JP5376130B2 - Separation and purification of carrier-free 177Lu capable of antibody labeling - Google Patents
Separation and purification of carrier-free 177Lu capable of antibody labeling Download PDFInfo
- Publication number
- JP5376130B2 JP5376130B2 JP2009072558A JP2009072558A JP5376130B2 JP 5376130 B2 JP5376130 B2 JP 5376130B2 JP 2009072558 A JP2009072558 A JP 2009072558A JP 2009072558 A JP2009072558 A JP 2009072558A JP 5376130 B2 JP5376130 B2 JP 5376130B2
- Authority
- JP
- Japan
- Prior art keywords
- antibody
- acid
- solution
- chelating agent
- chelator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Description
本発明は、抗体標識が可能な無担体177Luの分離精製法に関する。 The present invention relates to a method for separating and purifying carrier-free 177 Lu capable of antibody labeling.
RI(放射性同位元素)を用いた癌治療は、RI標識薬剤を体内に投与して癌細胞に特異的に集積させ、当該RIから放射される飛程の短い放射線を病巣の組織や細胞に照射することによって、目的とする病巣の組織や細胞を破壊して疾患を治療する方法であり、正常な身体組織や細胞への放射線の影響を低く抑えることができ、副作用が少ないことから、患者のQOL(生活の質)の向上が期待できる方法である。しかしながら、RI標識薬剤の癌集積性の向上及び非ターゲット臓器への集積の低減など、解決すべき課題が多く実用化は未だ限られている。 Cancer treatment using RI (radioisotope) is performed by administering a RI-labeled drug into the body and accumulating it specifically in cancer cells, and irradiating the lesion tissue or cells with a short range of radiation emitted from the RI. This is a method of treating the disease by destroying the tissue and cells of the target lesion, and can reduce the effects of radiation on normal body tissues and cells, and there are few side effects. This is a method that can be expected to improve QOL (quality of life). However, there are many problems to be solved such as improvement in cancer accumulation of RI-labeled drugs and reduction in accumulation in non-target organs, and practical application is still limited.
現在国内で使用されている癌治療用RIは、131I、89Sr及び90Yの3種であり、すべてβ線放出RIである。これらβ線の組織中の飛程は、数〜数十ミリメートル程度であり、小〜中サイズの腫瘍の照射に適当な長さである。また、癌治療に有用なβ線を放出するRIは、数時間〜数日の範囲の適当な半減期を持つものが多く、さらに、多様な化学的性質を有する。加えて、体外からの画像化に適したガンマ線を放出する場合には、治療レベルの高線量での投与に先立ち、低い線量で生体内分布を確認することができるので、最適な放射性薬剤の投与量の決定に寄与できる。さらに、モニタリングすることにより癌の治療状況を的確に把握することができると共に、各組織の吸収線量の評価を治療と同時に行うことができる。 Currently, there are three types of RI for cancer treatment currently used in Japan, 131 I, 89 Sr and 90 Y, all of which are β-ray emitting RIs. The range of these β-rays in the tissue is about several to several tens of millimeters, and is an appropriate length for irradiation of small to medium-sized tumors. In addition, many RIs that emit β rays useful for cancer treatment have an appropriate half-life in the range of several hours to several days, and have various chemical properties. In addition, when gamma rays suitable for imaging from outside the body are emitted, the biodistribution can be confirmed at a low dose prior to the administration at a high dose at the therapeutic level. Can contribute to the determination of quantity. Furthermore, by monitoring, it is possible to accurately grasp the treatment status of cancer and to evaluate the absorbed dose of each tissue simultaneously with the treatment.
RIを癌治療に利用するには、その物理的性質(半減期、β線エネルギー)に加え、RIの比放射能(安定同位体に対する放射性同位体の割合)も重要な要素の一つである。すなわち、治療効果を高めるためには、より多くのβ線エネルギーをターゲットの癌組織に照射することが必要であるため、比放射能が高いRIが有利である。177Luは、半減期が6.73日、β線の最大エネルギーが498keV、組織中のβ線の飛程が1.8mmと短く、画像化に適した113keVと208keVのγ線を放出する。さらに、ルテチウムは、臨床応用が認められたイットリウム(90Y)と同族元素であり、化学的特性が類似しているため、90Y標識薬剤の開発で蓄積された知見を有効に活用することができる。 In order to use RI for cancer treatment, in addition to its physical properties (half-life, β-ray energy), the specific activity of RI (ratio of radioisotope to stable isotope) is one of the important factors. . That is, in order to enhance the therapeutic effect, it is necessary to irradiate the target cancer tissue with more β-ray energy, and therefore RI having a high specific activity is advantageous. 177 Lu emits 113 keV and 208 keV γ-rays suitable for imaging, with a half-life of 6.73 days, the maximum energy of β-rays is 498 keV, and the range of β-rays in tissues is as short as 1.8 mm. Moreover, lutetium, yttrium clinical application was observed (90 Y) and a related elements, for chemical properties are similar, it is possible to effectively utilize the accumulated knowledge in the development of 90 Y-labeled agent it can.
癌治療用の放射性同位元素として有望視されている177Luの製造方法には、原子炉を用いた直接法と間接法の2種類がある。 There are two types of methods for producing 177 Lu, which are considered promising as radioisotopes for cancer treatment, a direct method using a nuclear reactor and an indirect method.
直接法は、176Lu(n,γ)177Lu反応により177Luを製造する方法であり、ターゲットとしてLuを用いる。直接法により製造される177Luには安定同位元素であるLu担体が含まれる。 The direct method is a method of producing 177 Lu by a 176 Lu (n, γ) 177 Lu reaction, and Lu is used as a target. 177 Lu produced by the direct method includes a Lu carrier that is a stable isotope.
間接法は、176Yb(n,γ)177Yb(半減期1.91時間)→177Lu反応により製造する方法であり、ターゲットとしてYbを用いる。間接法により製造される177Luには安定同位元素であるLu担体が含まれない。すなわち、無担体177Luを得ることができる。 The indirect method is a method of manufacturing by 176 Yb (n, γ) 177 Yb (half-life 1.91 hours) → 177 Lu reaction, and uses Yb as a target. 177 Lu produced by the indirect method does not contain Lu carrier, which is a stable isotope. That is, carrier-free 177 Lu can be obtained.
177Luを癌治療に用いる方法として、癌細胞に発現する抗原に特異的に結合可能な抗体に177Luを標識した177Lu−抗体を作製し、体内に投与して癌治療を行なう方法がある。この治療法の場合、安定同位元素であるLu担体を含んでいると、177Lu−抗体の標識率が低くなるとともに、体内においては、抗原に177Lu−抗体以外に安定Lu−抗体が結合して、177Luの治療効果を低下させる。そこで、このような癌治療法には間接法で製造した無担体177Luを用いる必要がある。 The 177 Lu as a method for use in cancer therapy, the 177 Lu specifically to antibodies capable of binding to antigens expressed in cancer cells to produce a labeled 177 Lu-antibody, a method of performing cancer therapy is administered to the body . In the case of this therapeutic method, if a Lu carrier that is a stable isotope is contained, the labeling rate of the 177 Lu-antibody is lowered, and in the body, the stable Lu-antibody is bound to the antigen in addition to the 177 Lu-antibody. Reducing the therapeutic effect of 177 Lu. Therefore, it is necessary to use carrier-free 177 Lu produced by the indirect method for such cancer therapy.
癌治療に用いる177Lu−抗体は、無担体177Luと、1,4,7,10-tetraazacyclododecan-N,N’,N’’,N’’’-tetraacetic acid(DOTA)を抗体に結合させたDOTA−抗体とを反応させることによって得ることができる。 177 Lu-antibodies used in cancer therapy, and no carrier 177 Lu, 1,4,7,10-tetraazacyclododecan-N , N ', N'',N''' - tetraacetic acid and (DOTA) is bound to the antibody It can be obtained by reacting with DOTA-antibody.
間接法で製造した無担体177Luの製造、分離・精製法は橋本らの"Production of No-carrier-added 177Lu via the 176Lu(n, γ)177Yb→177Lu process", K. Hashimoto, H. Matsuoka, S. Uchida, Journal of Radioanalytical and Nuclear Chemistry, Vol. 255, No. 3 (2003)575-579に報告されている。 The production, separation and purification method of carrier-free 177 Lu produced by the indirect method is described in “Production of No-carrier-added 177 Lu via the 176 Lu (n, γ) 177 Yb → 177 Lu process”, K. Hashimoto , H. Matsuoka, S. Uchida, Journal of Radioanalytical and Nuclear Chemistry, Vol. 255, No. 3 (2003) 575-579.
橋本らの論文に記載されている分離・精製方法は逆相シリカゲルカラムを用いた方法であり、その手順は以下の通りである。 The separation and purification method described in the paper by Hashimoto et al. Is a method using a reverse phase silica gel column, and the procedure is as follows.
176Yb2O3を原子炉で照射し、照射済み176Yb2O3を得る。次いで、照射済み176Yb2O3を塩酸と過酸化水素水で溶解して蒸発乾固の後0.01M HCl溶液とする。この溶液をHPLC(逆相シリカゲルカラム:Waters Resolve C18 Radial-Pack 8mmφ×300mm)にチャージし、溶離液として0.25M 2−ヒドロキシイソ酪酸(2−HIBA)/0.1M 1−オクタンスルホン酸ナトリウム(1−OS)を用い、流速2ml/minで、177LuとターゲットであるYbとを分離する。分離したLuフラクションを陽イオン交換カラム(Bio Rad社製AG50WX,8mmφ×20mm)に通してLuを樹脂に吸着させておき、0.1M HClを流して2−HIBA/1−OSを完全に除去した後、6M HClで177Luを溶離し、蒸発乾固を行なって標識実験用とする。 Irradiation with 176 Yb 2 O 3 is performed in a nuclear reactor to obtain irradiated 176 Yb 2 O 3 . Next, the irradiated 176 Yb 2 O 3 is dissolved in hydrochloric acid and hydrogen peroxide solution, evaporated to dryness, and made into a 0.01M HCl solution. This solution was charged into HPLC (reverse phase silica gel column: Waters Resolve C 18 Radial-Pack 8 mmφ × 300 mm), and 0.25M 2-hydroxyisobutyric acid (2-HIBA) /0.1M 1-octanesulfonic acid was used as an eluent. Using sodium (1-OS), 177 Lu and target Yb are separated at a flow rate of 2 ml / min. The separated Lu fraction was passed through a cation exchange column (BioRad AG50WX, 8 mmφ × 20 mm), and Lu was adsorbed to the resin, and 0.1 M HCl was flowed to completely remove 2-HIBA / 1-OS. Then, 177 Lu is eluted with 6M HCl and evaporated to dryness for labeling experiments.
しかし、橋本らの従来方法では、分離精製後の177LuにCa、Fe、Znが大量に含まれており、DOTA−抗体とCa、Fe、Znが優先的に結合してCa−抗体、Fe−抗体、Zn−抗体を作り、もはや177LuはDOTA−抗体と結合できなくなってしまい、177Lu−DOTA−抗体の標識ができない、という問題があった。 However, in the conventional method of Hashimoto et al., 177 Lu after separation and purification contains a large amount of Ca, Fe, Zn, and DOTA-antibody and Ca, Fe, Zn are preferentially bound to form Ca-antibody, Fe - antibody, to create a Zn- antibody, no longer 177 Lu is will not be able to bind to the DOTA- antibody, can not be a sign of 177 Lu-DOTA- antibody, there is a problem in that.
本発明の目的は、Ca、Fe、Znを含まない無担体177Luを分離・精製して、標識率の高い177Lu抗体を提供することにある。 An object of the present invention is to provide a 177 Lu antibody having a high labeling rate by separating and purifying carrier-free 177 Lu free of Ca, Fe, and Zn.
本発明者らは鋭意研究の結果、177Luと抗体との結合を阻害するCa、Fe、Znの混入の原因が主に溶離液中に含まれる不純物であることを突き止め、溶離液をあらかじめ精製すること及び分離工程の最後に不純物を除去する工程を加えることで、上記課題を解決できることを知見した。 As a result of diligent research, the present inventors have determined that the cause of contamination of Ca, Fe, and Zn that inhibits the binding of 177 Lu to the antibody is mainly impurities contained in the eluent, and purifies the eluent in advance. It has been found that the above problem can be solved by adding a step of removing impurities at the end of the separation step.
すなわち、本発明によれば、176Yb2O3を原子炉で照射し、照射済み176Yb2O3を得る工程と、照射済み176Yb2O3を塩酸に溶解したHCl溶液をHPLCに通して177LuとターゲットであるYbとを分離する工程と、分離したLuフラクションを陽イオン交換カラムに通して177Luを分離する工程と、を含む177Luの分離・精製方法であって、HPLCを用いる分離工程において、あらかじめ陽イオン交換及びキレート交換により精製した溶離液を使用すること、及び陽イオン交換を用いる177Luの分離工程の後にさらに177Luを含む溶液を陰イオン交換カラムに通してFeを除去する工程を含むこと、を特徴とする分離・精製方法が提供される。 That is, according to the present invention, 176 Yb and 2 O 3 was irradiated in a nuclear reactor, obtaining a irradiated 176 Yb 2 O 3, the irradiated 176 Yb 2 O 3 through the HCl solution in hydrochloric acid HPLC A method for separating and purifying 177 Lu, comprising: separating 177 Lu from target Yb; and separating the 177 Lu by passing the separated Lu fraction through a cation exchange column. In the separation step to be used, an eluent purified in advance by cation exchange and chelate exchange is used, and after the separation step of 177 Lu using cation exchange, a solution containing 177 Lu is further passed through an anion exchange column to form Fe. A separation / purification method characterized by comprising a step of removing
HPLCとしては、充填剤としてシリカゲルを用いた逆相シリカゲルカラムを用いることができる。 As HPLC, a reverse phase silica gel column using silica gel as a filler can be used.
HPLCで用いる溶離液としては、従来法と同様に0.25M 2−ヒドロキシイソ酪酸(2−HIBA)/0.1M 1−オクタンスルホン酸ナトリウム(1−OS)を用いることができる。ただし、本発明においては、溶離液をHPLCカラムに通す前に、あらかじめ陽イオン交換及びキレート交換によって精製しておくことが必要である。溶離液の精製に使用することができる陽イオン交換樹脂としてはスルホン酸型イオン交換樹脂が好ましく、具体的にはAG560Wx8(Bio Rad社製)を挙げることができる。キレート樹脂としてはイミノ二酢酸型キレート樹脂が好ましく、具体的にはChelex−100(Bio Rad社製)を挙げることができる。 As an eluent used in HPLC, 0.25M 2-hydroxyisobutyric acid (2-HIBA) /0.1M sodium 1-octanesulfonate (1-OS) can be used as in the conventional method. However, in the present invention, it is necessary to purify the eluent by cation exchange and chelate exchange before passing through the HPLC column. The cation exchange resin that can be used for purification of the eluent is preferably a sulfonic acid type ion exchange resin, and specifically includes AG560Wx8 (manufactured by Bio Rad). As the chelate resin, an iminodiacetic acid type chelate resin is preferable, and specifically, Chelex-100 (manufactured by Bio Rad) can be mentioned.
Luフラクションから177Luを分離する工程において使用することができる陽イオン交換カラムに充填する陽イオン交換樹脂としては、スルホン酸型イオン交換樹脂が好ましく、具体的にはAG560Wx8(Bio Rad社製)を挙げることができる。 As the cation exchange resin packed in the cation exchange column that can be used in the step of separating 177 Lu from the Lu fraction, a sulfonic acid type ion exchange resin is preferable. Specifically, AG560Wx8 (manufactured by Bio Rad) is used. Can be mentioned.
分離後の177Luを含む溶液からFeを除去する工程において使用することができる陰イオン交換カラムに充填することができる陰イオン交換樹脂としては、トリメチルアンモニウム型、具体的にはAG1x8(Bio Rad社製)、を挙げることができる。また、この樹脂ではFeだけでなく、Zn、Ga、Mo等、いろいろな元素を除去することができる。 An anion exchange resin that can be packed in an anion exchange column that can be used in the step of removing Fe from a solution containing 177 Lu after separation includes a trimethylammonium type, specifically AG1 × 8 (Bio Rad). Manufactured). Further, this resin can remove not only Fe but also various elements such as Zn, Ga, and Mo.
また、本発明によれば、上述の方法で分離・精製された177Lu最終溶液を蒸発乾固し、酢酸溶液とした後、抗体溶液を添加して反応させ、177Lu−抗体を合成する工程を含む、177Lu−抗体の製造方法が提供される。 In addition, according to the present invention, the 177 Lu final solution separated and purified by the above-described method is evaporated to dryness to obtain an acetic acid solution, and then the antibody solution is added and reacted to synthesize a 177 Lu antibody. A method for producing a 177 Lu-antibody is provided.
177Luに抗体を結合させるためには、まずキレート剤を抗体に結合させ、次いで、キレート剤−抗体を177Luに結合させる。このとき使用することができるキレート剤としては、ポリアザポリカルボン酸誘導体及びポリアミノポリカルボン酸誘導体を好ましく用いることができる。ポリアザポリカルボン酸誘導体としては、特に1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−四酢酸(1,4,7,10-tetraazacyclododecan-N,N’,N’’,N’’’-tetraacetic acid(DOTA))、1,4,8,11−テトラアザシクロテトラデカン−N,N,N”,N”’−四酢酸(TETA)を挙げることができ、ポリアミノポリカルボン酸誘導体としては、特にジエチレントリアミン−N,N,N’,N”,N”−五酢酸(Diethylenetriamine-N,N,N',N",N"-pentaacetic acid(DTPA))、エチレンジアミン−N,N,N',N'−四酢酸(EDTA)を挙げることができる。 In order to bind the antibody to 177 Lu, the chelator is first bound to the antibody and then the chelator-antibody is bound to 177 Lu. As the chelating agent that can be used at this time, polyazapolycarboxylic acid derivatives and polyaminopolycarboxylic acid derivatives can be preferably used. As the polyazapolycarboxylic acid derivative, in particular, 1,4,7,10-tetraazacyclododecane-N, N ′, N ″, N ′ ″-tetraacetic acid (1,4,7,10-tetraazacyclododecan- N, N ′, N ″, N ′ ″-tetraacetic acid (DOTA)), 1,4,8,11-tetraazacyclotetradecane-N, N, N ″, N ″ ′-tetraacetic acid (TETA) Examples of polyaminopolycarboxylic acid derivatives include diethylenetriamine-N, N, N ′, N ″, N ″ -pentaacetic acid. (DTPA)), ethylenediamine-N, N, N ′, N′-tetraacetic acid (EDTA).
キレート剤と結合させる抗体としては、悪性リンパ腫に多く発現するCD20抗原を認識するNuB2、乳癌、肺癌の治療を目的とする抗Erb−B2抗体(trastuzumab)、悪性リンパ腫の治療を目的とする抗CD22抗体(epratuzumab)、転移性大腸癌の治療を目的とする抗CEA抗体(cT84.66)、前立腺癌の治療を目的とする抗PMSA抗体(J591)、転移性腎細胞癌の治療を目的とする抗CA−IXG250/MN抗体(cG250)などを挙げることができる。 Examples of antibodies to be bound to the chelating agent include NuB2 that recognizes CD20 antigen that is highly expressed in malignant lymphoma, anti-Erb-B2 antibody (trastuzumab) for the treatment of breast cancer and lung cancer, and anti-CD22 for the treatment of malignant lymphoma. Antibody (epratuzumab), anti-CEA antibody (cT84.66) for the treatment of metastatic colorectal cancer, anti-PMSA antibody (J591) for the treatment of prostate cancer, for the treatment of metastatic renal cell carcinoma And anti-CA-IXG250 / MN antibody (cG250).
