JP5375419B2 - Method of melting clean steel - Google Patents
Method of melting clean steel Download PDFInfo
- Publication number
- JP5375419B2 JP5375419B2 JP2009183551A JP2009183551A JP5375419B2 JP 5375419 B2 JP5375419 B2 JP 5375419B2 JP 2009183551 A JP2009183551 A JP 2009183551A JP 2009183551 A JP2009183551 A JP 2009183551A JP 5375419 B2 JP5375419 B2 JP 5375419B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- sample
- less
- oxygen concentration
- molten steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、製鋼操業において、アークによる加熱とガスあるいは電磁力による撹拌を行うスラグ精錬を実施した後、真空脱ガス設備において介在物除去を行う清浄鋼の溶製方法に関する。 The present invention relates to a method for melting clean steel in which steel is removed by inclusion removal in a vacuum degassing facility after carrying out slag refining in which heating by an arc and stirring by gas or electromagnetic force are performed.
従来の清浄鋼の溶製方法としては、真空脱ガス処理時間を長くすることで介在物除去することが主流であった。しかしながら、真空脱ガス処理時間を延長しても鋼片中の全酸素濃度を十分に低減する事ができないことがあり、バラツキが大きかった。 As a conventional method for melting clean steel, it has been mainstream to remove inclusions by increasing the vacuum degassing time. However, even if the vacuum degassing treatment time is extended, the total oxygen concentration in the steel slab may not be sufficiently reduced, and the variation is large.
清浄鋼溶製など、真空脱ガス設備を使用する精錬方法において、溶鋼中の溶解酸素量に応じた処理時間を決定した方法として、以下の方法が開示されている。
特許文献1では、環流用Arガスにより溶鋼を真空槽内へ環流しつつ、真空槽内でAlを添加して未脱酸状態の溶鋼を脱酸し、真空槽内への環流を継続した後に処理を終えるRH脱ガス装置での精錬の際に、Al添加直前での溶鋼中の溶解酸素量Coと、上昇側浸漬管に吹き込まれる環流用Arガス量Qと、Al添加後の処理時間tに関して、(1)式を満足する範囲とすることを特徴とするRH脱ガス装置での清浄鋼の溶製方法が開示されている。
t≧20×(1-0.5Co/50)×(8/Q)0.5・・・・(1)
t:Al添加後の処理時間(min)
Co:溶解酸素量(ppm)
Q:環流量Arガス量(Nl/min/t)
In a refining method using vacuum degassing equipment such as clean steel melting, the following method is disclosed as a method for determining a processing time according to the amount of dissolved oxygen in molten steel.
In Patent Document 1, after circulating molten steel into the vacuum chamber by circulating Ar gas, Al is added in the vacuum chamber to deoxidize the undeoxidized molten steel, and after continuing the reflux into the vacuum chamber During refining in the RH degassing apparatus that finishes the treatment, the amount of dissolved oxygen Co in the molten steel immediately before the addition of Al, the amount of Ar gas Q for recirculation blown into the rising side dip pipe, and the treatment time t after the addition of Al , A method for melting clean steel in an RH degassing apparatus characterized by satisfying the expression (1) is disclosed.
t ≧ 20 × (1-0.5 Co / 50 ) × (8 / Q) 0.5 ... (1)
t: Processing time after addition of Al (min)
Co: dissolved oxygen amount (ppm)
Q: Ring flow rate Ar gas amount (Nl / min / t)
上記の特許文献1に記載の方法では、Al添加後の実際の処理時間と(1)式右辺で算出されるAl添加後処理時間との比が、1以下である場合に、製品表面欠陥指数が悪化する傾向であることが示されている。この方法では、溶解酸素量Coを測定した結果からAl添加後の処理時間tが決定されるため、溶解酸素量Coが高いときは、あらかじめ決まった処理時間を延長する必要が発生したり、処理時間延長による溶鋼温度低下トラブルが発生したりする問題があった。 In the method described in Patent Document 1, the product surface defect index is obtained when the ratio between the actual treatment time after Al addition and the post-Al addition treatment time calculated by the right side of equation (1) is 1 or less. Has been shown to tend to get worse. In this method, since the processing time t after the addition of Al is determined from the result of measuring the dissolved oxygen amount Co, when the dissolved oxygen amount Co is high, it is necessary to extend a predetermined processing time, There was a problem that the molten steel temperature drop trouble occurred due to the time extension.
また、特許文献2では、精錬過程の溶鋼から採取した判定対象となる試料および所望の精錬状態の鋼から採取した試料を、それぞれ別々に、不活性ガス雰囲気状態である抽出炉内で加熱して漸次昇温させながら、抽出炉内の炭素源と前記各試料中に含有される酸素とを反応させ、反応した酸素を酸素ピークと、所望の精錬状態の鋼材で最初に現れた酸素ピークとを比較し、鋼の精錬状態判定する方法が開示されている。この方法では、酸素ピークを比較することで、鋼の精錬状態を判定しているが、判定した状態に応じて、処理内容に対する具体的な対処方法はみられない。
Moreover, in
一方、鋼中の全酸素濃度の分析は、正確に分析するために不活性ガス中加熱融解-赤外線吸収法を動作原理とする全酸素濃度分析装置が唯一適用されている。しかしながら、分析試料を得るためには、鋼塊から所定の寸法に機械加工して試料を作成した後、試料表面の酸化皮膜を除去する目的で、化学研磨、電解研磨あるいはグラインダーやヤスリ等を用いた研削などの前処理を施す必要があった。このような加工、前処理は、煩雑であるばかりでなく、時間を要する結果、迅速性の観点から、精錬途中の溶鋼の全酸素分析方法として適用することが困難であった。 On the other hand, for the analysis of the total oxygen concentration in steel, the total oxygen concentration analyzer based on the principle of operation of heat melting in an inert gas-infrared absorption method is applied for accurate analysis. However, in order to obtain an analytical sample, a sample is prepared by machining from a steel ingot to a predetermined size, and then chemical polishing, electrolytic polishing, grinder or file is used for the purpose of removing the oxide film on the sample surface. It was necessary to perform pretreatment such as grinding. Such processing and pretreatment are not only complicated, but also require time. As a result, it has been difficult to apply as a total oxygen analysis method for molten steel during refining from the viewpoint of speed.
本発明は、上記の問題に鑑みてなされたものであり、その課題は、全酸素濃度13ppm以下の清浄鋼の溶製にあたり、真空脱ガス処理時間の延長あるいは温度低下によるトラブルなく、安定して13ppm以下の清浄鋼の製造が可能とする、清浄鋼の溶製方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and the problem is that, in the production of clean steel having a total oxygen concentration of 13 ppm or less, there is no trouble due to the extension of the vacuum degassing treatment time or the temperature drop. It is an object of the present invention to provide a method for producing clean steel, which enables production of clean steel of 13 ppm or less.
上記の課題の解決するために提供される本発明の特徴は、全酸素濃度13ppm以下の清浄鋼の溶製にあたり、スラグ精錬処理中に、溶鋼から試料を採取し、スラグ精錬処理終了前に、その試料における全酸素濃度を全酸素迅速分析方法により測定し、その測定結果を基にスラグの塩基度を調整し、真空脱ガス処理前の全酸素濃度を18ppm以下に制御するところにある。 The feature of the present invention provided to solve the above-mentioned problems is that when a clean steel having a total oxygen concentration of 13 ppm or less is melted, a sample is taken from the molten steel during the slag refining process, and before the end of the slag refining process, The total oxygen concentration in the sample is measured by a total oxygen rapid analysis method, the basicity of the slag is adjusted based on the measurement result, and the total oxygen concentration before vacuum degassing is controlled to 18 ppm or less.
本発明は具体的には次の通りである。
(1)アークによる加熱とガスあるいは電磁力による撹拌を行うスラグ精錬を実施した後、真空脱ガス設備における溶鋼環流時間30分以下での介在物除去を行う清浄鋼溶製方法において、
取鍋精錬時のスラグの成分を、スラグ精錬終了時点でのスラグの成分がCaO=50〜60質量%、Al2O3=33〜40質量%、CaO/Al2O3≧1.5、(FeO+MnO)≦1質量%の範囲内になるよう調整すると共に、
前記スラグ精錬処理中の溶鋼の全酸素濃度を、鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法であって、
該試料表面の酸化皮膜を除去、清浄化する前処理として真空アークプラズマ処理をアークプラズマ放電開始時の真空度を5Pa以上35Pa以下かつ、アークプラズマ出力電流を15A以上55A以下とする条件下において、
溶鋼から採取した鋼塊に対して、高さ1.5mm以上7mm以下、表面積Sと体積Vの比(S/V)が1.05以上1.30以下となるように機械加工して得た小片を試料とし、
前記アークプラズマ放電を前記試料に、合計4回以下であって、かつ合計処理時間として0.2秒以上1.2秒以下施した後、
該試料を大気と接触させることなく、直接、分析時の温度よりも高い温度で加熱、清浄化した後、分析する温度に下げて待機させた黒鉛るつぼへ投入する鉄鋼中酸素分析方法を用いて測定して、
真空脱ガス処理前の全酸素濃度が18ppm以下になるように全酸素濃度測定結果に基づいて生石灰追加投入により塩基度を調整すること
を特徴とした清浄鋼の溶製方法。
The present invention is specifically as follows.
(1) In a clean steel melting method in which inclusion removal is performed in a vacuum degassing facility in 30 minutes or less of the molten steel recirculation time after performing slag refining that performs heating by arc and stirring by gas or electromagnetic force,
Slag components during ladle refining, Slag components at the end of slag refining are CaO = 50-60 mass%, Al2O3 = 33-40 mass%, CaO / Al2O3 ≧ 1.5, (FeO + MnO) ≦ While adjusting to be within the range of 1% by mass,
The total oxygen concentration of the molten steel during the slag refining treatment is obtained by placing a steel sample in a graphite crucible and heating and melting it in an inert gas, and from the generated infrared absorption of carbon monoxide and / or carbon dioxide. A method for measuring the oxygen concentration in a sample, comprising:
As a pretreatment for removing and cleaning the oxide film on the surface of the sample, vacuum arc plasma treatment is performed under the conditions of a vacuum degree at the start of arc plasma discharge of 5 Pa to 35 Pa and an arc plasma output current of 15 A to 55 A.
It was obtained by machining a steel ingot collected from molten steel so that the height was 1.5 mm or more and 7 mm or less, and the ratio of surface area S to volume V (S / V) was 1.05 or more and 1.30 or less. Using a small piece as a sample,
After the arc plasma discharge is applied to the sample a total of 4 times or less and a total treatment time of 0.2 seconds or more and 1.2 seconds or less,
Using the method for oxygen analysis in steel, which is heated and cleaned directly at a temperature higher than the temperature at the time of analysis, without bringing it into contact with the atmosphere, and then put into a graphite crucible that is lowered to the temperature to be analyzed and placed on standby. Measure
A method for producing clean steel, characterized in that the basicity is adjusted by adding quick lime based on the measurement result of total oxygen concentration so that the total oxygen concentration before vacuum degassing treatment is 18 ppm or less.
(2)前記スラグ精錬処理時に成分および温度を調整しておくことにより、前記真空脱ガス処理でのAl投入量を溶鋼トン当たり0.1kg以下に抑制することを特徴とする、上記(1)1に記載の清浄鋼の溶製方法。 (2) The above (1) is characterized in that the amount of Al input in the vacuum degassing treatment is suppressed to 0.1 kg or less per ton of molten steel by adjusting the components and temperature during the slag refining treatment. The method for melting clean steel according to 1.
本発明により、真空脱ガス処理前の全酸素濃度を18ppm以下へ制御することで、真空脱ガス処理時間の延長あるいは温度低下によるトラブルなく、安定して13ppm以下の清浄鋼の製造が可能となった。 By controlling the total oxygen concentration before the vacuum degassing treatment to 18 ppm or less according to the present invention, it becomes possible to stably produce clean steel having a concentration of 13 ppm or less without any trouble due to the extension of the vacuum degassing treatment time or the temperature drop. It was.
また、上記に加えて、真空脱ガス処理でのAl投入を0.1kg/t以下に抑制することで、安定して9ppm以下の清浄鋼の製造が可能となった。 In addition to the above, it is possible to stably produce clean steel of 9 ppm or less by suppressing Al input in the vacuum degassing treatment to 0.1 kg / t or less.
本発明の清浄鋼の溶製方法について以下に説明する。なお、本発明に係る説明において、鋼に含まれる成分の含有量を示す「%」または「ppm」は、質量%または質量ppmを意味する。 The method for melting clean steel according to the present invention will be described below. In the description according to the present invention, “%” or “ppm” indicating the content of a component contained in steel means mass% or mass ppm.
本発明の特徴は、全酸素濃度13ppm以下の清浄鋼の溶製にあたり、スラグ精錬処理中に、溶鋼から試料を採取し、スラグ精錬処理終了前に、その試料における全酸素濃度を全酸素迅速分析方法により測定し、その測定結果を基にスラグの塩基度を調整し、真空脱ガス処理前の全酸素濃度を18ppm以下に制御するところにある。 The feature of the present invention is that when a clean steel having a total oxygen concentration of 13 ppm or less is melted, a sample is taken from the molten steel during the slag refining process, and the total oxygen concentration in the sample is rapidly analyzed before the slag refining process is completed. The measurement is performed by a method, the basicity of the slag is adjusted based on the measurement result, and the total oxygen concentration before the vacuum degassing treatment is controlled to 18 ppm or less.
本発明において、清浄鋼は、C:0.08〜1.05%、Si:0.15〜0.35%、Mn:0.30〜1.10%、P:0.030%以下、S:0.025%以下、sol.Al:0.010〜0.060%、全酸素濃度:0.0013%以下の成分範囲の炭素鋼あるいは合金鋼と定義する。 In the present invention, clean steel includes C: 0.08 to 1.05%, Si: 0.15 to 0.35%, Mn: 0.30 to 1.10%, P: 0.030% or less, S : 0.025% or less, sol. It is defined as carbon steel or alloy steel having a component range of Al: 0.010 to 0.060% and total oxygen concentration: 0.0013% or less.
清浄鋼の全酸素濃度低下には、真空脱ガス処理時間の延長が有効であるが、延長しても十分に全酸素濃度を低下できていないことがあった。
そこで、上記した清浄鋼に対応する成分を有する、C:0.08〜1.05%、Si:0.15〜0.35%、Mn:0.30〜1.10%、P:0.030%以下、S:0.025%以下、sol.Al:0.010〜0.060%の溶鋼80tについて、真空脱ガス処理時間を20分間に固定して、スラグ精錬処理後の溶鋼中全酸素濃度とその溶鋼を連続鋳造した後の鋼片中全酸素濃度との関係を調査した。この調査においては、スラグ精錬処理後の溶鋼中全酸素濃度の分析はオフラインで行い、その分析結果を鋼片中全酸素濃度と対応付けた。その結果を図1に示す。
For reducing the total oxygen concentration of clean steel, it is effective to extend the vacuum degassing treatment time. However, even if extended, the total oxygen concentration has not been sufficiently reduced.
Therefore, C: 0.08 to 1.05%, Si: 0.15 to 0.35%, Mn: 0.30 to 1.10%, P: 0.00. 030% or less, S: 0.025% or less, sol. About 80t of molten steel of Al: 0.010 to 0.060%, the vacuum degassing treatment time was fixed at 20 minutes, and the total oxygen concentration in the molten steel after slag refining treatment and the steel slab after continuously casting the molten steel The relationship with total oxygen concentration was investigated. In this investigation, the analysis of the total oxygen concentration in the molten steel after the slag refining treatment was performed off-line, and the analysis result was associated with the total oxygen concentration in the steel slab. The result is shown in FIG.
図1には、真空脱ガス処理時間を20分間に統一し、従来の操業におけるスラグ精錬終了後の溶鋼中全酸素濃度と鋼片中全酸素濃度との関係を、真空脱ガス処理中に溶鋼に投入するAl量を0.1kg/t超と0.1kg/t以下とで層別して図示してある。このAl量は、基本的に真空脱ガス処理後の溶鋼温度を所定値に制御するための酸化発熱剤として投入されたものである。 In FIG. 1, the vacuum degassing treatment time is unified to 20 minutes, and the relationship between the total oxygen concentration in the molten steel and the total oxygen concentration in the steel slab after completion of slag refining in the conventional operation is shown in FIG. The amount of Al to be added to is shown as being layered by more than 0.1 kg / t and less than 0.1 kg / t. This Al amount is basically input as an oxidizing exothermic agent for controlling the molten steel temperature after the vacuum degassing treatment to a predetermined value.
この図から、鋼片中全酸素濃度を低下させるためには、スラグ精錬終了後の溶鋼中全酸素濃度を減少させることと、真空脱ガス処理中に溶鋼に投入するAl量を0.1kg/t以下にするなど減少させることが有効であると分かった。特に、本発明の課題である鋼片中全酸素濃度を13ppm以下にするためには、スラグ精錬終了後の溶鋼中全酸素濃度が18ppmを超えてしまう処理を無くすことが効果的と言える。 From this figure, in order to reduce the total oxygen concentration in the steel slab, the total oxygen concentration in the molten steel after the completion of slag refining is reduced, and the amount of Al introduced into the molten steel during the vacuum degassing treatment is 0.1 kg / It has been found that it is effective to reduce it to t or less. In particular, in order to reduce the total oxygen concentration in the steel slab, which is the subject of the present invention, to 13 ppm or less, it can be said that it is effective to eliminate the treatment in which the total oxygen concentration in the molten steel after slag refining exceeds 18 ppm.
また、真空脱ガス処理中に溶鋼に投入するAl量を0.1kg/t以下にすることも効果があると分かったので、図1における調査条件と基本的に同一ながら、真空脱ガス処理時間を20分間から25分間に延長した場合の効果を調査した。その結果を図2に示す。 Moreover, since it was found that it is also effective to reduce the amount of Al introduced into the molten steel during vacuum degassing treatment to 0.1 kg / t or less, the vacuum degassing treatment time is basically the same as the investigation conditions in FIG. The effect of extending from 20 minutes to 25 minutes was investigated. The result is shown in FIG.
図1および図2から、真空脱ガス処理中に溶鋼に投入するAl量を0.1kg/t以下の条件では、スラグ精錬終了後の溶鋼中全酸素濃度が18ppmを超えていても、それが22ppm以下であれば鋼片中全酸素濃度を13ppm以下にすることができるし、脱ガス処理時間を延長すれば、それがもっと高くても対応できることも分かる。 From FIG. 1 and FIG. 2, even if the total oxygen concentration in the molten steel after the slag refining is over 18 ppm under the condition that the amount of Al introduced into the molten steel during the vacuum degassing treatment is 0.1 kg / t or less, It can be seen that if it is 22 ppm or less, the total oxygen concentration in the steel slab can be 13 ppm or less, and if the degassing treatment time is extended, it can be handled even if it is higher.
しかし、ここでの問題は、従来はスラグ精錬終了後の溶鋼中全酸素濃度を迅速に知る方法が無かったので、図1および図2に示されているようなスラグ精錬終了後の溶鋼中全酸素濃度のバラツキに、効果的に対応する術が無かったことである。 However, the problem here is that there was no method for quickly knowing the total oxygen concentration in the molten steel after the slag refining, so that the total amount in the molten steel after the slag refining as shown in FIGS. There was no way to effectively cope with variations in oxygen concentration.
従来は、従来実績の内で最も成績が悪かったデータに基づいて、そのような悪い条件にもRHでの環流によって溶鋼が清浄化されるように、予め長時間の溶鋼環流条件を設定して対処していた。しかし、そのような対処方法では、熱的にも処理能率的にも無駄が多いので問題であった。 In the past, based on data that had the worst results among the past results, long-term molten steel reflux conditions were set in advance so that the molten steel was cleaned by reflux in RH even under such bad conditions. I was dealing with it. However, such a coping method has a problem because it is wasteful both in terms of heat and processing efficiency.
そこで、本発明者らは溶鋼中全酸素の迅速分析方法の開発を並行して行い、その迅速分析方法を清浄鋼の溶製方法に応用することを含めて、清浄鋼の効率的溶製を図ることにした。 Therefore, the present inventors have developed a rapid analysis method for total oxygen in molten steel in parallel, and applied the rapid analysis method to a method for producing clean steel. I decided to plan.
その酸素迅速分析方法を、以下に図面を参照しつつ詳しく説明する。
図8はこの本発明に係る分析方法を実施するための鉄鋼中酸素分析装置を模式的に示したものである。
The oxygen rapid analysis method will be described in detail below with reference to the drawings.
FIG. 8 schematically shows an oxygen analyzer in steel for carrying out the analysis method according to the present invention.
本発明に係る分析方法に求められる短時間かつ高精度分析を実現するために、本発明で組み合わせる要素技術の内、迅速かつ再現性の高い試料前処理方法として、真空アークプラズマ処理を選択した。例えば、特許文献3に開示された金属中成分分析用試料の調整方法及び装置を適用すればよい。予め真空に保った試料前処理装置1内に、隔離バルブ4を介して、真空度をほとんど変化させることなく、処理前試料投入口3から試料を挿入することができる。その後、真空アークプラズマ処理により、試料表面の酸化皮膜を数秒で除去する。該装置では、試料を自動搬送するため、試料形状を円柱またはブロック(直方体)に限定する。試料は、試料台に載置して処理するため、試料台と接する面は処理されない。そこで、試料を反転させて処理する必要がある。つまり、ひとつの試料に対して、少なくとも2回は放電する必要がある。放電回数が増えると、試料が長時間加熱されることになり、一旦、酸化皮膜除去された試料表面は再び酸化されてしまう。したがって、試料表面の酸化皮膜を確実、正確かつ再現性良く除去し、精錬操業上必要とされる分析精度を確保するため、下記の条件でアークプラズマ処理する必要がある。
In order to achieve a short time and high accuracy analysis required for the analysis method according to the present invention, vacuum arc plasma treatment was selected as a rapid and reproducible sample pretreatment method among the elemental technologies combined in the present invention. For example, the preparation method and apparatus for a sample for analyzing an in-metal component disclosed in Patent Document 3 may be applied. A sample can be inserted into the sample pretreatment apparatus 1 that has been previously kept in vacuum through the
(a)真空度:5Pa以上35Pa以下。真空アークプラズマによる試料表面酸化皮膜除去反応は真空度が高いほど促進されるが、35Paを超えると、試料温度上昇に伴う再酸化反応が顕著になるため好ましくない。一方、5Paより低いと、酸化皮膜除去反応自体が進行しなくなるため、好ましくない。したがって、最適な真空度が存在する。
なお、処理時に真空度が一定値に保持されるよう、真空排気バルブとガス導入バルブの開閉を制御する圧力制御機構を有することがなお好ましい。
(a) Degree of vacuum: 5 Pa or more and 35 Pa or less. The sample surface oxide film removal reaction by vacuum arc plasma is promoted as the degree of vacuum increases, but if it exceeds 35 Pa, the reoxidation reaction accompanying the increase in the sample temperature becomes remarkable, which is not preferable. On the other hand, if it is lower than 5 Pa, the oxide film removal reaction itself does not proceed, which is not preferable. There is therefore an optimum degree of vacuum.
It is more preferable to have a pressure control mechanism for controlling the opening and closing of the vacuum exhaust valve and the gas introduction valve so that the degree of vacuum is maintained at a constant value during processing.
(b)アークプラズマ出力電流:15A以上55A以下とする。 (b) Arc plasma output current: 15A or more and 55A or less.
(c)処理時間:ひとつの試料に対して、合計の処理時間は0.2秒以上1.2秒以下とする。
(d)処理回数:ひとつの試料に対して、合計の処理回数は4回以下とする。
(c) Processing time: The total processing time is 0.2 second or more and 1.2 seconds or less for one sample.
(d) Number of treatments: The total number of treatments per sample is 4 or less.
処理後の試料は、大気と接触させることなく、分析装置2に配置した前処理済試料投入口5を通じて、最終的に黒鉛るつぼに投入する。試料前処理チャンバーと分析装置の試料投入口は真空または不活性ガスで内部を置換した連結管8で連結する。不活性ガス種としては、空気との比重差を考慮して、連結管内を確実にガス置換して、処理後の試料の再酸化を防止する観点、さらには経済的な観点から、Arが好ましい。特許文献3に開示された装置構成では、前処理済試料は払い出された後、別置きの酸素分析装置に移送される。しかし、本発明の目的では迅速性が要求されることから、試料前処理装置1と酸素分析装置2を、それぞれ鉛直上下に配置し、連結管8内を自由落下させて、試料を移送する方法、すなわち図8のような装置構成を採用した。
The treated sample is finally put into the graphite crucible through the pretreated
この本発明の装置構成では、酸素分析装置2が床面に近い位置に配置され、分析装置2内部の清掃がガス中の不純物吸着剤の交換等、装置の維持管理作業に支障をきたす。そこで、架台6に組み込まれた装置全体をリフター7に載せて昇降可能とし、当該作業の際には装置全体を上げて、作業性を確保した。このリフター7の駆動方式は特に問わないが、装置全体では相当な重量であることから、操作性の観点で、自動油圧式が好ましい。また、リフター7の可動部は伸縮可能な材料で覆い、作業者が挟まれることのないよう、安全性に配慮した構造を有することが望ましい。
In the apparatus configuration of the present invention, the
さらに、連結した酸素分析装置2が故障して使えない場合や、分析待ちの前処理済試料を別の酸素分析装置で分析する場合に備えて、試料前処理装置1と酸素分析装置2の連結管8途中に、前処理済試料の取出口9を設ける。
Further, the sample pretreatment device 1 and the
本発明で組み合わせる要素技術の内、溶鋼から採取した鋼塊より簡便かつ迅速に分析試料を得る方法として、溶鋼から採取した鋼塊を切断して作製した高さ(厚さ)が1.5mm以上7mm以下のスライスに対して、打ち抜いた円柱状小片を試料として用いる。具体的には、例えば、特許文献4に開示された分析試料の調整方法及び装置を適用すればよい。試料表面の酸化皮膜を確実、正確かつ再現性良く除去するためには、試料底面の直径と高さから計算される表面積Sと体積Vの比S/Vが、「1.05≦S/V≦1.30」を満たすような形状を確保する必要がある。
Among the elemental technologies combined in the present invention, as a method for obtaining an analysis sample more easily and quickly than a steel ingot collected from molten steel, the height (thickness) produced by cutting the steel ingot collected from molten steel is 1.5 mm or more. A punched cylindrical piece is used as a sample for a slice of 7 mm or less. Specifically, for example, an analysis sample adjustment method and apparatus disclosed in
この理由は現時点で十分解明できていないが、電極形状などアーク処理部の形状に依存して、アークプラズマの空間分布において効率的な処理に好適な位置が限定されることに対応しているものと推察される。 The reason for this is not fully understood at this time, but it corresponds to the fact that the position suitable for efficient processing is limited in the spatial distribution of the arc plasma depending on the shape of the arc processing part such as the electrode shape. It is guessed.
本発明で組み合わせる要素技術の内、高精度な鋼中酸素分析方法として、不活性ガス中加熱融解−赤外線吸収法を動作原理とする酸素分析装置を選択した。この分析法では、試料ホルダと試料の脱酸反応剤(炭素)供給源を兼ねる黒鉛るつぼを使用する。 Among the elemental technologies combined in the present invention, an oxygen analyzer based on the operating principle of heating and melting in an inert gas-infrared absorption method was selected as a highly accurate method for analyzing oxygen in steel. In this analysis method, a graphite crucible serving as a sample holder and a sample deoxidation reagent (carbon) supply source is used.
分析に先立って、るつぼ表面に吸着した酸素や汚染を除去するため、分析時よりもやや高い温度でるつぼだけを予め加熱する、いわゆる「空焼き」処理を実施する。「空焼き」処理により、黒鉛るつぼから発生する酸素、一酸化炭素あるいは二酸化炭素が分析値を変動させる影響を低減できる。市販の酸素分析装置で鋼中の酸素を分析する際には、通常、るつぼ、すなわち試料を1800℃〜2200℃程度の温度に加熱する。本発明で要求される高い分析精度を実現するためには、例えば、分析時の温度よりも100℃以上高い温度で、かつ、15秒以上加熱すればよい。 Prior to analysis, in order to remove oxygen and contamination adsorbed on the surface of the crucible, a so-called “empty baking” process is performed in which only the crucible is preheated at a temperature slightly higher than at the time of analysis. The “blank” treatment can reduce the influence of oxygen, carbon monoxide or carbon dioxide generated from the graphite crucible changing the analytical value. When analyzing oxygen in steel with a commercially available oxygen analyzer, a crucible, that is, a sample is usually heated to a temperature of about 1800 ° C. to 2200 ° C. In order to realize the high analysis accuracy required in the present invention, for example, the heating may be performed at a temperature that is 100 ° C. or more higher than the temperature at the time of analysis and for 15 seconds or more.
また、市販の酸素分析装置では、まず、分析装置内に試料を取り込み、試料周辺の雰囲気をキャリアガスであるヘリウムガスで置換する間に、るつぼの交換、電極の清掃および「空焼き」処理を実施する。したがって、試料を投入してから分析値が判明するまで、比較的長い時間を要する。るつぼの交換および電極の清掃、さらに「空焼き」処理を先行して実施させ、分析装置が分析可能な状態で清浄化前処理した試料を投入することで、要求される分析所要時間に応じた迅速化を実現させることができる。 In addition, in a commercially available oxygen analyzer, first, a sample is taken into the analyzer, and the atmosphere around the sample is replaced with helium gas as a carrier gas. carry out. Therefore, it takes a relatively long time until the analytical value is determined after the sample is introduced. Replacing the crucible, cleaning the electrodes, and performing the “blank” process in advance, and loading the sample that has been pre-cleaned in a state where the analyzer can analyze, according to the required analysis time. Speeding up can be realized.
通常、酸素分析に際して、検出したガス量を試料中の酸素濃度に変換するため、試料重量を精密に秤量する必要がある。真空アークプラズマ処理前後での試料重量変化を評価した結果、試料の形状や表面酸化度合いによって多少ばらつきはあるものの、高々1mg程度の減量であったことから、試料重量0.5〜1.0gに対しては実用上無視できる程度の誤差しか与えないことが判明した。そこで、本発明を実施する際には、機械加工して得た後に予め秤量した分析試料を、真空アークプラズマ処理し、大気と接触させることなく、そのまま酸素分析装置に挿入することとした。 Usually, in the oxygen analysis, in order to convert the detected gas amount into the oxygen concentration in the sample, it is necessary to accurately weigh the sample weight. As a result of evaluating the change in the sample weight before and after the vacuum arc plasma treatment, although there was some variation depending on the shape of the sample and the degree of surface oxidation, the weight loss was about 1 mg at most, so the sample weight was reduced to 0.5 to 1.0 g. On the other hand, it has been found that the error is negligible for practical use. Therefore, when carrying out the present invention, the analysis sample obtained by machining and previously weighed was subjected to vacuum arc plasma treatment and inserted into the oxygen analyzer as it was without being brought into contact with the atmosphere.
但し、スラグ精錬終了後の溶鋼中全酸素濃度を迅速に知る方法があったとしても、その結果に応じて真空脱ガス処理を開始した後にAl投入量を制限したり、脱ガス処理時間を延長したりすることは、必ずしも適当とは言えない。脱ガス処理時間を延長すると溶鋼温度の低下が必至であるし、それを熱的に補償するためにはAlを投入して酸化しなければならないなど、操業上の制約条件が厳しいからである。したがって、基本的にはスラグ精錬終了後の溶鋼中全酸素濃度を18ppm以下に制御できなければならない。 However, even if there is a method for quickly knowing the total oxygen concentration in the molten steel after slag refining, the amount of Al input can be limited or the degassing process time can be extended after starting the vacuum degassing process depending on the result. It is not always appropriate to do. This is because if the degassing time is extended, the molten steel temperature is inevitably lowered, and in order to compensate for it, Al must be introduced to oxidize and the operational constraints are severe. Therefore, basically, the total oxygen concentration in the molten steel after completion of slag refining must be controllable to 18 ppm or less.
そこで、本発明では、スラグ精錬処理中の溶鋼中の全酸素濃度を迅速に測定し、その測定結果に応じてスラグ精錬処理条件を変更することで、スラグ精錬処理での全酸素濃度を低下させることとし、スラグ精錬処理条件とスラグ精錬処理後の溶鋼中全酸素濃度および鋼片中の全酸素濃度との関係を調査した。調査対象チャージにおけるスラグ精錬終了時のスラグ組成は、従来の経験値に基づいて、CaO=50〜60質量%、Al2O3=33〜40質量%、CaO/Al2O3≧1.5、(FeO+MnO)≦1質量%と定め、取鍋底部からのポーラスバブリングは、1.25〜1.88l/min/tとし、40分間の処理を実施した。スラグ精錬処理での全酸素濃度は、スラグが滓化した後である処理開始(=ポーラスバブリング開始)後10分の時点で溶鋼サンプルを採取して前記迅速分析方法により測定し、その測定結果から全酸素濃度が高いと生石灰添加により塩基度を向上させて全酸素濃度の低下を図り、スラグ精錬後の全酸素濃度を18ppm以下に制御することにした。また、スラグ精錬後と脱ガス処理前の全酸素濃度との関係を図3に示す。この結果から、スラグ精錬後と脱ガス処理前の全酸素濃度は変化がないことがわかる。 Therefore, in the present invention, the total oxygen concentration in the molten steel during the slag refining treatment is quickly measured, and the total oxygen concentration in the slag refining treatment is reduced by changing the slag refining treatment conditions according to the measurement result. In particular, the relationship between the slag refining treatment conditions, the total oxygen concentration in the molten steel after the slag refining treatment, and the total oxygen concentration in the steel slab was investigated. The slag composition at the end of the slag refining in the charge to be investigated is based on conventional experience values, CaO = 50-60 mass%, Al 2 O 3 = 33-40 mass%, CaO / Al 2 O 3 ≧ 1.5 (FeO + MnO) ≦ 1% by mass, porous bubbling from the bottom of the ladle was set to 1.25 to 1.88 l / min / t, and the treatment was performed for 40 minutes. The total oxygen concentration in the slag refining process is measured by the rapid analysis method by taking a molten steel sample at 10 minutes after the start of processing (= start of porous bubbling) after the slag has hatched. When the total oxygen concentration is high, the basicity is improved by adding quick lime to lower the total oxygen concentration, and the total oxygen concentration after slag refining is controlled to 18 ppm or less. FIG. 3 shows the relationship between the total oxygen concentration after slag refining and before degassing. From this result, it can be seen that there is no change in the total oxygen concentration after slag refining and before degassing.
尚、真空脱ガス処理時のAl投入量を0.1kg/t以下にするためには、スラグ精錬においてアーク加熱により鍋出し温度を向上させ、脱ガス処理における降下温度分を熱補償した。また、真空脱ガス処理にてロスする[Al]分を見積り、スラグ精錬において[Al]を高めておいた。 In order to reduce the Al input amount during vacuum degassing to 0.1 kg / t or less, the pan temperature was improved by arc heating in slag refining, and the temperature drop in degassing was compensated for heat. Moreover, the [Al] content lost in the vacuum degassing process was estimated, and [Al] was increased in slag refining.
本発明の実施においては、先ず転炉或いは電気炉を用いて溶鋼を製造し、その後アークによる加熱とガスあるいは電磁力による撹拌機能とを有する取鍋精錬炉において、スラグ精錬を行って溶鋼中の全酸素濃度を18ppm以下に制御し、さらに溶鋼循環式真空脱ガス設備(RH)を用いて溶鋼環流時間30分以下で介在物を除去した溶鋼を連続鋳造し、全酸素濃度13ppm以下の清浄鋼鋼片を安定して製造する。 In the practice of the present invention, first, molten steel is produced using a converter or an electric furnace, and then slag refining is performed in a ladle refining furnace having heating function by arc and stirring function by gas or electromagnetic force. Clean steel with a total oxygen concentration of 13 ppm or less by controlling the total oxygen concentration to 18 ppm or less and continuously casting molten steel from which inclusions have been removed with a molten steel circulation type vacuum degassing facility (RH) within 30 minutes or less. Slabs are manufactured stably.
溶鋼の成分は、転炉や電気炉で脱炭・脱燐後、転炉や電気炉から取鍋への出鋼時ないし取鍋精錬炉でバブリングを開始(=スラグ精錬を開始)後10分以内の間に、合金鉄やAlなどを溶鋼に添加して、C:0.08〜1.05%、Si:0.15〜0.35%、Mn:0.30〜1.10%、P:0.030%以下、S:0.025%以下、sol.Al:0.010〜0.060%に調整する。ここに記載した以外の成分については、Cr、Mo、Nなど、製品の規格に合わせて含んでいても良い。 Components of molten steel are decarburized and dephosphorized in a converter or electric furnace, and then bubbling is started at the time of steel removal from the converter or electric furnace to the ladle or in the ladle refining furnace (= slag refining is started) 10 minutes In the range, the alloyed iron or Al is added to the molten steel, C: 0.08 to 1.05%, Si: 0.15 to 0.35%, Mn: 0.30 to 1.10%, P: 0.030% or less, S: 0.025% or less, sol. Al: Adjust to 0.010 to 0.060%. Components other than those described here may be included in accordance with product specifications such as Cr, Mo, and N.
取鍋精錬時のスラグの成分は、転炉や電気炉から取鍋に出鋼した後除滓を実施し、生石灰やカルシウムアルミネート等の媒溶材を鍋中に適当量投入し、スラグ精錬終了時点でのスラグの成分がCaO=50〜60質量%、Al2O3=33〜40質量%、CaO/Al2O3≧1.5、(FeO+MnO)≦1質量%の範囲内になるよう調整する。 For slag components during ladle refining, steel is removed from the converter or electric furnace to the ladle and then stripped, and a suitable amount of solvent such as quick lime or calcium aluminate is put into the pan, and slag refining is completed. The components of the slag at the time are within the range of CaO = 50-60 mass%, Al 2 O 3 = 33-40 mass%, CaO / Al 2 O 3 ≧ 1.5, (FeO + MnO) ≦ 1 mass%. Adjust so that
このようにして、転炉から出鋼した溶鋼についてスラグ精錬を開始した場合の、溶鋼中の全酸素濃度の低下状況を、図4に示す。スラグ精錬開始前の溶鋼中の全酸素濃度は26〜42ppmの間でバラツキがあったが、取鍋内スラグが一応滓化したと外見上判断されるバブリング開始後10分の時点では、溶鋼中の全酸素濃度は12〜25ppmの範囲に低減されていた。 Thus, the fall state of the total oxygen concentration in molten steel at the time of starting slag refining about the molten steel taken out from the converter is shown in FIG. The total oxygen concentration in the molten steel before the start of slag refining varied between 26 and 42 ppm, but at the point of 10 minutes after the start of bubbling, where it was judged that the slag in the ladle had become temporarily transformed, The total oxygen concentration of was reduced to a range of 12-25 ppm.
本発明の実施においては、このバブリング開始後10分の時点で溶鋼から分析用サンプルを採取し、そのサンプルを前記した酸素迅速分析方法により迅速に分析する。
そのサンプル中の全酸素濃度を知って、転炉出鋼時の成分状況やスラグ精錬前の除滓、更新した媒溶材の添加状況を考慮しつつ、スラグ精錬継続中に(2)式の範囲で溶鋼トン当たりの生石灰追加量(kg)をスラグへ投入する。本発明で用いる生石灰は、CaO質量濃度が92%以上(残部は主としてCO2)で、粒径が5mm以上50mm以下である。
0.18×全酸素濃度(ppm)−3.6≦ 生石灰追加量(kg/t)
≦0.18×全酸素濃度(ppm)−1.8 ・・・・・(2)
In the practice of the present invention, a sample for analysis is taken from the molten steel at 10 minutes after the start of bubbling, and the sample is quickly analyzed by the oxygen rapid analysis method described above.
Knowing the total oxygen concentration in the sample, considering the component status at the time of converter steelmaking, decontamination before slag refining, and the addition status of the updated solvent medium, the range of formula (2) Then add the additional amount of quick lime per ton of molten steel (kg) to slag. The quicklime used in the present invention has a CaO mass concentration of 92% or more (the balance is mainly CO 2 ) and a particle size of 5 mm or more and 50 mm or less.
0.18 × total oxygen concentration (ppm) −3.6 ≦ quick lime additional amount (kg / t)
≦ 0.18 × total oxygen concentration (ppm) −1.8 (2)
この生石灰の追加調整を含めての、スラグ精錬開始から10分後に採取したサンプル中の全酸素濃度とその濃度を知って追加投入した生石灰量との関係を図5に示し、その結果としてのスラグ精錬後の全酸素濃度との関係を図6に示す。これらの図から、前記した溶鋼成分・スラグ成分の範囲で、図5のように生石灰量を追加すれば、図6のようにスラグ精錬開始後10分の時点での溶鋼中全酸素濃度が12〜25ppmの範囲でバラツキが見られていても、スラグ精錬後の溶鋼中全酸素濃度を18ppm以下に制御することができると分かる。 Figure 5 shows the relationship between the total oxygen concentration in the sample collected 10 minutes after the start of slag refining, including the additional adjustment of quicklime, and the amount of quicklime added after knowing the concentration, and the resulting slag FIG. 6 shows the relationship with the total oxygen concentration after refining. From these figures, if the amount of quick lime is added as shown in FIG. 5 within the range of the molten steel component / slag component described above, the total oxygen concentration in the molten steel at 12 minutes after the start of slag refining is 12 as shown in FIG. It can be seen that even if variation is observed in the range of ˜25 ppm, the total oxygen concentration in the molten steel after slag refining can be controlled to 18 ppm or less.
本発明では、さらにRHを用いて溶鋼環流時間30分以内で、溶鋼成分と温度の微調整と介在物の除去とを行う。この溶鋼成分の微調整は、基本的には前記スラグ精錬終了までに済ませておくが、成分規格の許容範囲が狭い製品の場合や、スラグ精錬中にAl成分の低下が多かった場合などに、少量の合金鉄やAlをRH槽内の溶鋼に追加添加することが許容される。また、溶鋼温度の調整も、基本的にはスラグ精錬の終了前に取鍋精錬装置のアーク加熱機構を用いて済ませておくが、RHでのAl使用による酸化発熱を利用して、RHで投入するAl量が4kg/t以下の範囲であれば、RH処理中での温度調整も許容される。しかし、この酸化発熱はAl2O3の生成を伴うものなので、RHでのAl使用量は少ない方が好ましい。本発明において、RHでのAl使用量を溶鋼トン当たり0.1kg以下にすれば、連続鋳造を経て製造した鋼片中の全酸素濃度を9ppm以下に制御することができる。 In the present invention, the molten steel components and temperature are finely adjusted and the inclusions are removed within 30 minutes of the molten steel reflux time using RH. This fine adjustment of the molten steel component is basically completed by the end of the slag refining, but in the case of a product with a narrow tolerance range of the component standard, or when there is a large decrease in the Al component during slag refining, It is permissible to add a small amount of alloy iron or Al to the molten steel in the RH tank. In addition, the temperature of the molten steel is basically adjusted using the arc heating mechanism of the ladle refining device before the end of slag refining, but it is input at RH using the oxidation heat generated by the use of Al in RH. If the amount of Al to be processed is in the range of 4 kg / t or less, temperature adjustment during the RH treatment is allowed. However, since this oxidation heat generation is accompanied by the generation of Al 2 O 3 , it is preferable that the amount of Al used in RH is small. In the present invention, if the amount of Al used in RH is 0.1 kg or less per ton of molten steel, the total oxygen concentration in the steel slab produced through continuous casting can be controlled to 9 ppm or less.
本発明におけるスラグ精錬後の溶鋼中全酸素濃度と連続鋳造を経た鋼片中の全酸素濃度との関係を、RHでのAl使用量を0.1kg/t超4kg/t以下の場合と0.1kg/t以下の場合とで層別して、図7に示す。図7に記載した各データは、RHでの溶鋼環流時間を20分間に統一し、かつ、一部はRH処理中のAl使用量を確実に0.1kg/tに抑えることができるように、スラグ精錬終了時の溶鋼温度を高めておいた。 In the present invention, the relationship between the total oxygen concentration in the molten steel after slag refining and the total oxygen concentration in the steel slab that has undergone continuous casting is as follows: the amount of Al used in RH is more than 0.1 kg / t and less than 4 kg / t. FIG. 7 shows stratification according to the case of 1 kg / t or less. Each data described in FIG. 7 shows that the molten steel reflux time in RH is unified to 20 minutes, and in part, the amount of Al used during RH treatment can be surely suppressed to 0.1 kg / t. The molten steel temperature at the end of slag refining was raised.
これらのデータから、まず、本発明の実施によりスラグ精錬後の溶鋼中全酸素濃度が18ppm以下であれば、鋼片中の全酸素濃度を13ppm以下に制御できることが分かる。さらに、Al使用量を0.1kg/t以下にすれば、鋼片中の全酸素濃度が9ppm以下になっていることも分かる。 From these data, it can be understood that the total oxygen concentration in the steel slab can be controlled to 13 ppm or less if the total oxygen concentration in the molten steel after slag refining is 18 ppm or less by carrying out the present invention. It can also be seen that if the Al usage is 0.1 kg / t or less, the total oxygen concentration in the steel slab is 9 ppm or less.
転炉による精錬後、約80tの溶鋼を取鍋へ出鋼し、その出鋼中に合金鉄やAlを溶鋼に添加してC:0.08〜1.05%、Si:0.15〜0.35%、Mn:0.30〜1.10%、P:0.030%以下、S:0.025%以下、sol.Al:0.010〜0.060%に調整した。出鋼後除滓し、スラグ精錬前に生石灰やカルシウムアルミートの媒溶材を投入し、スラグ精錬の終了後にはスラグ成分がCaO=50〜60質量%、Al2O3=33〜40質量%、CaO/Al2O3≧1.5、(FeO+MnO)≦1質量%の範囲内になるよう、スラグ改質剤として生石灰を鍋中に投入した。 After refining by a converter, about 80 tons of molten steel is taken out into a ladle, and alloy iron or Al is added to the molten steel in the steel, C: 0.08 to 1.05%, Si: 0.15 0.35%, Mn: 0.30 to 1.10%, P: 0.030% or less, S: 0.025% or less, sol. Al: Adjusted to 0.010 to 0.060%. After slag refining, lime slag and calcium aluminate are added before slag refining. After slag refining, the slag components are CaO = 50-60 mass%, Al 2 O 3 = 33-40 mass%. , CaO / Al 2 O 3 ≧ 1.5 and (FeO + MnO) ≦ 1% by mass were charged with quicklime as a slag modifier in the pan.
その後、アークによる加熱と底吹きArあるいはN2による溶鋼およびスラグの撹拌機能とを有する取鍋精錬装置に取鍋を移送し、アークによる加熱をしつつ溶鋼およびスラグの撹拌を開始した。その撹拌を開始した後10分の時点で溶鋼からサンプルを採取して、前記酸素分析方法により鋼中の全酸素濃度を5分間以内で分析し(サンプル採取時から6分間以内で分析値が判明)、直ちに前記(2)式により生石灰を追加投入して溶鋼およびスラグの撹拌を継続後、スラグ精錬を終了した。 Thereafter, the ladle was transferred to a ladle refining device having a heating function by arc and a function of stirring molten steel and slag by bottom blowing Ar or N 2 , and stirring of molten steel and slag was started while heating by arc. A sample is taken from the molten steel at 10 minutes after the start of the stirring, and the total oxygen concentration in the steel is analyzed within 5 minutes by the oxygen analysis method (the analytical value is found within 6 minutes from the time of sampling). ) Immediately after that, quick lime was additionally added according to the formula (2), and the stirring of the molten steel and slag was continued, and then the slag refining was finished.
このスラグ精錬における底吹きArあるいはN2流量は1.25〜1.88Nl/min/tとし、底吹きArあるいはN2を流して撹拌した時間は、サンプル採取前の10分間を含めて全部で30〜40分間継続した。 The flow rate of bottom blown Ar or N 2 in this slag refining is 1.25 to 1.88 Nl / min / t, and the time of stirring by flowing the bottom blown Ar or N 2 is 10 minutes, including 10 minutes before sampling. Continued for 30-40 minutes.
このスラグ精錬を終了した時点での鍋中スラグ成分は、オフラインで別途分析した結果、全て前記した成分範囲に制御されていた。
さらに、その後、取鍋をRHに移送して、溶鋼循環を20〜30分間行った。その際、許容される全酸素濃度が13ppm以下の製品を製造する場合には、RHでのAl使用量を格別抑制せず、実績としてのAl使用量は0〜4kg/tであった。一方、許容される全酸素濃度が9ppm以下の製品を対象とする場合には、スラグ精錬で溶鋼温度を高めに設定しておき、RHでのAl使用量を0.1kg/t以下に抑制した。
As a result of separately analyzing the slag components in the pan at the time when the slag refining was completed, all of them were controlled to the above-described component ranges.
Furthermore, after that, the ladle was transferred to RH, and molten steel circulation was performed for 20 to 30 minutes. At that time, when producing a product having an allowable total oxygen concentration of 13 ppm or less, the amount of Al used in RH was not particularly suppressed, and the amount of Al used as a result was 0 to 4 kg / t. On the other hand, when a product with an allowable total oxygen concentration of 9 ppm or less is targeted, the molten steel temperature is set high by slag refining, and the amount of Al used in RH is suppressed to 0.1 kg / t or less. .
このようにして溶鋼の清浄化精錬を終了した後、鋳片幅300〜400mm、鋳片厚400〜500mmの連続鋳造を経て、向先製品別の鋼片を製造した。その鋼片からサンプルを採取して全酸素濃度を分析した結果、いずれも所定の全酸素濃度である13ppm以下または9ppm以下を満足していたことを確認した。 After finishing the purification and refining of the molten steel in this way, a steel piece for each destination product was manufactured through continuous casting with a cast piece width of 300 to 400 mm and a cast piece thickness of 400 to 500 mm. As a result of collecting a sample from the steel piece and analyzing the total oxygen concentration, it was confirmed that all satisfied a predetermined total oxygen concentration of 13 ppm or less or 9 ppm or less.
1 前処理装置
2 酸素分析装置
3 処理前試料投入口
4 隔離バルブ
5 前処理済試料投入口
6 架台
7 リフター
8 連結管
9 前処理済試料途中取出口
DESCRIPTION OF SYMBOLS 1
Claims (2)
取鍋精錬時のスラグの成分を、スラグ精錬終了時点でのスラグの成分がCaO=50〜60質量%、Al2O3=33〜40質量%、CaO/Al2O3≧1.5、(FeO+MnO)≦1質量%の範囲内になるよう調整すると共に、
前記スラグ精錬処理中の溶鋼の全酸素濃度を、鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法であって、
該試料表面の酸化皮膜を除去、清浄化する前処理として真空アークプラズマ処理をアークプラズマ放電開始時の真空度を5Pa以上35Pa以下かつ、アークプラズマ出力電流を15A以上55A以下とする条件下において、
溶鋼から採取した鋼塊に対して、高さ1.5mm以上7mm以下、表面積Sと体積Vの比(S/V)が1.05以上1.30以下となるように機械加工して得た小片を試料とし、
前記アークプラズマ放電を前記試料に、合計4回以下であって、かつ合計処理時間として0.2秒以上1.2秒以下施した後、
該試料を大気と接触させることなく、直接、分析時の温度よりも高い温度で加熱、清浄化した後、分析する温度に下げて待機させた黒鉛るつぼへ投入する鉄鋼中酸素分析方法を用いて測定して、
真空脱ガス処理前の全酸素濃度が18ppm以下になるように全酸素濃度測定結果に基づいて生石灰追加投入により塩基度を調整することを特徴とした清浄鋼の溶製方法。 In the method of clean steel melting, in which the inclusion removal is performed in 30 minutes or less of the molten steel recirculation time in the vacuum degassing equipment after carrying out the slag refining that performs heating by arc and stirring by gas or electromagnetic force,
Slag components during ladle refining, Slag components at the end of slag refining are CaO = 50-60 mass%, Al2O3 = 33-40 mass%, CaO / Al2O3 ≧ 1.5, (FeO + MnO) ≦ While adjusting to be within the range of 1% by mass,
The total oxygen concentration of the molten steel during the slag refining treatment is obtained by placing a steel sample in a graphite crucible and heating and melting it in an inert gas, and from the generated infrared absorption of carbon monoxide and / or carbon dioxide. A method for measuring the oxygen concentration in a sample, comprising:
As a pretreatment for removing and cleaning the oxide film on the surface of the sample, vacuum arc plasma treatment is performed under the conditions of a vacuum degree at the start of arc plasma discharge of 5 Pa to 35 Pa and an arc plasma output current of 15 A to 55 A.
It was obtained by machining a steel ingot collected from molten steel so that the height was 1.5 mm or more and 7 mm or less, and the ratio of surface area S to volume V (S / V) was 1.05 or more and 1.30 or less. Using a small piece as a sample,
After the arc plasma discharge is applied to the sample a total of 4 times or less and a total treatment time of 0.2 seconds or more and 1.2 seconds or less,
Using the method for oxygen analysis in steel, which is heated and cleaned directly at a temperature higher than the temperature at the time of analysis, without bringing it into contact with the atmosphere, and then put into a graphite crucible that is lowered to the temperature to be analyzed and placed on standby. Measure
A method for producing clean steel, characterized in that the basicity is adjusted by adding quick lime based on the measurement result of total oxygen concentration so that the total oxygen concentration before vacuum degassing treatment is 18 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009183551A JP5375419B2 (en) | 2009-08-06 | 2009-08-06 | Method of melting clean steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009183551A JP5375419B2 (en) | 2009-08-06 | 2009-08-06 | Method of melting clean steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011038125A JP2011038125A (en) | 2011-02-24 |
JP5375419B2 true JP5375419B2 (en) | 2013-12-25 |
Family
ID=43766174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009183551A Active JP5375419B2 (en) | 2009-08-06 | 2009-08-06 | Method of melting clean steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5375419B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101977825B1 (en) * | 2017-07-03 | 2019-05-13 | 주식회사 포스코 | Method for refining molten steel |
CN112646953B (en) * | 2020-11-23 | 2022-12-16 | 首钢集团有限公司 | Steel slag modification method of ultra-low carbon steel |
CN112853038A (en) * | 2020-12-24 | 2021-05-28 | 上海盛宝冶金科技有限公司 | Environment-friendly carbonaceous exothermic agent for steelmaking and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS637318A (en) * | 1986-06-27 | 1988-01-13 | Kobe Steel Ltd | Method for adding ca to molten steel |
JPH02228418A (en) * | 1989-02-28 | 1990-09-11 | Sumitomo Metal Ind Ltd | Production of clean steel |
JP4464343B2 (en) * | 2005-09-20 | 2010-05-19 | 株式会社神戸製鋼所 | Aluminum killed steel manufacturing method |
-
2009
- 2009-08-06 JP JP2009183551A patent/JP5375419B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011038125A (en) | 2011-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5397154B2 (en) | Melting method of steel material for oil pipes with high strength and high corrosion resistance | |
US11035014B2 (en) | Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method | |
JP5375419B2 (en) | Method of melting clean steel | |
JP4888516B2 (en) | Method for analyzing oxygen in steel | |
JP5402342B2 (en) | How to prevent clogging of ladle nozzle | |
JP5369909B2 (en) | Method for suppressing nozzle clogging of Zr-added steel and method for producing fine oxide-dispersed steel | |
JP5402259B2 (en) | Method for producing ultra-low carbon steel | |
JP5347729B2 (en) | Method for producing Ca-treated steel | |
JP5464242B2 (en) | Manufacturing method of clean steel | |
JP5733377B2 (en) | Continuous casting method for molten steel | |
JP5704019B2 (en) | Secondary refining method and manufacturing method of molten steel | |
JP2013057120A (en) | Method for desulfurizing molten steel and method for manufacturing molten steel | |
US9068237B2 (en) | Method for desulfurizing hot metal | |
JP4463701B2 (en) | Decarburization method for molten stainless steel and method for producing ultra-low carbon stainless steel | |
KR100916099B1 (en) | Method of refining molten steel to manufacture semi-low carbon steel | |
JP2007169717A (en) | Method for judging decarburize-end point in vacuum degassing facility | |
JPH08143932A (en) | Method for refining molten metal | |
Patil et al. | Fundamental studies on the deoxidation of low carbon steels with ferrosilicon | |
CZ99096A3 (en) | Process for producing steels for rolling-contact bearings | |
KR20040046397A (en) | Degassing process of molten steel by making an analysis of slag | |
JPH08143939A (en) | Method for refining molten fe-ni alloy | |
JPH08143943A (en) | Method for refining molten metal | |
JPH062028A (en) | Method for producing low oxygen molten steel | |
JPH08143933A (en) | Method for refining molten metal | |
JPH08143930A (en) | Method for refining molten metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130909 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5375419 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |