減させることももちろん可能である。なお、銅電極1a・1b共に同じ形成数にて形成されているが、両部材に対して別個に蒸着などの方法を行なうことによって、異なる形成数にて積層体を形成してもよい。   Further, when the thin tin layer 2 and the thin copper layer 3 are laminated, the total thickness is 0.5 μm or more and 3 μm, as in the case where one thin tin layer 2 is formed (FIG. 1A). It is as follows. Each of the plurality of thin layers is formed with an average film thickness obtained by dividing the total thickness by the number of thin layers formed, but it is of course possible to increase or decrease the film thickness of each thin layer. In addition, although copper electrode 1a * 1b is formed with the same formation number, you may form a laminated body with a different formation number by performing methods, such as vapor deposition, separately with respect to both members.

(第三薄層形成工程)
また、図1の(d)に示すように、スズ薄層2および銅薄層3の間に、第三薄層4を形成してもよい。第三薄層4の形成は第三薄層形成工程にて行なう。第三薄層形成工程は、積層工程と共に行なう工程であり、スズ薄層2上に、亜鉛、銀、ニッケル、ゲルマニウム、鉄およびコバルトからなる群から選ばれる1種類の元素からなる第三薄層4を少なくとも1層形成した後、銅薄層3を形成する工程、および、銅薄層3上に、第三薄層4を少なくとも1層形成した後、スズ薄層2を形成する工程のうち、少なくとも一方を行なう工程である。
(Third thin layer forming step)
Further, as shown in FIG. 1 (d), a third thin layer 4 may be formed between the tin thin layer 2 and the copper thin layer 3. The third thin layer 4 is formed in the third thin layer forming step. The third thin layer forming step is a step performed together with the laminating step, and on the tin thin layer 2, a third thin layer made of one element selected from the group consisting of zinc, silver, nickel, germanium, iron and cobalt. Among the steps of forming the thin copper layer 3 after forming at least one layer 4 and forming the thin tin layer 2 after forming at least one third thin layer 4 on the thin copper layer 3 , At least one of the steps.

同図の(d)では、銅電極1a・1bから、スズ薄層2、銅薄層3、第三薄層4、スズ薄層2、銅薄層3およびスズ薄層2の順序で各層が積層されている(Sn3−Cu2−M1)。第三薄層4を構成する元素Mとしては、スズ薄層2および銅薄層3の固液拡散を妨げなければ特に限定されるものではない。第三薄層を形成することによって、形成された合金層の機械的特性(靱性、耐クリープ特性、耐疲労特性など)を向上させる効果がある。   In (d) of the figure, each layer is formed in the order of the thin copper layer 1, the thin copper layer 3, the third thin layer 4, the thin tin layer 2, the thin copper layer 3, and the thin tin layer 2 from the copper electrodes 1 a and 1 b. Stacked (Sn3-Cu2-M1). The element M constituting the third thin layer 4 is not particularly limited as long as the solid-liquid diffusion of the tin thin layer 2 and the copper thin layer 3 is not hindered. By forming the third thin layer, there is an effect of improving the mechanical properties (toughness, creep resistance, fatigue resistance, etc.) of the formed alloy layer.

なお、スズ薄層2および銅薄層3の固液拡散を妨げる元素としては、Ti、Crなどを挙げることができる。これらの金属からなる薄層が第三薄層4として形成されている場合、スズ薄層2および銅薄層3の充分な固液拡散が妨げられ、銅電極1a・1b間に形成される合金は、機械特性が非常に乏しいものとなる。具体的には、形成される合金のせん断強度が低い値を示すおそれがある。また、鉛は環境負荷の観点から、第三薄層4を構成する元素として選択されない。   Examples of elements that hinder solid-liquid diffusion of the tin thin layer 2 and the copper thin layer 3 include Ti and Cr. When a thin layer made of these metals is formed as the third thin layer 4, sufficient solid-liquid diffusion of the tin thin layer 2 and the copper thin layer 3 is prevented, and an alloy formed between the copper electrodes 1a and 1b. Has very poor mechanical properties. Specifically, the formed alloy may have a low shear strength. Further, lead is not selected as an element constituting the third thin layer 4 from the viewpoint of environmental load.

(加熱工程)
図2は、本発明の電子素子の実装方法に係る加熱工程を説明する工程図である。接合対象となる銅電極1a・1bには、図1の(a)と同様の構成でスズ薄層2が形成されている。なお、銅電極1a・1b上のスズ薄層2に、さらに、積層体が形成されている場合も同様の手法にて接合を行なうことができる。
(Heating process)
FIG. 2 is a process diagram illustrating a heating process according to the electronic device mounting method of the present invention. A thin tin layer 2 is formed on the copper electrodes 1a and 1b to be joined with the same configuration as in FIG. In addition, when the laminated body is further formed in the tin thin layer 2 on the copper electrodes 1a and 1b, it can join by the same method.

まず、図2の(a)のように対向させた銅電極1a・1bを、図2の(b)に示すように、接触させるように移動させる。なお、上記の電極同士の位置決めや、移動、加熱加圧等の操作は、従来公知の実装設備を用いて行なうことができる。実装設備としては、例えば、フリップチップボンダ、ダイボンダなどを例示することができる。また、銅電極同士の位置決めは、カメラ等を用いた座標決定により正確に行なうことができる。   First, as shown in FIG. 2A, the copper electrodes 1a and 1b opposed to each other as shown in FIG. In addition, operations such as positioning, movement, and heating / pressing of the electrodes can be performed using a conventionally known mounting facility. Examples of mounting equipment include a flip chip bonder and a die bonder. Further, the positioning of the copper electrodes can be accurately performed by determining coordinates using a camera or the like.

次に、スズ薄層2の加熱および加圧を行なう。加熱温度は、具体的には、235℃以上、実装する電子デバイスの耐熱温度(少なくとも260℃)以下で行なうことができ、240℃以上、260℃以下で行なうことがさらに好ましい。上記の温度範囲であれば、図3の銅−スズの二次元状態図に示すように、スズの融点以上であり、実装温度でスズは液体となっている。上記温度範囲であれば、比較的低温での電子素子の実装が可能であり、電子素子への熱的負荷を低減させることができる。   Next, the tin thin layer 2 is heated and pressurized. Specifically, the heating temperature can be 235 ° C. or higher and the heat resistance temperature (at least 260 ° C.) of the electronic device to be mounted, and more preferably 240 ° C. or higher and 260 ° C. or lower. If it is said temperature range, as shown in the copper-tin two-dimensional phase diagram of FIG. 3, it is more than melting | fusing point of tin, and tin is a liquid at mounting temperature. If it is the said temperature range, an electronic element can be mounted in a comparatively low temperature, and the thermal load to an electronic element can be reduced.

加圧条件は、上記の加熱温度、スズ薄層2および銅薄層3の積層数、接合対象部材の面精度、実装機器の面精度等によって異なるため一義的に設定することは困難であるが、概して、1MPa以上、40以下MPaにて行なうことができる。   The pressurizing conditions vary depending on the heating temperature, the number of the thin tin layers 2 and the thin copper layer 3, the surface accuracy of the members to be joined, the surface accuracy of the mounting equipment, and the like, but it is difficult to set uniquely. Generally, it can be performed at 1 MPa or more and 40 or less MPa.

また、加熱および加圧は、空気雰囲気などの含酸素雰囲下で行なうことができる。また、酸素により影響を完全に排除したい場合、真空雰囲気下、窒素、アルゴンなどの不活性ガスの雰囲気下や水素還元雰囲気下で行なうことができる。加熱および加圧を行なう反応時間は、銅電極に形成する薄層の形成数、形成厚さによって適宜変更されるが、概して30秒以上、10分以下である。上記の範囲であれば、銅電極の銅とスズ薄層のスズとを充分に合金化させることが可能である。   Heating and pressurization can be performed in an oxygen-containing atmosphere such as an air atmosphere. When it is desired to completely eliminate the influence of oxygen, it can be performed in a vacuum atmosphere, in an atmosphere of an inert gas such as nitrogen or argon, or in a hydrogen reduction atmosphere. The reaction time for heating and pressurization is appropriately changed depending on the number of thin layers formed on the copper electrode and the formation thickness, but is generally from 30 seconds to 10 minutes. If it is said range, it is possible to fully alloy copper of a copper electrode, and tin of a tin thin layer.

上記の条件下にて加熱工程を行なうことによって、図2の(c)に示すように、銅電極1a・1b付近におけるスズ薄層2aではスズおよび銅の合金化が生じ始める。なお、銅電極1a・1bから離れたスズ薄層2bでは、スズおよび銅の合金化は生じていない。   By performing the heating step under the above conditions, as shown in FIG. 2C, tin and copper alloying begins to occur in the tin thin layer 2a in the vicinity of the copper electrodes 1a and 1b. Note that tin and copper are not alloyed in the thin tin layer 2b away from the copper electrodes 1a and 1b.

さらに、加熱工程を継続させることによって、図2の(d)に示すように、スズおよび銅の合金化が進行し、合金層5が形成される。加熱工程の終了後、加熱温度を段階的に低下させて銅電極1a・1bおよび合金層5を冷却する。   Further, by continuing the heating step, as shown in FIG. 2D, alloying of tin and copper proceeds, and the alloy layer 5 is formed. After completion of the heating process, the heating temperature is lowered stepwise to cool the copper electrodes 1a and 1b and the alloy layer 5.

本発明の電子素子の実装方法では、スズ薄層2を薄層にて銅電極1a・1bに形成するため、接合部分が微細であっても電子素子を実装することができる。さらに、スズの溶融および銅のスズへの溶解が可能な温度で加熱を行なうため、比較的低温での電子素子の実装が可能であり、電子素子への熱的負荷を低減させることができる。また、銅からなる回路電極および素子電極にスズ薄層を形成するため、電極表面の銅の酸化皮膜形成を阻止できる。このため、フラックスを用いることなく、電子素子の実装を行なうことができる。また、鉛を用いることなく銅電極同士の接合ができるため、本発明の電子素子の実装方法は、環境面からも好ましい。   In the electronic device mounting method of the present invention, the thin tin layer 2 is formed as a thin layer on the copper electrodes 1a and 1b, so that the electronic device can be mounted even if the joining portion is fine. Furthermore, since heating is performed at a temperature at which tin can be melted and copper can be dissolved into tin, the electronic device can be mounted at a relatively low temperature, and the thermal load on the electronic device can be reduced. Moreover, since the tin thin layer is formed on the circuit electrode and the element electrode made of copper, the formation of an oxide film of copper on the electrode surface can be prevented. For this reason, an electronic element can be mounted without using a flux. In addition, since the copper electrodes can be joined together without using lead, the electronic element mounting method of the present invention is preferable from the viewpoint of the environment.

以上のように、合金層5を形成して銅電極1a・1bが接合されるが、図2の(d)では、銅電極1a・1bと合金層5とは説明の便宜上、境界が存在するように図示されている。しかしながら、実際には、銅電極1a・1bと合金層5との間には境界は存在せず、合金層5から銅電極1a・1bへ向かうに従って、銅の含有量が増加する成分比率となる。すなわち、電極1a・1bと合金層5とは、一体として合金化される。   As described above, the alloy layers 5 are formed and the copper electrodes 1a and 1b are joined. In FIG. 2D, there is a boundary between the copper electrodes 1a and 1b and the alloy layer 5 for convenience of explanation. It is shown as follows. However, in practice, there is no boundary between the copper electrodes 1a and 1b and the alloy layer 5, and the copper content increases as it goes from the alloy layer 5 to the copper electrodes 1a and 1b. . That is, the electrodes 1a and 1b and the alloy layer 5 are alloyed together.

このように合金化がなされるため、接合箇所である合金層5は、高いせん断強度を有することとなる。電子部品は特に高温において、高いせん断強度が要求される。このため、合金層5は、実使用環境温度条件下にて、50MPa以上のせん断強度を有することが好ましく、100MPa以上のせん断強度を有することがさらに好ましい。   Since alloying is performed in this way, the alloy layer 5 which is a joining portion has high shear strength. Electronic components are required to have high shear strength, particularly at high temperatures. For this reason, the alloy layer 5 preferably has a shear strength of 50 MPa or more, more preferably 100 MPa or more, under actual use environment temperature conditions.

また、合金層5は高いせん断強度だけでなく、応力が加えられた際にある程度の伸びを示すことが要求される。応力が加えられた際に合金層5が伸びない、すなわち、変形し難い場合、合金層5は脆い構造であるから容易に破壊され易くなる。   Further, the alloy layer 5 is required to exhibit not only high shear strength but also a certain degree of elongation when stress is applied. If the alloy layer 5 does not stretch when stress is applied, that is, it is difficult to deform, the alloy layer 5 is easily broken because it has a brittle structure.

上述したように、本発明の電子素子の実装方法によれば、銅電極1aが設置されている電子素子と、銅電極1bが設置されている回路基板とを実装することができる。上記電子素子と回路基板とから構成される電子部品は、回路基板上に形成された銅からなる回路電極と、電子素子上に形成された銅からなる素子電極とを電気的に接合して、上記電子素子が上記回路基板に実装されている。
このように実装された電子部品は、合金層5を有するために、接合箇所に好ましい機械特性を有するものである。接合箇所は非常に破壊され難いというメリットがあるため好ましい。
As described above, according to the electronic element mounting method of the present invention, the electronic element on which the copper electrode 1a is installed and the circuit board on which the copper electrode 1b is installed can be mounted. An electronic component composed of the electronic element and the circuit board is obtained by electrically joining a circuit electrode made of copper formed on the circuit board and an element electrode made of copper formed on the electronic element, The electronic element is mounted on the circuit board.
Since the electronic component mounted in this manner has the alloy layer 5, the electronic component has preferable mechanical characteristics at the joint portion. The joint location is preferable because it has the merit that it is very difficult to break.

また、本発明の電子素子の実装方法によって、回路基板に電子素子が実装された電子部品か否かは、接合部(合金層)のスズと銅の組成比を調査することによって判別することが可能である。   Further, according to the electronic element mounting method of the present invention, whether or not an electronic component is mounted on a circuit board can be determined by examining the composition ratio of tin and copper in the joint (alloy layer). Is possible.

なお、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.

本実施例および比較例にて接合された銅円柱材について、以下の条件にてせん断強度および伸びの測定を行なった。測定方法を以下に示す。   About the copper cylindrical material joined in the present Example and the comparative example, shear strength and elongation were measured under the following conditions. The measuring method is shown below.

<せん断強度>
せん断強度測定は、JIS Z 3198−5に従って行なった。具体的には、せん断試験装置(Instron 5582型、インストロン ジャパン カンパニイ リミテッド社製)を用いて行なった。図4は、せん断試験の状態を示す、せん断装置および接合された銅円柱材の断面図である。同図に示すように、接合された直径がΦ3mmの銅円柱材10および直径がΦ5mmの銅円柱材20は、固定台30に設置されている。せん断試験装置40は、銅円柱材10および銅円柱材20の接合面をせん断するよう設置がなされている。
<Shear strength>
The shear strength measurement was performed according to JIS Z 3198-5. Specifically, a shear test apparatus (Instron 5582 type, manufactured by Instron Japan Company Limited) was used. FIG. 4 is a cross-sectional view of the shearing device and the joined copper cylinder, showing the state of the shear test. As shown in the figure, the joined copper cylindrical member 10 having a diameter of Φ3 mm and the copper cylindrical member 20 having a diameter of Φ5 mm are installed on a fixed base 30. The shear test apparatus 40 is installed so as to shear the joint surfaces of the copper cylindrical member 10 and the copper cylindrical member 20.

この状態から、鉛直下方向(矢印方向)へせん断試験装置40を移動させることによって、せん断を行なった。せん断条件は、250℃の高温環境下、試験速度5mm/minにてせん断強度の測定を行なった。   From this state, shearing was performed by moving the shear testing device 40 vertically downward (arrow direction). The shear strength was measured at a test speed of 5 mm / min in a high temperature environment of 250 ° C.

<接合部分の伸び>
接合部分の伸びについては、せん断試験における荷重−変位曲線から求めた。
<Elongation of joint part>
The elongation of the joint was determined from the load-displacement curve in the shear test.

〔実施例1〕
銅電極として、直径がΦ3mm、高さ3mmの銅円柱材と直径がΦ5mm、高さ5mmの銅円柱材を母材として用い、両銅円柱材の接合を行った。まず、両銅円柱材の対向面を0.3μmAlOにてバフ研磨を行った後に、約10−4Paの真空環境下で、両銅円柱材の平面部分にスズ薄層を蒸着により形成した。上記スズ薄層は0.7μmの層厚にて形成した。
[Example 1]
As a copper electrode, a copper cylindrical material having a diameter of Φ3 mm and a height of 3 mm and a copper cylindrical material having a diameter of Φ5 mm and a height of 5 mm were used as a base material, and both copper cylindrical materials were joined. First, the opposite surfaces of both copper cylinders were buffed with 0.3 μm Al 2 O, and then a thin tin layer was formed by vapor deposition on the flat part of both copper cylinders in a vacuum environment of about 10 −4 Pa. did. The tin thin layer was formed with a layer thickness of 0.7 μm.

次に、フリップチップボンダを用いて両銅円柱材に形成したスズ薄層同士を接触させた。この状態にて両銅円柱材に40MPaの荷重を加え、抵抗加圧によって260℃の温度で銅円柱材を加熱した。これらの加熱および加圧は、大気雰囲気下にて行った。図5は、加熱および加圧時における銅円柱材の温度変化を示すグラフである。   Next, the thin tin layers formed on both the copper cylindrical members were brought into contact with each other using a flip chip bonder. In this state, a load of 40 MPa was applied to both copper cylinders, and the copper cylinders were heated at a temperature of 260 ° C. by resistance pressurization. These heating and pressurization were performed in an air atmosphere. FIG. 5 is a graph showing the temperature change of the copper cylindrical member during heating and pressurization.

同図に示すように、両銅円柱材の温度は、加熱を開始してから270秒後にスズの融点である約228℃に達した。その後、260℃にまで上昇し、加熱開始から570秒後には、再度228℃となった。すなわち、両銅円柱材を228℃以上、260℃の温度にて300秒間加熱したことになる。   As shown in the figure, the temperature of both copper cylinders reached about 228 ° C., which is the melting point of tin, 270 seconds after the start of heating. Thereafter, the temperature rose to 260 ° C, and again reached 228 ° C after 570 seconds from the start of heating. That is, both copper cylindrical members were heated at a temperature of 228 ° C. or higher and 260 ° C. for 300 seconds.

その後、接合された銅円柱材を室温まで冷却して接合を終了した。接合された銅円柱材について、高温環境下にてせん断強度測定および銅円柱材の伸びの測定を行った。結果を図6に示す。図6は、せん断強度および伸びの測定結果を示すグラフである。   Thereafter, the joined copper cylinders were cooled to room temperature to complete the joining. About the joined copper columnar material, the shear strength measurement and the measurement of the elongation of the copper columnar material were performed in a high temperature environment. The results are shown in FIG. FIG. 6 is a graph showing measurement results of shear strength and elongation.

〔実施例2〕
両銅円柱材に、スズ薄層を形成し、さらに、上記スズ薄層上に銅薄層およびスズ薄層の順序にて薄層を形成した。すなわち、スズ薄層−銅薄層−スズ薄層の3層を形成し、この3層をそれぞれ0.3μm、0.1μm、0.3μmにて形成した以外は、実施例1と同様に銅円柱材同士の接合を行った。
[Example 2]
A thin tin layer was formed on both the copper cylinders, and a thin layer was formed on the tin thin layer in the order of the copper thin layer and the tin thin layer. That is, copper was formed in the same manner as in Example 1 except that three layers of tin thin layer-copper thin layer-tin thin layer were formed, and these three layers were formed at 0.3 μm, 0.1 μm, and 0.3 μm, respectively. The cylindrical members were joined to each other.

接合された銅円柱材について、高温環境下おけるせん断強度測定および伸びの測定結果を図6に示す。   FIG. 6 shows the results of measuring the shear strength and the elongation of the bonded copper cylinders in a high temperature environment.

〔実施例3〕
両銅円柱材に、スズ薄層を形成し、さらに、上記スズ薄層上に銅薄層およびスズ薄層の順序にて7回薄層形成を繰り返した。すなわち、スズ薄層、銅薄層の順序にて、スズ薄層が8層、銅薄層が7層の総計15層の薄層を形成した。スズの膜厚を各層0.1μm、銅の膜厚を各層0.01μmにて形成した以外は、実施例1と同様に銅円柱材同士の接合を行った。
Example 3
A thin tin layer was formed on both copper cylinders, and the thin layer formation was repeated seven times on the tin thin layer in the order of the copper thin layer and the tin thin layer. That is, in the order of the tin thin layer and the copper thin layer, a total of 15 thin layers of 8 tin thin layers and 7 copper thin layers were formed. The copper columnar members were joined together in the same manner as in Example 1 except that the thickness of tin was 0.1 μm for each layer and the thickness of copper was 0.01 μm for each layer.

接合された銅円柱材について、高温環境下おけるせん断強度測定および伸びの測定結果を図6に示す。   FIG. 6 shows the results of measuring the shear strength and the elongation of the bonded copper cylinders in a high temperature environment.

〔比較例1〕
両銅円柱材に、スズ薄層を形成し、さらに上記スズ薄層上に銅薄層を形成した。この銅薄層上にチタンの薄層を形成し、さらにチタンの薄層上にスズ薄層、銅薄層、スズ薄層の順序にて薄層を形成した。スズの膜厚を各層0.2μm、銅の膜厚を各層0.1μm、チタンの膜厚を各層0.1μmにて形成した以外は、実施例1と同様に銅円柱材同士の接合を行った。
[Comparative Example 1]
A thin tin layer was formed on both copper cylinders, and a thin copper layer was formed on the tin thin layer. A thin titanium layer was formed on the thin copper layer, and a thin layer was further formed on the thin titanium layer in the order of a tin thin layer, a copper thin layer, and a tin thin layer. The copper cylindrical members were joined in the same manner as in Example 1 except that the thickness of tin was 0.2 μm for each layer, the thickness of copper was 0.1 μm for each layer, and the thickness of titanium was 0.1 μm for each layer. It was.

接合された銅円柱材について、高温環境下おけるせん断強度測定および伸びの測定結果を図6に示す。   FIG. 6 shows the results of measuring the shear strength and the elongation of the bonded copper cylinders in a high temperature environment.

〔比較例2〕
実施例1と同様の両銅円柱材に対し、Sn−Ag−Cuソルダペーストを用いて接合を行った。接合条件は、実施例1と同条件で行った。
[Comparative Example 2]
The same copper columnar material as in Example 1 was joined using Sn—Ag—Cu solder paste. The joining conditions were the same as in Example 1.

接合された銅円柱材について、高温環境下おけるせん断強度測定および伸びの測定結果を図6に示す。なお、せん断強度測定および伸びの測定は、Sn−Ag−Cuソルダペーストの融点を考慮して、200℃にて行なった。   FIG. 6 shows the results of measuring the shear strength and the elongation of the bonded copper cylinders in a high temperature environment. The shear strength measurement and the elongation measurement were performed at 200 ° C. in consideration of the melting point of the Sn—Ag—Cu solder paste.

図6に示す測定結果から、実施例1のSn0.7μmでは、せん断強度が94MPa、伸びが0.27mmと、良好なせん断強度および伸びの測定結果が得られたことが分かる。また、実施例2のSn2‐Cuでは、せん断強度が117Mpa、伸びが0.37mm、実施例3のCn8−Cu7では、せん断強度が120MPa、伸びが0.65mmとスズ薄層および銅薄層の形成数を増加させるほど、非常に高いせん断強度および伸びが得られることが分かった。これは、形成数を増加させることによって、合金層のスズおよび銅の合金化を向上させることができたものと考えられる。   From the measurement results shown in FIG. 6, it can be seen that, in the case of Sn 0.7 μm of Example 1, a good shear strength and elongation measurement result was obtained with a shear strength of 94 MPa and an elongation of 0.27 mm. In addition, the Sn2-Cu of Example 2 has a shear strength of 117 Mpa and an elongation of 0.37 mm, and the Cn8-Cu7 of Example 3 has a shear strength of 120 MPa and an elongation of 0.65 mm. It has been found that as the number of formation increases, very high shear strength and elongation are obtained. This is considered that the alloying of tin and copper in the alloy layer could be improved by increasing the number of formation.

一方、比較例1のSn3−Cu2−Ti1では、せん断強度が20MPa程度、伸びが0.06mmと非常に低品質な合金層が形成された。これは、スズ薄層と銅薄層との間にチタンの薄層が形成されているため、このチタンの薄層によって、スズおよび銅の合金化が阻害され、良好な合金層が形成されなかったためであると考えられる。さらに、比較例2のSn−Ag−Cuソルダペーストでは、比較例1と同様に、せん断強度が20MPa、伸びが0.18mmと低いせん断強度を示す結果であった。   On the other hand, in Sn3-Cu2-Ti1 of Comparative Example 1, a very low quality alloy layer having a shear strength of about 20 MPa and an elongation of 0.06 mm was formed. This is because a thin titanium layer is formed between the thin tin layer and the thin copper layer. This thin titanium layer hinders the alloying of tin and copper and does not form a good alloy layer. This is probably because Furthermore, in the Sn-Ag-Cu solder paste of Comparative Example 2, similar to Comparative Example 1, the shear strength was 20 MPa and the elongation was 0.18 mm, indicating a low shear strength.

さらに、実施例1〜3、比較例1でのせん断強度測定後の合金層の破断面をSEM(走査型電子顕微鏡)にて観察した。図7は、各破断面のSEM像を示す写真図である。図7の各破断面は、(a)が実施例1、(b)が実施例2、(c)が実施例3、(d)が比較例1の合金層の破断面に対応している。(a)〜(c)の写真図を比較すると、(a)、(b)、(c)の順序にて破断面に伸びが生じた形跡が大きく観察された。これは、合金層の伸びの大きさからと一致する結果である。このように、本発明の電子素子の実装方法によれば、合金層は高い延性を有することができ、応力が加えられたとしてもこれをある程度吸収することができる。このため合金層が破壊され難い。   Furthermore, the fracture surface of the alloy layer after the shear strength measurement in Examples 1 to 3 and Comparative Example 1 was observed with an SEM (scanning electron microscope). FIG. 7 is a photograph showing an SEM image of each fracture surface. 7 corresponds to the fracture surface of the alloy layer of Example 1, (b) of Example 2, (b) of Example 2, (c) of Example 3, and (d) of Comparative Example 1. . When the photographic diagrams of (a) to (c) were compared, a large trace of elongation on the fracture surface was observed in the order of (a), (b), and (c). This is a result consistent with the magnitude of the elongation of the alloy layer. Thus, according to the electronic element mounting method of the present invention, the alloy layer can have high ductility, and even if stress is applied, it can be absorbed to some extent. For this reason, an alloy layer is hard to be destroyed.

また、(d)のチタンを含む合金層では、破断面における伸びの形跡はほとんど観察されず、比較例1では、応力に対して合金層がほとんど延性を有さず、非常に脆い構造を有していることが分かった。   In addition, in the alloy layer containing titanium of (d), almost no evidence of elongation at the fracture surface is observed, and in Comparative Example 1, the alloy layer has almost no ductility against stress and has a very brittle structure. I found out that

本発明によれば、接合部が微細であっても電子素子を回路基板に実装することができるため、電子素子を用いる分野にて好適に利用が可能である。   According to the present invention, since the electronic element can be mounted on the circuit board even if the joint portion is fine, it can be suitably used in the field where the electronic element is used.

本発明における、銅電極1aおよび銅電極1bにスズ薄層2を積層した状態を示す模式図である。It is a schematic diagram which shows the state which laminated | stacked the tin thin layer 2 on the copper electrode 1a and the copper electrode 1b in this invention. 本発明の電子素子の実装方法を説明する工程図である。It is process drawing explaining the mounting method of the electronic device of this invention. 銅−スズの二次元状態図である。It is a two-dimensional state diagram of copper-tin. せん断試験の状態を示す、せん断装置および接合された銅円柱材の断面図である。It is sectional drawing of the shear apparatus and the joined copper cylindrical material which shows the state of a shear test. 加熱および加圧時における銅円柱材の温度変化を示すグラフであるIt is a graph which shows the temperature change of the copper cylinder material at the time of a heating and pressurization. 接合された銅円柱材のせん断強度および伸びの測定結果を示すグラフである。It is a graph which shows the measurement result of the shear strength and elongation of the joined copper cylindrical material. 実施例および比較例に係る合金層の破断面のSEM像を示す写真図である。It is a photograph figure which shows the SEM image of the torn surface of the alloy layer which concerns on an Example and a comparative example.

符号の説明Explanation of symbols

1a 銅電極
1b 銅電極
2 スズ薄層
2a スズ薄層
2b スズ薄層
3 銅薄層
4 第三薄層
5 合金層
1a copper electrode 1b copper electrode 2 tin thin layer 2a tin thin layer 2b tin thin layer 3 copper thin layer 4 third thin layer 5 alloy layer

Claims (6)

回路基板上に形成された銅からなる回路電極と、電子素子上に形成された銅からなる素子電極とを接合して、上記電子素子を上記回路基板に実装する電子素子の実装方法において、
上記回路電極および素子電極にスズ薄層を形成するスズ薄層形成工程を行なった後、
上記回路電極および素子電極に形成されたスズ薄層の少なくとも一方に、銅薄層、スズ薄層の順序にて形成される薄層体を少なくとも1層積層する積層工程を行ない、
上記回路電極および素子電極に形成されたスズ薄層同士を接触させ、スズの溶融および銅のスズへの溶解が可能な温度において加熱および加圧を行なう加熱工程を行なうことにより、
上記回路電極および素子電極の銅を上記スズ薄層中のスズへ溶解させ、
スズ薄層中のスズと上記回路電極および素子電極の銅との相互拡散により回路電極と素子電極とを電気的に接合することを特徴とする電子素子の実装方法。
In the mounting method of the electronic element, the circuit electrode made of copper formed on the circuit board and the element electrode made of copper formed on the electronic element are joined, and the electronic element is mounted on the circuit board.
After performing a tin thin layer forming step of forming a tin thin layer on the circuit electrode and the element electrode,
Performing a laminating step of laminating at least one thin layer formed in the order of a copper thin layer and a tin thin layer on at least one of the tin thin layers formed on the circuit electrode and the element electrode;
By performing a heating step in which the tin thin layers formed on the circuit electrode and the element electrode are brought into contact with each other, and heating and pressurization are performed at a temperature at which tin can be melted and copper can be dissolved in tin,
The copper of the circuit electrode and element electrode is dissolved in tin in the tin thin layer,
A method of mounting an electronic element, comprising electrically bonding a circuit electrode and an element electrode by mutual diffusion of tin in the tin thin layer with the circuit electrode and copper of the element electrode.
銅薄層、スズ薄層の順序にて形成される薄層体の上記スズ薄層上に、亜鉛、銀、ニッケル、ゲルマニウム、鉄およびコバルトからなる群から選ばれる1種類の元素からなる第三薄層を少なくとも1層形成した後、銅薄層を形成する工程、および、銅薄層、スズ薄層の順序にて形成される薄層体の上記銅薄層上に、上記第三薄層を少なくとも1層形成した後、スズ薄層を形成する工程のうち、少なくとも一方を行なう第三薄層形成工程をさらに含むことを特徴とする請求項1に記載の電子素子の実装方法。   A third layer composed of one element selected from the group consisting of zinc, silver, nickel, germanium, iron and cobalt on the tin thin layer of the thin layer formed in the order of the copper thin layer and the tin thin layer. Forming the copper thin layer after forming at least one thin layer, and the third thin layer on the copper thin layer of the thin layer formed in the order of the copper thin layer and the tin thin layer The method for mounting an electronic device according to claim 1, further comprising a third thin layer forming step of performing at least one of the steps of forming the tin thin layer after forming at least one layer. 請求項1または2に記載の電子素子の実装方法によって、回路基板上に形成された銅からなる回路電極と、電子素子上に形成された銅からなる素子電極とを電気的に接合されることによって、上記電子素子が上記回路基板に実装されていることを特徴とする電子部品。   The circuit electrode made of copper formed on the circuit board and the element electrode made of copper formed on the electronic device are electrically joined to each other by the electronic device mounting method according to claim 1 or 2. An electronic component, wherein the electronic element is mounted on the circuit board. ケイ素チップを回路基板へ実装するダイボンディングに用いられる電子素子の実装方法において、
接合対象となるケイ素チップおよび回路基板の表面に銅薄層を形成する銅薄層形成工程を行った後、
上記ケイ素チップおよび回路基板にスズ薄層を形成するスズ薄層形成工程を行い、上記ケイ素チップおよび回路基板に形成されたスズ薄層の少なくとも一方に、銅薄層、スズ薄層の順序にて形成される薄層体を少なくとも1層積層する積層工程を行ない、上記ケイ素チップおよび回路基板に形成されたスズ薄層同士を接触させ、スズの溶融および銅のスズへの溶解が可能な温度において加熱および加圧を行なう加熱工程を行なうことにより、
上記ケイ素チップおよび回路基板の表面に形成された銅が上記スズ薄層中のスズへ溶解し、スズ薄層中のスズと上記銅との相互拡散により上記ケイ素チップおよび回路基板を接合することを特徴とする電子素子の実装方法。
In mounting method for electronic devices that need use in Daibondin grayed implementing the silicon chip to the circuit board,
After performing a copper thin layer forming step of forming a copper thin layer on the surface of the silicon chip and circuit board to be bonded,
Performed tin thin layer forming step of forming a tin thin layer on the silicon chip and the circuit board, at least one of tin thin layer formed on the silicon chip and the circuit board, the thin copper layer, in the order of the tin lamina A laminating step of laminating at least one thin layer body to be formed is performed, the tin thin layer formed on the silicon chip and the circuit board is brought into contact with each other, and at a temperature at which tin can be melted and copper can be dissolved in tin. By performing the heating process of heating and pressurization,
The copper formed on the surface of the silicon chip and the circuit board is dissolved in the tin in the tin thin layer, and the silicon chip and the circuit board are joined by mutual diffusion of tin in the tin thin layer and the copper. A method for mounting an electronic device.
銅薄層、スズ薄層の順序にて形成される薄層体の上記スズ薄層上に、亜鉛、銀、ニッケル、ゲルマニウム、鉄およびコバルトからなる群から選ばれる1種類の元素からなる第三薄層を少なくとも1層形成した後、銅薄層を形成する工程、および、銅薄層、スズ薄層の順序にて形成される薄層体の上記銅薄層上に、上記第三薄層を少なくとも1層形成した後、スズ薄層を形成する工程のうち、少なくとも一方を行なう第三薄層形成工程をさらに含むことを特徴とする請求項4に記載の電子素子の実装方法。   A third layer composed of one element selected from the group consisting of zinc, silver, nickel, germanium, iron and cobalt on the tin thin layer of the thin layer formed in the order of the copper thin layer and the tin thin layer. Forming the copper thin layer after forming at least one thin layer, and the third thin layer on the copper thin layer of the thin layer formed in the order of the copper thin layer and the tin thin layer 5. The method of mounting an electronic device according to claim 4, further comprising a third thin layer forming step of performing at least one of the steps of forming the tin thin layer after forming at least one layer. 請求項4または5に記載の電子素子の実装方法によって、上記ケイ素チップおよび回路基板が接合されていることを特徴とする電子部品。 6. The electronic component according to claim 4, wherein the silicon chip and the circuit board are bonded together by the electronic element mounting method according to claim 4.
JP2008211067A 2008-08-19 2008-08-19 Electronic element mounting method and electronic component mounted by the mounting method Active JP5376356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211067A JP5376356B2 (en) 2008-08-19 2008-08-19 Electronic element mounting method and electronic component mounted by the mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211067A JP5376356B2 (en) 2008-08-19 2008-08-19 Electronic element mounting method and electronic component mounted by the mounting method

Publications (2)

Publication Number Publication Date
JP2010050163A JP2010050163A (en) 2010-03-04
JP5376356B2 true JP5376356B2 (en) 2013-12-25

Family

ID=42067035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211067A Active JP5376356B2 (en) 2008-08-19 2008-08-19 Electronic element mounting method and electronic component mounted by the mounting method

Country Status (1)

Country Link
JP (1) JP5376356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466558B2 (en) 2014-02-28 2016-10-11 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2796346C (en) 2010-04-14 2018-10-02 Altria Client Services Inc. Preformed smokeless tobacco product
JP2013038330A (en) * 2011-08-10 2013-02-21 Toshiba Corp Semiconductor device manufacturing method and semiconductor device
JP5588419B2 (en) * 2011-10-26 2014-09-10 株式会社東芝 package
US10799548B2 (en) 2013-03-15 2020-10-13 Altria Client Services Llc Modifying taste and sensory irritation of smokeless tobacco and non-tobacco products

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735526B2 (en) * 2000-10-04 2006-01-18 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP2005288458A (en) * 2004-03-31 2005-10-20 Toshiba Corp Joined body, semiconductor device, joining method and method for producing semiconductor device
JP2007019360A (en) * 2005-07-11 2007-01-25 Fuji Electric Holdings Co Ltd Mounting method of electric component
WO2008149584A1 (en) * 2007-06-04 2008-12-11 Murata Manufacturing Co., Ltd. Electronic part apparatus and process for manufacturing the same
JP5523680B2 (en) * 2008-05-29 2014-06-18 株式会社東芝 Bonded body, semiconductor device, and manufacturing method of bonded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466558B2 (en) 2014-02-28 2016-10-11 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010050163A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US8896119B2 (en) Bonding material for semiconductor devices
KR20190123727A (en) Copper / ceramic bonded body, insulated circuit board, and manufacturing method of copper / ceramic bonded body, manufacturing method of insulated circuit board
JP5376356B2 (en) Electronic element mounting method and electronic component mounted by the mounting method
JP2005288458A (en) Joined body, semiconductor device, joining method and method for producing semiconductor device
JP2016048781A (en) Combination body, power module substrate with heat sink, heat sink, method for manufacturing combination body, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
JP4136845B2 (en) Manufacturing method of semiconductor module
JP2008238233A (en) Non-lead based alloy joining material, joining method, and joined body
JP2007019360A (en) Mounting method of electric component
WO2021085451A1 (en) Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board
JP5231727B2 (en) Joining method
JP4136844B2 (en) Electronic component mounting method
JP2010003878A (en) Circuit board and its method of manufacturing
JP2005032834A (en) Joining method of semiconductor chip and substrate
JPWO2005086221A1 (en) Electronic component mounting method
JP6432208B2 (en) Method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink
JP2008221290A (en) Joined member and joining method
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
US10092974B2 (en) Method for producing a circuit carrier and for connecting an electrical conductor to a metallization layer of a circuit carrier
JP2015080812A (en) Joint method
JP2007260695A (en) Joining material, joining method, and joined body
Sha et al. 40 μm silver flip-chip interconnect technology with solid-state bonding
JP2009039769A (en) Joining sheet
Kim et al. Fluxless bonding of silicon to Ag-cladded copper using Sn-based alloys
JP2004289113A (en) Metal electrode and bonding method using same
JP6299442B2 (en) Power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5376356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350