[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5376134B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP5376134B2
JP5376134B2 JP2009088320A JP2009088320A JP5376134B2 JP 5376134 B2 JP5376134 B2 JP 5376134B2 JP 2009088320 A JP2009088320 A JP 2009088320A JP 2009088320 A JP2009088320 A JP 2009088320A JP 5376134 B2 JP5376134 B2 JP 5376134B2
Authority
JP
Japan
Prior art keywords
anode
capacitor element
cathode
solid electrolytic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009088320A
Other languages
Japanese (ja)
Other versions
JP2010239091A (en
Inventor
茂樹 白勢
幸 氏家
敏行 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2009088320A priority Critical patent/JP5376134B2/en
Publication of JP2010239091A publication Critical patent/JP2010239091A/en
Application granted granted Critical
Publication of JP5376134B2 publication Critical patent/JP5376134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To rapidly supply power in transient response by turning a solid electrolytic capacitor into a low ESL. <P>SOLUTION: The solid electrolytic capacitor includes: a capacitor element in which a dielectric oxidized coating layer, a solid electrolytic layer and a cathode portion are successively formed on the inner surface of a concave portion formed on the center of an anode made of a valve action metal, and anodes around the concave portion are formed as an anode portion; a mounting surface for mounting the capacitor element; and a mounting surface facing the wiring substrate. Conductors corresponding to the anode portion and the cathode portion of the capacitor element, respectively, are formed on the surface for mounting the capacitor element; a cathode electrode is formed and anode electrodes are formed on the surrounding of the cathode electrode on the mounting surface facing a wiring board; and the conductors penetrate through the inside and are electrically connected to the anode electrode and the cathode electrode. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は各種電子機器に使用されるコンデンサの中で、導電性高分子を固体電解質に用い、かつ、面実装対応にした表面実装型固体電解コンデンサに関するものである。   The present invention relates to a surface mount type solid electrolytic capacitor that uses a conductive polymer as a solid electrolyte and is surface mountable among capacitors used in various electronic devices.

電子機器の高周波化に伴って電子部品の一つであるコンデンサにも従来よりも高周波領域でのインピーダンス特性に優れたコンデンサが求められてきており、このような要求に応えるために電気伝導度が高い導電性高分子を固体電解質に用いた固体電解コンデンサが種々検討されている。   Along with the higher frequency of electronic equipment, capacitors that are one of the electronic components have been required to have better impedance characteristics in the high frequency range than before, and electrical conductivity has been increased to meet these requirements. Various solid electrolytic capacitors using a highly conductive polymer as a solid electrolyte have been studied.

また、近年、コンピュータに代表されるCPU等のLSIやテレビジョンの画像処理用LSI、それらLSIとデータのやり取りを行うメモリー等の周辺に配置されて、これらのデバイスに対しての電力供給用途として使用される固体電解コンデンサには小型大容量化が強く望まれており、更に高周波化に対応して低ESR(等価直列抵抗)化のみならず、ノイズ除去や過渡応答性に優れた低ESL(等価直列インダクタンス)化が強く要求されており、このような要求に応えるために種々の検討がなされている。   In recent years, LSIs such as CPUs typified by computers, LSIs for image processing of televisions, and memories that exchange data with these LSIs have been placed around these devices for power supply applications. A solid electrolytic capacitor to be used is strongly demanded to be small in size and large in capacity. Further, in addition to low ESR (equivalent series resistance) corresponding to high frequency, low ESL (excellent noise removal and transient response) ( Equivalent series inductance) is strongly demanded, and various studies have been made to meet such a demand.

この固体電解コンデンサの低ESL化を図るためには、一般に、低ESL化を図る方法としては、第1に、電流経路の長さを極力短くする方法、第2に、電流経路によって形成される磁場を別の電流経路によって形成される磁場により相殺する方法、第3に、電流経路をn個に分割して実効的なESLを1/nにする方法が知られている。   In order to reduce the ESL of the solid electrolytic capacitor, generally, as a method of reducing the ESL, first, a method of shortening the length of the current path as much as possible, and secondly, a method of forming the current electrolytic path by the current path. A method is known in which the magnetic field is canceled by a magnetic field formed by another current path, and third, a method in which the current path is divided into n and the effective ESL is reduced to 1 / n.