本発明によれば、無担体177Luの精製純度を向上させることができるので、177Lu−キレート剤−抗体の標識率を大幅に向上させることができる。177Luは半減期が6.73日と癌治療に適しており、また最大エネルギー498keVのβ線を放出するため、癌治療に有望な核種である。本発明で分離・精製した177Luを用いて、癌細胞に発現する抗原に特異的に結合する177Lu−抗体を用いた癌治療の研究の進展が期待できる。 According to the present invention, since the purification purity of the carrier-free 177 Lu can be improved, the labeling rate of 177 Lu-chelating agent-antibody can be greatly improved. 177 Lu is a promising nuclide for cancer treatment because it has a half-life of 6.73 days and is suitable for cancer treatment and emits β-rays with a maximum energy of 498 keV. Advances in research on cancer treatment using 177 Lu-antibodies that specifically bind to antigens expressed in cancer cells can be expected using 177 Lu isolated and purified in the present invention.
以下、実施例を参照しながら本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
図1に本発明の177Luの分離精製フローを示す。177Luを得るためにターゲットである176Yb2O3を原子炉で照射して、照射済み176Yb2O3を得る(3)。照射済み176Yb2O3を塩酸に溶解したHCl溶液をHPLC逆相シリカゲルカラムに通して177LuとターゲットであるYbとを分離する(4)。このとき、2−HIBAを陽イオン交換カラムに通して不純物を除去し(1)、1−OSをキレート交換カラムに通して不純物を除去し(2)、両者を当量混合して溶離液を調製し、HPLCカラムに導入する。分離したLuフラクションを陽イオン交換カラムに通して177Luを吸着させ、HPLCの溶離液を除去して、177Luを分離する(5)。分離した177Luを含む溶液を陰イオン交換カラムに通して、Feを除去する(6)。精製された177Luを含む溶液を得る(7)。 FIG. 1 shows the separation and purification flow of 177 Lu of the present invention. In order to obtain 177 Lu, 176 Yb 2 O 3 as a target is irradiated in a nuclear reactor to obtain irradiated 176 Yb 2 O 3 (3). An HCl solution in which irradiated 176 Yb 2 O 3 is dissolved in hydrochloric acid is passed through an HPLC reverse phase silica gel column to separate 177 Lu and Yb as a target (4). At this time, 2-HIBA is passed through a cation exchange column to remove impurities (1), 1-OS is passed through a chelate exchange column to remove impurities (2), and both are mixed to prepare an eluent. And introduced into the HPLC column. The separated Lu fraction is passed through a cation exchange column to adsorb 177 Lu, and the HPLC eluent is removed to separate 177 Lu (5). The separated solution containing 177 Lu is passed through an anion exchange column to remove Fe (6). A solution containing purified 177 Lu is obtained (7).
(1)溶離液の調製
陽イオン交換樹脂AG50Wx8(Bio Rad製)を15mmφ×113mmのカラムに詰めて陽イオン交換カラムを調製した。この陽イオン交換カラムに、0.5M 2−HIBA(2−ヒドロキシイソ酪酸)溶液を流し、2−HIBAの精製を行なった。
(1) Preparation of Eluent Cation exchange resin AG50Wx8 (manufactured by Bio Rad) was packed in a 15 mmφ × 113 mm column to prepare a cation exchange column. A 0.5M 2-HIBA (2-hydroxyisobutyric acid) solution was passed through the cation exchange column to purify 2-HIBA.
キレート樹脂Chelex−100を15mmφ×113mmのカラムに詰めてキレート交換カラムを調製した。このキレート交換カラムに、0.2M 1−OS(1−オクタンスルホン酸ナトリウム)溶液を流し、1−OSの精製を行なった。 A chelate exchange column was prepared by packing chelate resin Chelex-100 in a 15 mmφ × 113 mm column. A 0.2M 1-OS (sodium 1-octanesulfonate) solution was passed through the chelate exchange column to purify 1-OS.
0.5M 2−HIBA溶液と0.2M 1−OS溶液を当量混合して0.25M 2−HIBA/0.1M 1−OS溶液を調製した。
(2)無担体177Luの製造
176Yb2O3を原子炉(日本原子力研究開発機構のJRR3HR−2孔(1×1014n.cm-2.s-1.))を用いて6時間照射した。
An equivalent amount of 0.5M 2-HIBA solution and 0.2M 1-OS solution was mixed to prepare a 0.25M 2-HIBA / 0.1M 1-OS solution.
(2) Production of carrier-free 177 Lu
176 Yb 2 O 3 was irradiated for 6 hours using a nuclear reactor (JRR3HR-2 hole (1 × 10 14 n.cm −2.s-1 .) Of Japan Atomic Energy Agency).
照射済み176Yb2O3を6M塩酸3mLと30%過酸化水素水2mLで溶解し、蒸発乾固させて0.01M HCl溶液としてHPLC(カラム:Waters Resolve C18 Radial-Pack 8mmφ×300mm)に仕込んだ。あらかじめ精製した溶離液(0.25M 2−HIBA/0.1M 1−OS溶液)をHPLCカラムに通して、ターゲットであるYbから177Luを分離した。 Irradiated 176 Yb 2 O 3 is dissolved in 3 mL of 6M hydrochloric acid and 2 mL of 30% hydrogen peroxide solution, evaporated to dryness, and subjected to HPLC as a 0.01M HCl solution (column: Waters Resolve C 18 Radial-Pack 8 mmφ × 300 mm). Prepared. A pre-purified eluent (0.25 M 2-HIBA / 0.1 M 1-OS solution) was passed through an HPLC column to separate 177 Lu from the target Yb.
分離した177Luフラクションを陽イオン交換カラム(Bio Rad製 AG50WX8、8mmφ×20mm)に通してLuを樹脂に吸着させておき、0.1M HClを流して2−HIBA/1−OSを完全に除去した。次いで、陽イオン交換カラムに6M HClを流して177Luを溶離した。 The separated 177 Lu fraction was passed through a cation exchange column (Bio Rad AG50WX8, 8 mmφ × 20 mm), and Lu was adsorbed on the resin, and 0.1 M HCl was flowed to completely remove 2-HIBA / 1-OS. did. The cation exchange column was then flushed with 6M HCl to elute 177 Lu.
最後に、溶離した177Luを含む溶出液を陰イオン交換カラム(Bio Rad製の陰イオン交換樹脂AG1x8を8mmφ×20mmのカラムに詰めた)に通して、177Lu最終溶液を得た。
(3)177Lu最終溶液中の不純物含有量
比較のため、対照1(HPLC溶離液の精製を行わず、HPLC溶出液の陰イオン交換による精製も行わなかった。従来方法と同じ)及び対照2(HPLC溶離液の精製は行ったが、HPLC溶出液の陰イオン交換による精製は行わなかった)を調製した。
(4)抗体標識
177Lu最終溶液を蒸発乾固し、0.1M酢酸35μlを加えて溶解させた。これに3M酢酸緩衝液(pH=6)を7μl及び5mg/ml DOTA−NuB2抗体溶液を26μl加えて、40℃で1.5時間反応させて、177Lu−DOTA−NuB2を合成した。なお、DOTA−NuB2抗体溶液の調製は以下のように行った。
Finally, the eluate containing the eluted 177 Lu was passed through an anion exchange column (anion exchange resin AG1x8 manufactured by Bio Rad was packed in an 8 mmφ × 20 mm column) to obtain a 177 Lu final solution.
(3) Impurity content in 177 Lu final solution For comparison, Control 1 (HPLC eluate was not purified and HPLC eluate was not purified by anion exchange. Same as conventional method) and Control 2 (The HPLC eluent was purified, but the HPLC eluent was not purified by anion exchange).
(4) Antibody labeling
The 177 Lu final solution was evaporated to dryness and dissolved by adding 35 μl of 0.1 M acetic acid. To this, 7 μl of 3M acetate buffer (pH = 6) and 26 μl of 5 mg / ml DOTA-NuB2 antibody solution were added and reacted at 40 ° C. for 1.5 hours to synthesize 177 Lu-DOTA-NuB2. The DOTA-NuB2 antibody solution was prepared as follows.
500μLのホウ酸緩衝液(0.1M,pH=8)中のNuB2に、5μL ジメチルスルホキシド(DMSO)中の1,4,7,10−テトラアザシクロドデカン−N,N’,N”,N’”−四酢酸モノ(N−ヒドロキシサクシンイミジルエステル)(1,4,7,10-tetraazacyclodocecane-N,N’,N’’,N’’’-tetracetic acid mono (N-hydroxysuccinimidyl ester))(mDOTA)を加え、15時間室温で反応させた後、0.5M酢酸緩衝液(pH=6)を通したゲルろ過カラムで精製した。 NuB2 in 500 μL borate buffer (0.1 M, pH = 8) was added to 1,4,7,10-tetraazacyclododecane-N, N ′, N ″, N in 5 μL dimethyl sulfoxide (DMSO). '"-Tetraacetic acid mono (N-hydroxysuccinimidyl ester) (1,4,7,10-tetraazacyclodocecane-N, N', N '', N '' '-tetracetic acid mono (N-hydroxysuccinimidyl ester)) mDOTA) was added, and the mixture was reacted at room temperature for 15 hours, and then purified by a gel filtration column through 0.5 M acetate buffer (pH = 6).
次に、合成された177Lu−DOTA−NuB2を含む溶液に100mMのEDTA(ethylenediaminetetraacetic acid)を添加して、未反応の177Luを177Lu−EDTAとした。 Next, 100 mM of EDTA (ethylenediaminetetraacetic acid) was added to the synthesized solution containing 177 Lu-DOTA-NuB2, and unreacted 177 Lu was changed to 177 Lu-EDTA.
標識率は薄層クロマトグラフィ(TLC)で求めた。具体的には、合成した177Lu−DOTA−NuB2を含む溶液をTLCペーパー(Gelman Science Inc.のITLC SG)にスポットして生理食塩水で展開し177Lu−DOTA−NuB2と177Lu−EDTAを分離して、それぞれの放射能を測定した。Ge検出器で177Luの208keVのγ線を測定することにより放射能量を求めた。なお、本実験は抗体標識のため、20MBq程度の放射能を使用しているが、動物の治療には100〜200MBqが必要となる。 The labeling rate was determined by thin layer chromatography (TLC). Specifically, a solution containing the synthesized 177 Lu-DOTA-NuB2 was spotted on a TLC paper (ITLC SG of Gelman Science Inc.) and developed with physiological saline to obtain 177 Lu-DOTA-NuB2 and 177 Lu-EDTA. Separately, each radioactivity was measured. The amount of radioactivity was determined by measuring 177 Lu 208 keV gamma rays with a Ge detector. In this experiment, radioactivity of about 20 MBq is used for antibody labeling, but 100-200 MBq is required for animal treatment.
標識率は下記式で求めた。 The labeling rate was determined by the following formula.
標識率(%)=177Lu -DOTA-NuB2の放射能量/標識に使用した177Luの放射能量×100
なお、「標識に使用した177Luの放射能量」は177Lu−DOTA−NuB2と177Lu−EDTAに別れ、生成した177Lu−DOTA−NuB2の割合が標識率となる。
Labeling rate (%) = 177 Lu -DOTA-NuB2 radioactivity / 177 Lu radioactivity used for labeling x 100
The “radioactivity of 177 Lu used for labeling” is divided into 177 Lu-DOTA-NuB2 and 177 Lu-EDTA, and the ratio of the generated 177 Lu-DOTA-NuB2 is the labeling rate.
本発明による実施例並びに対照1及び対照2について、Ca、Fe、Znの残留量測定結果及び標識率を表1に示す。 Table 1 shows the measurement results of the residual amounts of Ca, Fe, and Zn and the labeling rates of the examples according to the present invention and the controls 1 and 2.
表1より、本発明の分離・精製方法を行った実施例では従来法と比較してCa、Fe、Znの残留量が大幅に減少し、標識率が大幅に向上したことがわかる。 From Table 1, it can be seen that in the examples in which the separation / purification method of the present invention was performed, the residual amounts of Ca, Fe, and Zn were greatly reduced and the labeling rate was greatly improved as compared with the conventional method.
Claims (6)
照射済み176Yb2O3を塩酸に溶解したHCl溶液をHPLCに通して177LuとターゲットであるYbとを分離する工程と、
分離したLuフラクションを陽イオン交換カラムに通して177Luを分離する工程と、を含む177Luの分離・精製方法であって、
HPLCを用いる分離工程において、あらかじめ陽イオン交換及びキレート交換により精製した溶離液を使用すること、及び
陽イオン交換を用いる177Luの分離工程の後にさらに177Luを含む溶液を陰イオン交換カラムに通してFeを除去する工程を含むこと、
を特徴とする177Luの分離・精製方法。 Irradiating 176 Yb 2 O 3 in a nuclear reactor to obtain irradiated 176 Yb 2 O 3 ;
Passing an HCl solution of irradiated 176 Yb 2 O 3 in hydrochloric acid through HPLC to separate 177 Lu and target Yb;
Separating the 177 Lu by passing the separated Lu fraction through a cation exchange column, and a method for separating and purifying 177 Lu,
In the separation step using HPLC, an eluent purified in advance by cation exchange and chelate exchange is used . After the separation step of 177 Lu using cation exchange, a solution containing 177 Lu is further passed through an anion exchange column. Including a step of removing Fe
A method for separating and purifying 177 Lu,
前記177Lu−キレート剤−抗体は、得られた当該キレート剤−抗体溶液を177Lu酸溶液に加えて反応させることによって得られる
ことを特徴とする請求項2に記載の177Lu−キレート剤−抗体の製造方法。 The chelator-antibody solution is obtained by reacting the chelator with the antibody in borate buffer and then purifying with a gel filtration column through acetate buffer,
The 177 Lu-chelator - antibody obtained the chelator - 177 Lu-chelating agent according to claim 2, characterized in that it is obtained by reacting the antibody solution was added to the 177 Lu acid solution - Antibody production method.
ポリアミノポリカルボン酸誘導体は、ジエチレントリアミン−N,N,N’,N’’,N’’−五酢酸((DTPA)及びエチレンジアミン−N,N,N’,N’−四酢酸(EDTA)から選択される、請求項4に記載の製造方法。 Polyazapolycarboxylic acid derivatives are 1,4,7,10-tetraazacyclododecane-N, N ′, N ″, N ′ ″-tetraacetic acid (DOTA) and 1,4,8,11-tetraaza Selected from cyclotetradecane-N, N, N ″, N ′ ″-tetraacetic acid (TETA);
The polyaminopolycarboxylic acid derivative is selected from diethylenetriamine-N, N, N ′, N ″, N ″ -pentaacetic acid ((DTPA) and ethylenediamine-N, N, N ′, N′-tetraacetic acid (EDTA) The manufacturing method according to claim 4.
請求項2〜5のいずれか1項に記載の177Lu−キレート剤−抗体の製造方法。 The antibody is selected from NuB2, Erb-B2, CD22, CEA, PMSA, CA-IXG250 / MN;
The method for producing a 177 Lu-chelating agent-antibody according to any one of claims 2 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009072558A JP5376130B2 (en) | 2009-03-24 | 2009-03-24 | Separation and purification of carrier-free 177Lu capable of antibody labeling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009072558A JP5376130B2 (en) | 2009-03-24 | 2009-03-24 | Separation and purification of carrier-free 177Lu capable of antibody labeling |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010223827A JP2010223827A (en) | 2010-10-07 |
JP5376130B2 true JP5376130B2 (en) | 2013-12-25 |
Family
ID=43041165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009072558A Expired - Fee Related JP5376130B2 (en) | 2009-03-24 | 2009-03-24 | Separation and purification of carrier-free 177Lu capable of antibody labeling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5376130B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2361318A4 (en) | 2008-11-06 | 2015-02-18 | Univ Missouri | Separation method for carrier-free radiolanthanides |
DE102011051868B4 (en) * | 2011-07-15 | 2013-02-21 | ITM Isotopen Technologien München AG | Process for the preparation of carrier-free high-purity 177Lu compounds and carrier-free 177Lu compounds |
KR102266273B1 (en) * | 2020-12-24 | 2021-06-17 | 한국원자력연구원 | Method of producing and refining carrier-free Lutetium-177 using chromatography |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2117775A1 (en) * | 1992-04-13 | 1993-10-28 | Roberta C. Cheng | Process for preparing macrocyclic chelating agents and formation of chelates and conjugates thereof |
US5749042A (en) * | 1997-01-28 | 1998-05-05 | Battelle Memorial Institute | Bismuth generator method |
ITMI20011518A1 (en) * | 2001-07-17 | 2003-01-17 | Bracco Imaging Spa | MULTIDENTATED NITROGEN BINDERS CAPABLE OF COMPLEXING METAL IONS AND THEIR USE IN DIAGNOSTICS AND THERAPY |
US6716353B1 (en) * | 2002-10-30 | 2004-04-06 | Ut-Battelle, Llc | Method for preparing high specific activity 177Lu |
CA2747575A1 (en) * | 2008-12-22 | 2010-07-01 | Keith Graham | A method for synthesis of a radionuclide-labeled compound using an exchange resin |
-
2009
- 2009-03-24 JP JP2009072558A patent/JP5376130B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010223827A (en) | 2010-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109384806B (en) | A [ 2 ]18F]Novel preparation method of FBPA (FBPA) | |
RU2260217C2 (en) | Method for production of the actinium-225 and its daughter elements | |
JP2016029114A (en) | Alpha release complex | |
Bahrami-Samani et al. | Production, quality control and pharmacokinetic studies of 177Lu-EDTMP for human bone pain palliation therapy trials | |
CN111467510B (en) | Specific targeting radionuclide marker and preparation method and application thereof | |
JP2502601B2 (en) | Method for isolation and purification of radioactively coordinated rhenium drug | |
JP3959431B2 (en) | Site-specific therapy and means | |
EP2497501B1 (en) | Radionuclides for medical use | |
CA3172811A1 (en) | Chelator compositions for radiometals and methods of using same | |
Cassells et al. | Radiolabeling of human serum albumin with terbium-161 using mild conditions and evaluation of in vivo stability | |
JP5376130B2 (en) | Separation and purification of carrier-free 177Lu capable of antibody labeling | |
Van Laere et al. | Terbium radionuclides for theranostic applications in nuclear medicine: from atom to bedside | |
Nanabala et al. | Preparation of [177Lu] PSMA-617 using carrier added (CA) 177Lu for radionuclide therapy of prostate cancer | |
WO2008026051A2 (en) | 68ga-labelling of a free and macromolecule conjugated macrocyclic chelator at ambient temperature | |
Rasheed et al. | Radio-synthesis, and in-vivo skeletal localization of 177Lu-zoledronic acid as novel bone seeking therapeutic radiopharmaceutical | |
JP5604680B2 (en) | Radiolabeled drug | |
Ogawa et al. | Preparation and evaluation of 186/188 Re-labeled antibody (A7) for radioimmunotherapy with rhenium (I) tricarbonyl core as a chelate site | |
US11723992B2 (en) | Method for extraction and purification of 68GA | |
Tada et al. | Development of a neopentyl 211At‐labeled activated ester providing in vivo stable 211At‐labeled antibodies for targeted alpha therapy. | |
Finn | 13. CHEMISTRY APPLIED TO IODINE RADIONUCLIDES | |
WO2023047319A1 (en) | Radiopharmaceutical complex for imaging and/or localizing psma positive cells | |
KR102190674B1 (en) | Sodium saccharin conjugated ligand, derivatives thereof and process for the preparetion thereof | |
EP3747874B1 (en) | Sodium saccharin having conjugated ligand, derivatives thereof and process for the preparation thereof | |
Tada et al. | Resin-assisted synthesis of a neopentyl 211At-labeled activated ester possessing a triazole spacer and its application to the synthesis of in vivo stable 211At-labeled antibodies. | |
Eisenhut et al. | 131I labeled diphosphonates for the palliative treatment of bone metastases—IV. Syntheses of benzylidenediphosphonates and their organ distribution in rats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130812 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5376130 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |