[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5369462B2 - Low yield ratio high strength steel sheet and method for producing the same - Google Patents

Low yield ratio high strength steel sheet and method for producing the same Download PDF

Info

Publication number
JP5369462B2
JP5369462B2 JP2008072988A JP2008072988A JP5369462B2 JP 5369462 B2 JP5369462 B2 JP 5369462B2 JP 2008072988 A JP2008072988 A JP 2008072988A JP 2008072988 A JP2008072988 A JP 2008072988A JP 5369462 B2 JP5369462 B2 JP 5369462B2
Authority
JP
Japan
Prior art keywords
temperature
less
cooling
yield ratio
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008072988A
Other languages
Japanese (ja)
Other versions
JP2009228040A (en
Inventor
康宏 室田
伸一 鈴木
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008072988A priority Critical patent/JP5369462B2/en
Publication of JP2009228040A publication Critical patent/JP2009228040A/en
Application granted granted Critical
Publication of JP5369462B2 publication Critical patent/JP5369462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low yield ratio high strength steel plate suitable as a high tensile strength steel plate with a plate thickness of &le;40 mm and a yield ratio of &le;80% used as a steel member for building requiring earthquake resistance, particularly, as a beam material. <P>SOLUTION: The low yield ratio high tensile strength steel plate with a plate thickness of &le;40 mm has a composition comprising, by mass, 0.05 to 0.18% C, 0.05 to 0.50% Si, 0.6 to 2.0% Mn, &le;0.020% P, &le;0.005% S and &le;0.1% Al, and, if required, comprising one or more kinds selected from among Cu, Ni, Cr, Ti, Ca and REM, and the balance Fe with inevitable impurities, wherein carbon equivalent Ceq expressed by formula: Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 is 0.30 to 0.45%, and the steel plate has a microstructure comprising ferrite with the average crystal grain size of &le;10 &mu;m in a volume ratio of &ge;20%, and the balance bainite. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、海洋構造物、橋梁、造船、ラインパイプ、建産機械等に用いる低降伏比高張力鋼板およびその製造方法に関し、特に、耐震性を必要とする建築用鋼材とくに梁用材料として使用される板厚40mm以下、降伏比80%以下の高張力鋼板として好適なものに関する。   The present invention relates to a low-yield ratio high-strength steel sheet used for offshore structures, bridges, shipbuilding, line pipes, construction machinery and the like, and a method for producing the same, and in particular, it is used as a structural steel material that requires earthquake resistance, particularly as a beam material. The present invention relates to a suitable high-tensile steel plate having a thickness of 40 mm or less and a yield ratio of 80% or less.

近年、建築構造物などでは地震時の安全性確保の観点から耐震性を有する鋼板が要求され、建築用鋼材として、降伏比が80%以下の鋼材が使用される場合が多い。地震発生時に最も塑性変形能が要求される梁材には、より低降伏比の鋼材が望ましいとされる。   In recent years, building structures and the like have demanded steel plates having earthquake resistance from the viewpoint of ensuring safety during an earthquake, and steel materials having a yield ratio of 80% or less are often used as building steel materials. Steel materials with a lower yield ratio are desirable for the beam materials that require the most plastic deformability when an earthquake occurs.

特許文献1〜9は低降伏比高張力鋼の製造方法に関し、特許文献1には、スラブ加熱温度を低温化し、さらに未再結晶温度域での圧下率を30%以上と規定して靭性を改善し、冷却速度、冷却停止温度を制御することにより、高強度、低降伏比、高靭性を両立させることが記載されている。   Patent Documents 1 to 9 relate to a method for producing a low yield ratio high-tensile steel. Patent Document 1 describes that the slab heating temperature is lowered, and the reduction rate in the non-recrystallization temperature range is defined as 30% or more toughness. It is described that both high strength, low yield ratio, and high toughness can be achieved by improving and controlling the cooling rate and cooling stop temperature.

特許文献2には、加速冷却時の冷却速度を、水量密度を変化させて制御し、種々の板厚においてもほぼ同一の冷却速度で冷却して、板厚によらず同一の強度、降伏比を得ることが記載されている。   In Patent Document 2, the cooling rate at the time of accelerated cooling is controlled by changing the water density, and cooling is performed at almost the same cooling rate even in various plate thicknesses, so that the same strength and yield ratio are obtained regardless of the plate thickness. Is described.

特許文献3には、熱間圧延終了後の加速冷却速度を1℃/s以上に制御し、750〜600℃まで冷却して低降伏比高強度鋼を製造することが記載されている。   Patent Document 3 describes that an accelerated cooling rate after completion of hot rolling is controlled to 1 ° C./s or more, and the steel is cooled to 750 to 600 ° C. to produce a low yield ratio high strength steel.

特許文献4には、熱間圧延終了後の加速冷却時の冷却速度を1〜5℃/sに制御することにより、高強度と低YRを両立した耐溶接割れ性に優れた低降伏比高張力鋼が記載されている。   Patent Document 4 discloses a low yield ratio and high weld crack resistance that achieves both high strength and low YR by controlling the cooling rate during accelerated cooling after completion of hot rolling to 1 to 5 ° C./s. Tensile steel is described.

特許文献5には、熱間圧延終了後の加速冷却速度または、再加熱焼入れ時の冷却速度を5℃/s以上に制御し、さらに焼戻し時の昇温速度を制御することにより、低降伏比を達成した高張力厚鋼板が記載されている。   Patent Document 5 discloses a low yield ratio by controlling the accelerated cooling rate after completion of hot rolling or the cooling rate during reheating and quenching to 5 ° C./s or more, and further controlling the temperature rising rate during tempering. A high-tensile steel plate that achieves the above is described.

特許文献6には、低降伏比と微細組織を確保するため、Ar3変態点+50℃〜Ar3変態点−50℃で加速冷却を実施することが記載されている。特許文献7には、熱間圧延終了後の加速冷却時の冷却速度を0.3〜3℃/sに制御して島状マルテンサイトを一定量含む組織とし、高強度と低降伏比を確保することが記載されている。   Patent Document 6 describes that accelerated cooling is performed at an Ar3 transformation point + 50 ° C. to an Ar3 transformation point−50 ° C. in order to ensure a low yield ratio and a fine structure. In Patent Document 7, the cooling rate at the time of accelerated cooling after the end of hot rolling is controlled to 0.3 to 3 ° C./s to obtain a structure containing a certain amount of island martensite, ensuring high strength and a low yield ratio. It is described to do.

特許文献8や特許文献9には、圧延後、予備冷却を実施し所定の温度になり次第、空冷し、その後再度冷却することにより、低降伏比を達成することが記載され、特許文献8では板厚40〜100mmでYR75%以下の厚鋼板が得られる。
特開平5−320752号公報 特開平5−339631号公報 特開平6−340924号公報 特開平9−3596号公報 特開平9−3595号公報 特開平10−306316号公報 特開2001−226737号公報 特開2000−256736号公報 特開2000−87138号公報
Patent Document 8 and Patent Document 9 describe that after rolling, preliminary cooling is performed, air cooling is performed as soon as a predetermined temperature is reached, and then cooling is performed again to achieve a low yield ratio. A thick steel plate having a plate thickness of 40 to 100 mm and a YR of 75% or less is obtained.
JP-A-5-3201552 JP-A-5-339631 JP-A-6-340924 Japanese Patent Laid-Open No. 9-3596 JP-A-9-3595 JP-A-10-306316 JP 2001-226737 A JP 2000-256736 A JP 2000-87138 A

しかしながら、特許文献1記載の手法では、スラブの低温加熱により、変形抵抗が高く圧延装置に負荷をかけることや仕上温度が低いため、厳密な温度管理が必要となり、安定製造が困難、かつ、圧延能率が低下する。   However, in the method described in Patent Document 1, since the deformation resistance is high due to low temperature heating of the slab and a load is applied to the rolling mill and the finishing temperature is low, strict temperature control is required, stable production is difficult, and rolling Efficiency decreases.

特許文献2記載の手法では、板厚40mm以下の薄物材を水量密度を減少させて低冷却速度で冷却する場合、鋼板全面に渡って均一冷却をすることは困難で、冷却歪が大きくなる。   In the method described in Patent Document 2, when a thin material having a thickness of 40 mm or less is cooled at a low cooling rate by reducing the water density, it is difficult to perform uniform cooling over the entire surface of the steel plate, and the cooling strain increases.

特許文献3記載の手法では、冷却停止温度が600℃以上で高強度を得ようとする場合、Cu、Ni、Moなどの高価な元素を多量に添加する必要があり、その結果、大幅に製造コストが増加する。   According to the method described in Patent Document 3, when obtaining a high strength at a cooling stop temperature of 600 ° C. or higher, it is necessary to add a large amount of expensive elements such as Cu, Ni, and Mo. Cost increases.

特許文献4記載の手法では、1〜5℃/sという遅い冷却速度では、高強度確保のためにCu、Ni、Moなどの高価な元素を多量に添加する必要があり、その結果、大幅に製造コストが増加する。   In the method described in Patent Document 4, at a slow cooling rate of 1 to 5 ° C./s, it is necessary to add a large amount of expensive elements such as Cu, Ni, and Mo in order to ensure high strength. Manufacturing costs increase.

特許文献5記載の手法では、焼戻し時の昇温速度制御には、実製造上厳密な温度管理、時間管理が必要であり、安定製造が困難である。   In the technique described in Patent Document 5, temperature control at the time of tempering requires strict temperature management and time management in actual production, and stable production is difficult.

特許文献6記載の二相域熱処理は、低降伏比を安定に確保できる手法であるものの、オフラインでの熱処理回数の増加により製造コストが上昇し、製造工期が長期化する。   Although the two-phase region heat treatment described in Patent Document 6 is a technique that can stably ensure a low yield ratio, the manufacturing cost increases due to an increase in the number of heat treatments performed offline, and the manufacturing period is prolonged.

特許文献7記載の手法では、遅い冷却速度のため、高強度確保のために多量の合金元素添加が必須となり、その結果、大幅に製造コストが増加する。   In the method described in Patent Document 7, since a slow cooling rate is required, it is essential to add a large amount of alloy elements in order to ensure high strength. As a result, the manufacturing cost is greatly increased.

特許文献8記載の手法や特許文献9記載の手法では、予備冷却後の空冷時間を予備冷却停止温度と変態点で構成された式で管理するが、実質的に空冷時間が非常に長くなり、その結果、生産性が低下する。   In the method described in Patent Document 8 and the method described in Patent Document 9, the air cooling time after the pre-cooling is managed by a formula composed of the pre-cooling stop temperature and the transformation point, but the air cooling time becomes substantially very long, As a result, productivity decreases.

また、板厚40mm以下の薄物材に特許文献8や特許文献9に記載されている手法を適用した場合、空冷時間が非常に長くなり、鋼板上下面に温度差が若干存在するだけでも鋼板に歪が発生し、鋼板の平坦度が低下する。   Moreover, when the method described in Patent Document 8 or Patent Document 9 is applied to a thin material having a thickness of 40 mm or less, the air cooling time becomes very long, and even if there is a slight temperature difference between the upper and lower surfaces of the steel sheet, Strain occurs and the flatness of the steel sheet decreases.

そこで、本発明は、高価な合金元素添加や厳密な製造条件管理、さらには、オフラインでの二相域熱処理を必要とせずに、安価かつ簡便に靭性に優れた低降伏比高張力鋼板およびその製造方法を提供することを目的とする。   Accordingly, the present invention provides a low-yield ratio high-tensile steel sheet having excellent toughness at low cost and simply without requiring expensive alloying element addition, strict production condition control, and further, off-line two-phase region heat treatment. An object is to provide a manufacturing method.

上記課題は以下の手段で達成可能である。
1.質量%で、
C:0.05〜0.18%
Si:0.05〜0.50%
Mn:0.6〜2.0%
P:0.020%以下
S:0.005%以下
Al:0.1%以下
を含有し、残部がFeおよび不可避的不純物からなり、式(1)で示される炭素当量Ceqが0.30〜0.45%の組成と平均結晶粒径10μm以下のフェライトを体積分率20%以上、残部がベイナイトを呈するミクロ組織からなる板厚40mm以下の低降伏比高張力鋼板。
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 (1)
ここで,C,Si,Mn,Ni,Cr,Mo,Vは各元素の含有量(質量%)。
2.さらに、鋼組成が質量%で、
Cu:0.1〜1.0%
Ni:0.1〜2.0%
Cr:0.05〜1.0%
Ti:0.005〜0.05%
の1種または2種以上含有することを特徴とする1記載の低降伏比高張力鋼板。
3.さらに、鋼組成が質量%で、
Ca:0.0005〜0.0050%
REM:0.0005〜0.0050%
の1種または2種含有することを特徴とする1または2記載の低降伏比高張力鋼板。
4.1乃至3の何れか一つに記載の組成を有する鋼片を1000〜1250℃に加熱後、圧延終了温度が850〜950℃となるように熱間圧延を行い、圧延終了温度からの温度低下量が40℃以下の温度域から平均冷却速度が5℃/s以上で冷却停止温度を550〜650℃とする冷却を開始し、冷却後、4〜60秒間空冷を行い、その後、再び420〜500℃まで平均冷却速度15℃/s以上の冷却速度で冷却することを特徴とする板厚40mm以下の低降伏比高張力鋼板の製造方法。
The above problem can be achieved by the following means.
1. % By mass
C: 0.05 to 0.18%
Si: 0.05 to 0.50%
Mn: 0.6 to 2.0%
P: 0.020% or less S: 0.005% or less Al: 0.1% or less, with the balance being Fe and inevitable impurities, and the carbon equivalent Ceq represented by the formula (1) is 0.30 A low-yield-ratio high-tensile steel plate having a thickness of 40 mm or less and having a microstructure of 0.45% and a ferrite having an average crystal grain size of 10 μm or less and a volume fraction of 20% or more, and the balance is bainite.
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Here, C, Si, Mn, Ni, Cr, Mo, and V are the contents (mass%) of each element.
2. Furthermore, the steel composition is mass%,
Cu: 0.1 to 1.0%
Ni: 0.1 to 2.0%
Cr: 0.05-1.0%
Ti: 0.005 to 0.05%
The low yield ratio high-tensile steel sheet according to 1, characterized by containing one or more of the above.
3. Furthermore, the steel composition is mass%,
Ca: 0.0005 to 0.0050%
REM: 0.0005 to 0.0050%
One or low yield ratio high-tensile steel plate of 1 or 2, wherein a has Tane含 of.
After heating the steel slab which has a composition as described in any one of 4.1 thru | or 3 to 1000-1250 degreeC, it hot-rolls so that rolling completion temperature may be 850-950 degreeC, From the temperature range where the amount of temperature decrease is 40 ° C. or less, the cooling is started at an average cooling rate of 5 ° C./s or more and the cooling stop temperature is 550 to 650 ° C. thickness 40mm following method for producing a low yield ratio high-strength steel sheet, characterized by cooling at an average cooling rate of 15 ° C. / s or more cooling rate at 420 to 500 ° C. or.

本発明によれば、低コストで生産性良く、低降伏比高張力鋼板を製造することが可能で、産業上極めて有用である。   According to the present invention, it is possible to produce a low-yield ratio high-tensile steel sheet with low cost and good productivity, which is extremely useful industrially.

[化学成分]以下の説明において%は質量%とする。
C:0.05〜0.18%
Cは、鋼の強度を増加させる元素であり、耐震性を必要とする建築用鋼材として一般的に使用される鋼板の引張強度である490MPa以上を確保するためには、0.05%以上が必要である。しかし,過剰に添加すると低温溶接割れ感受性を増大させるため,0.05〜0.18%の範囲に限定する。
[Chemical component] In the following description, "%" means "mass%".
C: 0.05 to 0.18%
C is an element that increases the strength of steel, and in order to secure 490 MPa or more, which is the tensile strength of a steel plate generally used as a construction steel material that requires earthquake resistance, 0.05% or more is required. is necessary. However, if added in excess, the low-temperature weld cracking sensitivity is increased, so the content is limited to 0.05 to 0.18%.

Si:0.05〜0.50%,
Siは、脱酸元素として作用し、製鋼上0.05%以上の含有が必要であるが、0.50%を超えて含有すると母材靭性が低下するため,0.05〜0.50%の範囲に限定する。
Si: 0.05 to 0.50%,
Si acts as a deoxidizing element and needs to be contained in an amount of 0.05% or more in terms of steelmaking, but if it exceeds 0.50%, the base material toughness decreases, so 0.05 to 0.50% Limited to the range.

Mn:0.6〜2.0%,
Mnは鋼の焼入れ性を増加し強度を向上させる元素であり、この効果を確保するために0.6%以上の含有を必要とする。一方,2.0%を超えての含有は、溶接性を著しく劣化させるため,0.6〜2.0%の範囲に限定する。
Mn: 0.6 to 2.0%,
Mn is an element that increases the hardenability of the steel and improves the strength. In order to secure this effect, the Mn content needs to be 0.6% or more. On the other hand, if the content exceeds 2.0%, weldability is remarkably deteriorated, so the content is limited to the range of 0.6 to 2.0%.

P:0.020%以下
Pは、不純物として鋼中に不可避的に含有される元素であり,鋼の靭性を劣化させるためにできるだけ低減することが望ましい。特に、0.020%を越えての含有は、著しく靭性を劣化させるため、0.020%以下に限定する。
P: 0.020% or less P is an element inevitably contained in steel as an impurity, and is desirably reduced as much as possible in order to deteriorate the toughness of the steel. In particular, if the content exceeds 0.020%, the toughness is remarkably deteriorated, so the content is limited to 0.020% or less.

S:0.005%以下
Sは、不純物として鋼中に不可避的に含有される元素であり、鋼の靭性や引張試験における絞りを劣化させるためできるだけ低減することが望ましい。特に、0.005%を越えての含有は、上記特性を著しく劣化するため、0.005%以下に限定する。
S: 0.005% or less S is an element inevitably contained in steel as an impurity, and is desirably reduced as much as possible in order to deteriorate the toughness of steel and the drawing in a tensile test. In particular, if the content exceeds 0.005%, the above properties are remarkably deteriorated, so the content is limited to 0.005% or less.

Al:0.1%以下
Alは,脱酸材として作用し,溶鋼の脱酸プロセス上もっとも汎用的に使われる。0.1%を越えての含有は、粗大な酸化物を形成して、母材の延性を著しく劣化させるため、0.1%以下に限定する。
Al: 0.1% or less Al acts as a deoxidizer and is most commonly used in the deoxidation process of molten steel. If the content exceeds 0.1%, a coarse oxide is formed and the ductility of the base material is remarkably deteriorated, so the content is limited to 0.1% or less.

本発明の基本成分は以上であるが、更に特性を向上させる場合、Cu,Ni、Cr,Ti、Ca、REMの一種または二種以上を含有させることが可能である。   The basic components of the present invention are as described above, but when further improving the characteristics, it is possible to contain one or more of Cu, Ni, Cr, Ti, Ca, and REM.

Cu:0.1〜1.0%
Cuは、靭性を劣化させずに強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.1%以上の添加が必要である。しかし、1.0%を超えて添加すると、熱間圧延時に表面疵が多発するため、添加する場合は、0.1〜1.0%とする。
Cu: 0.1 to 1.0%
Cu is an element effective for increasing the strength without deteriorating the toughness, and 0.1% or more of addition is necessary to exert the effect. However, if over 1.0% is added, surface flaws occur frequently during hot rolling, so when added, the content is made 0.1 to 1.0%.

Ni:0.1〜2.0%
Niは、靭性を劣化させずに強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.1%以上の添加が必要である。しかし、2.0%を超えて添加すると、合金コストが上昇するため、添加する場合は、0.1〜2.0%とする。
Ni: 0.1 to 2.0%
Ni is an element effective for increasing the strength without deteriorating the toughness, and 0.1% or more of addition is necessary to exert the effect. However, if added over 2.0%, the alloy cost increases, so when added, the content is made 0.1-2.0%.

Cr:0.05〜1.0%
Crは、合金コストを著しく上昇させることなく強度を上昇させるのに有効な元素であり、その効果を発揮するためには0.05%以上の添加が必要である。しかし、1.0%を超えて添加すると、溶接性が劣化するため、添加する場合は0.05〜1.0%とする。
Cr: 0.05-1.0%
Cr is an element effective for increasing the strength without significantly increasing the alloy cost, and 0.05% or more of addition is necessary to exert the effect. However, if adding over 1.0%, weldability deteriorates, so when added, the content is made 0.05 to 1.0%.

Ti:0.005〜0.05%
Tiは、母材および溶接継手部の靭性向上に有効な元素であり、その効果を発揮するためには0.005%以上必要である。しかし、0.05%を超えて添加すると、溶接性が劣化するため、添加する場合は0.005〜0.05%とする。
Ti: 0.005 to 0.05%
Ti is an element effective for improving the toughness of the base material and the welded joint, and 0.005% or more is necessary to exert the effect. However, if added over 0.05%, weldability deteriorates, so when added, the content is made 0.005 to 0.05%.

Ca:0.0005〜0.0050%、REM:0.0005〜0.0050%
CaやREMは溶接熱影響部の特性向上に有効な元素であり、添加する場合はCa:0.0005〜0.0050%、REM:0.0005〜0.0050%とする。
Ca: 0.0005 to 0.0050%, REM: 0.0005 to 0.0050%
Ca and REM are effective elements for improving the characteristics of the weld heat affected zone, and when added, Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0050%.

Ceq:0.30〜0.45%
Ceq(=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14、各元素は含有量(質量%)で、含まない元素は0とする)は、溶接構造物として必要不可欠である溶接継手の強度を確保するために0.30%以上必要である。
Ceq: 0.30 to 0.45%
Ceq (= C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14, each element is a content (mass%), and an element not included is 0) is a welded joint strength that is indispensable as a welded structure In order to ensure this, 0.30% or more is necessary.

しかし、0.45%超えとすると、溶接性を劣化させる。そのため、Ceqは0.30〜0.45%とする。なお、溶接継手部の強度、靭性などの観点から、Ceqは0.35〜0.43%とすることが望ましい。   However, if it exceeds 0.45%, the weldability is deteriorated. Therefore, Ceq is set to 0.30 to 0.45%. In addition, it is desirable that Ceq is 0.35 to 0.43% from the viewpoint of the strength and toughness of the weld joint.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、Nb:0.005%以下、Mo:0.02%以下、V:0.005%以下、W:0.02%以下、O:0.040%以下、Pb:0.01%以下、Sn:0.01%以下、Sb:0.01%以下を許容できる。なお、不可避的不純物は少ないほど望ましい。   The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include Nb: 0.005% or less, Mo: 0.02% or less, V: 0.005% or less, W: 0.02% or less, O: 0.040% or less, Pb: 0.01% or less, Sn: 0.01% or less, and Sb: 0.01% or less are acceptable. It should be noted that the smaller the inevitable impurities, the better.

[ミクロ組織]
本発明に係る鋼は、平均結晶粒径10μm以下のフェライトを体積分率20%以上、残部がベイナイトを呈するミクロ組織とする。
[Microstructure]
In the steel according to the present invention, ferrite having an average crystal grain size of 10 μm or less has a microstructure in which the volume fraction is 20% or more and the balance exhibits bainite.

降伏比80%以下の低降伏比とするため、フェライトの体積分率を20%以上とする。しかし、フェライトの体積分率が80%超えとなると引張強さが低下するようになるので、80%以下とすることが好ましい。建築用鋼としての強度を確保するため残部はベイナイト組織とする。   In order to obtain a low yield ratio of 80% or less, the volume fraction of ferrite is set to 20% or more. However, when the ferrite volume fraction exceeds 80%, the tensile strength decreases, so 80% or less is preferable. The balance is a bainite structure in order to ensure the strength of the steel for construction.

また、建築用鋼としての靭性を確保するため、フェライトの平均結晶粒径は10μm以下とする。   Moreover, in order to ensure the toughness as a steel for construction, the average crystal grain size of ferrite is 10 μm or less.

製造条件は、低降伏比と高靭性を両立させる適切なミクロ組織を得るための熱履歴が付与されるように規定する。   The manufacturing conditions are defined so that a thermal history for obtaining an appropriate microstructure that achieves both a low yield ratio and high toughness is provided.

まず、熱間圧延により適切な等軸サイズのオーステナイト粒を得て、当該オーステナイト粒の成長を抑制するために圧延直後に一次冷却し、過冷オーステナイト状態とする。   First, austenite grains having an appropriate equiaxed size are obtained by hot rolling, and in order to suppress the growth of the austenite grains, primary cooling is performed immediately after rolling to obtain a supercooled austenite state.

次に、過冷オーステナイト状態から、適切な時間を空冷することにより、適切な量のフェライトを生成させ、そのフェライトを成長させないように、二次冷却を実施することにより目的とする微細なフェライトを含む組織を得る。それぞれの条件の範囲は下記のとおりである。   Next, from the supercooled austenite state, air is cooled for an appropriate time to generate an appropriate amount of ferrite, and secondary cooling is performed so that the ferrite does not grow. Get the containing tissue. The range of each condition is as follows.

加熱温度:1000〜1250℃
加熱温度は、1000℃未満では変形抵抗が大きくなり、圧延装置に負荷をかける。また、1250℃超えでは、熱間加工時に表面疵が多発する。そのため、加熱温度は1000〜1250℃とする。
Heating temperature: 1000-1250 ° C
When the heating temperature is less than 1000 ° C., the deformation resistance increases, and a load is applied to the rolling apparatus. When the temperature exceeds 1250 ° C., surface flaws occur frequently during hot working. Therefore, heating temperature shall be 1000-1250 degreeC.

圧延終了温度:850〜950℃
圧延終了温度は、850℃未満では未再結晶温度域での圧延となり等軸なオーステナイト粒が得られず高靭性が得られない。また、950℃超えでは粗大なオーステナイト粒となり、高靭性が得られない。そのため、圧延終了温度は、850〜950℃とする。
Rolling end temperature: 850 to 950 ° C
When the rolling end temperature is less than 850 ° C., rolling is performed in a non-recrystallization temperature range, and equiaxed austenite grains cannot be obtained, and high toughness cannot be obtained. Moreover, if it exceeds 950 degreeC, it will become a coarse austenite grain and high toughness will not be acquired. Therefore, rolling end temperature shall be 850-950 degreeC.

図1に圧延終了温度と靭性(延性ー脆性破面遷移温度)の関係を示す。0.12%C−0.28%Si−1.53%Mn−0.008%P−0.002%S−0.035%Al−0.008%Tiを含み、Ceq0.40%の組成の、厚さ120mmの鋼片を1150℃に加熱した。   FIG. 1 shows the relationship between rolling end temperature and toughness (ductility-brittle fracture surface transition temperature). 0.12% C-0.28% Si-1.53% Mn-0.008% P-0.002% S-0.035% Al-0.008% Ti, Ceq 0.40% composition A steel piece having a thickness of 120 mm was heated to 1150 ° C.

圧延終了温度を800〜1000℃とし、板厚20mmまで圧延後、圧延終了温度から20℃温度低下した後に600℃まで平均冷却速度20℃/sで冷却し、20秒空冷後、450℃まで再度40℃/sの平均冷却速度で冷却した。   The rolling end temperature is set to 800 to 1000 ° C., rolled to a plate thickness of 20 mm, cooled to an average cooling rate of 20 ° C./s to 600 ° C. after being lowered by 20 ° C. from the rolling end temperature, air-cooled for 20 seconds, and then again to 450 ° C. Cooling was performed at an average cooling rate of 40 ° C./s.

得られた試験材についてシャルピー衝撃試験を実施した。圧延終了温度が850℃から950℃の範囲で延性−脆性遷移温度が−60℃以下の高靭性が得られていることが認められる。   A Charpy impact test was performed on the obtained test material. It can be seen that high toughness with a ductile-brittle transition temperature of −60 ° C. or lower is obtained when the rolling end temperature is in the range of 850 ° C. to 950 ° C.

冷却開始温度:圧延終了温度からの温度低下量が40℃以下の温度域
冷却開始温度は圧延終了温度からの温度低下量が40℃以下の温度域とする。圧延終了温度から40℃を超えて低下すると、オーステナイト粒が成長し、10μm以下の微細なフェライト粒組織を得られないため、温度低下量が40℃以下の温度域とする。冷却開始温度を上記の温度域とする冷却を一次冷却とする。
Cooling start temperature: Temperature range where the temperature drop from the rolling end temperature is 40 ° C. or less The cooling start temperature is the temperature range where the temperature drop from the rolling end temperature is 40 ° C. or less. When the temperature falls below 40 ° C. from the rolling end temperature, austenite grains grow, and a fine ferrite grain structure of 10 μm or less cannot be obtained. Therefore, the temperature drop amount is set to a temperature range of 40 ° C. or less. Cooling in which the cooling start temperature is the above temperature range is referred to as primary cooling.

図2に圧延終了温度から冷却開始温度までの温度低下量と靭性(延性−脆性破面遷移温度)の関係を示す。0.12%C−0.28%Si−1.53%Mn−0.008%P−0.002%S−0.035%Al−0.008%Tiを含み、Ceq0.40%である厚さ120mmの鋼片を1150℃に加熱した。   FIG. 2 shows the relationship between the temperature drop from the rolling end temperature to the cooling start temperature and toughness (ductility-brittle fracture surface transition temperature). 0.12% C-0.28% Si-1.53% Mn-0.008% P-0.002% S-0.035% Al-0.008% Ti and Ceq 0.40% A steel piece having a thickness of 120 mm was heated to 1150 ° C.

その後、圧延終了温度を920℃とし、板厚20mmまで圧延後、圧延終了温度から10〜80℃温度低下した後に600℃まで平均冷却速度20℃/sで冷却し、20秒空冷後、450℃まで再度40℃/sの平均冷却速度で冷却した。   Thereafter, the rolling end temperature was set to 920 ° C., rolled to a plate thickness of 20 mm, cooled to an average cooling rate of 20 ° C./s to 600 ° C. after being lowered by 10 to 80 ° C. from the rolling end temperature, air cooled for 20 seconds, and then 450 ° C. The sample was again cooled at an average cooling rate of 40 ° C./s.

得られた試験材についてシャルピー衝撃試験を実施した。温度低下量が40℃以下の場合に延性−脆性遷移温度が−60℃以下の高靭性が得られていることが認められる。   A Charpy impact test was performed on the obtained test material. It is recognized that high toughness with a ductile-brittle transition temperature of −60 ° C. or lower is obtained when the temperature drop is 40 ° C. or lower.

冷却停止温度:550〜650℃
冷却停止温度(一次冷却停止温度)が550℃未満の場合、ベイナイト変態が開始するため微細なフェライト組織が得られない。また650℃超えでは、オーステナイトの過冷度が高すぎるため、短時間ではフェライト変態が起こらず、フェライトが生成したとしても粗大化するため靭性が劣化する。したがって、(一次)冷却停止温度を550〜650℃とする。
Cooling stop temperature: 550-650 ° C
When the cooling stop temperature (primary cooling stop temperature) is less than 550 ° C., a fine ferrite structure cannot be obtained because bainite transformation starts. If the temperature exceeds 650 ° C., the degree of supercooling of austenite is too high, so that ferrite transformation does not occur in a short time, and even if ferrite is generated, it is coarsened and the toughness deteriorates. Therefore, the (primary) cooling stop temperature is set to 550 to 650 ° C.

図3に一次冷却停止温度と靭性の関係を示す。0.12%C−0.28%Si−1.53%Mn−0.008%P−0.002%S−0.035%Al−0.008%Tiを含み、Ceq0.40%である厚さ120mmの鋼片を1150℃に加熱した。   FIG. 3 shows the relationship between the primary cooling stop temperature and toughness. 0.12% C-0.28% Si-1.53% Mn-0.008% P-0.002% S-0.035% Al-0.008% Ti and Ceq 0.40% A steel piece having a thickness of 120 mm was heated to 1150 ° C.

その後、圧延終了温度を920℃とし、板厚20mmまで圧延後、圧延終了温度から20℃温度低下した後に700〜500℃まで平均冷却速度20℃/sで冷却し、20秒空冷後、420℃まで再度40℃/sの平均冷却速度で冷却した。   Thereafter, the rolling end temperature was set to 920 ° C., rolled to a plate thickness of 20 mm, cooled to 700 to 500 ° C. at an average cooling rate of 20 ° C./s after decreasing to 20 ° C. from the rolling end temperature, air cooled for 20 seconds, and then 420 ° C. The sample was again cooled at an average cooling rate of 40 ° C./s.

得られた試験材についてシャルピー衝撃試験を実施した。一次冷却停止温度が550℃から650℃で延性−脆性遷移温度が−60℃以下の高靭性が得られていることが認められる。   A Charpy impact test was performed on the obtained test material. It can be seen that high toughness with a primary cooling stop temperature of 550 ° C. to 650 ° C. and a ductile-brittle transition temperature of −60 ° C. or less is obtained.

一次冷却の冷却速度:5℃/s以上
一次冷却は、過冷オーステナイトの状態を保持するために必要であり、冷却中のフェライト生成を回避すればよい。そのためには平均冷却速度で5℃/s以上の冷却速度が必要である。
Cooling rate of primary cooling: 5 ° C./s or more Primary cooling is necessary to maintain the state of supercooled austenite, and it is sufficient to avoid the formation of ferrite during cooling. For this purpose, an average cooling rate of 5 ° C./s or higher is required.

空冷時間:4〜60秒
板厚中心部の温度が550〜650℃になるまで冷却することにより、過冷却オーステナイトの状態になり、この状態から空冷することによりフェライト生成を促進することが可能となる。
Air cooling time: 4 to 60 seconds By cooling until the temperature at the center of the plate thickness reaches 550 to 650 ° C., it becomes a supercooled austenite state, and it is possible to promote ferrite formation by air cooling from this state. Become.

空冷時間を4秒以上とすることによりフェライト分率(体積分率)が20%以上となり低降伏比が得られる。一方、60秒を超えて空冷するとフェライト分率が80%超えとなり引張強さが低下し、さらに、生成したフェライト粒が粗大化するため靭性が劣化する。そのため空冷時間は4〜60秒とする。   By setting the air cooling time to 4 seconds or more, the ferrite fraction (volume fraction) becomes 20% or more, and a low yield ratio is obtained. On the other hand, if it is air-cooled for more than 60 seconds, the ferrite fraction exceeds 80% and the tensile strength is reduced, and the toughness deteriorates because the generated ferrite grains are coarsened. Therefore, the air cooling time is 4 to 60 seconds.

図4に空冷時間とフェライト分率(体積分率)、降伏比、靭性(延性ー脆性破面遷移温度)の関係を示す。0.12%C−0.28%Si−1.53%Mn−0.008%P−0.002%S−0.035%Al−0.008%Tiを含み、Ceq0.40%である厚さ120mmの鋼片を1150℃に加熱した。   FIG. 4 shows the relationship between the air cooling time, ferrite fraction (volume fraction), yield ratio, and toughness (ductility-brittle fracture surface transition temperature). 0.12% C-0.28% Si-1.53% Mn-0.008% P-0.002% S-0.035% Al-0.008% Ti and Ceq 0.40% A steel piece having a thickness of 120 mm was heated to 1150 ° C.

その後、圧延終了温度を920℃とし、板厚20mmまで圧延後、圧延終了温度から20℃温度低下した後に640℃まで平均冷却速度20℃/sで冷却し、1〜100秒空冷後、450℃まで再度40℃/sの冷却速度で冷却(二次冷却)した。   Thereafter, the rolling end temperature was set to 920 ° C., rolled to a plate thickness of 20 mm, cooled to an average cooling rate of 20 ° C./s to 640 ° C. after decreasing the temperature by 20 ° C. from the rolling end temperature, air cooled for 1 to 100 seconds, and then 450 ° C. It was cooled again (secondary cooling) at a cooling rate of 40 ° C./s.

得られた試験材について、引張試験、シャルピー衝撃試験、組織観察を実施した。
空冷時間が4秒未満では、フェライト分率が20%未満であり、さらにYRが80%超えと高い。また、空冷時間が60秒超えでは、靭性が劣化する。4〜60秒で低降伏比と高靭性が両立していることが確認できる。尚、フェライト分率は体積分率とする。
The obtained test material was subjected to a tensile test, a Charpy impact test, and a structure observation.
When the air cooling time is less than 4 seconds, the ferrite fraction is less than 20% and the YR is as high as 80%. Further, when the air cooling time exceeds 60 seconds, the toughness deteriorates. It can be confirmed that the low yield ratio and the high toughness are compatible in 4 to 60 seconds. The ferrite fraction is the volume fraction.

冷却停止温度:420℃以上500℃以下
二次冷却の冷却停止温度が500℃超えの場合、空冷中に生成したフェライトが成長し、
粗大化するため靭性が劣化する。したがって420℃以上500℃以下まで冷却する必要がある。
Cooling stop temperature: 420 ° C. or more and 500 ° C. or less When the cooling stop temperature of the secondary cooling exceeds 500 ° C., the ferrite generated during air cooling grows,
The toughness deteriorates due to coarsening. Therefore, it is necessary to cool to 420 ° C. or more and 500 ° C. or less.

二次冷却時の冷却速度:15℃/s以上
二次冷却を実施するに当たっては、空冷中に生成したフェライトの成長の抑制と、更に鋼板の歪等も考慮する必要がある。均一冷却をするためには、強冷却のほうが望ましく、平均冷却速度を15℃/s以上とする。
Cooling rate at the time of secondary cooling: 15 ° C./s or more When performing secondary cooling, it is necessary to consider the suppression of the growth of ferrite generated during air cooling and the distortion of the steel sheet. In order to achieve uniform cooling, strong cooling is desirable, and the average cooling rate is set to 15 ° C./s or more.

なお、上記のように製造した鋼板に対して、焼戻し熱処理を実施することも可能である。その場合は、焼戻し温度:200℃〜Acとする。 In addition, it is also possible to implement tempering heat processing with respect to the steel plate manufactured as mentioned above. In that case, the tempering temperature to 200 ° C. to Ac 1.

焼戻し熱処理は、水冷による鋼板内の残留応力を軽減するために実施する。焼戻し温度が200℃を下回る温度では、残留応力軽減効果が得られず、Ac以上では強度などの材質が著しく変化する。そのため、焼戻し熱処理を実施する場合には、その温度は200℃〜Acとすることが好ましい。 The tempering heat treatment is performed to reduce residual stress in the steel sheet due to water cooling. When the tempering temperature is lower than 200 ° C., the residual stress reduction effect cannot be obtained, and when the temperature is Ac 1 or higher, the material such as strength changes remarkably. Therefore, when carrying out the tempering heat treatment is preferably the temperature is a 200 ° C. to Ac 1.

表1に示した化学成分を有する鋼から表2に示した条件で鋼板を製造した。表2に機械的性質も合わせて示す。引張試験は、JIS Z2201 4号試験片で実施した。試験片採取位置は1/4t部とした。   Steel plates were produced under the conditions shown in Table 2 from steels having the chemical components shown in Table 1. Table 2 also shows the mechanical properties. The tensile test was carried out with JIS Z2201 No. 4 test piece. The specimen collection position was set to 1/4 t.

また、シャルピ−衝撃試験は、JIS Z2204 2mmVノッチ試験片で実施した。試験片採取位置は1/4t部とした。   Further, the Charpy impact test was carried out using a JIS Z2204 2 mmV notch test piece. The specimen collection position was set to 1/4 t.

また、得られた鋼板の1/4t部のミクロ組織を観察し、フェライト体積分率およびフェライトの平均粒径を測定した。フェライト体積分率は、光学顕微鏡により400倍で観察した5視野の面積分率の平均値を求め、この面積分率から体積分率を求めた。フェライト粒径は観察した視野の中のフェライト200個程度の平均円相当径を画像解析により測定した。   Moreover, the microstructure of the 1/4 t part of the obtained steel plate was observed, and the ferrite volume fraction and the average particle diameter of the ferrite were measured. For the ferrite volume fraction, the average value of the area fractions of five fields of view observed at 400 times with an optical microscope was obtained, and the volume fraction was obtained from this area fraction. The ferrite grain size was measured by image analysis of an average equivalent circle diameter of about 200 ferrites in the observed visual field.

本発明鋼(No.1,4,7,10)は、YRが80%以下であり、かつ、シャルピ−衝撃試験における脆性−延性破面遷移温度が−60℃以下と高靭性であることが確認された。   The steels of the present invention (No. 1, 4, 7, 10) have a high toughness with a YR of 80% or less and a brittle-ductile fracture surface transition temperature in a Charpy impact test of −60 ° C. or less. confirmed.

一方、比較鋼(No.2,3,5,6,8,9,11,12)は、いずれかの製造条件が本発明範囲外であるため、降伏比が80%を超えているか、または、遷移温度が−40℃以上であった。   On the other hand, the comparative steel (No. 2, 3, 5, 6, 8, 9, 11, 12) has a yield ratio exceeding 80% because any manufacturing condition is outside the scope of the present invention, or The transition temperature was −40 ° C. or higher.

Figure 0005369462
Figure 0005369462

Figure 0005369462
Figure 0005369462

圧延終了温度と靭性(延性−脆性破面遷移温度)の関係を示す図。The figure which shows the relationship between rolling completion temperature and toughness (ductility-brittle fracture surface transition temperature). 圧延終了温度から冷却開始温度までの温度低下量と靭性(延性−脆性破面遷移温度)の関係を示す図。The figure which shows the relationship between the temperature fall amount from rolling completion temperature to cooling start temperature, and toughness (ductility-brittle fracture surface transition temperature). 一次冷却停止温度と靭性(延性−脆性破面遷移温度)の関係を示す図。The figure which shows the relationship between primary cooling stop temperature and toughness (ductility-brittle fracture surface transition temperature). 空冷時間とフェライト分率、降伏比、靭性(延性−脆性破面遷移温度)の関係を示す図。The figure which shows the relationship between air cooling time, a ferrite fraction, a yield ratio, and toughness (ductility-brittle fracture surface transition temperature).

Claims (4)

質量%で、
C:0.05〜0.18%
Si:0.05〜0.50%
Mn:0.6〜2.0%
P:0.020%以下
S:0.005%以下
Al:0.1%以下
を含有し、残部がFeおよび不可避的不純物からなり、式(1)で示される炭素当量Ceqが0.30〜0.45%の組成と、平均結晶粒径10μm以下のフェライトを体積分率20%以上、残部がベイナイトを呈するミクロ組織からなる板厚40mm以下の低降伏比高張力鋼板。
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 (1)
ここで,C,Si,Mn,Ni,Cr,Mo,Vは各元素の含有量(質量%)。
% By mass
C: 0.05 to 0.18%
Si: 0.05 to 0.50%
Mn: 0.6 to 2.0%
P: 0.020% or less S: 0.005% or less Al: 0.1% or less, with the balance being Fe and inevitable impurities, and the carbon equivalent Ceq represented by the formula (1) is 0.30 A low-yield ratio high-tensile steel sheet having a composition of 0.45%, a ferrite having an average crystal grain size of 10 μm or less, a volume fraction of 20% or more, and a balance of bainite and a microstructure having a thickness of 40 mm or less.
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
Here, C, Si, Mn, Ni, Cr, Mo, and V are the contents (mass%) of each element.
さらに、鋼組成が質量%で、
Cu:0.1〜1.0%
Ni:0.1〜2.0%
Cr:0.05〜1.0%
Ti:0.005〜0.05%
の1種または2種以上含有することを特徴とする請求項1記載の低降伏比高張力鋼板。
Furthermore, the steel composition is mass%,
Cu: 0.1 to 1.0%
Ni: 0.1 to 2.0%
Cr: 0.05-1.0%
Ti: 0.005 to 0.05%
The low yield ratio high-tensile steel sheet according to claim 1, wherein one or more of these are contained.
さらに、鋼組成が質量%で、
Ca:0.0005〜0.0050%
REM:0.0005〜0.0050%
の1種または2種含有することを特徴とする請求項1または2記載の低降伏比高張力鋼板。
Furthermore, the steel composition is mass%,
Ca: 0.0005 to 0.0050%
REM: 0.0005 to 0.0050%
One or low yield ratio high-strength steel sheet according to claim 1 or 2, wherein the having Tane含 of.
請求項1乃至3の何れか一つに記載の組成を有する鋼片を1000〜1250℃に加熱後、圧延終了温度が850〜950℃となるように熱間圧延を行い、圧延終了温度からの温度低下量が40℃以下の温度域から平均冷却速度が5℃/s以上で冷却停止温度を550〜650℃とする冷却を開始し、冷却後、4〜60秒間空冷を行い、その後、再び420〜500℃まで平均冷却速度15℃/s以上の冷却速度で冷却することを特徴とする板厚40mm以下の低降伏比高張力鋼板の製造方法。 After the steel slab having the composition according to any one of claims 1 to 3 is heated to 1000 to 1250 ° C, hot rolling is performed so that the rolling end temperature is 850 to 950 ° C, and from the rolling end temperature. From the temperature range where the amount of temperature decrease is 40 ° C. or less, the average cooling rate is 5 ° C./s or more and the cooling stop temperature is set to 550 to 650 ° C. After cooling, air cooling is performed for 4 to 60 seconds, and then again thickness 40mm following method for producing a low yield ratio high-strength steel sheet, characterized by cooling at an average cooling rate of 15 ° C. / s or more cooling rate at 420 to 500 ° C. or.
JP2008072988A 2008-03-21 2008-03-21 Low yield ratio high strength steel sheet and method for producing the same Active JP5369462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072988A JP5369462B2 (en) 2008-03-21 2008-03-21 Low yield ratio high strength steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072988A JP5369462B2 (en) 2008-03-21 2008-03-21 Low yield ratio high strength steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009228040A JP2009228040A (en) 2009-10-08
JP5369462B2 true JP5369462B2 (en) 2013-12-18

Family

ID=41243773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072988A Active JP5369462B2 (en) 2008-03-21 2008-03-21 Low yield ratio high strength steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5369462B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217234B2 (en) * 2013-08-21 2017-10-25 新日鐵住金株式会社 Thick steel plate and manufacturing method thereof
KR102255822B1 (en) * 2019-12-06 2021-05-25 주식회사 포스코 Normalling heat treatable steel sheet having godd low impact toughness and method for the same
CN111647804B (en) * 2020-05-12 2021-12-17 首钢集团有限公司 Bridge steel and smelting method thereof
CN113528962B (en) * 2021-07-15 2022-06-21 江苏省沙钢钢铁研究院有限公司 Corrosion-resistant steel bar and production method thereof
CN117127102B (en) * 2023-08-01 2024-04-09 宁波日月精华精密制造有限公司 Low-carbon equivalent high-strength steel casting for offshore floating platform and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253331A (en) * 2002-03-05 2003-09-10 Nippon Steel Corp Method for manufacturing high-tensile-strength steel with high toughness and high ductility
JP4981262B2 (en) * 2005-03-17 2012-07-18 Jfeスチール株式会社 Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP5045074B2 (en) * 2005-11-30 2012-10-10 Jfeスチール株式会社 High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP2007197823A (en) * 2005-12-28 2007-08-09 Jfe Steel Kk LOW YIELD RATIO OF 550 MPa CLASS HIGH-TENSILE STEEL PLATE, AND ITS MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2009228040A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5176885B2 (en) Steel material and manufacturing method thereof
JP5029748B2 (en) High strength hot rolled steel sheet with excellent toughness and method for producing the same
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP6468408B2 (en) H-section steel and its manufacturing method
JP6763141B2 (en) Manufacturing method of steel plate for LPG tank
JP6809524B2 (en) Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method
JP6988836B2 (en) Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method
JP2018053281A (en) Rectangular steel tube
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
KR20210032497A (en) Hot rolled steel sheet and its manufacturing method
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP2011106006A (en) Steel and method for producing rolled steel
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP5742750B2 (en) Thick steel plate and manufacturing method thereof
JP5369462B2 (en) Low yield ratio high strength steel sheet and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP2010174357A (en) Thick steel plate and method for producing the same
JP2012041603A (en) Rolled raw steel and method for manufacturing rolled steel using the same
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP2008169440A (en) Thin-walled low-yield ratio high-tensile-strength steel sheet and manufacturing method therefor
JP5477457B2 (en) High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP2023031269A (en) Ultra-low yield ratio high tensile strength thick steel sheet, and method for producing the same
JP7398970B2 (en) Thick steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250