このような固体電解コンデンサの低ESR化、低ESL化を図った固体電解コンデンサとして、次の特許文献に開示された固体電解コンデンサが知られている。   A solid electrolytic capacitor disclosed in the following patent document is known as a solid electrolytic capacitor that achieves low ESR and low ESL of such a solid electrolytic capacitor.

特開2008−135425号JP 2008-135425 A 特開2008−294012号JP 2008-294012 A

前述したように、この固体電解コンデンサの低ESL化を図るためには、固体電解コンデンサの構造として電流経路の長さを極力短くする方法が有効である。すなわち、固体電解コンデンサの静電容量部となるのは、誘電体酸化皮膜の界面であるが、この誘電体酸化皮膜の界面から、電流の取り出し口である、陽極電極、陰極電極までの距離が短いことが好適である。   As described above, in order to reduce the ESL of this solid electrolytic capacitor, it is effective to make the length of the current path as short as possible as the structure of the solid electrolytic capacitor. That is, the capacitance part of the solid electrolytic capacitor is the interface of the dielectric oxide film, and the distance from the interface of the dielectric oxide film to the anode electrode and the cathode electrode, which are current extraction ports, is Short is preferred.

また、電流経路によって形成される磁場を別の電流経路によって形成される磁場により相殺する方法を利用するためには、陽極電極と陰極電極を近接させて、誘導磁界の相殺効果を高めることが有効となる。   In addition, in order to use the method of canceling the magnetic field formed by the current path with the magnetic field formed by another current path, it is effective to increase the canceling effect of the induced magnetic field by bringing the anode electrode and the cathode electrode close to each other. It becomes.

この発明では、この二つのESL低減要素を利用して低ESLを図ることで、過渡応答時に速やかに電力供給をすることができる固体電解コンデンサを提供することを目的とする。   An object of the present invention is to provide a solid electrolytic capacitor that can supply power quickly during a transient response by using these two ESL reduction elements to achieve low ESL.

上記の課題を解決するために、請求項1に係る発明は、弁作用金属からなる陽極体の中央に形成した凹部の内面に誘電体酸化皮膜層、固体電解質層、陰極部が順次形成され、該凹部の周囲の陽極体を陽極部としたコンデンサ素子と、前記コンデンサ素子を搭載する面と配線基板に面する実装面とを備え、コンデンサ素子を搭載する面には、前記コンデンサ素子の陽極部、陰極部とそれぞれ対応する導体が形成され、配線基板に面する実装面には、陰極電極とその陰極電極の周囲に陽極電極が形成されるとともに、前記導体が内部を貫通して陽極電極および陰極電極とそれぞれ電気的に接続された搭載基板と、からなる固体電解コンデンサを特徴とする。   In order to solve the above-mentioned problems, the invention according to claim 1 is that a dielectric oxide film layer, a solid electrolyte layer, and a cathode portion are sequentially formed on the inner surface of a recess formed in the center of an anode body made of a valve metal. A capacitor element having an anode body around the recess as an anode part; a surface on which the capacitor element is mounted; and a mounting surface facing the wiring board. In addition, a conductor corresponding to each of the cathode portions is formed, and on the mounting surface facing the wiring board, a cathode electrode and an anode electrode are formed around the cathode electrode, and the conductor penetrates through the inside and the anode electrode and It is characterized by a solid electrolytic capacitor comprising a mounting substrate electrically connected to each cathode electrode.

この出願の請求項1に記載の発明によれば、コンデンサ素子の誘電体酸化皮膜から、電力の出口である陽極電極、陰極電極までの距離を短くすることができる。コンデンサ素子の誘電体酸化皮膜はコンデンサ素子の凹部に形成されており、この凹部から固体電解質層、陰極部を介して、コンデンサ素子の外部に電力の引き出し口が形成される。またコンデンサ素子は搭載基板を介して、固体電解コンデンサの外部に陰極電極が引き出される。このように、コンデンサ素子の誘電体酸化皮膜から、固体電解コンデンサの外部端子までの距離が極めて短いものとなる。また、誘電体酸化皮膜が形成された陽極体は、コンデンサ素子の陽極部および搭載基板の導体を介して、陽極電極として引き出される。このように、陽極、陰極とも固体電解コンデンサの内部での導電経路が短いために、固体電解コンデンサの低ESL化を図ることができる。   According to the invention described in claim 1 of this application, the distance from the dielectric oxide film of the capacitor element to the anode electrode and the cathode electrode which are power outlets can be shortened. The dielectric oxide film of the capacitor element is formed in a concave portion of the capacitor element, and a power outlet is formed outside the capacitor element through the solid electrolyte layer and the cathode portion. The capacitor element has a cathode electrode drawn out of the solid electrolytic capacitor through the mounting substrate. Thus, the distance from the dielectric oxide film of the capacitor element to the external terminal of the solid electrolytic capacitor is extremely short. The anode body on which the dielectric oxide film is formed is drawn out as an anode electrode through the anode portion of the capacitor element and the conductor of the mounting substrate. Thus, since both the anode and the cathode have a short conductive path inside the solid electrolytic capacitor, the ESL of the solid electrolytic capacitor can be reduced.

さらに、陰極電極の周囲に陽極電極が配置された電極配置としているため、陽極と陰極での誘導磁界の相殺が行われ、この点でも固体電解コンデンサの低ESL化を図ることができる。   Further, since the anode electrode is arranged around the cathode electrode, the induction magnetic field is canceled out between the anode and the cathode, and in this respect, the ESL of the solid electrolytic capacitor can be reduced.

その上、固体電解コンデンサでの機械的脆弱部である誘電体酸化皮膜層、固体電解質層及び陰極部は、コンデンサ素子の凹部内に形成され、凹部の周囲のアルミニウム材と搭載基板によって囲まれて保護されるために、固体電解コンデンサに機械的ストレスが加わった際にも、誘電体酸化皮膜層、固体電解質層及び陰極部に機械的応力が加わることが緩和され、漏れ電流の上昇等の特性劣化を防止することができる。   In addition, the dielectric oxide film layer, the solid electrolyte layer, and the cathode portion, which are mechanically fragile portions in the solid electrolytic capacitor, are formed in the concave portion of the capacitor element, and are surrounded by the aluminum material and the mounting substrate around the concave portion. Because of the protection, even when mechanical stress is applied to the solid electrolytic capacitor, the mechanical stress applied to the dielectric oxide film layer, solid electrolyte layer, and cathode part is alleviated, and characteristics such as an increase in leakage current Deterioration can be prevented.

以上のように、極めて薄型の固体電解コンデンサの構造でありながら、固体電解コンデンサの機械的強度を保てる構造であるとともに、固体電解コンデンサの低ESL化を実現できる。   As described above, the structure of the solid electrolytic capacitor can be maintained while maintaining the mechanical strength of the solid electrolytic capacitor, and the ESL of the solid electrolytic capacitor can be reduced.

本発明の固体電解コンデンサの構造を示す断面図である。It is sectional drawing which shows the structure of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサの搭載基板を示す斜視図である。It is a perspective view which shows the mounting substrate of the solid electrolytic capacitor of this invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、弁作用金属からなる陽極体の中央に形成した凹部の内面に誘電体酸化皮膜層、固体電解質層、陰極部が順次形成され、該凹部の周囲の陽極体を陽極部としたコンデンサ素子と、前記コンデンサ素子を搭載する面と配線基板に面する実装面とを備え、コンデンサ素子を搭載する面には、前記コンデンサ素子の陽極部、陰極部とそれぞれ対応する導体が形成され、配線基板に面する実装面には、陰極電極とその陰極電極の周囲に陽極電極が形成されるとともに、前記導体が内部を貫通して陽極電極および陰極電極とそれぞれ電気的に接続された搭載基板とを備えた固体電解コンデンサである。   The present invention provides a capacitor in which a dielectric oxide film layer, a solid electrolyte layer, and a cathode portion are sequentially formed on the inner surface of a recess formed in the center of an anode body made of a valve action metal, and the anode body around the recess is an anode portion. An element, a surface for mounting the capacitor element, and a mounting surface facing the wiring board. Conductors corresponding to the anode part and the cathode part of the capacitor element are formed on the surface on which the capacitor element is mounted. The mounting surface facing the substrate includes a cathode electrode and an anode electrode formed around the cathode electrode, and the conductor penetrates through the inside and is electrically connected to the anode electrode and the cathode electrode, respectively. It is a solid electrolytic capacitor provided with.

図1(a)には、本発明の固体電解コンデンサの断面図を示し、(b)には、固体電解コンデンサをコンデンサ素子と搭載基板に分解した断面図を示している。   1A shows a cross-sectional view of the solid electrolytic capacitor of the present invention, and FIG. 1B shows a cross-sectional view of the solid electrolytic capacitor disassembled into a capacitor element and a mounting substrate.

本発明で用いるコンデンサ素子1について、図1(b)とともに説明する。まず、薄板状のアルミニウム材11に切削、プレス、エッチング法等により所定の大きさの凹部をアルミニウム材11の中央に形成する。さらにこの凹部の内面をエッチングにより拡面処理し、さらに陽極酸化することで誘電体酸化皮膜12を形成する。次に陰極となる凹部の内面の誘電体酸化皮膜12の上に導電性高分子からなる固体電解質層13を形成し、続いて固体電解質層13の上にグラファイト、銀ペーストを形成して陰極部14とし、コンデンサ素子1としたものである。このコンデンサ素子1では、凹部の周囲のアルミニウム材11が陽極部15となる。   A capacitor element 1 used in the present invention will be described with reference to FIG. First, a recess having a predetermined size is formed in the center of the aluminum material 11 by cutting, pressing, etching, or the like on the thin plate-like aluminum material 11. Further, the inner surface of the recess is subjected to a surface enlargement process by etching and further anodized to form the dielectric oxide film 12. Next, a solid electrolyte layer 13 made of a conductive polymer is formed on the dielectric oxide film 12 on the inner surface of the concave portion serving as the cathode, and then graphite and silver paste are formed on the solid electrolyte layer 13 to form the cathode portion. 14 and capacitor element 1. In the capacitor element 1, the aluminum material 11 around the recess serves as the anode portion 15.

このようなコンデンサ素子1は、出発原料であるアルミニウム材11の厚さを100〜500μm程度とし、エッチング層の厚さを20〜30μm、エッチング層の最上部からの凹部の深さを15〜50μm程度とすることで、薄型のコンデンサ素子を作成することができる。   In such a capacitor element 1, the aluminum material 11 as a starting material has a thickness of about 100 to 500 μm, the thickness of the etching layer is 20 to 30 μm, and the depth of the recess from the top of the etching layer is 15 to 50 μm. By setting the thickness, a thin capacitor element can be created.

このコンデンサ素子1の凹部の深さを浅く形成することで、誘電体酸化皮膜層12からコンデンサ素子の電力の取り出し口である陰極部14までの導電距離が短く、ESL低減効果のためには好適である。しかし、凹部の内面には誘電体酸化皮膜層12が形成され、この誘電体酸化皮膜層12の上に固体電解質層13、陰極部14を順次形成するが、この固体電解質層13と陰極部14は、それぞれ凹部から突出しないようにすることが必要である。このため、固体電解質層13の厚さを5〜10μm程度の厚さに形成し、陰極部14の厚さを10〜15μm程度に形成しても、それらが凹部から突出しないようにするためには、凹部の深さは15〜50μm程度の深さが必要となる。   By forming the depth of the concave portion of the capacitor element 1 to be shallow, the conductive distance from the dielectric oxide film layer 12 to the cathode portion 14 which is a power outlet of the capacitor element is short, which is suitable for the effect of reducing ESL. It is. However, a dielectric oxide film layer 12 is formed on the inner surface of the recess, and a solid electrolyte layer 13 and a cathode portion 14 are sequentially formed on the dielectric oxide film layer 12. The solid electrolyte layer 13 and the cathode portion 14 are formed in this order. Must not protrude from the respective recesses. Therefore, even if the solid electrolyte layer 13 is formed to have a thickness of about 5 to 10 μm and the cathode portion 14 is formed to have a thickness of about 10 to 15 μm, they do not protrude from the recess. The depth of the recess is required to be about 15 to 50 μm.

また、凹部を15〜50μm程度の深さに形成するには、出発材料のアルミニウム材11の厚さとしては100μm程度の厚さが必要である。これよりも薄い場合には、凹部の形成の際に、アルミニウム材11自体が変形したり、凹部を形成した後の陽極体の強度が極めて弱いものとなってしまう。   In addition, in order to form the recesses to a depth of about 15 to 50 μm, the thickness of the starting aluminum material 11 needs to be about 100 μm. If it is thinner than this, the aluminum material 11 itself is deformed when the recess is formed, or the strength of the anode body after forming the recess becomes extremely weak.

しかしながら、100μmの厚さのアルミニウム材1を使用してコンデンサ素子を形成した場合でも、その強度は必ずしも強いものとは言えない。そこで、このようなコンデンサ素子の強度を補強するためにコンデンサ素子の凹部の反対面には、アルミニウムよりも強度が高い鋼材を貼り付けて補強することも可能である。また、アルミニウム材の片面を予め陽極酸化処理して強度を高めておくこともできる。   However, even when the capacitor element is formed using the aluminum material 1 having a thickness of 100 μm, the strength is not necessarily strong. Therefore, in order to reinforce the strength of such a capacitor element, a steel material having a strength higher than that of aluminum can be attached to the opposite surface of the concave portion of the capacitor element for reinforcement. Also, the strength can be increased by anodizing one surface of the aluminum material in advance.

なお、アルミニウム材11の厚さを500μm程度として、凹部を形成しても充分に強度が保てる場合には、鋼材の貼り付けや、陽極酸化処理による強度の向上は必要がなくなる。   If the thickness of the aluminum material 11 is about 500 μm and sufficient strength can be maintained even when the recess is formed, it is not necessary to attach the steel material or improve the strength by anodizing.

ところで、コンデンサ素子の中では、誘電体酸化皮膜層および固体電解質層には、機械的ストレスが加わることを避ける必要がある。誘電体酸化皮膜層および固体電解質層に機械的ストレスが加わると誘電体酸化皮膜が損傷し、漏れ電流の増大を招くおそれがある他、固体電解質層に機械的ストレスが加わると、固体電解質層の導電率が低下してしまうおそれがある。しかし、このコンデンサ素子では、誘電体酸化皮膜層および固体電解質層は、陽極体の凹部の内部に形成されており、アルミニウム材11によって囲まれて保護されるようになる。   Incidentally, in the capacitor element, it is necessary to avoid applying mechanical stress to the dielectric oxide film layer and the solid electrolyte layer. If mechanical stress is applied to the dielectric oxide film layer and the solid electrolyte layer, the dielectric oxide film may be damaged, leading to an increase in leakage current, and if mechanical stress is applied to the solid electrolyte layer, There is a possibility that the electrical conductivity is lowered. However, in this capacitor element, the dielectric oxide film layer and the solid electrolyte layer are formed inside the concave portion of the anode body, and are protected by being surrounded by the aluminum material 11.

次に、搭載基板2について説明する。搭載基板はガラスエポキシ基板等の絶縁基板21をベースとし、下面に陽極電極22及び陰極電極23を備え、上面にはコンデンサ素子の陽極部、陰極部とそれぞれに接続される陽極導体24,陰極導体25を備えると共に、上面と裏面の陽極導体26と陽極電極24、陰極導体25と陰極電極23をそれぞれ導通させたものである。   Next, the mounting substrate 2 will be described. The mounting substrate is based on an insulating substrate 21 such as a glass epoxy substrate, and has an anode electrode 22 and a cathode electrode 23 on the lower surface, and an anode conductor 24 and a cathode conductor connected to the anode and cathode portions of the capacitor element on the upper surface, respectively. 25, and the anode conductor 26 and the anode electrode 24, and the cathode conductor 25 and the cathode electrode 23 on the top surface and the back surface are respectively conducted.

また、搭載基板2の下面の電極の構成は、接続されるCPU等の仕様に併せて任意の形状に形成が可能であるが、コンデンサ素子の陽極部、陰極部の形状と同様に、図2(b)に示すように陰極電極23の周囲を陽極電極22が取り囲むような電極の形状に形成することが好ましい。   Further, the configuration of the electrodes on the lower surface of the mounting substrate 2 can be formed in any shape in accordance with the specifications of the CPU and the like to be connected, but as in the shapes of the anode and cathode portions of the capacitor element, FIG. As shown in (b), it is preferable to form the cathode electrode 23 in the shape of an electrode surrounding the anode electrode 22.

搭載基板2の上面に形成した陽極導体24、陰極導体25は、コンデンサ素子1の陽極部15、陰極部14にそれぞれ合致した形状とすればよい。図2(a)には、搭載基板2の上面から見た斜視図を示している。先に示したコンデンサ素子1の構造のように、凹部に陰極部14を形成し、凹部の周囲を陽極部15としたコンデンサ素子1の形状に合致するように、搭載基板2の陰極導体25を取り囲むように陽極導体24が配置されている。   The anode conductor 24 and the cathode conductor 25 formed on the upper surface of the mounting substrate 2 may have shapes matching the anode portion 15 and the cathode portion 14 of the capacitor element 1, respectively. FIG. 2A shows a perspective view as seen from the top surface of the mounting substrate 2. The cathode conductor 25 of the mounting substrate 2 is formed so as to match the shape of the capacitor element 1 in which the cathode portion 14 is formed in the recess and the periphery of the recess is the anode portion 15 as in the structure of the capacitor element 1 described above. An anode conductor 24 is arranged so as to surround it.

これらの陽極電極22,陰極電極23の厚さは全て同じ厚さとすることで、陽極電極22および陰極電極23の実装面が同一平面となり、プリント基板に実装する際に固体電解コンデンサを安定して搭載することができる。   By making the thicknesses of the anode electrode 22 and the cathode electrode 23 all the same, the mounting surfaces of the anode electrode 22 and the cathode electrode 23 become the same plane, and the solid electrolytic capacitor can be stably mounted when mounted on a printed circuit board. Can be installed.

また、このような陽極電極22と陰極電極23は、相互に近接させることで、陽極電極22と陰極電極23を流れる電流は反対向きとなるため、それぞれの電極を流れる電流によって発生する磁界が相殺され、ESLの低減が図れるようになる。   In addition, since the anode electrode 22 and the cathode electrode 23 are placed close to each other, the currents flowing through the anode electrode 22 and the cathode electrode 23 are in opposite directions, so that the magnetic fields generated by the currents flowing through the respective electrodes cancel each other. As a result, the ESL can be reduced.

このような搭載基板のベースとなる絶縁基板は、200μm程度の厚さのものを用いることが強度の面で好適であるが、80μm程度の厚さのものも使用することが可能である。そして、絶縁基板の上に形成する陽極電極、陰極電極、導体はそれぞれ電気抵抗が小さいことと半田付けが可能であればよく、銅や、ニッケルに金をメッキした導体を用いることが好ましい。この電極、導体の厚さは片面で30〜100μmの厚さで形成することが可能である。   An insulating substrate serving as a base for such a mounting substrate is preferably about 200 μm thick in terms of strength, but can also be about 80 μm thick. The anode electrode, the cathode electrode, and the conductor formed on the insulating substrate are only required to have low electrical resistance and can be soldered, and it is preferable to use a conductor in which gold is plated on copper or nickel. The electrodes and conductors can be formed with a thickness of 30 to 100 μm on one side.

搭載基板2の上面の導体24,25と下面の電極22、23を導通させる方法としては、搭載基板2の所定箇所をレーザーによって穿穴し、その穴の内面をスルーホールメッキすることによって導通を図ることができる。この導通のためのスルーホールの位置、個数等は、固体電解コンデンサに要求される電流容量等の特性に応じて任意に設計可能である。   As a method of conducting the conductors 24 and 25 on the upper surface of the mounting substrate 2 and the electrodes 22 and 23 on the lower surface, a predetermined portion of the mounting substrate 2 is drilled with a laser, and the inner surface of the hole is plated by through-hole plating. Can be planned. The position, the number, etc. of the through holes for this conduction can be arbitrarily designed according to the characteristics such as the current capacity required for the solid electrolytic capacitor.

このような搭載基板では、コンデンサ素子の陽極部、陰極部から、電流の出口である搭載基板の陽極電極部、陰極電極部までの距離は、搭載基板の厚さだけの距離で達成することができ、電流経路の短縮化を図ることができる。特に搭載基板の厚さは、200μm程度の厚さが好適であるが、80μm程度の厚さのものも製造可能であり、この搭載基板に導体、電極の厚さを30μmの厚さで形成することが可能なことから、コンデンサ素子をリードフレームに取付けて樹脂モールドした場合に比べ、コンデンサ素子の陰極部から搭載基板の陰極電極までの距離を極めて短くすることができる。このため、固体電解コンデンサのESLの低減を図ることができ、過渡応答時にCPU等に速やかに電力を供給することができる。   In such a mounting board, the distance from the anode part and the cathode part of the capacitor element to the anode electrode part and the cathode electrode part of the mounting board, which is the outlet of current, can be achieved by a distance that is only the thickness of the mounting board. Thus, the current path can be shortened. In particular, the thickness of the mounting substrate is preferably about 200 μm, but a thickness of about 80 μm can be manufactured, and the conductor and electrode are formed on the mounting substrate with a thickness of 30 μm. Therefore, the distance from the cathode portion of the capacitor element to the cathode electrode of the mounting substrate can be made extremely shorter than when the capacitor element is attached to the lead frame and resin molded. For this reason, the ESL of the solid electrolytic capacitor can be reduced, and power can be quickly supplied to the CPU or the like during a transient response.

上記のようなコンデンサ素子1を搭載基板2に搭載し、コンデンサ素子1の陽極部15と陰極部14を搭載基板の陽極導体24、陰極導体24とそれぞれ導電性接着剤等で接合して固体電解コンデンサとする。このように導電性接着剤等によって、コンデンサ素子と搭載基板を接合すると、コンデンサ素子の陰極部へ加わる機械的ストレスを最小限のものとすることができる。陰極部14の上に引き出し用の電極を形成する方法等は、陰極部14、ひいては固体電解質層13、誘電体酸化皮膜12へ機械的ストレスが加わってしまう。   The capacitor element 1 as described above is mounted on the mounting substrate 2, and the anode portion 15 and the cathode portion 14 of the capacitor element 1 are joined to the anode conductor 24 and the cathode conductor 24 of the mounting substrate by a conductive adhesive or the like, respectively. Use a capacitor. In this way, when the capacitor element and the mounting substrate are joined by the conductive adhesive or the like, the mechanical stress applied to the cathode portion of the capacitor element can be minimized. In the method of forming an extraction electrode on the cathode portion 14, mechanical stress is applied to the cathode portion 14, and consequently the solid electrolyte layer 13, and the dielectric oxide film 12.

また、固体電解コンデンサの誘電体皮膜層、固体電解質層、陰極部は、搭載基板によって保護されており、製造時の機械的ストレスのみならず、実装時に固体電解コンデンサに応力が加わった場合でも、その応力を緩和し、コンデンサ素子内部に加わる応力を緩和することにもなる。   In addition, the dielectric film layer, solid electrolyte layer, and cathode part of the solid electrolytic capacitor are protected by the mounting substrate, so that not only mechanical stress during manufacturing, but also when stress is applied to the solid electrolytic capacitor during mounting, The stress is relieved and the stress applied to the inside of the capacitor element is also relieved.

また、必要に応じて、コンデンサ素子をモールド樹脂でモールドすることも可能である。   In addition, the capacitor element can be molded with a mold resin as necessary.

前述したように、コンデンサ素子は100μm程度の厚さであり、搭載基板は、両面の電極、導体層の厚さを含めて140μm程度の厚さであるために、最少で240μm程度の厚さの固体電解コンデンサを得ることができる。   As described above, the capacitor element has a thickness of about 100 μm, and the mounting board has a thickness of about 140 μm including the thickness of the electrodes on both sides and the conductor layer. A solid electrolytic capacitor can be obtained.

C 固体電解コンデンサ
1 コンデンサ素子
11 アルミニウム材
12 酸化皮膜層
13 固体電解質層
14 陰極部
15 陽極部
2 搭載基板
21 絶縁基材
22 陽極電極
23 陰極電極
24 陽極導体
25 陰極導体
C Solid Electrolytic Capacitor 1 Capacitor Element 11 Aluminum Material 12 Oxide Film Layer 13 Solid Electrolyte Layer 14 Cathode Part 15 Anode Part 2 Mounting Substrate 21 Insulating Base Material 22 Anode Electrode 23 Cathode Electrode 24 Anode Conductor 25 Cathode Conductor

Claims (1)

弁作用金属からなる陽極体の中央に形成した凹部の内面に誘電体酸化皮膜層、固体電解質層、陰極部が順次形成され、該凹部の周囲の陽極体を陽極部としたコンデンサ素子と、
前記コンデンサ素子を搭載する面と配線基板に面する実装面とを備え、コンデンサ素子を搭載する面には、前記コンデンサ素子の陽極部、陰極部とそれぞれ対応する導体が形成され、配線基板に面する実装面には、陰極電極とその陰極電極の周囲に陽極電極が形成されるとともに、前記導体が内部を貫通して陽極電極および陰極電極とそれぞれ電気的に接続された搭載基板と、
からなる固体電解コンデンサ。
A dielectric oxide film layer, a solid electrolyte layer, and a cathode portion are sequentially formed on the inner surface of the recess formed in the center of the anode body made of a valve metal, and a capacitor element having the anode body around the recess as an anode portion;
A surface on which the capacitor element is mounted and a mounting surface facing the wiring board are provided. Conductors corresponding to the anode part and the cathode part of the capacitor element are formed on the surface on which the capacitor element is mounted. The mounting surface is formed with a cathode electrode and an anode electrode around the cathode electrode, and the conductor penetrates through the inside and is electrically connected to the anode electrode and the cathode electrode, respectively,
Solid electrolytic capacitor consisting of
JP2009088320A 2009-03-31 2009-03-31 Solid electrolytic capacitor Expired - Fee Related JP5376134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088320A JP5376134B2 (en) 2009-03-31 2009-03-31 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088320A JP5376134B2 (en) 2009-03-31 2009-03-31 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2010239091A JP2010239091A (en) 2010-10-21
JP5376134B2 true JP5376134B2 (en) 2013-12-25

Family

ID=43093127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088320A Expired - Fee Related JP5376134B2 (en) 2009-03-31 2009-03-31 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5376134B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874280B2 (en) * 2011-09-30 2016-03-02 日本ケミコン株式会社 Manufacturing method of solid electrolytic capacitor
JP6492424B2 (en) * 2014-06-09 2019-04-03 日本ケミコン株式会社 Manufacturing method of solid electrolytic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234823A (en) * 1992-02-19 1993-09-10 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JP4133801B2 (en) * 2003-12-26 2008-08-13 Tdk株式会社 Capacitor
JP4854945B2 (en) * 2004-09-22 2012-01-18 Tdk株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2010239091A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
TW492022B (en) Capacitor
US7460359B2 (en) Thin multi-terminal capacitor and method of manufacturing the same
US7057882B2 (en) Chip solid electrolytic capacitor
EP3226270B1 (en) Solid electrolytic capacitor
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20110088928A1 (en) Heat dissipating substrate
JP2009246236A (en) Solid electrolytic capacitor, and method for manufacturing the same
US20110292626A1 (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP5376134B2 (en) Solid electrolytic capacitor
JP5376135B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005158903A (en) Solid electrolytic capacitor
JP2009295634A (en) Solid electrolytic capacitor
JP2009054681A (en) Surface-mounted capacitor, and manufacturing method thereof
JP5746814B2 (en) Solid electrolytic capacitor
US8724295B2 (en) Solid electrolytic capacitor
JP5210672B2 (en) Capacitor parts
JP2011176067A (en) Solid-state electrolytic capacitor
KR102064017B1 (en) Solid electrolytic capacitor
JP2010040960A (en) Solid-state electrolytic capacitor
JP5104380B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005012084A (en) Circuit module
JP2010212600A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2010219128A (en) Solid electrolytic capacitor
JP5326032B1 (en) Solid electrolytic capacitor
JP2003272957A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees