[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5368744B2 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP5368744B2
JP5368744B2 JP2008196693A JP2008196693A JP5368744B2 JP 5368744 B2 JP5368744 B2 JP 5368744B2 JP 2008196693 A JP2008196693 A JP 2008196693A JP 2008196693 A JP2008196693 A JP 2008196693A JP 5368744 B2 JP5368744 B2 JP 5368744B2
Authority
JP
Japan
Prior art keywords
storage device
titanium dioxide
negative electrode
electrode material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008196693A
Other languages
Japanese (ja)
Other versions
JP2010034412A (en
Inventor
昌利 本間
和良 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2008196693A priority Critical patent/JP5368744B2/en
Publication of JP2010034412A publication Critical patent/JP2010034412A/en
Application granted granted Critical
Publication of JP5368744B2 publication Critical patent/JP5368744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy storage device having a large electric capacity. <P>SOLUTION: The energy storage device including a positive electrode material containing graphite, a negative electrode material containing titanium dioxide and an electrolyte. The titanium dioxide is chip-like titanium oxide having a thickness range of 0.1-5 &mu;m. The energy storage device has a large electric capacity and an excellent breakdown voltage property, and further the titanium oxide is used for the negative electrode material, so that the energy storage device is provided at a low cost. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、電気容量が大きな蓄電デバイスに関するものである。   The present invention relates to an electricity storage device having a large electric capacity.

正極、負極および非水電解液を主たる構成要素とする蓄電デバイスは、これまでに種々の構成が提案され、モバイル機器などの電源や回生用蓄電システム、パーソナルコンピューターのバックアップ電源などに実用化されてきている。中でも、正極材料に黒鉛を用い、負極材料に二酸化チタン等の金属酸化物を用いた蓄電デバイスは、電気容量が大きく、サイクル特性が優れたものである(特許文献1参照)。   Various configurations have been proposed so far for power storage devices mainly composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte, and have been put into practical use as power sources for mobile devices, power storage systems for regeneration, backup power sources for personal computers, etc. ing. Among them, an electricity storage device using graphite as a positive electrode material and a metal oxide such as titanium dioxide as a negative electrode material has a large electric capacity and excellent cycle characteristics (see Patent Document 1).

特開2008−124012号公報JP 2008-1224012 A

特許文献1に記載の蓄電デバイスにおいて、高電圧で充電してもサイクル特性が低下し難い優れた耐電圧性を付与する。   In the electric storage device described in Patent Document 1, excellent voltage resistance is imparted so that the cycle characteristics hardly deteriorate even when charged at a high voltage.

本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、前記蓄電デバイスにおいて、二酸化チタンに特定の厚さを有する薄片状二酸化チタンを用いることによって、耐電圧性を改良できることを見出し、本発明を完成させた。   As a result of intensive research to solve the above problems, the present inventors have found that the withstand voltage can be improved by using flaky titanium dioxide having a specific thickness for titanium dioxide in the electricity storage device. The headline and the present invention were completed.

即ち、本発明は、黒鉛を含む正極材料、二酸化チタンを含む負極材料及び電解液を含む蓄電デバイスであって、前記二酸化チタンが、0.1μmより大きく5μm以下の範囲の厚さを有する薄片状二酸化チタンであることを特徴とする蓄電デバイスである。   That is, the present invention is an electricity storage device including a positive electrode material containing graphite, a negative electrode material containing titanium dioxide, and an electrolyte solution, wherein the titanium dioxide has a thickness in the range of more than 0.1 μm and not more than 5 μm. It is an electrical storage device characterized by being titanium dioxide.

本発明の蓄電デバイスは、電気容量が大きく、耐電圧性が優れ、しかも二酸化チタンを負極材料に用いているため、低コストである。   The electricity storage device of the present invention has a large electric capacity, excellent voltage resistance, and uses titanium dioxide as a negative electrode material, so that the cost is low.

本発明は、黒鉛を含む正極材料、二酸化チタンを含む負極材料及び電解液を含む蓄電デバイスであって、前記二酸化チタンが、0.1μmより大きく5μm以下の範囲の厚さを有する薄片状二酸化チタンであることを特徴とする。本発明では、わたり径が厚さより大きい異方性形状粒子を言い、一般的に、板状、シート状、フレーク状と呼ばれるものを包含する。薄片状二酸化チタンの好ましい厚さは、3μm以下である。平均わたり径は、特に制限は無いが、0.5〜30μmの範囲であるのが好ましく、5〜30μmであれば更に好ましい。また、平均わたり径/厚みの比は1.5〜300以下の範囲が好ましく、更に好ましい範囲は1.5〜100であり、1.5〜50の範囲がより一層好ましい。尚、薄片状粒子の厚みは、電子顕微鏡写真から測定した、100個以上の粒子についての個数平均厚みであり、平均わたり径は、同様に測定した100個以上の粒子についての(最長わたり径+最短わたり径)/2の値の個数平均値である。   The present invention relates to an electricity storage device including a positive electrode material containing graphite, a negative electrode material containing titanium dioxide, and an electrolyte solution, wherein the titanium dioxide has a thickness in the range of more than 0.1 μm and not more than 5 μm. It is characterized by being. In the present invention, an anisotropically shaped particle having a crossing diameter larger than a thickness is included, and generally includes a so-called plate shape, sheet shape, and flake shape. The preferred thickness of the flaky titanium dioxide is 3 μm or less. Although there is no restriction | limiting in particular in an average cross diameter, it is preferable that it is the range of 0.5-30 micrometers, and if it is 5-30 micrometers, it is still more preferable. The average diameter / thickness ratio is preferably 1.5 to 300 or less, more preferably 1.5 to 100, and even more preferably 1.5 to 50. The thickness of the flaky particles is the number average thickness of 100 or more particles measured from an electron micrograph, and the average cross diameter is the same as that of 100 or more particles (longest cross diameter + It is the number average value of the values of the shortest span diameter) / 2.

薄片状二酸化チタンは、ルチル型、ブルッカイト型、アナターゼ型、ブロンズ型、ホランダイト型、ラムズデライト型等の結晶性を有するもの、又は非晶質性のもの何れも用いることができるが、アナターゼ型及び/またはルチル型酸化チタンは、電気容量がより一層優れているため好ましい。特に、アナターゼ型であれば、比表面積が1〜100m/gの範囲にあるものが好ましく、1〜50m/gの範囲にあるものが更に好ましい。また、ルチル型であれば、10〜200m/gの範囲が好ましい比表面積であり、10〜100m/gが更に好ましい範囲である。更に、本発明の効果を阻害しない範囲で、他の異種金属をドープした薄片状二酸化チタンや、薄片状粒子の表面にシリカ、アルミナ等の無機化合物、界面活性剤、カップリング剤等の有機化合物で表面被覆したものも用いることができる。 The flaky titanium dioxide can be any of rutile type, brookite type, anatase type, bronze type, hollandite type, ramsdellite type, etc. The rutile type titanium oxide is preferable because the electric capacity is further excellent. In particular, if the anatase type are preferably those having a specific surface area in the range of 1 to 100 m 2 / g, further preferably in a range of 1 to 50 m 2 / g. Moreover, if it is a rutile type, the range of 10-200 m < 2 > / g is a preferable specific surface area, and 10-100 m < 2 > / g is a more preferable range. Furthermore, within the range not inhibiting the effect of the present invention, flaky titanium dioxide doped with other dissimilar metals, inorganic compounds such as silica and alumina on the surface of flaky particles, organic compounds such as surfactants and coupling agents A surface-coated material can also be used.

次に、本発明において正極材料に用いる黒鉛に特に制約はない。尚、本発明において黒鉛とはX線回折002面のピーク位置から求めたd(002)が0.335〜0.344nmの範囲にあるものをいう。中でも、比表面積が0.5〜300m/gの範囲の黒鉛を用いるのが好ましく、5〜100m/gの範囲のものが更に好ましい。 Next, there is no restriction | limiting in particular in the graphite used for a positive electrode material in this invention. In the present invention, graphite refers to graphite having d (002) in the range of 0.335 to 0.344 nm determined from the peak position of the X-ray diffraction 002 plane. Among them, it is preferable to use graphite having a specific surface area of 0.5 to 300 m 2 / g, and more preferably 5 to 100 m 2 / g.

上記正極および負極を浸漬する電解液としては、例えば、非水溶媒中に溶質を溶解させたものを用いることができる。電解液において作用する陰イオンとしては、4フッ化ホウ酸イオン(BF )、6フッ化リン酸イオン(PF )、過塩素酸イオン(ClO )、6フッ化ヒ素(AsF )、6フッ化アンチモン(SbF )、ペルフルオロメチルスルホニル(CFSO )、ペルフルオロメチルスルホナト(CFSO )からなる群から選ばれる少なくとも一種を挙げることができる。 As an electrolytic solution for immersing the positive electrode and the negative electrode, for example, a solution obtained by dissolving a solute in a non-aqueous solvent can be used. Anions acting in the electrolyte include tetrafluoroborate ion (BF 4 ), hexafluorophosphate ion (PF 6 ), perchlorate ion (ClO 4 ), and arsenic hexafluoride (AsF). 6 -), antimony hexafluoride (SbF 6 -), perfluoromethyl sulfonyl (CF 3 SO 2 - can include at least one selected from the group consisting of) -), perfluoromethyl sulfonato (CF 3 SO 3.

また、陽イオンとしては、対称、非対称の四級アンモニウムイオン、エチルメチルイミダゾリウム、スピロ−(1,1’)ビピロリジニウム等のイミダゾリウム誘導体イオン、リチウムイオンからなる群から選ばれる。なかでも、リチウムイオンを含むものが好ましい。   The cation is selected from the group consisting of symmetric and asymmetric quaternary ammonium ions, imidazolium derivative ions such as ethylmethylimidazolium, spiro- (1,1 ') bipyrrolidinium, and lithium ions. Among these, those containing lithium ions are preferable.

また、非水溶媒としては、テトラヒドロフラン(THF)、メチルテトラヒドロフラン(MeTHF)、メチルホルムアミド、メチルアセテート、ジエチルカーボネート、ジメチルエーテル(DME)、プロピレンカーボネート(PC)、γ−ブチルラクトン(GBL)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)等の炭酸エステル類、アセトニトリル(AN)、スルホラン(SL)あるいは分子の一部にフッ素を含有するこれら非水溶媒からなる群から選ばれる少なくとも1種を選ぶことができる。   Non-aqueous solvents include tetrahydrofuran (THF), methyltetrahydrofuran (MeTHF), methylformamide, methyl acetate, diethyl carbonate, dimethyl ether (DME), propylene carbonate (PC), γ-butyllactone (GBL), dimethyl carbonate ( DMC), diethyl carbonate (DEC), ethylene carbonate (EC), carbonate esters such as ethyl methyl carbonate (EMC), acetonitrile (AN), sulfolane (SL), or non-aqueous solvents containing fluorine in part of the molecule At least one selected from the group consisting of can be selected.

本発明の蓄電デバイスは、前記の正極、負極、電解液及びセパレーターを含み、具体的には、電気化学的キャパシタ、ハイブリッドキャパシタ、レドックスキャパシタ、電気二重層キャパシタ、リチウム電池等が挙げられる。正極や負極は、正極材料、負極材料に、それぞれカーボンブラック、アセチレンブラック、ケッチェンブラックなどの導電材とフッ素樹脂、水溶性ゴム系樹脂などのバインダを加え、適宜成形または塗布して得られる。セパレーターには、多孔性ポリエチレンフィルム、ポリプロピレンフィルムなどが用いられる。   The electricity storage device of the present invention includes the positive electrode, the negative electrode, the electrolytic solution, and the separator, and specific examples include an electrochemical capacitor, a hybrid capacitor, a redox capacitor, an electric double layer capacitor, and a lithium battery. The positive electrode and the negative electrode are obtained by appropriately molding or applying a conductive material such as carbon black, acetylene black, or ketjen black and a binder such as fluororesin or water-soluble rubber resin to the positive electrode material and the negative electrode material, respectively. A porous polyethylene film, a polypropylene film, etc. are used for a separator.

以下に本発明の実施例を示すが、これらは本発明を限定するものではない。   Examples of the present invention are shown below, but these do not limit the present invention.

実施例1
(正極の製造)
X線回折で求めたd(002)が0.3355nmである黒鉛、アセチレンブラック及びポリフッ化ビニリデン樹脂を、重量比70:20:10で混練した。得られた混練物を、集電体として用いるアルミ箔に塗布した後、120℃で10分間乾燥後、直径16mmの円形に切り出し、17MPaでプレスして正極を得た。この正極の活物質重量は、10mgであった。
Example 1
(Manufacture of positive electrode)
Graphite, acetylene black and polyvinylidene fluoride resin having d (002) of 0.3355 nm determined by X-ray diffraction were kneaded at a weight ratio of 70:20:10. The obtained kneaded material was applied to an aluminum foil used as a current collector, dried at 120 ° C. for 10 minutes, cut into a circle having a diameter of 16 mm, and pressed at 17 MPa to obtain a positive electrode. The active material weight of this positive electrode was 10 mg.

(負極の製造)
厚みが0.3μmで、わたり平均幅が10μmの薄片状二酸化チタン(試料a:比表面積8m/g、アナターゼ型)、アセチレンブラック及びポリフッ化ビニリデン樹脂を、重量比70:20:10で混練した。得られた混練物を、集電体として用いる銅箔に塗布した後、120℃で10分間乾燥後、直径16mmの円形に切り出し、17MPaでプレスして負極を得た。この負極の活物質重量は、10mgであった。
(Manufacture of negative electrode)
Flaked titanium dioxide having a thickness of 0.3 μm and an average width of 10 μm (sample a: specific surface area 8 m 2 / g, anatase type), acetylene black and polyvinylidene fluoride resin are kneaded at a weight ratio of 70:20:10 did. After apply | coating the obtained kneaded material to the copper foil used as a collector, after drying at 120 degreeC for 10 minute (s), it cut out to the round shape of diameter 16mm, and pressed at 17 MPa, and obtained the negative electrode. The active material weight of this negative electrode was 10 mg.

(蓄電デバイスの製造)
前記正極、負極を150℃で4時間真空乾燥した後、露点−70℃以下のグローブボックス中で、密閉可能なコイン型の試験用セルに組み込んだ。試験用セルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。正極は評価用セルの下部缶に置き、その上にセパレーターとしてガラス繊維性濾紙を置き、その上から非水電解液として1モル/リットルとなる濃度でLiPFを溶解したエチレンカーボネートとエチルメチルカーボネートの混合溶液(体積比で3:7に混合)を滴下した。その上に負極及び厚み調整用の0.5mm厚スペーサーとスプリング(ともにSUS316製)を乗せ、プロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封し、本発明の蓄電デバイス(試料A)を得た。
(Manufacture of electricity storage devices)
The positive electrode and the negative electrode were vacuum-dried at 150 ° C. for 4 hours, and then incorporated into a sealable coin-type test cell in a glove box having a dew point of −70 ° C. or lower. The test cell was made of stainless steel (SUS316) and had an outer diameter of 20 mm and a height of 3.2 mm. The positive electrode is placed in the lower can of the evaluation cell, on which glass fiber filter paper is placed as a separator, and from above, ethylene carbonate and ethyl methyl carbonate in which LiPF 6 is dissolved at a concentration of 1 mol / liter as a non-aqueous electrolyte. A mixed solution (mixed at a volume ratio of 3: 7) was added dropwise. A negative electrode and a 0.5 mm thick spacer for adjusting the thickness and a spring (both made of SUS316) are placed on the top, covered with an upper can with a propylene gasket, and the outer peripheral edge is caulked to be sealed. Sample A) was obtained.

比較例1
実施例1において、試料aに代えて、厚みが0.08μmで、わたり平均幅が17.5μmの市販の薄片状型酸化チタンTF−4(石原産業製:比表面積16m/g、アナターゼ型)を用いた他は、実施例1と同様にして、比較対象の蓄電デバイス(試料B)を得た。
Comparative Example 1
In Example 1, instead of the sample a, a commercially available flaky titanium oxide TF-4 having a thickness of 0.08 μm and an average width of 17.5 μm (manufactured by Ishihara Sangyo: specific surface area 16 m 2 / g, anatase type) ) Was used in the same manner as in Example 1 to obtain a power storage device (sample B) to be compared.

サイクル特性の測定
実施例1及び比較例1で得られた蓄電デバイス(試料A、B)について、サイクル特性の評価を行った。各試料について、充放電電流を0.3mAに設定して、定電流で3.3V及び3.5Vで充電後、同様にして1.0Vまで放電し、この充放電サイクルをそれぞれ30サイクル繰り返した。2サイクル目と30サイクル目の充放容量を測定し、これをそれぞれの電気容量として、(30サイクル目の電気容量/2サイクル目の電気容量)×100をサイクル特性とした。結果を表1に示す。また、それぞれの容量維持率の推移を図1〜4に示す。本発明が、高電圧で充電してもサイクル特性がほとんど低下せず、耐電圧性が高いことが判る。
Measurement of cycle characteristics The cycle characteristics of the electricity storage devices (samples A and B) obtained in Example 1 and Comparative Example 1 were evaluated. For each sample, the charge / discharge current was set to 0.3 mA, the battery was charged at a constant current of 3.3 V and 3.5 V, and then discharged to 1.0 V in the same manner, and this charge / discharge cycle was repeated 30 cycles. . The charge / discharge capacities at the second and thirty cycles were measured, and the respective capacities were taken as (electric capacity at thirty cycles / electric capacity at the second cycle) × 100 as cycle characteristics. The results are shown in Table 1. Moreover, transition of each capacity | capacitance maintenance factor is shown in FIGS. It can be seen that the present invention has a high voltage endurance with little deterioration in cycle characteristics even when charged at a high voltage.

Figure 0005368744
Figure 0005368744

本発明の蓄電デバイスは、電気自動車等の移動体用の電源、電気事業用の電力貯蔵システム等に有用なものである。   The power storage device of the present invention is useful for a power source for a mobile object such as an electric vehicle, a power storage system for an electric utility, and the like.

実施例1で得られた蓄電デバイス(試料A)の充電圧が1.0〜3.3Vにおけるサイクル特性を示すグラフである。It is a graph which shows the cycle characteristic in the charge pressure of the electrical storage device (sample A) obtained in Example 1 in 1.0-3.3V. 実施例1で得られた蓄電デバイス(試料A)の充電圧が1.0〜3.5Vにおけるサイクル特性を示すグラフである。It is a graph which shows the cycle characteristic in the charge pressure of the electrical storage device (sample A) obtained in Example 1 in 1.0-3.5V. 比較例1で得られた蓄電デバイス(試料B)の充電圧が1.0〜3.3Vにおけるサイクル特性を示すグラフである。It is a graph which shows the cycle characteristic in the charge pressure of the electrical storage device (sample B) obtained by the comparative example 1 in 1.0-3.3V. 比較例1で得られた蓄電デバイス(試料B)の充電圧が1.0〜3.5Vにおけるサイクル特性を示すグラフである。It is a graph which shows the cycle characteristic in the charge pressure of the electrical storage device (sample B) obtained by the comparative example 1 in 1.0-3.5V.

Claims (1)

黒鉛及び導電材を含む正極材料、二酸化チタン及び導電材を含む負極材料及び電解液を含む蓄電デバイスであって、前記二酸化チタンが、0.1〜3μmの範囲の厚さ、5〜30μmの範囲の平均わたり径、及び、1.5〜50の範囲の平均わたり径/厚みの比を有する薄片状二酸化チタン(但し、導電性板状チタニアを除く)であることを特徴とする蓄電デバイス。 A power storage device including a positive electrode material including graphite and a conductive material, a negative electrode material including titanium dioxide and a conductive material, and an electrolyte solution, wherein the titanium dioxide has a thickness in the range of 0.1 to 3 μm and a range of 5 to 30 μm. And an flaky titanium dioxide having an average diameter / thickness ratio in the range of 1.5 to 50 (excluding conductive plate-like titania).
JP2008196693A 2008-07-30 2008-07-30 Power storage device Expired - Fee Related JP5368744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196693A JP5368744B2 (en) 2008-07-30 2008-07-30 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196693A JP5368744B2 (en) 2008-07-30 2008-07-30 Power storage device

Publications (2)

Publication Number Publication Date
JP2010034412A JP2010034412A (en) 2010-02-12
JP5368744B2 true JP5368744B2 (en) 2013-12-18

Family

ID=41738524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196693A Expired - Fee Related JP5368744B2 (en) 2008-07-30 2008-07-30 Power storage device

Country Status (1)

Country Link
JP (1) JP5368744B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101660151B1 (en) * 2012-04-27 2016-09-26 쇼와 덴코 가부시키가이샤 Anode for secondary battery, method for producing same, and secondary battery
JP2014130717A (en) 2012-12-28 2014-07-10 Ricoh Co Ltd Nonaqueous electrolyte storage element
EP3062323B1 (en) * 2013-09-29 2018-11-21 Shanghai Institute of Ceramics, Chinese Academy of Sciences Titanium oxide-based supercapacitor electrode material and method of manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672125B2 (en) * 2000-09-27 2011-04-20 大塚化学株式会社 Conductive plate-like titania and conductive composition
JP5399623B2 (en) * 2006-10-20 2014-01-29 石原産業株式会社 Power storage device

Also Published As

Publication number Publication date
JP2010034412A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
Lang et al. Asymmetric supercapacitors based on stabilized α-Ni (OH) 2 and activated carbon
JP5399623B2 (en) Power storage device
JP5228531B2 (en) Electricity storage device
JP2001185459A (en) Electrochemical capacitor
US20110043968A1 (en) Hybrid super capacitor
JP5756068B2 (en) Sodium secondary battery
JP6370584B2 (en) Lithium sulfur secondary battery
JP2020074477A (en) Lithium ion capacitor
WO2017057603A1 (en) Composition for gel electrolytes
JP5422066B2 (en) Power storage device
CN105742076A (en) Alkali metal ion capacitor using lithium orthovanadate as negative electrode active material
WO2020179585A1 (en) Electrochemical capacitor
JP5368744B2 (en) Power storage device
Holland et al. Electrochemical study of TiO2 in aqueous AlCl3 electrolyte via vacuum impregnation for superior high-rate electrode performance
JP2008269824A (en) Electrochemical cell
WO2014083834A1 (en) Non-aqueous electrolyte secondary battery
CN103915611A (en) Water-based aluminum ion battery positive electrode material and preparation method thereof
JP2000138074A (en) Secondary power supply
JP6500116B2 (en) Lithium ion capacitor and carbon material used as positive electrode active material thereof
JP5937941B2 (en) Sodium secondary battery
JP2010200476A (en) Method for using power-storage device
CN108492995B (en) Preparation method of high-voltage aqueous electrolyte lithium ion capacitor
JP2004200058A (en) Power storage device
KR20140068896A (en) Carbon Electrodes and Electrochemical Capacitors
JP4998392B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R151 Written notification of patent or utility model registration

Ref document number: 5368744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees