JP5365975B2 - Crystallized glass article and method for producing the same - Google Patents
Crystallized glass article and method for producing the same Download PDFInfo
- Publication number
- JP5365975B2 JP5365975B2 JP2008152930A JP2008152930A JP5365975B2 JP 5365975 B2 JP5365975 B2 JP 5365975B2 JP 2008152930 A JP2008152930 A JP 2008152930A JP 2008152930 A JP2008152930 A JP 2008152930A JP 5365975 B2 JP5365975 B2 JP 5365975B2
- Authority
- JP
- Japan
- Prior art keywords
- crystallized glass
- glass
- glass article
- crystallized
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Induction Heating Cooking Devices (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Glass Compositions (AREA)
Abstract
Description
本発明は、調理器用ガラストッププレート、特にガスコンロのガラストッププレートや厨房設備の天板等の装飾材に用いることができ、かつ優れた意匠性を付与することが可能な結晶化ガラス物品とその製造方法に関するものである。 The present invention is a crystallized glass article that can be used as a decoration material such as a glass top plate for a cooker, particularly a glass top plate of a gas stove or a top plate of a kitchen facility, and can impart excellent design properties, and its It relates to a manufacturing method.
近年、装飾材に用いる結晶化ガラス物品として、熱的耐久性、化学的耐久性、機械的強度等の特性に優れており、天然石、陶板、タイルとは異なる新しい外観を呈するデザインが追求されている。このような意匠性の多様化に伴って、種々の外観を呈する装飾材料が開発、提案されている。 In recent years, as a crystallized glass article used as a decoration material, it has excellent properties such as thermal durability, chemical durability, mechanical strength, etc., and a design that exhibits a new appearance different from natural stone, ceramic plates, and tiles has been pursued. Yes. With such diversification of design properties, decorative materials having various appearances have been developed and proposed.
例えば、特許文献1には、軟化点より高い温度で熱処理すると軟化変形しながら結晶が析出する結晶性ガラス小体の界面に無機顔料を付着させ、熱処理をすることにより融着一体化させ結晶を析出させると共に、各ガラス小体界面に着色層を現出させてなる結晶化ガラス物品が開示されている。又、特許文献2には、軟化点より高い温度で熱処理すると軟化変形しながら結晶が析出する板状結晶性ガラスの表面に異色の同材質のガラス小体を散在させることにより、熱処理後に融着一体化させてなる模様入り結晶化ガラスが開示されている。更に、特許文献3には、黒色低膨張結晶化ガラスの表面に無機着色顔料を含むホウ珪酸ガラスフリットの装飾被膜を形成させてなる装飾低膨張結晶化ガラス板が開示されている。
しかしながら、特許文献1に開示されている着色結晶化ガラスは、ガラス表面から結晶が析出する、いわゆる表面結晶化ガラスであり、軟化点以上で熱処理を行うと軟化しながら結晶が析出する結晶性ガラスの界面に、無機顔料が結晶性ガラスを覆う形で存在することとなり、得られる結晶化ガラスの表面粗度が大きくなりやすいと同時に、線熱膨張係数が60×10−7/K以上を示す。 However, the colored crystallized glass disclosed in Patent Document 1 is a so-called surface crystallized glass in which crystals are precipitated from the glass surface. Crystallized glass in which crystals are precipitated while being softened when heat treatment is performed at a temperature above the softening point. In this interface, the inorganic pigment is present in a form covering the crystalline glass, and the surface roughness of the obtained crystallized glass tends to increase, and at the same time, the linear thermal expansion coefficient is 60 × 10 −7 / K or more. .
又、特許文献2の模様入り結晶化ガラス物品は、ガラスの内部から結晶が析出する、いわゆる体積結晶化ガラスからなり、無機顔料を添加しないため、熱処理時に結晶性ガラスの流動性を低下させることはないが、得られる結晶化ガラスの線熱膨張係数が70×10−7/K以上を示す。このように、特許文献1及び2に記載の結晶化ガラス物品は高い線熱膨張係数を有するため、ガスコンロのトッププレートや厨房関係の天板など、加熱に伴う熱的耐久性が不充分であり、破損問題が発生するおそれがある。 Further, the crystallized crystallized glass article of Patent Document 2 is made of so-called volume crystallized glass in which crystals are precipitated from the inside of the glass, and does not add an inorganic pigment, so that the fluidity of the crystalline glass is reduced during heat treatment. However, the linear thermal expansion coefficient of the obtained crystallized glass is 70 × 10 −7 / K or more. Thus, since the crystallized glass articles described in Patent Documents 1 and 2 have a high coefficient of linear thermal expansion, the thermal durability associated with heating, such as the top plate of a gas stove or the top plate of a kitchen, is insufficient. There is a risk of damage.
特許文献3に記載の結晶化ガラス物品は、熱的耐久性は問題ないが、絵付けによる装飾であるために絵付け部の剥がれの問題が生じやすい。又、ガラス表面の反射率が低いために厨房器具としては明るさに乏しく、意匠性にも乏しい。 The crystallized glass article described in Patent Document 3 has no problem in thermal durability, but it is a decoration by painting, and thus the problem of peeling off of the painted part is likely to occur. Moreover, since the reflectance of the glass surface is low, the brightness as a kitchen appliance is poor and the design is poor.
以上のように、機械的強度、化学的耐久性、熱的耐久性を兼ね備え、かつ従来にない更に新規な外観デザインを呈する結晶化ガラス物品が要求されている。そこで、本発明は、上記の事情に着目し、熱衝撃性を保持しつつ各種の装飾材料に必要な特性を向上させ、かつ外観として高級感があり優れた意匠性を付与することが可能な結晶化ガラス物品とその製造方法を提供することを目的とする。 As described above, there is a need for a crystallized glass article that has mechanical strength, chemical durability, and thermal durability, and that has a new appearance design that has never been seen before. Therefore, the present invention pays attention to the above circumstances, can improve the characteristics required for various decorative materials while maintaining thermal shock, and can give a high-quality appearance and excellent design. An object of the present invention is to provide a crystallized glass article and a method for producing the same.
本発明者等は、鋭意検討の結果、結晶性ガラス小体を熱処理により融着一体化かつ結晶化させることにより得られる結晶化ガラス物品において、線熱膨張係数低下に対する寄与が大きい特定の結晶を含有させることにより、前記課題を解決できることを見出し、本発明として提案するものである。 As a result of diligent study, the inventors of the present invention have developed a specific crystal having a large contribution to lowering the linear thermal expansion coefficient in a crystallized glass article obtained by fusing and crystallizing a crystalline glass body by heat treatment. The present inventors have found that the above-mentioned problems can be solved by the inclusion, and propose the present invention.
即ち、第一に、本発明の結晶化ガラス物品は、結晶性ガラス小体を集積し、熱処理により融着一体化かつ結晶化させることにより、各結晶化ガラス小体がその界面で互いに融着してなり、Li2O−Al2O3−SiO2系結晶を20〜60質量%含有し、30〜380℃における線熱膨張係数が0〜30×10 −7 /Kであることを特徴とする。本発明の結晶化ガラス物品は、結晶化処理によりLi2O−Al2O3−SiO2系結晶の析出結晶量を20〜60質量%としたものであり、熱的耐久性や機械的強度、化学的耐久性が損なわれず、かつ表面平滑性と適度な表面光沢性を持つ外観を呈するために、調理器用トッププレート、特にガスコンロトッププレート、厨房器具天板、テーブルトップ等の厨房設備装飾材や、その他の各種内外装材として好適なものとなる。又、各結晶性ガラス小体を、それらの界面にて互いに融着一体化させてなるものであるため、後述するように、各ガラス小体界面に着色層を設けたり、ガラス自体を着色させたりすることにより、種々の外観を呈する意匠性に優れた結晶化ガラス物品とすることが可能となる。ここで、結晶化ガラスの30〜380℃における線熱膨張係数はディラトメータを用いて測定した値を指す。 That is, first, the crystallized glass article of the present invention is to integrate crystalline glass masses, the Rukoto are fused integrally and crystallized by heat treatment, the crystallized glass corpuscles melt together at the interface wear and become by, Li 2 O-Al 2 O 3 -SiO 2 system crystals contain 20-60 weight%, a coefficient of linear thermal expansion 0~30 × 10 -7 / K der Rukoto at 30 to 380 ° C. It is characterized by. The crystallized glass article of the present invention has a precipitated crystal amount of Li 2 O—Al 2 O 3 —SiO 2 based crystal of 20 to 60 % by mass by crystallization treatment, and has thermal durability and mechanical strength. In order to have an appearance that does not impair the chemical durability and has surface smoothness and moderate surface glossiness, it is a kitchen equipment decoration material such as a top plate for a cooker, especially a gas stove top plate, a kitchen utensil top plate, a table top, etc. In addition, it is suitable as various other interior / exterior materials. In addition, since each crystalline glass body is fused and integrated with each other at the interface thereof, as described later, a colored layer is provided at each glass body interface, or the glass itself is colored. By doing so, it becomes possible to obtain a crystallized glass article having various appearances and excellent design properties. Here, the linear thermal expansion coefficient in 30-380 degreeC of crystallized glass points out the value measured using the dilatometer.
第二に、本発明の結晶化ガラス物品は、結晶性ガラス小体の粒度が0.1〜20mmであることを特徴とする。 Second, the crystallized glass article of the present invention is characterized in that the particle size of the crystalline glass body is 0.1 to 20 mm .
第三に、本発明の結晶化ガラス物品は、ガラス転移温度が600℃以上であることを特徴とする。ここで、結晶化ガラスのガラス転移温度はディラトメータを用いて測定した値をいう。 Third, the crystallized glass article of the present invention is characterized in that the glass transition temperature is 600 ° C. or higher. Here, the glass transition temperature of crystallized glass refers to a value measured using a dilatometer.
第四に、本発明の結晶化ガラス物品は、結晶の一部として、ガーナイト(ZnO・Al2O3)結晶を含有することを特徴とする。本発明の結晶化ガラス物品においては、後述するように、結晶性ガラス小体に金属酸化物粉末又は無機顔料粉末を付着させることにより、各結晶化ガラス小体界面に着色層を設けることが可能となるが、析出結晶の一部として、ガーナイト結晶を含有することによって、金属酸化物粉末又は無機顔料粉末が少量析出するガーナイト結晶に固溶し、個々の結晶化ガラス小体の界面における着色層が鮮明に現出しやすくなり、意匠性に優れたものとすることができる。 Fourth, the crystallized glass article of the present invention is characterized by containing a garnite (ZnO.Al 2 O 3 ) crystal as a part of the crystal. In the crystallized glass article of the present invention, as described later, it is possible to provide a colored layer at each crystallized glass body interface by attaching a metal oxide powder or an inorganic pigment powder to the crystalline glass body. However, by containing the garnite crystal as a part of the precipitated crystal, the metal oxide powder or the inorganic pigment powder is dissolved in a small amount of precipitated garnite crystal, and the colored layer at the interface of each crystallized glass body Becomes clear and easy to appear, and can be excellent in design.
第五に、本発明の結晶化ガラス物品は、結晶性ガラス小体が、質量%で、SiO2 55〜72%、Ai2O3 14〜30%、Li2O 1.5〜5%、K2O 1〜10%、TiO2 0〜5%、ZrO2 0〜4%、TiO2+ZrO2 0〜7%、ZnO 0〜10%、MgO 0〜2.5%、CaO 0〜2.5%、BaO 0〜8%、B2O3 0〜7%、Na2O 0〜2%、P2O5 0〜0.8%の組成を含有することを特徴とする。該組成を有する結晶性ガラス小体は、互いに融着一体化可能な程度の流動性を有し、かつβ―石英固溶体やβ―スポジュメン固溶体等のLi2O−Al2O3−SiO2系結晶を主結晶として析出するため、焼成により低膨張結晶化ガラスを得ることが可能となり、高い耐熱性を有するとともに薄板化しやすい。又、この結晶性ガラス小体は熱処理を行うことにより、ガラス小体の内部から結晶が析出するために、表面から結晶が析出する結晶性ガラスよりも表面平滑性が向上し、結晶性ガラス小体の界面に発生しやすい気泡の発生も少ない。更に、前述したように、結晶としてガーナイト結晶を少量析出させることにより、金属酸化物粉末又は無機顔料粉末がガーナイト結晶に固溶し、個々の結晶化ガラス小体の表面のみを着色させ着色模様を鮮明に現出させることができる。 Fifth, in the crystallized glass article of the present invention, the crystalline glass body has a mass% of SiO 2 55 to 72%, Ai 2 O 3 14 to 30%, Li 2 O 1.5 to 5%, K 2 O 1-10%, TiO 2 0-5%, ZrO 2 0-4%, TiO 2 + ZrO 2 0-7%, ZnO 0-10%, MgO 0-2.5%, CaO 0-2. It contains 5%, BaO 0-8%, B 2 O 3 0-7%, Na 2 O 0-2%, P 2 O 5 0-0.8%. The crystalline glass body having the composition has fluidity that can be fused and integrated with each other, and is Li 2 O—Al 2 O 3 —SiO 2 type such as β-quartz solid solution or β-spodumene solid solution. Since the crystals are precipitated as main crystals, it becomes possible to obtain a low expansion crystallized glass by firing, which has high heat resistance and is easy to be thinned. In addition, since this crystalline glass body is subjected to heat treatment, crystals are precipitated from the inside of the glass body, so that the surface smoothness is improved as compared with the crystalline glass in which crystals are deposited from the surface. There are few bubbles that are likely to occur at the interface of the body. Furthermore, as described above, by depositing a small amount of garnite crystal as a crystal, the metal oxide powder or inorganic pigment powder is dissolved in the garnite crystal, and only the surface of each crystallized glass body is colored to give a colored pattern. It can appear clearly.
第六に、本発明の結晶化ガラス物品は、結晶性ガラス小体が、質量%で、SiO2 55〜72%、Ai2O3 14〜30%、Li2O 1.5〜5%、K2O 1〜10%、TiO2 1〜5%、ZrO2 0〜4%、TiO2+ZrO2 2.5〜7%、ZnO 0〜10%、MgO 0〜2.5%、CaO 0〜2.5%、BaO 0〜3%、B2O3 0〜7%、Na2O 0〜2%、P2O5 0〜0.8%の組成を含有することを特徴とする。 Sixth, in the crystallized glass article of the present invention, the crystalline glass body has a mass% of SiO 2 55 to 72%, Ai 2 O 3 14 to 30%, Li 2 O 1.5 to 5%, K 2 O 1-10%, TiO 2 1-5%, ZrO 2 0-4%, TiO 2 + ZrO 2 2.5-7%, ZnO 0-10%, MgO 0-2.5%, CaO 0 2.5%, BaO 0~3%, B 2 O 3 0~7%, Na 2 O 0~2%, characterized by containing the composition of P 2 O 5 0~0.8%.
第七に、本発明の結晶化ガラス物品は、結晶性ガラス小体100質量部に対して、3質量部以下の金属酸化物粉末又は無機顔料粉末を付着させてなる結晶性ガラス小体を用い、融着した各結晶化ガラス小体の界面に金属酸化物粉末又は無機顔料粉末からなる着色層を現出させてなることを特徴とする。結晶性ガラス小体表面に金属酸化物粉末又は無機顔料粉末を付着させ、加熱処理により融着一体化することにより、得られる結晶化ガラス物品において、各ガラス小体の界面に金属酸化物粉末又は無機顔料粉末からなる着色層を現出させ、意匠性に優れた網目模様を呈することができる。 Seventh, the crystallized glass article of the present invention uses a crystalline glass body obtained by adhering 3 parts by mass or less of metal oxide powder or inorganic pigment powder to 100 parts by mass of crystalline glass body. The present invention is characterized in that a colored layer made of a metal oxide powder or an inorganic pigment powder appears at the interface of each fused crystallized glass body. In a crystallized glass article obtained by attaching a metal oxide powder or inorganic pigment powder to the surface of a crystalline glass body and fusing and integrating them by heat treatment, the metal oxide powder or A colored layer made of an inorganic pigment powder can be revealed, and a mesh pattern excellent in design can be exhibited.
第八に、本発明の結晶化ガラス物品は、結晶性ガラス小体の少なくとも一部が、組成中に着色成分を5質量%以下含有することにより、着色結晶化ガラス部分を設けてなることを特徴とする。このように結晶性ガラス組成に着色成分を含有させることにより、着色ガラスをベースとした結晶化ガラス物品を得ることができる。特に、組成に着色成分を含有する結晶性ガラス小体と着色成分を含有しない結晶性ガラスを混合して用いることにより、着色部分と非着色部分が混在した斑模様を呈することが可能となる。 Eighth, the crystallized glass article of the present invention is such that at least a part of the crystalline glass body contains a colored component in an amount of 5% by mass or less, thereby providing a colored crystallized glass part. Features. Thus, by including a coloring component in the crystalline glass composition, a crystallized glass article based on colored glass can be obtained. In particular, by using a mixture of a crystalline glass body containing a coloring component and a crystalline glass containing no coloring component in the composition, it becomes possible to exhibit a spotted pattern in which a colored portion and a non-colored portion are mixed.
第九に、本発明の結晶化ガラス物品は、調理器用トッププレート又は厨房設備装飾材に用いられることを特徴とする。 Ninthly , the crystallized glass article of the present invention is characterized in that it is used for a cooking appliance top plate or a kitchen equipment decoration material.
第十に、本発明は前記のいずれかに記載の結晶化ガラス物品を製造するための方法に関し、耐火性型枠に結晶性ガラス小体を集積し、結晶性ガラス小体の軟化点以上の温度で熱処理を行い、融着一体化かつ結晶化させることを特徴とする。 Tenth , the present invention relates to a method for producing a crystallized glass article according to any one of the above, wherein the crystalline glass bodies are accumulated in a refractory mold, and the softening point of the crystalline glass bodies is exceeded. It is characterized by heat treatment at a temperature for fusion integration and crystallization.
本発明の結晶化ガラス物品は、結晶性ガラス小体を集積し、熱処理により融着一体化かつ結晶化させてなり、Li2O−Al2O3−SiO2系結晶を特定量析出させてなるものである。 The crystallized glass article of the present invention is obtained by accumulating crystalline glass bodies, fused and integrated by heat treatment, and crystallizing a specific amount of Li 2 O—Al 2 O 3 —SiO 2 based crystals. It will be.
本発明の結晶化ガラス物品において、Li2O−Al2O3−SiO2系結晶の含有量は20〜70質量%であり、30〜60質量%であることが好ましい。結晶の含有量が20質量%未満の場合は、得られる結晶化ガラス物品の線熱膨張係数が大きくなる傾向があり、本発明が目標とする耐熱性が得られなくなる。一方、析出の含有量が70質量%を超えると、結晶性ガラス小体の焼成温度が例えば1300℃以上といった高温になりやすく通常の焼成炉に適さなくなる、平滑な板状製品が得られなくなるといった問題が生じやすい。又、後述するように、再加熱による軟化が生じにくくなり、曲げ加工などの軟化加工が困難になりやすい。 In the crystallized glass article of the present invention, the content of Li 2 O—Al 2 O 3 —SiO 2 -based crystal is 20 to 70% by mass, and preferably 30 to 60% by mass. When the crystal content is less than 20% by mass, the linear thermal expansion coefficient of the obtained crystallized glass article tends to increase, and the heat resistance targeted by the present invention cannot be obtained. On the other hand, if the content of precipitation exceeds 70% by mass, the firing temperature of the crystalline glass body tends to be high, for example, 1300 ° C. or higher, and is not suitable for a normal firing furnace, and a smooth plate-like product cannot be obtained. Problems are likely to occur. Further, as will be described later, softening due to reheating hardly occurs, and softening processing such as bending tends to be difficult.
本発明の結晶化ガラス物品の線熱膨張係数は30×10−7/K以下であることが好ましく、20×10−7/K以下であることがより好ましい。例えば、ガスレンジガラストップにおいてガスフレームの影響により最も高温になるバーナー口の温度は200℃以上になる。そのために、バーナー口から離れた低温のガラストッププレート外周に引張り応力が発生し破損にいたる。結晶化ガラス物品の線熱膨張係数が30×10−7/Kより大きいと、その発生応力が約30MPa以上となり破損の確率が大きくなる。結晶化ガラス物品の線熱膨張係数を30×10−7/Kより小さくすることにより、ガラストッププレート外周に発生する応力が結晶化ガラス物品の破壊許容応力以下になり、熱による破損が起こりにくくなる。なお、下限については特に限定されないが、低すぎる場合はLi2O−Al2O3−SiO2系結晶量が過剰となり、ガラスの流動を阻害する傾向があるため、現実的には0×10−7/K以上、更には5×10−7/K以上である。 The linear thermal expansion coefficient of the crystallized glass article of the present invention is preferably 30 × 10 −7 / K or less, and more preferably 20 × 10 −7 / K or less. For example, in the gas range glass top, the temperature of the burner port that is the highest temperature due to the influence of the gas flame is 200 ° C. or higher. For this reason, tensile stress is generated on the outer periphery of the low temperature glass top plate away from the burner port, leading to breakage. When the linear thermal expansion coefficient of the crystallized glass article is larger than 30 × 10 −7 / K, the generated stress becomes about 30 MPa or more and the probability of breakage increases. By making the coefficient of linear thermal expansion of the crystallized glass article smaller than 30 × 10 −7 / K, the stress generated on the outer periphery of the glass top plate becomes less than the fracture allowable stress of the crystallized glass article and is not easily damaged by heat. Become. The lower limit is not particularly limited, but if it is too low, the Li 2 O—Al 2 O 3 —SiO 2 -based crystal amount becomes excessive and tends to inhibit the flow of the glass, so that in reality it is 0 × 10. -7 / K or more, more preferably 5 × 10 -7 / K or more.
本発明の結晶化ガラス物品のガラス転移温度は、好ましくは600℃以上、より好ましくは620℃以上である。ガラス転移温度が600℃未満であると、ガラス相の粘性が低くなりすぎ、熱処理後の発泡が生じやすく、熱処理温度の制御が困難になる傾向がある。上限は特に限定されないが、曲げ加工の必要性を考慮すると、800℃以下、さらには700℃以下であることが好ましい。 The glass transition temperature of the crystallized glass article of the present invention is preferably 600 ° C. or higher, more preferably 620 ° C. or higher. If the glass transition temperature is less than 600 ° C., the viscosity of the glass phase becomes too low, foaming after heat treatment tends to occur, and control of the heat treatment temperature tends to be difficult. The upper limit is not particularly limited, but considering the necessity of bending, it is preferably 800 ° C. or lower, more preferably 700 ° C. or lower.
ところで、本発明の結晶化ガラス物品は、Li2O−Al2O3−SiO2系結晶と残存マトリクスガラスから構成されるが、両者の平均線熱膨張係数の差が所定値よりも大きい結晶化ガラス、具体的にはマトリクスガラスとLi2O−Al2O3−SiO2系結晶の30〜380℃における平均線熱膨張係数の差が35×10−7/K以上であることが好ましい。集積法では、結晶性ガラス小体を軟化、流動させる必要があり、このため結晶量を低減させる必要がある。しかしながら、結晶量を低減させると、結晶化ガラス物品の線熱膨張係数が増大する傾向がある。そこで、Li2O−Al2O3−SiO2系結晶とマトリクスガラスの平均線熱膨張係数の差を所定値よりも大きくすることにより、後述するように、理論値より低い線熱膨張係数を有する結晶化ガラス物品とすることができる。また、結晶化ガラス物品を、再加熱によって軟化させやすくなり、所望の形状に曲げ加工を施すことが可能となる。このような特性を示すメカニズムは次のように説明される。 By the way, the crystallized glass article of the present invention is composed of Li 2 O—Al 2 O 3 —SiO 2 -based crystal and residual matrix glass, but a crystal in which the difference between the average linear thermal expansion coefficients of both is larger than a predetermined value. The difference in the average linear thermal expansion coefficient at 30 to 380 ° C. between the vitrified glass, specifically, the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal is preferably 35 × 10 −7 / K or more. . In the accumulation method, it is necessary to soften and flow the crystalline glass body, and thus it is necessary to reduce the amount of crystals. However, reducing the amount of crystals tends to increase the linear thermal expansion coefficient of the crystallized glass article. Therefore, by increasing the difference in the average linear thermal expansion coefficient between the Li 2 O—Al 2 O 3 —SiO 2 -based crystal and the matrix glass from a predetermined value, as will be described later, the linear thermal expansion coefficient lower than the theoretical value is set. It can be set as the crystallized glass article which has. In addition, the crystallized glass article can be easily softened by reheating, and can be bent into a desired shape. The mechanism showing such characteristics is explained as follows.
Li2O−Al2O3−SiO2系結晶は、異方的な熱膨張特性を有する、即ち結晶軸によって線熱膨張係数が異なることが知られている。そのため、Li2O−Al2O3−SiO2系結晶を含有する結晶化ガラスでは、結晶化処理の冷却過程において、Li2O−Al2O3−SiO2系結晶の負膨張軸側と正膨張を有するマトリクスガラスとの界面にせん断応力が発生する。それに伴って、Li2O−Al2O3−SiO2系結晶とマトリクスガラス界面に空隙が生じる。当該空隙により、結晶化ガラスにおけるマトリクスガラスおよびLi2O−Al2O3−SiO2系結晶の正膨張の寄与が低減され、Li2O−Al2O3−SiO2系結晶の負膨張軸の寄与が強調される。この効果は、マトリクスガラスとLi2O−Al2O3−SiO2系結晶の平均線熱膨張係数の差が大きい程(あるいは、マトリクスガラスの平均線熱膨張係数とLi2O−Al2O3−SiO2系結晶の負膨張軸線熱膨張係数の差が大きい程)顕著である。 It is known that Li 2 O—Al 2 O 3 —SiO 2 -based crystals have anisotropic thermal expansion characteristics, that is, the linear thermal expansion coefficient varies depending on the crystal axis. Therefore, in the crystallized glass containing Li 2 O—Al 2 O 3 —SiO 2 -based crystal, in the cooling process of the crystallization treatment, the negative expansion axis side of the Li 2 O—Al 2 O 3 —SiO 2 -based crystal and Shear stress is generated at the interface with the matrix glass having positive expansion. Along with that, voids are generated at the interface between the Li 2 O—Al 2 O 3 —SiO 2 crystal and the matrix glass. The void reduces the positive expansion contribution of the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal in the crystallized glass, and the negative expansion axis of the Li 2 O—Al 2 O 3 —SiO 2 based crystal. The contribution of is emphasized. This effect is more effective when the difference in average linear thermal expansion coefficient between the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal is larger (or the average linear thermal expansion coefficient of the matrix glass and Li 2 O—Al 2 O The greater the difference in the coefficient of thermal expansion of the negative expansion axis of the 3 -SiO 2 crystal, the more significant it is.
一般的に、結晶化ガラスの線熱膨張係数は、結晶及びマトリクスガラス各々の平均線熱膨張係数と体積分率によって加成的に決定されるが、Li2O−Al2O3−SiO2系結晶とマトリクスガラスの平均線熱膨張係数の差を所定値よりも大きくすることにより、加成則から予測される線熱膨張係数よりも低い線熱膨張係数を有する結晶化ガラスを得ることが可能となる。 In general, the linear thermal expansion coefficient of crystallized glass is additively determined by the average linear thermal expansion coefficient and volume fraction of each of crystal and matrix glass, but Li 2 O—Al 2 O 3 —SiO 2. It is possible to obtain a crystallized glass having a linear thermal expansion coefficient lower than the linear thermal expansion coefficient predicted from the additivity rule by making the difference in the average linear thermal expansion coefficient between the system crystal and the matrix glass larger than a predetermined value. It becomes possible.
具体的には、本発明の結晶化ガラス物品において、マトリクスガラスとLi2O−Al2O3−SiO2系結晶の30〜380℃における平均線熱膨張係数の差は、好ましくは35×10−7/K以上、より好ましくは40×10−7/K以上、さらに好ましくは50×10−7/K以上である。該平均線熱膨張係数の差が35×10−7/K未満である場合、マトリクスガラスとLi2O−Al2O3−SiO2系結晶粒子の界面に発生する応力が小さすぎて界面に空隙が形成されにくくなる。その結果、結晶化ガラス物品の線熱膨張係数が低下しにくくなる。なお、上限については特に限定されないが、マトリクスガラスとLi2O−Al2O3−SiO2系結晶の平均線熱膨張係数の差が大きすぎる場合は、熱による破損が発生しやすくなる、又、結晶粒子とマトリクスガラスの界面においてクラックが発生しやすくなり、結晶化ガラス物品の機械的強度が低下する傾向があるため、現実的には70×10−7/K以下であることが好ましい。 Specifically, in the crystallized glass article of the present invention, the difference in average linear thermal expansion coefficient at 30 to 380 ° C. between the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal is preferably 35 × 10. −7 / K or more, more preferably 40 × 10 −7 / K or more, and further preferably 50 × 10 −7 / K or more. When the difference in the average linear thermal expansion coefficient is less than 35 × 10 −7 / K, the stress generated at the interface between the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal particles is too small. It becomes difficult to form voids. As a result, the linear thermal expansion coefficient of the crystallized glass article is unlikely to decrease. The upper limit is not particularly limited, but if the difference in average linear thermal expansion coefficient between the matrix glass and the Li 2 O—Al 2 O 3 —SiO 2 based crystal is too large, damage due to heat tends to occur. Since it tends to generate cracks at the interface between the crystal particles and the matrix glass and the mechanical strength of the crystallized glass article tends to decrease, it is preferably 70 × 10 −7 / K or less in practice.
なお、本発明の結晶化ガラス物品において、Li2O−Al2O3−SiO2系結晶の30〜380℃における平均線熱膨張係数は、好ましくは−80×10−7〜15×10−7/K、より好ましくは−50〜5×10−7/Kであることが好ましい。ここで、Li2O−Al2O3−SiO2系結晶の平均線熱膨張係数は、当該Li2O−Al2O3−SiO2系結晶の体積膨張係数を3で除することにより算出される。Li2O−Al2O3−SiO2系結晶の平均線熱膨張係数が−80×10−7/K未満である場合、結晶粒子とマトリクスガラスの界面に発生する応力が大きくなりすぎて、界面にクラックが発生しやすくなり、その結果、結晶化ガラス物品の機械的強度が低下する傾向がある。一方、Li2O−Al2O3−SiO2系結晶の平均線熱膨張係数が15×10−7/Kを超える場合、結晶粒子とマトリクスガラスの界面に発生する応力が小さすぎて、両者の界面に空隙が形成されにくくなり、結果として、結晶化ガラス物品の線熱膨張係数が低下しにくくなる。 In the crystallized glass article of the present invention, the average linear thermal expansion coefficient at 30 to 380 ° C. of the Li 2 O—Al 2 O 3 —SiO 2 based crystal is preferably −80 × 10 −7 to 15 × 10 −. 7 / K, more preferably −50 to 5 × 10 −7 / K. Here, the average linear thermal expansion coefficient of the Li 2 O-Al 2 O 3 -SiO 2 based crystal is calculated by dividing the volume expansion coefficient of the Li 2 O-Al 2 O 3 -SiO 2 based crystal 3 Is done. When the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal is less than −80 × 10 −7 / K, the stress generated at the interface between the crystal particles and the matrix glass becomes too large, Cracks are likely to occur at the interface, and as a result, the mechanical strength of the crystallized glass article tends to decrease. On the other hand, when the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal exceeds 15 × 10 −7 / K, the stress generated at the interface between the crystal particles and the matrix glass is too small. As a result, the linear thermal expansion coefficient of the crystallized glass article is hardly lowered.
本発明の結晶化ガラス物品において、Li2O−Al2O3−SiO2系結晶粒子の平均粒径は、好ましくは1μm以上、より好ましくは5μm以上である。Li2O−Al2O3−SiO2系結晶粒子の平均粒径が1μm未満の場合、結晶粒子とマトリクスガラスの界面に発生する応力の影響が小さくなり、結晶粒子とマトリクスガラスの界面に空隙が形成されにくくなる傾向がある。そのため、結晶化ガラスの線熱膨張係数が低下しにくくなる。なお、上限については特に限定されないが、Li2O−Al2O3−SiO2系結晶粒子の平均粒径が大きすぎる場合は、結晶粒子とマトリクスガラスの界面においてクラックが発生しやすくなり、結晶化ガラス物品の機械的強度が低下する傾向があるため、現実的には300μm以下であることが好ましい。 In the crystallized glass article of the present invention, the average particle size of the Li 2 O—Al 2 O 3 —SiO 2 -based crystal particles is preferably 1 μm or more, more preferably 5 μm or more. When the average particle size of Li 2 O—Al 2 O 3 —SiO 2 -based crystal particles is less than 1 μm, the influence of stress generated at the interface between the crystal particles and the matrix glass is reduced, and voids are formed at the interface between the crystal particles and the matrix glass. Tends to be difficult to form. Therefore, the linear thermal expansion coefficient of crystallized glass is unlikely to decrease. The upper limit is not particularly limited, but if the average particle size of the Li 2 O—Al 2 O 3 —SiO 2 crystal particles is too large, cracks are likely to occur at the interface between the crystal particles and the matrix glass, and the crystal Since the mechanical strength of the vitrified glass article tends to decrease, it is preferably 300 μm or less in practice.
本発明の結晶化ガラス物品の屈伏温度は、好ましくは850℃以下、より好ましくは800℃以下である。結晶化ガラス物品の屈伏温度が850℃を超える場合、再加熱による軟化が生じにくくなるため、曲げ加工などの軟化加工の精度が低下しやすくなる。ここで、結晶化ガラスの屈伏温度はディラトメータを用いて測定した値をいう。 The yield temperature of the crystallized glass article of the present invention is preferably 850 ° C. or lower, more preferably 800 ° C. or lower. When the yield temperature of the crystallized glass article exceeds 850 ° C., softening due to reheating becomes difficult to occur, so that the accuracy of softening processing such as bending processing tends to be lowered. Here, the yield temperature of the crystallized glass refers to a value measured using a dilatometer.
前述したように、結晶化ガラス物品における析出結晶の一部として、ガーナイト結晶を含有することによって、着色層として用いる金属酸化物粉末又は無機顔料粉末が少量析出するガーナイト結晶に固溶させることができる。結晶化ガラス物品におけるガーナイト結晶の含有量は、着色層を鮮明に現出させるために、1質量%以上であることが好ましく、2質量%以上であることがより好ましい。ただし、過剰に析出するとLi2O−Al2O3−SiO2系結晶の析出が抑制され、結晶化ガラス物品の線熱膨張係数が大きくなる傾向があるため、6質量%以下であることが好ましく、5質量%以下であることがより好ましく、4質量%であることが更に好ましい。 As described above, by containing a garnite crystal as a part of the precipitated crystal in the crystallized glass article, the metal oxide powder or inorganic pigment powder used as the colored layer can be dissolved in a garnite crystal that precipitates in a small amount. . The content of garnite crystals in the crystallized glass article is preferably 1% by mass or more, and more preferably 2% by mass or more in order to make the colored layer appear clearly. However, if excessive precipitation occurs, precipitation of Li 2 O—Al 2 O 3 —SiO 2 -based crystals is suppressed, and the linear thermal expansion coefficient of the crystallized glass article tends to increase. Preferably, it is 5 mass% or less, More preferably, it is 4 mass%.
本発明における結晶性ガラス小体は、熱処理により互いに融着一体化可能な程度の流動性を有し、β―石英固溶体やβ―スポジュメン固溶体を主結晶として析出するLi2O−Al2O3−SiO2系結晶性ガラスが好適である。以下、この系の結晶性ガラスについて説明する。 The crystalline glass body in the present invention has fluidity that can be fused and integrated with each other by heat treatment, and precipitates as a main crystal of β-quartz solid solution or β-spodumene solid solution Li 2 O—Al 2 O 3. —SiO 2 crystalline glass is preferred. Hereinafter, this type of crystalline glass will be described.
Li2O−Al2O3−SiO2系結晶性ガラスの場合、上述の特性を得るためには、質量%で、SiO2 55〜72%、Al2O3 14〜30%、Li2O 1.5〜5%、K2O 1〜10%、TiO2 0〜5%、ZrO2 0〜4%、TiO2+ZrO2 0〜7%、ZnO 0〜10%、MgO 0〜2.5%、CaO 0〜2.5%、BaO 0〜8%、B2O3 0〜7%、Na2Oを0〜2%、P2O5 0〜0.8%の組成を有するものを使用することが好ましい。 In the case of Li 2 O—Al 2 O 3 —SiO 2 -based crystalline glass, in order to obtain the above-mentioned characteristics, by mass%, SiO 2 55 to 72%, Al 2 O 3 14 to 30%, Li 2 O 1.5~5%, K 2 O 1~10% , TiO 2 0~5%, ZrO 2 0~4%, TiO 2 + ZrO 2 0~7%, 0~10% ZnO, MgO 0~2.5 %, CaO 0-2.5%, BaO 0-8%, B 2 O 3 0-7%, Na 2 O 0-2%, P 2 O 5 0-0.8% It is preferable to use it.
また、より好ましい組成は、質量%で、SiO2 55〜72%、Al2O3 14〜30%、Li2O 1.5〜5%、K2O 1〜10%、TiO2 1〜5%、ZrO2 0〜4%、TiO2+ZrO2 2.5〜7%、ZnO 0〜10%、MgO 0〜2.5%、CaO 0〜2.5%、BaO 0〜3%、B2O3 0〜7%、Na2Oを0〜2%、P2O5 0〜0.8%で表される。 It is more preferred composition, in mass%, SiO 2 55~72%, Al 2 O 3 14~30%, Li 2 O 1.5~5%, K 2 O 1~10%, TiO 2 1~5 %, ZrO 2 0-4%, TiO 2 + ZrO 2 2.5-7%, ZnO 0-10%, MgO 0-2.5%, CaO 0-2.5%, BaO 0-3%, B 2 O 3 0-7%, Na 2 O 0-2%, P 2 O 5 0-0.8%.
各成分の含有量をこのように限定した理由は次の通りである。 The reason for limiting the content of each component in this way is as follows.
SiO2はガラスの主たる構成成分であると共に結晶成分でもあり、その含有量は55〜72%であることが好ましく、60〜70%であることがより好ましい。SiO2の含有量が55%よりも少ないと結晶の析出が不安定になる。一方、SiO2の含有量が72%よりも多いと結晶化ガラスの軟化点が高くなり流動性が低下するとともに、ガラス溶融時の溶融性が悪くなりガラスの成形が困難になる。又、再加熱による軟化加工が困難になる傾向がある。さらに、マトリクスガラスの線熱膨張係数が低下してLi2O−Al2O3−SiO2系結晶の平均線熱膨張係数との差が小さくなり、両者の界面に発生する応力が小さすぎて空隙が形成されにくくなる。その結果、結晶化ガラスの線熱膨張係数が低下しにくくなる。 SiO 2 is a main component of glass and a crystal component, and its content is preferably 55 to 72%, more preferably 60 to 70%. When the content of SiO 2 is less than 55%, crystal precipitation becomes unstable. On the other hand, when the content of SiO 2 is more than 72%, the softening point of the crystallized glass is increased and the fluidity is lowered, and the meltability at the time of melting the glass is deteriorated, making it difficult to form the glass. Moreover, there exists a tendency for the softening process by reheating to become difficult. Furthermore, the linear thermal expansion coefficient of the matrix glass decreases, the difference from the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal becomes small, and the stress generated at the interface between the two is too small. It becomes difficult to form voids. As a result, the linear thermal expansion coefficient of crystallized glass is unlikely to decrease.
Al2O3も結晶構成成分であり、その含有量は14〜30%であることが好ましく、16〜25%であることがより好ましい。Al2O3の含有量が14%より少ないと、結晶が粗大化して、得られる結晶化ガラス物品の表面平滑性が悪化したり、結晶化ガラス物品の機械的強度が低下する傾向がある。一方、Al2O3の含有量が30%より多くなると、ガラスの溶融性が低下するだけではなく、液相温度が高くなりすぎてガラス成形時に失透が発生しやすくなる。 Al 2 O 3 is also a crystal component, and the content thereof is preferably 14 to 30%, more preferably 16 to 25%. When the content of Al 2 O 3 is less than 14%, the crystals are coarsened, and the surface smoothness of the resulting crystallized glass article tends to deteriorate, or the mechanical strength of the crystallized glass article tends to decrease. On the other hand, when the content of Al 2 O 3 is more than 30%, not only the meltability of the glass is lowered, but also the liquidus temperature becomes too high and devitrification is likely to occur during glass forming.
Li2Oは結晶の構成成分として必須であり、その含有量は1.5〜5%であることが好ましく、1.8〜3.5%であることがより好ましい。Li2Oの含有量が1.5%より少ないと、均一なLi2O−Al2O3−SiO2系結晶が得難くなり結晶化ガラスとして不安定になりやすい。一方、Li2Oの含有量が5%より多くなると、結晶性が強くなりすぎて流動性が低下し、得られる結晶化ガラス物品の平滑性が得難くなる。又、結晶化度が高くなりすぎて結晶化ガラス物品が再加熱により軟化しにくくなり、曲げ加工などの軟化加工が困難になる傾向がある。 Li 2 O is essential as a constituent component of the crystal, and its content is preferably 1.5 to 5%, more preferably 1.8 to 3.5%. When the content of Li 2 O is less than 1.5%, it is difficult to obtain a uniform Li 2 O—Al 2 O 3 —SiO 2 -based crystal, which tends to be unstable as crystallized glass. On the other hand, when the content of Li 2 O exceeds 5%, the crystallinity becomes too strong and the fluidity is lowered, and the smoothness of the resulting crystallized glass article is difficult to obtain. In addition, the crystallinity becomes so high that the crystallized glass article is not easily softened by reheating, and softening such as bending tends to be difficult.
K2Oは結晶性を制御するための必須成分であり、かつガラス相の割合を調整することにより軟化点を調整し、流動性に影響を与える。K2Oの含有量は1〜10%であることが好ましく、2〜7%であることがより好ましい。K2Oの含有量が1%未満であると、結晶性が強くなり過ぎ流動性が悪化する傾向がある。又、結晶化ガラス物品の結晶化度が高くなりすぎて、再加熱による軟化加工性が悪化する傾向がある。一方、K2Oの含有量が10%を超えると、Li2O−Al2O3−SiO2系結晶の析出が抑制されるため、結晶化ガラスとなり難くなる。 K 2 O is an essential component for controlling crystallinity, and adjusts the softening point by adjusting the ratio of the glass phase, thereby affecting the fluidity. The content of K 2 O is preferably 1 to 10%, and more preferably 2 to 7%. When the content of K 2 O is less than 1%, the crystallinity becomes too strong and the fluidity tends to deteriorate. In addition, the crystallinity of the crystallized glass article becomes too high, and the softening workability due to reheating tends to deteriorate. On the other hand, when the content of K 2 O exceeds 10%, precipitation of Li 2 O—Al 2 O 3 —SiO 2 -based crystals is suppressed, and thus it becomes difficult to form crystallized glass.
TiO2とZrO2はLi2O−Al2O3−SiO2系結晶析出の際に核となる物質で、結晶を細かく析出させる作用と、結晶が安定して析出する作用を有する。結晶性ガラスにTiO2とZrO2のいずれか、又はその両者を加えた場合、Li2O−Al2O3−SiO2系結晶とともにルチル結晶(TiO2)、ジルコニア結晶(ZrO2)、又はジルコニウムチタネート結晶(ZrTiO4)が析出する。これらの結晶は、いずれもLi2O−Al2O3−SiO2系結晶及びマトリクスガラスと比較して高屈折率であるため、白色度の高い結晶化ガラス物品とすることができる。TiO2の含有量は、0〜5%であることが好ましく、1〜4であることがより好ましく、1.5〜4%であることがさらに好ましい。ZrO2の含有量は、0〜4%であることが好ましく、1〜2.5%であることがより好ましい。又、両者の合計含有量が0〜7%であることが好ましく、2.5〜7%であることがより好ましい。両者の合計が7%を超えるか、或いはそれぞれ単独で上記の範囲の上限を超えると結晶化速度が速くなり過ぎてガラスが失透し易くなり、結晶化時に流動性を阻害しやすくなる。なお、両者の合計が2.5%より少ないと緻密な結晶が安定して析出し難くなる。一方、TiO2及びZrO2を含有しない場合、前記の高屈折率結晶が析出しないために、透光性を有する結晶化ガラス物品が得られる。 TiO 2 and ZrO 2 are substances that become nuclei during Li 2 O—Al 2 O 3 —SiO 2 based crystal precipitation, and have the effect of finely precipitating crystals and the effect of stable crystal precipitation. When either or both of TiO 2 and ZrO 2 are added to the crystalline glass, a rutile crystal (TiO 2 ), a zirconia crystal (ZrO 2 ), or a Li 2 O—Al 2 O 3 —SiO 2 system crystal, or Zirconium titanate crystals (ZrTiO 4 ) are precipitated. Since these crystals have a higher refractive index than Li 2 O—Al 2 O 3 —SiO 2 -based crystals and matrix glass, they can be made into a crystallized glass article with high whiteness. The content of TiO 2 is preferably 0 to 5%, more preferably 1 to 4, and further preferably 1.5 to 4%. The content of ZrO 2 is preferably 0 to 4%, and more preferably 1 to 2.5%. Moreover, it is preferable that both total content is 0 to 7%, and it is more preferable that it is 2.5 to 7%. If the total of both exceeds 7% or exceeds the upper limit of the above range alone, the crystallization speed becomes too fast and the glass tends to devitrify, and the fluidity tends to be hindered during crystallization. In addition, when the total of both is less than 2.5%, it will become difficult to precipitate a dense crystal stably. On the other hand, when TiO 2 and ZrO 2 are not contained, since the high refractive index crystal is not precipitated, a crystallized glass article having translucency can be obtained.
ZnOはガーナイト結晶の構成成分であり、結晶性ガラスにZnOを加えた場合、Li2O−Al2O3−SiO2系結晶とともにガーナイト結晶(ZnAl2O4)が析出する。ガーナイト結晶はLi2O−Al2O3−SiO2系結晶及びマトリクスガラスと比較して高屈折率であるため、白色度の高い結晶化ガラスを得ることができる。又、ガーナイト結晶に固溶し得る金属酸化物粉末又は無機顔料粉末からなる層をガラス表面に設けることによって着色の鮮明な結晶化ガラスを得ることができる。ZnOの含有量は0〜10%であることが好ましく、1〜10%であることがより好ましく、2〜6%であることが更に好ましい。ZnOの含有量が10%より多くなると、ガーナイト結晶の析出が多くなりすぎて主結晶であるLi2O−Al2O3−SiO2系結晶が析出し難くなり、結晶化後の線熱膨張係数が大きくなりやすくなる。一方、ガーナイト結晶が析出させ着色効果が得るためには、ZnOの含有量を1%以上、さらには2%以上とすることが好ましい。なお、ZnOを加えない場合、ガーナイト結晶が析出しないために、透光性を有する結晶化ガラスが得られる。 ZnO is a constituent component of garnite crystals. When ZnO is added to crystalline glass, garnite crystals (ZnAl 2 O 4 ) are precipitated together with Li 2 O—Al 2 O 3 —SiO 2 based crystals. Since garnite crystals have a higher refractive index than Li 2 O—Al 2 O 3 —SiO 2 -based crystals and matrix glass, crystallized glass with high whiteness can be obtained. Further, by providing a layer made of a metal oxide powder or inorganic pigment powder that can be dissolved in garnite crystals on the glass surface, a vivid colored crystallized glass can be obtained. The content of ZnO is preferably 0 to 10%, more preferably 1 to 10%, still more preferably 2 to 6%. If the ZnO content is more than 10%, the precipitation of garnite crystals will increase so that the main crystal, Li 2 O—Al 2 O 3 —SiO 2 crystal, will be difficult to precipitate, and linear thermal expansion after crystallization will occur. The coefficient tends to increase. On the other hand, in order to precipitate garnite crystals and obtain a coloring effect, the content of ZnO is preferably 1% or more, more preferably 2% or more. Note that when ZnO is not added, a garnite crystal does not precipitate, so that a crystallized glass having translucency can be obtained.
MgO、CaO、BaO、B2O3及びNa2Oはいずれも結晶性ガラスの軟化点を低下させるのに有効な成分であるが、前記範囲を超えると所望の結晶が析出し難くなる。なお、前記効果を得るためには、これらの成分のうち少なくとも1種を1%以上含有することが好ましい。 MgO, CaO, BaO, B 2 O 3 and Na 2 O are all effective components for lowering the softening point of the crystalline glass. However, if the above range is exceeded, it becomes difficult to deposit desired crystals. In addition, in order to acquire the said effect, it is preferable to contain 1% or more of at least 1 sort (s) among these components.
P2O5は結晶を細かくする作用を有するが、0.8%よりも多くなると失透性が強くなる。下限は特に限定されないが、前記効果を得るためには、0.1%以上含有することが好ましい。 P 2 O 5 has an effect of making the crystal finer, but when it exceeds 0.8%, devitrification becomes strong. Although a minimum is not specifically limited, In order to acquire the said effect, containing 0.1% or more is preferable.
なお、これ以外に、清澄剤としてSnO2を0〜1%、好ましくは0.1〜0.5%加えることもできる。又、その他の清澄剤としてAs2O3、Sb2O3を、清澄剤の合量が5%を超えない範囲で加えることもできる。 In addition, SnO 2 can be added as a clarifier in an amount of 0 to 1%, preferably 0.1 to 0.5%. In addition, As 2 O 3 and Sb 2 O 3 can be added as other clarifiers in a range where the total amount of the clarifier does not exceed 5%.
なお、前記結晶性ガラス小体を熱処理により融着一体化して得られる本発明の結晶化ガラス物品は、質量%で、SiO2 55〜72%、Al2O3 14〜30%、Li2O 1.5〜5%、K2O 1〜10%、TiO2 0〜5%、ZrO2 0〜4%、TiO2+ZrO2 0〜7%、ZnO 0〜10%、MgO 0〜2.5%、CaO 0〜2.5%、BaO 0〜8%、B2O3 0〜7%、Na2Oを0〜2%、P2O5 0〜0.8%の組成を有することが好ましい。各成分の割合をこのように限定した理由は前記と同様である。 The crystallized glass article of the present invention obtained by fusing and integrating the crystalline glass bodies by heat treatment is SiO 2 55 to 72%, Al 2 O 3 14 to 30%, Li 2 O in mass%. 1.5~5%, K 2 O 1~10% , TiO 2 0~5%, ZrO 2 0~4%, TiO 2 + ZrO 2 0~7%, 0~10% ZnO, MgO 0~2.5 %, CaO 0-2.5%, BaO 0-8%, B 2 O 3 0-7%, Na 2 O 0-2%, P 2 O 5 0-0.8%. preferable. The reason for limiting the ratio of each component in this way is the same as described above.
より好ましい組成は、質量%で、SiO2 55〜72%、Al2O3 14〜30%、Li2O 1.5〜5%、K2O 1〜10%、TiO2 1〜5%、ZrO2 0〜4%、TiO2+ZrO2 2.5〜7%、ZnO 0〜10%、MgO 0〜2.5%、CaO 0〜2.5%、BaO 0〜3%、B2O3 0〜7%、Na2Oを0〜2%、P2O5 0〜0.8%で表される。 More preferred composition, in mass%, SiO 2 55~72%, Al 2 O 3 14~30%, Li 2 O 1.5~5%, K 2 O 1~10%, TiO 2 1~5%, ZrO 2 0-4%, TiO 2 + ZrO 2 2.5-7%, ZnO 0-10%, MgO 0-2.5%, CaO 0-2.5%, BaO 0-3%, B 2 O 3 It is represented by 0 to 7%, Na 2 O 0 to 2%, and P 2 O 5 0 to 0.8%.
本発明の結晶化ガラス物品において、着色層を現出させるために用いられる金属酸化物粉末又は無機顔料粉末の添加量は、結晶性ガラス小体100質量部に対して、3質量部以下であることが好ましく、1質量部以下であることがより好ましい。金属酸化物粉末又は無機顔料粉末の添加量が3質量部を超えると、結晶性ガラス小体の流動が阻害され、各結晶性ガラス小体の融着が不充分となり気泡が残存し、結果として、得られる結晶化ガラス物品の強度に劣る傾向がある。又、得られる結晶化ガラス物品の表面粗度が大きくなりやすい。下限については特に限定されないが、鮮明な着色層を現出させるために0.01質量部以上とすることが好ましく、0.05質量部以上とすることがより好ましい。 In the crystallized glass article of the present invention, the addition amount of the metal oxide powder or inorganic pigment powder used to reveal the colored layer is 3 parts by mass or less with respect to 100 parts by mass of the crystalline glass body. It is preferably 1 part by mass or less. If the added amount of the metal oxide powder or inorganic pigment powder exceeds 3 parts by mass, the flow of the crystalline glass bodies is hindered, the fusion of the crystalline glass bodies becomes insufficient, and bubbles remain, as a result. The strength of the resulting crystallized glass article tends to be inferior. Moreover, the surface roughness of the crystallized glass article obtained tends to increase. Although it does not specifically limit about a minimum, In order to make a clear colored layer appear, it is preferable to set it as 0.01 mass part or more, and it is more preferable to set it as 0.05 mass part or more.
金属酸化物粉末としては、酸化コバルト、酸化ニッケル、酸化鉄、酸化バナジウム等が用いられる。これらは微量のガーナイト結晶に固着することにより、酸化コバルトは青色、酸化ニッケルは緑色、酸化鉄は褐色、酸化バナジウムは黄褐色をそれぞれ発色する。 As the metal oxide powder, cobalt oxide, nickel oxide, iron oxide, vanadium oxide or the like is used. By adhering to a small amount of garnite crystals, cobalt oxide develops blue color, nickel oxide green, iron oxide brown, and vanadium oxide yellowish brown.
無機顔料粉末としては、Zr−Si−Fe(淡赤褐色)、Zr−Si−Pr(淡黄色)、Zr−Si−V(淡青色)等のジルコン系顔料、Zn−Cr−Ni−Al(ブラウン色)、Al−Co−Zn(青色)、Fe−Cr−Zn(濃ブラウン色)等のスピネル系顔料を用いることができる。 Examples of inorganic pigment powders include zircon pigments such as Zr-Si-Fe (light reddish brown), Zr-Si-Pr (light yellow), Zr-Si-V (light blue), Zn-Cr-Ni-Al (brown Color), spinel pigments such as Al-Co-Zn (blue), Fe-Cr-Zn (dark brown).
これらの金属酸化物粉末及び無機顔料粉末は、単独で用いてもよく、2種以上を混合して用いることも可能である。 These metal oxide powders and inorganic pigment powders may be used alone or in combination of two or more.
本発明の結晶化ガラス物品において、結晶性ガラス小体の着色のために用いられる着色成分の含有量は、結晶性ガラス組成中に5質量%以下であることが好ましく、1質量%以下であることがより好ましい。着色成分の含有量が5質量%を超えると、得られる結晶化ガラス物品の着色の度合いが強くなりすぎ風合いを損なう、ガラス組成におけるその他の成分の含有量が相対的に減少するため、得られる結晶化ガラス物品の各物性に影響を与える、結晶量の低下により線熱膨張係数が上昇する、などの問題が生じる傾向がある。下限については、特に限定されないが、十分な着色の効果を得るために0.01質量%以上とすることが好ましい。 In the crystallized glass article of the present invention, the content of the coloring component used for coloring the crystalline glass body is preferably 5% by mass or less, preferably 1% by mass or less in the crystalline glass composition. It is more preferable. When the content of the coloring component exceeds 5% by mass, the degree of coloring of the crystallized glass article to be obtained becomes too strong, and the content of other components in the glass composition, which impairs the texture, is relatively reduced. There is a tendency that problems such as an influence on each physical property of the crystallized glass article and an increase in the coefficient of linear thermal expansion due to a decrease in the amount of crystals are caused. The lower limit is not particularly limited, but is preferably 0.01% by mass or more in order to obtain a sufficient coloring effect.
着色成分としては、酸化コバルト、酸化ニッケル、酸化鉄、酸化バナジウム等が用いられる。これらは単独で用いてもよく、2種以上を混合して用いることも可能である。 As the coloring component, cobalt oxide, nickel oxide, iron oxide, vanadium oxide, or the like is used. These may be used alone or in combination of two or more.
なお、組成に着色成分を含有する結晶性ガラス小体と着色成分を含有しない結晶性ガラスを混合して用いる場合、その混合比は特に限定されず、目的とする結晶化ガラス物品の模様に応じて適宜選択すればよい。例えば、(組成に着色成分を含有する結晶性ガラス小体):(組成に着色成分を含有しない結晶性ガラス小体)の比が、5:95〜95:5であることが好ましく、10:90〜90:10であることがより好ましく、30:70〜70:30であることが更に好ましい。 In addition, when mixing and using the crystalline glass body containing a coloring component and the crystalline glass which does not contain a coloring component in the composition, the mixing ratio is not specifically limited, According to the pattern of the target crystallized glass article May be selected as appropriate. For example, the ratio of (crystalline glass body containing coloring component in composition) :( crystalline glass body not containing coloring component in composition) is preferably 5:95 to 95: 5, 10: It is more preferably 90 to 90:10, and further preferably 30:70 to 70:30.
本発明の結晶化ガラス物品は、別の形態として、ガラス小体を集積し、熱処理により融着一体化させてなり、30〜380℃における線熱膨張係数が30×10−7/K以下であることを特徴とする。線熱膨張係数を30×10−7/K以下とした理由及び好ましい範囲は前記と同様である。なお、下限については特に限定されないが、低すぎる場合はLi2O−Al2O3−SiO2系結晶の量が過剰となり、ガラスの流動を阻害する傾向があるため、現実的には0×10−7/K以上、更には5×10−7/K以上である。 As another form, the crystallized glass article of the present invention is obtained by accumulating glass bodies and fusing and integrating them by heat treatment, and the linear thermal expansion coefficient at 30 to 380 ° C. is 30 × 10 −7 / K or less. It is characterized by being. The reason why the linear thermal expansion coefficient is set to 30 × 10 −7 / K or less and the preferable range are the same as described above. The lower limit is not particularly limited, but if it is too low, the amount of Li 2 O—Al 2 O 3 —SiO 2 -based crystal becomes excessive and tends to inhibit the flow of glass. 10 −7 / K or more, and further 5 × 10 −7 / K or more.
次に、本発明の結晶化ガラス物品の製造方法について説明する。 Next, the manufacturing method of the crystallized glass article of this invention is demonstrated.
本発明の結晶化ガラス物品の製造方法は、耐火性型枠に結晶性ガラス小体を集積し、結晶性ガラス小体の軟化点以上の温度で熱処理を行い、融着一体化かつ結晶化させることを特徴とする。ここで、結晶性ガラス小体としては、既に結晶が一部析出したガラス小体を使用しても構わない。又、結晶性ガラス小体に金属酸化物粉末又は無機顔料粉末を混合、付着させた後に、耐火性型枠に集積することにより、得られる結晶化ガラス物品において、各結晶化ガラス小体界面に着色層を現出させることが可能となる。 In the method for producing a crystallized glass article according to the present invention, crystalline glass bodies are accumulated in a fireproof mold, and heat treatment is performed at a temperature equal to or higher than the softening point of the crystalline glass bodies to fuse and integrate and crystallize. It is characterized by that. Here, as the crystalline glass body, a glass body on which crystals have already partially precipitated may be used. Also, after mixing and adhering the metal oxide powder or inorganic pigment powder to the crystalline glass body, and then accumulating it in the refractory mold, in the resulting crystallized glass article, at each crystallized glass body interface It becomes possible to make the colored layer appear.
結晶性ガラス小体を作製する方法として、溶融したガラスを水中に流し込み、熱衝撃によって粉砕(水砕)したガラス、又は板状(例えば、厚さ5mm以下)に成形したガラスをアルミナ製等のミルによって粉砕した後、篩にて分級する方法が挙げられる。 As a method for producing a crystalline glass body, glass that has been melted by pouring molten glass into water and pulverized (water-granulated) by thermal shock, or glass that has been formed into a plate shape (for example, 5 mm or less in thickness) is made of alumina or the like. The method of classifying with a sieve after pulverizing with a mill is mentioned.
得られた結晶性ガラス小体の粒度、形状は特に限定されず、任意に選択することにより、それに応じた模様が得られる。ただし、次に述べる理由により、結晶性ガラス小体の粒度は0.1〜20mmであることが好ましく、0.5〜10mmであることがより好ましく、0.5〜5mmであることが更に好ましい。結晶性ガラス小体の粒度が0.1mmより小さくなると作業性に問題が出るとともに模様が出来難くなる。一方、結晶性ガラス小体の粒度が20mmより大きくなると金属酸化物粉末又は無機顔料粉末との混合が困難になり、着色が不充分になりやすい。 The particle size and shape of the obtained crystalline glass body are not particularly limited, and a pattern according to it can be obtained by selecting arbitrarily. However, for the following reasons, the particle size of the crystalline glass body is preferably 0.1 to 20 mm, more preferably 0.5 to 10 mm, and further preferably 0.5 to 5 mm. . When the particle size of the crystalline glass body is smaller than 0.1 mm, there is a problem in workability and it becomes difficult to make a pattern. On the other hand, when the particle size of the crystalline glass body is larger than 20 mm, mixing with the metal oxide powder or the inorganic pigment powder becomes difficult, and coloring tends to be insufficient.
結晶性ガラスと金属酸化物粉末又は無機顔料粉末の混合は、V型混合機、コンクリートミキサーなどの公知の方法により行うことができる。なお、ポリビニルアルコールなどのバインダーを適宜添加しても構わない。 Mixing of the crystalline glass and the metal oxide powder or the inorganic pigment powder can be performed by a known method such as a V-type mixer or a concrete mixer. A binder such as polyvinyl alcohol may be added as appropriate.
焼成の際に用いる耐火性型枠の材質としては、前記焼成温度以上の耐熱性を有しているものであれば特に限定されず、例えば、ムライト・コージェライト、石膏型、SiC等が挙げられる。 The material of the refractory mold used for firing is not particularly limited as long as it has heat resistance equal to or higher than the firing temperature, and examples thereof include mullite cordierite, gypsum mold, and SiC. .
なお、耐火性型枠は、セラミックファイバーシート、アルミナシートなどの離型材を備えてなることが好ましい。 In addition, it is preferable that a refractory form is equipped with mold release materials, such as a ceramic fiber sheet and an alumina sheet.
本発明の結晶化ガラス物品は主にガスレンジのガラストッププレート及び厨房設備の天板等に使用するために、表面の平滑性が要求される。そのような観点から、焼成温度は、結晶性ガラス小体の軟化点以上、好ましくはガラスの粘度が104.5〜105.5ポイズ(即ち、104.5〜105.5dPa・s)を示す温度域で焼成される。具体的には、結晶性ガラスの種類にもよるが、焼成温度は1100℃以上であることが好ましく、1200℃以上であることがより好ましい。又、焼成窯の限定及び燃料コストを考慮すると焼成温度は1300℃以下であることが好ましい。 Since the crystallized glass article of the present invention is mainly used for a glass top plate of a gas range, a top plate of a kitchen facility, etc., surface smoothness is required. From such a viewpoint, the firing temperature is higher than the softening point of the crystalline glass body, preferably the viscosity of the glass is 10 4.5 to 10 5.5 poise (that is, 10 4.5 to 10 5.5 dPa · s). s). Specifically, although it depends on the type of crystalline glass, the firing temperature is preferably 1100 ° C. or higher, more preferably 1200 ° C. or higher. In consideration of the limitation of the firing kiln and the fuel cost, the firing temperature is preferably 1300 ° C. or lower.
その後、好ましくは1時間に200℃以下、より好ましくは1時間に150℃以下の速度で冷却することにより、Li2O−Al2O3−SiO2系結晶が析出結晶合量として20〜70質量%であり、好ましくは5質量%以下のガーナイト結晶を含む結晶化ガラスとすることが可能となる。冷却速度が1時間に200℃より速くなると結晶の析出が安定せず、その結果、得られる結晶化ガラス物品の線熱膨張係数の値が不安定になり易い。 Then, preferably by cooling at a rate of 200 ° C. or less per hour, more preferably 150 ° C. or less per hour, the Li 2 O—Al 2 O 3 —SiO 2 -based crystal is 20 to 70 as the total amount of precipitated crystals. It is possible to obtain a crystallized glass containing garnite crystals, preferably 5% by mass or less. When the cooling rate is higher than 200 ° C. per hour, crystal precipitation is not stable, and as a result, the value of the linear thermal expansion coefficient of the obtained crystallized glass article tends to be unstable.
(実施例1)
(a)結晶性ガラス物品の製造
表1に示す組成を有するように調合したガラス原料を1650℃で12時間溶融し、この溶融ガラスを水中に投入し、結晶性ガラス小体とした。この結晶性ガラスの線熱膨張係数をDILATO法にて測定したところ40×10−7/Kで、転移温度は680℃であった。粘度については、平行板式粘度計により104.5及び105.5ポイズの粘度における温度を測定したところ、104.5ポイズでは1280℃、105.5ポイズでは1080℃であった。
Example 1
(A) Production of crystalline glass article A glass raw material prepared to have the composition shown in Table 1 was melted at 1650 ° C. for 12 hours, and this molten glass was poured into water to obtain a crystalline glass body. When the linear thermal expansion coefficient of this crystalline glass was measured by the DILATO method, it was 40 × 10 −7 / K and the transition temperature was 680 ° C. Regarding the viscosity, the temperature at the viscosity of 10 4.5 and 10 5.5 poise was measured with a parallel plate viscometer, and it was 1280 ° C. for 10 4.5 poise and 1080 ° C. for 10 5.5 poise.
得られた結晶性ガラス小体を篩にて粒度1.0〜5mmに分級し、ザラメ状の結晶性ガラス小体を得た。この結晶性ガラス小体100質量部に対して、金属酸化物である酸化コバルト粉末0.1質量部を調合し軽く混合し、バインダーとしてポリビニルアルコールを少量添加した後によく混合した。次に、アルミナシートを敷き詰めたムライト・コージェライト製の棚板上にアルミナ粉が塗布された内寸が450mm×650mm×深さ20mmの型枠を作製し、前記で得られた酸化コバルト粉末が表面に付着した結晶性ガラス小体5.6kgを均等に集積した。これは熱処理後に得られる結晶化ガラス板の厚さが約7mmになる量である。続いて、この状態でシャトルキルン(ガス炉)にて焼成した。焼成条件としては、1時間に100℃の速度で昇温、1250℃で1時間保持し、次に700℃まで1時間に100℃の速度で冷却し、その後炉冷することにより焼成体とし、結晶化ガラス物品を得た。得られた結晶化ガラス物品は、ガラス小体の界面に青色を呈しており、研磨面においては、ガラス小体の界面に青色層を有する網目模様を呈していた。 The obtained crystalline glass body was classified with a sieve to a particle size of 1.0 to 5 mm to obtain a grainy crystalline glass body. To 100 parts by mass of this crystalline glass body, 0.1 part by mass of cobalt oxide powder, which is a metal oxide, was mixed and mixed lightly, and after adding a small amount of polyvinyl alcohol as a binder, it was mixed well. Next, a mold having an inner dimension of 450 mm × 650 mm × depth 20 mm was prepared by coating alumina powder on a mullite cordierite shelf plate laid with alumina sheets, and the cobalt oxide powder obtained above was 5.6 kg of crystalline glass particles adhering to the surface were evenly accumulated. This is an amount such that the thickness of the crystallized glass plate obtained after the heat treatment is about 7 mm. Then, it baked with the shuttle kiln (gas furnace) in this state. As firing conditions, the temperature was raised at a rate of 100 ° C. per hour, held at 1250 ° C. for 1 hour, then cooled to 700 ° C. at a rate of 100 ° C. per hour, and then furnace-cooled to obtain a fired body, A crystallized glass article was obtained. The obtained crystallized glass article had a blue color at the interface of the glass body, and the polished surface had a mesh pattern having a blue layer at the interface of the glass body.
得られた結晶化ガラス物品の結晶量を確認するために、前記結晶性ガラス小体の一部を耐火性の容器に集積した後に、前記と同様の焼成条件、冷却条件により結晶化ガラスを製造し、この結晶化ガラスについて理学製X線回折装置を用い、多重ピーク分離法により結晶析出量の測定を行った。その結果、Li2O−Al2O3−SiO2系のβ―石英固溶体が45質量%、ガーナイト結晶が4質量%析出していることが確認できた。 In order to confirm the amount of crystals of the obtained crystallized glass article, a part of the crystalline glass body is accumulated in a refractory container, and then crystallized glass is produced under the same firing conditions and cooling conditions as described above. Then, the crystallized glass was measured for the amount of crystal precipitation by a multiple peak separation method using an X-ray diffractometer manufactured by Rigaku. As a result, it was confirmed that 45% by mass of Li 2 O—Al 2 O 3 —SiO 2 -based β-quartz solid solution and 4% by mass of garnite crystals were precipitated.
(b)結晶化ガラス物品の物性の測定
得られた結晶化ガラス物品の線熱膨張係数及びガラス転移温度については、Bruker AXS社製ディラトメータにて測定した。
(B) Measurement of physical properties of crystallized glass article The linear thermal expansion coefficient and glass transition temperature of the obtained crystallized glass article were measured with a dilatometer manufactured by Bruker AXS.
耐熱試験については、ハーマン製ガスビルトインコンロ(110−H551型)を用いて各試験体に標準装備を固定し、ハイカロリーバーナーにて、ガスフレームをフルパワーで250mmサイズの鍋を載せた状態で30分間加熱したとき、破損しなかったものを合格、破損したものを不合格とした。なお、そのときの結晶化ガラス物品の最高温度は約230℃であった。又、その際の発生応力を、解析ソフト(ANSYS:構造解析)を用いてシミュレーションによる輻射伝熱解析を行って求めた。 For the heat resistance test, standard equipment is fixed to each specimen using a Herman gas built-in stove (110-H551 type), and a gas frame is put on a 250 mm sized pan at full power with a high-calorie burner. When heated for 30 minutes, those that were not damaged passed and those that were damaged were rejected. The maximum temperature of the crystallized glass article at that time was about 230 ° C. Further, the stress generated at that time was obtained by performing a radiant heat transfer analysis by simulation using analysis software (ANSY: structural analysis).
曲げ強度については、ASTM C880−78に準じた4点曲げ強度にて行った。 About bending strength, it carried out by 4-point bending strength according to ASTM C880-78.
以上の結果を表1に示す。 The results are shown in Table 1.
(実施例2)
実施例1と同様の結晶性ガラス小体をアルミナボールミルにて粉砕後、篩にて粒度0.5〜2.0mmに分級し、細粒のザラメ状結晶性ガラス小体を得た。この結晶性ガラス小体100質量部に対して、Si−Zr−Fe系の無機顔料粉末0.3質量部を実施例1と同様に混合した後に、同様の焼成、冷却条件にて結晶化ガラス物品を得た。得られた結晶化ガラス物品は、ガラス小体の界面に淡い赤褐色を呈しており、研磨面においては、ガラス小体の界面に淡赤褐色層を有する網目模様を呈していた。
(Example 2)
Crystalline glass bodies similar to those in Example 1 were pulverized with an alumina ball mill, and then classified with a sieve to a particle size of 0.5 to 2.0 mm to obtain fine grained crystalline glass bodies. After mixing 0.3 parts by mass of Si-Zr-Fe-based inorganic pigment powder in the same manner as in Example 1 with respect to 100 parts by mass of this crystalline glass body, crystallized glass under the same firing and cooling conditions. An article was obtained. The obtained crystallized glass article had a light reddish brown color at the interface of the glass body, and the polished surface had a mesh pattern having a light reddish brown layer at the interface of the glass body.
得られた結晶化ガラス物品について、実施例1と同様に物性の測定を行った。結果を表1に示す。 The physical properties of the obtained crystallized glass article were measured in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
実施例1と同様の結晶性ガラス小体について、無機顔料粉末を添加しない状態で実施例1と同様に集積し焼成を行い、模様のない白色結晶化ガラス物品を得た。なお、得られた結晶化ガラス物品の研磨面においては、各結晶化ガラス小体がその界面で互いに融着している状態が観察された。
(Example 3)
The crystalline glass bodies similar to Example 1 were accumulated and fired in the same manner as in Example 1 without adding inorganic pigment powder to obtain a white crystallized glass article having no pattern. Note that, on the polished surface of the obtained crystallized glass article, it was observed that the crystallized glass bodies were fused to each other at the interface.
得られた結晶化ガラス物品について、実施例1と同様に物性の測定を行った。結果を表1に示す。 The physical properties of the obtained crystallized glass article were measured in the same manner as in Example 1. The results are shown in Table 1.
(実施例4)
表1に示すように、組成に酸化コバルトを0.05%含有するように調合したガラス原料を用いて、実施例1と同様の方法にて濃い青色の結晶性ガラス小体を得た。この結晶性ガラス小体と実施例1で得られた結晶性ガラス小体を4:6の重量比で混合した混合ガラス小体を用いて、実施例1と同様の条件にて焼成、冷却処理を行い、結晶化ガラス物品を得た。得られた結晶化ガラス物品は、青色に着色した結晶化ガラス小体と白色の結晶化ガラス小体が混在し、斑模様を呈していた。
Example 4
As shown in Table 1, a dark blue crystalline glass body was obtained in the same manner as in Example 1 using a glass raw material prepared so as to contain 0.05% cobalt oxide in the composition. Using this mixed glass body obtained by mixing the crystalline glass body and the crystalline glass body obtained in Example 1 at a weight ratio of 4: 6, firing and cooling treatments were performed under the same conditions as in Example 1. To obtain a crystallized glass article. The obtained crystallized glass article was mixed with blue colored crystallized glass bodies and white crystallized glass bodies, and had a patchy pattern.
得られた結晶化ガラス物品について、実施例1と同様に物性の測定を行った。結果を表1に示す。 The physical properties of the obtained crystallized glass article were measured in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
表1に示す組成を有するように調合したガラス原料を1550℃で12時間溶融し、この溶融ガラスを水中に投入し、結晶性ガラス小体とした。この結晶性ガラスの線熱膨張係数をDILATO法にて測定したところ72×10−7/Kで、転移温度は580℃であった。粘度については、平行板式粘度計により104及び105ポイズの粘度における温度を測定したところ、104ポイズでは1110℃、105ポイズでは1010℃であった。
(Comparative Example 1)
A glass raw material prepared to have the composition shown in Table 1 was melted at 1550 ° C. for 12 hours, and this molten glass was poured into water to obtain a crystalline glass body. When the linear thermal expansion coefficient of this crystalline glass was measured by the DILATO method, it was 72 × 10 −7 / K and the transition temperature was 580 ° C. The viscosity was measured the temperature at a viscosity of 10 4 and 10 5 poise by parallel plate viscometer, 10 1110 ° C. in 4 poise, at 10 5 poise was 1010 ° C..
得られた結晶性ガラス小体を篩にて粒度0.5〜2.0mmに分級し、ザラメ状の結晶性ガラス小体を得た。次に、Sn−Si−Ca−Cr−Zn系のスフェイン無機顔料粉末を、結晶性ガラス小体100質量部に対して1質量部添加し、軽く混合し、バインダーを少量添加した後によく混合した。次に、アルミナ粉を塗布したムライト・コージェライト製の内寸が450mm×650mm×深さ20mmの型枠を作製し、前記で得られたスフェイン顔料が表面に付着した結晶性ガラス小体5.6kgを均等に集積した。続いて、この状態でシャトルキルンにて焼成した。焼成条件としては、1時間に100℃の速度で昇温し、1100℃で1時間保持し、次に1時間に100℃の速度で冷却し、その後炉冷することにより焼成体とし、鮮やかなピンク色を呈した模様入り結晶化ガラス物品を得た。 The obtained crystalline glass body was classified with a sieve to a particle size of 0.5 to 2.0 mm to obtain a grainy crystalline glass body. Next, 1 part by mass of Sn-Si-Ca-Cr-Zn-based sphene inorganic pigment powder is added to 100 parts by mass of the crystalline glass body, lightly mixed, and after a small amount of binder is added, it is mixed well. . 4. Next, a mold made of mullite cordierite coated with alumina powder and having an inner dimension of 450 mm × 650 mm × depth of 20 mm is prepared, and a crystalline glass body with the sphene pigment obtained above adhered to the surface. 6 kg was collected evenly. Then, it baked with the shuttle kiln in this state. As firing conditions, the temperature is raised at a rate of 100 ° C. for 1 hour, held at 1100 ° C. for 1 hour, then cooled at a rate of 100 ° C. for 1 hour, and then cooled in a furnace to obtain a fired body. A patterned crystallized glass article having a pink color was obtained.
得られた結晶化ガラス物品の結晶量を確認するために、前記結晶性ガラス小体の一部を耐火性の容器に集積した後に、前記と同様の焼成及び冷却条件にて結晶化ガラスを得た。この結晶化ガラスは、X線回折測定の結果、結晶析出量は約30%質量であり、析出結晶がβ―ウォラストナイト(CaO・SiO2)であることが確認できた。 In order to confirm the amount of crystals of the obtained crystallized glass article, after collecting a part of the crystalline glass particles in a refractory container, crystallized glass is obtained under the same firing and cooling conditions as described above. It was. As a result of X-ray diffraction measurement, the crystallized glass had a crystal precipitation amount of about 30%, and it was confirmed that the precipitated crystal was β-wollastonite (CaO · SiO 2 ).
得られた結晶化ガラス物品について、実施例1と同様に物性の測定を行った。結果を表1に示す。 The physical properties of the obtained crystallized glass article were measured in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
表1に示す組成を有するように調合したガラス原料を1550℃で12時間溶融し、この溶融ガラスをロールにて5mmの厚さに板状に成形し、結晶性ガラス板とした。この結晶性ガラスの線熱膨張係数をDILATO法にて測定したところ69×10−7/Kであった。粘度については、平行板式粘度計により104及び105ポイズの粘度における温度を測定したところ、104ポイズでは1115℃、105ポイズでは1060℃であった。
(Comparative Example 2)
The glass raw material prepared so as to have the composition shown in Table 1 was melted at 1550 ° C. for 12 hours, and this molten glass was formed into a plate shape to a thickness of 5 mm with a roll to obtain a crystalline glass plate. The linear thermal expansion coefficient of this crystalline glass was measured by the DILATO method and found to be 69 × 10 −7 / K. The viscosity was measured the temperature at a viscosity of 10 4 and 10 5 poise by parallel plate viscometer, 10 1115 ° C. in 4 poise, was 1060 ° C. at 10 5 poise.
得られた結晶性ガラス板を、アルミナ粉を塗布したムライト・コージェライト製棚板の上に設置した。この状態でローラーハースキルンにて焼成した。焼成条件としては、1時間に100℃の速度で昇温し、1070℃で1時間保持し、次に1時間に100℃の速度で冷却し、その後、炉冷することにより焼成体とし、淡い青色を呈した模様の無い結晶化ガラス板物品を得た。 The obtained crystalline glass plate was placed on a mullite cordierite shelf coated with alumina powder. In this state, it was baked with a roller hearth kiln. As firing conditions, the temperature is raised at a rate of 100 ° C. per hour, held at 1070 ° C. for 1 hour, then cooled at a rate of 100 ° C. per hour, and then cooled in a furnace to obtain a fired body, which is light. A crystallized glass plate article having a blue pattern and no pattern was obtained.
得られた結晶化ガラス板物品の結晶量を確認するために、前記結晶性ガラス板の一部を耐火性棚板に設置し、前記と同様の焼成及び冷却条件にて結晶化ガラスを得た。この結晶化ガラスは、X線回折測定の結果、結晶析出量は約13質量%であり、析出結晶がフォルステナイト(2MgO・SiO2)とガーナイトであることが確認できた。 In order to confirm the amount of crystals of the obtained crystallized glass plate article, a part of the crystalline glass plate was placed on a fireproof shelf and crystallized glass was obtained under the same firing and cooling conditions as described above. . As a result of X-ray diffraction measurement, the crystallized glass had a crystal precipitation amount of about 13% by mass, and it was confirmed that the precipitated crystal was forsteinite (2MgO.SiO 2 ) and garnite.
得られた結晶化ガラス物品について、実施例1と同様に物性の測定を行った。結果を表1に示す。 The physical properties of the obtained crystallized glass article were measured in the same manner as in Example 1. The results are shown in Table 1.
表1から明らかなように、実施例1〜4においては、良好な耐熱性及び強度を有し、かつ優れた意匠性を有する結晶化ガラス物品を得ることができた。一方、比較例の結晶化ガラス物品は、耐熱性及び強度に劣り、調理器用トッププレートとしては適さなかった。 As is apparent from Table 1, in Examples 1 to 4, it was possible to obtain crystallized glass articles having good heat resistance and strength and having excellent design properties. On the other hand, the crystallized glass article of the comparative example was inferior in heat resistance and strength, and was not suitable as a top plate for a cooker.
(実施例5〜11)
(a)結晶性ガラス試料の製造
表2に示すガラス組成を有するように調合した原料を均一に混合した後、白金坩堝を用いて1600〜1650℃で12時間溶融した。溶融したガラスを水中に投入し、結晶性ガラス小体を作製した。
(Examples 5 to 11)
(A) Production of Crystalline Glass Sample After uniformly mixing the raw materials prepared so as to have the glass composition shown in Table 2, it was melted at 1600 to 1650 ° C. for 12 hours using a platinum crucible. The molten glass was poured into water to produce a crystalline glass body.
得られた結晶性ガラス小体を篩にて粒度0.5〜2.0mmに分級し、細粒のザラメ状結晶性ガラス小体を得た。この結晶性ガラス小体を、アルミナシートを敷き詰めた耐火性容器内に均等に集積し、この状態で電気炉にて焼成することにより結晶化ガラス試料を得た。焼成条件としては、100℃/hの速度で昇温し、表2の所定の焼成温度で1時間保持した後、所定の冷却速度で室温まで冷却した。 The obtained crystalline glass bodies were classified with a sieve to a particle size of 0.5 to 2.0 mm to obtain fine-grained grainy crystalline glass bodies. The crystalline glass bodies were uniformly accumulated in a refractory container laid with an alumina sheet and fired in this state in an electric furnace to obtain a crystallized glass sample. As firing conditions, the temperature was raised at a rate of 100 ° C./h, held at the prescribed firing temperature in Table 2 for 1 hour, and then cooled to room temperature at the prescribed cooling rate.
(b)結晶化ガラス試料の特性
得られた結晶化ガラス試料の特性を表2に示す。各特性は、以下の通りに評価した。
(B) Characteristics of crystallized glass sample Table 2 shows the characteristics of the obtained crystallized glass sample. Each characteristic was evaluated as follows.
各結晶化ガラス試料の30〜380℃における平均線熱膨張係数、ガラス転移温度及び屈伏温度は、ディラトメータ(Bruker AXS製 TD5010)を用いて測定した。 The average linear thermal expansion coefficient, glass transition temperature, and yield temperature at 30 to 380 ° C. of each crystallized glass sample were measured using a dilatometer (TD5010 manufactured by Bruker AXS).
各結晶化ガラス試料における析出結晶の解析は、X線回折装置(リガク製 RINT2100)を用いて行なった。 The analysis of the precipitated crystal in each crystallized glass sample was performed using an X-ray diffractometer (RINT2100 manufactured by Rigaku).
各結晶化ガラス試料における結晶の析出状態は、走査型電子顕微鏡(日立ハイテクノロジーズ製 S−4300SE)を用いて観察した。結晶粒子とマトリクスガラスのコントラストを明瞭にするため、結晶化ガラス試料の破断面をフッ酸(2質量%−25℃)で4分間エッチングした。又、結晶相及びマトリクスガラスの組成(Liを除く)は、本走査型電子顕微鏡に付属のエネルギー分散型X線分析装置(堀場製作所製 EMAX Energy EX−250)を用いて分析した。析出結晶の平均粒子径は、無作為に選んだ観察領域の電子顕微鏡画像における結晶の粒子径を画像処理システム(三谷商事製 WinRoof Ver.5)を用いて計測し、その平均値を求めることにより決定した。体積結晶化度(vol%)は、その画像解析結果から求められた結晶相の面積割合を体積割合に換算することにより決定した。 The crystal precipitation state in each crystallized glass sample was observed using a scanning electron microscope (S-4300SE, manufactured by Hitachi High-Technologies Corporation). In order to clarify the contrast between the crystal particles and the matrix glass, the fracture surface of the crystallized glass sample was etched with hydrofluoric acid (2% by mass-25 ° C.) for 4 minutes. Further, the composition of the crystal phase and the matrix glass (excluding Li) was analyzed using an energy dispersive X-ray analyzer (EMAX Energy EX-250 manufactured by Horiba, Ltd.) attached to the present scanning electron microscope. The average particle size of the precipitated crystals is determined by measuring the particle size of the crystal in the electron microscope image of the observation region selected at random using an image processing system (WinRoof Ver. 5 manufactured by Mitani Corp.) and calculating the average value. Were determined. The volume crystallinity (vol%) was determined by converting the area ratio of the crystal phase obtained from the image analysis result into a volume ratio.
(c)マトリクスガラスと結晶の平均線熱膨張係数の差
下記の手順によって算出されるマトリクスガラスと結晶各々の平均線熱膨張係数から両者の差を算出した。
(C) Difference in average linear thermal expansion coefficient between matrix glass and crystal The difference between both was calculated from the average linear thermal expansion coefficient of each of the matrix glass and the crystal calculated by the following procedure.
(結晶相の平均線熱膨張係数)
まず、Li2O−Al2O3−SiO2系結晶中のSiO2量x(モル%)を以下の手順により決定した。β−石英固溶体及びβ−スポジュメン固溶体結晶中のSiO2量と結晶格子における特定の面間隔との間には、比例関係が成立することが報告されている(日本化学会誌(1974年)、505−510頁、及び、Japan Analyst Vol.22(1973年)、745−751頁)。これより、β−石英固溶体及びβ−スポジュメン固溶体結晶におけるSiO2量x(モル%)は、それぞれ下記の式で表すことができる。
(Average linear thermal expansion coefficient of crystal phase)
First, the SiO 2 amount x (mol%) in the Li 2 O—Al 2 O 3 —SiO 2 based crystal was determined by the following procedure. It has been reported that a proportional relationship is established between the amount of SiO 2 in β-quartz solid solution and β-spodumene solid solution crystals and a specific interplanar spacing in the crystal lattice (The Chemical Society of Japan (1974), 505. -510, and Japan Analyst Vol. 22 (1973), pages 745-751). From this, the SiO 2 amount x (mol%) in the β-quartz solid solution and β-spodumene solid solution crystals can be expressed by the following formulas, respectively.
β−石英固溶体: x=(0.1004−d(406))/6.752E−5
β−スポジュメン固溶体:x=(0.1286−d(217))/1.009E−4
β-quartz solid solution: x = (0.1004-d (406)) / 6.752E-5
β-spodumene solid solution: x = (0.1286-d (217)) / 1.009E-4
ここで、d(406)及びd(217)は、それぞれβ−石英固溶体(六方晶)及びβ−スポジュメン固溶体(正方晶)の結晶格子における(406)面及び(217)面の面間隔(nm)を表す。 Here, d (406) and d (217) are plane spacings (nm) between the (406) plane and the (217) plane in the crystal lattice of β-quartz solid solution (hexagonal crystal) and β-spodumene solid solution (tetragonal crystal), respectively. ).
又、xは下記の関係式を用いることにより、結晶組成をLi2O・Al2O3・nSiO2と表した場合のモル比nに換算することができる。 Further, x is by using the following relationship can be converted to crystal composition molar ratio n when expressed as Li 2 O · Al 2 O 3 · nSiO 2.
n=2x/(100−x) n = 2x / (100-x)
X線回折法によって求めたLi2O−Al2O3−SiO2系結晶の面間隔を用いて、上記の式から各結晶相におけるSiO2量x(モル%)及びSiO2のモル比nを決定した。 Using the interplanar spacing of the Li 2 O—Al 2 O 3 —SiO 2 -based crystal determined by the X-ray diffraction method, the molar ratio n of SiO 2 amount x (mol%) and SiO 2 in each crystal phase from the above formula. It was determined.
続いて、以下の手順によってLi2O−Al2O3−SiO2系結晶の平均線熱膨張係数を決定した。Li2O−Al2O3−SiO2系結晶の線熱膨張係数は、結晶中のSiO2のモル比nと相関関係があることが報告されている(Glastechn.Ber.40(1967年)、385頁、及び、J.Amer.Ceram.Soc.51(1968年)、651頁)。これより、β−石英固溶体及びβ−スポジュメン固溶体結晶の平均線熱膨張係数とSiO2のモル比nとの関係はそれぞれ下記の式で表される。 Subsequently, the average linear thermal expansion coefficient of the Li 2 O—Al 2 O 3 —SiO 2 based crystal was determined by the following procedure. It has been reported that the linear thermal expansion coefficient of Li 2 O—Al 2 O 3 —SiO 2 -based crystal is correlated with the molar ratio n of SiO 2 in the crystal (Glastechn. Ber. 40 (1967)). 385, and J. Amer. Ceram. Soc. 51 (1968), 651). From this, the relationship between the average linear thermal expansion coefficient of the β-quartz solid solution and the β-spodumene solid solution crystal and the molar ratio n of SiO 2 is expressed by the following equations, respectively.
β−石英固溶体:
n<3の場合
(平均線熱膨張係数)=(84.131n−218.18)×10−7
3≦n≦10の場合
(平均線熱膨張係数)=−11.5×10−7
10<n<14の場合
(平均線熱膨張係数)=(40.115n−403.28)×10−7
β-quartz solid solution:
When n <3 (Average linear thermal expansion coefficient) = (84.131n-218.18) × 10 −7
In the case of 3 ≦ n ≦ 10 (Average linear thermal expansion coefficient) = − 11.5 × 10 −7
When 10 <n <14 (Average linear thermal expansion coefficient) = (40.115 n−403.28) × 10 −7
β−スポジュメン固溶体:
4≦n≦7の場合
(平均線熱膨張係数)=(−0.0581n3+1.3829n2−12.284n+37.632)×10−7
β-spodumene solid solution:
When 4 ≦ n ≦ 7 (Average linear thermal expansion coefficient) = (− 0.0581 n 3 +1.3829 n 2 −12.284n + 37.632) × 10 −7
前記X線回折法によって決定したLi2O−Al2O3−SiO2系結晶におけるSiO2のモル比nを用いて、上記の式から結晶相の平均線熱膨張係数を決定した。 The average linear thermal expansion coefficient of the crystal phase was determined from the above formula using the molar ratio n of SiO 2 in the Li 2 O—Al 2 O 3 —SiO 2 -based crystal determined by the X-ray diffraction method.
(マトリクスガラスの平均線熱膨張係数)
まず、マトリクスガラスの組成を決定するために、結晶化ガラスの体積結晶化度、及び結晶相とマトリクスガラスの密度から質量結晶化度を算出した。ここで、結晶相の密度としては、粉末X線回折データファイル(ICDD)に報告されている類似のモル比nを有する結晶の密度を用いた。又、マトリクスガラスの密度としては、結晶化ガラスの前駆体である結晶性ガラスの密度を用いた。
(Average linear thermal expansion coefficient of matrix glass)
First, in order to determine the composition of the matrix glass, the mass crystallinity was calculated from the volume crystallinity of the crystallized glass and the density of the crystal phase and the matrix glass. Here, as the density of the crystal phase, the density of crystals having a similar molar ratio n reported in the powder X-ray diffraction data file (ICDD) was used. As the density of the matrix glass, the density of the crystalline glass that is a precursor of the crystallized glass was used.
次いで、結晶性ガラスの各成分含有量(モル%)から結晶相の各成分含有量(モル%)を差し引くことによって、残存しているマトリクスガラスの各成分含有量(モル%)を決定した。ここで、エネルギー分散型X線分析の結果から、組成中のTiO2とZrO2は結晶相とマトリクスガラスに等モル量分配し、Li2O、Al2O3、SiO2以外のその他の成分は全てマトリクスガラスに分配した。分配計算の際には、結晶相の質量%が前記の質量結晶化度と一致するようにLi2O及びAl2O3の含有量を決定した。 Subsequently, each component content (mol%) of the remaining matrix glass was determined by subtracting each component content (mol%) of the crystal phase from each component content (mol%) of the crystalline glass. Here, from the results of energy dispersive X-ray analysis, TiO 2 and ZrO 2 in the composition are distributed in equimolar amounts to the crystal phase and the matrix glass, and other components other than Li 2 O, Al 2 O 3 , and SiO 2. Were all distributed in matrix glass. In the partition calculation, the contents of Li 2 O and Al 2 O 3 were determined so that the mass% of the crystal phase coincided with the mass crystallinity described above.
続いて、マトリクスガラスの平均線熱膨張係数を以下の手順により決定した。ガラスの線熱膨張係数と組成の間には加成則が成立することが知られており、各ガラス構成成分の加成因子も報告されている(GLASS SCIENCE AND TECHNOLOGY 9、Mathematical Approach to Glass、chapter 15−16)。 Subsequently, the average linear thermal expansion coefficient of the matrix glass was determined by the following procedure. It is known that an additivity rule is established between the coefficient of linear thermal expansion of glass and the composition, and additivity factors of each glass component have been reported (GLASS SCIENCE AND TECHNOLOGY 9, Mathematical Approach to Glass, chapter 15-16).
前記手順により決定したマトリクスガラスの組成を用いて、前記文献に記載の手順(Appen又はGan Fu−Siの方法)に従い、マトリクスガラスの平均線熱膨張係数を決定した。なお、本手法で算出される結晶性ガラスの線熱膨張係数は、±1.5×10−7/K以内の精度で実測値と一致することを確認した。 Using the composition of the matrix glass determined by the above procedure, the average linear thermal expansion coefficient of the matrix glass was determined according to the procedure described in the literature (Appen or Gan Fu-Si method). It was confirmed that the linear thermal expansion coefficient of the crystalline glass calculated by this method coincided with the actual measurement value with an accuracy within ± 1.5 × 10 −7 / K.
以上の手順により求めた結晶相及びマトリクスガラスの平均線熱膨張係数から、両者の差を決定した。 The difference between the two was determined from the crystal phase obtained by the above procedure and the average linear thermal expansion coefficient of the matrix glass.
(d)結晶化ガラスの平均線熱膨張係数理論値
結晶化ガラスの平均線熱膨張係数理論値は、結晶及びマトリクスガラスの平均線熱膨張係数と体積結晶化度を用いて加成則に基づき下記の式により算出した。
(D) Theoretical value of average linear thermal expansion coefficient of crystallized glass The theoretical value of average linear thermal expansion coefficient of crystallized glass is based on an addition rule using the average linear thermal expansion coefficient and volume crystallinity of crystal and matrix glass. It was calculated by the following formula.
(平均線熱膨張係数理論値)=((体積結晶化度)×(結晶の平均線熱膨張係数)+(100−(体積結晶化度))×(マトリクスガラスの平均線熱膨張係数))/100 (Theoretical value of average linear thermal expansion coefficient) = ((Volume crystallinity) × (Average linear thermal expansion coefficient of crystal) + (100− (Volume crystallinity)) × (Average linear thermal expansion coefficient of matrix glass)) / 100
実施例5〜11の結晶化ガラス試料は、主結晶としてβ−スポジュメン固溶体又はβ−石英固溶体が析出していた。主結晶の平均粒子直径は、β−スポジュメン固溶体の場合が5〜20μm、β−石英固溶体の場合が80μmであった。さらに、マトリクスガラスと結晶の30〜380℃における平均線熱膨張係数の差が46.3×10−7〜67.8×10−7/Kでいずれも35×10−7/K以上であるために、1.4×10−7〜25.6×10−7/Kという低い線熱膨張係数を示した。これらの線熱膨張係数は、結晶及びマトリクスガラスの平均線熱膨張係数と体積分率を用いて加成的に算出される線熱膨張係数よりも低かった。屈伏温度は、いずれの試料においても900℃以下であり、加熱による曲げ加工が可能であった。 In the crystallized glass samples of Examples 5 to 11, β-spodumene solid solution or β-quartz solid solution was precipitated as the main crystal. The average particle diameter of the main crystal was 5 to 20 μm for the β-spodumene solid solution and 80 μm for the β-quartz solid solution. Furthermore, the difference between the average linear thermal expansion coefficients of the matrix glass and the crystals at 30 to 380 ° C. is 46.3 × 10 −7 to 67.8 × 10 −7 / K, both of which are 35 × 10 −7 / K or more. Therefore, a low linear thermal expansion coefficient of 1.4 × 10 −7 to 25.6 × 10 −7 / K was exhibited. These linear thermal expansion coefficients were lower than the linear thermal expansion coefficient calculated additively using the average linear thermal expansion coefficient and volume fraction of crystal and matrix glass. The yield temperature was 900 ° C. or less in any sample, and bending by heating was possible.
(比較例3及び4)
表2に示す組成を有するように調合したガラス原料を1550℃で12時間溶融した後、この溶融ガラスを水中に投入することによって結晶性ガラス小体を作製した。
(Comparative Examples 3 and 4)
A glass raw material prepared to have the composition shown in Table 2 was melted at 1550 ° C. for 12 hours, and then the molten glass was poured into water to produce a crystalline glass body.
得られた結晶性ガラス小体を篩にて粒度0.5〜2.0mmに分級し、ザラメ状の結晶性ガラス小体を得た。この結晶性ガラス小体を、アルミナシートを敷き詰めた耐火性容器内に均等に集積し、この状態で電気炉にて焼成することにより結晶化ガラス試料を得た。焼成条件としては、120℃/hの速度で昇温後、表1における所定の焼成温度で1時間保持し、次に120℃/hの速度で室温まで冷却した。得られた結晶化ガラス物品について、実施例5〜10と同様に特性評価を行った。なお、析出したβ−ウォラストナイト結晶(CaSiO3)の平均線熱膨張係数としては文献値を適用した。結果を表3に示す。 The obtained crystalline glass body was classified with a sieve to a particle size of 0.5 to 2.0 mm to obtain a grainy crystalline glass body. The crystalline glass bodies were uniformly accumulated in a refractory container laid with an alumina sheet and fired in this state in an electric furnace to obtain a crystallized glass sample. As firing conditions, the temperature was raised at a rate of 120 ° C./h, held at the prescribed firing temperature in Table 1 for 1 hour, and then cooled to room temperature at a rate of 120 ° C./h. About the obtained crystallized glass article, the characteristic evaluation was performed similarly to Examples 5-10. In addition, the literature value was applied as an average linear thermal expansion coefficient of the precipitated β-wollastonite crystal (CaSiO 3 ). The results are shown in Table 3.
比較例3及び4では、主結晶としてβ−ウォラストナイト結晶が約30質量%析出していた。比較例3及び4では、主結晶の30〜380℃における平均線熱膨張係数が65×10−7/Kで大きく、かつマトリクスガラスと結晶の30〜380℃における平均線熱膨張係数の差が35×10−7/Kよりも小さいために、低膨張の結晶化ガラス物品は得られなかった。又、比較例3及び4における結晶化ガラス物品の線熱膨張係数は60×10−7/Kで30×10−7/Kよりも大きいために熱的耐久性が低かった。 In Comparative Examples 3 and 4, about 30% by mass of β-wollastonite crystal was precipitated as the main crystal. In Comparative Examples 3 and 4, the average linear thermal expansion coefficient at 30 to 380 ° C. of the main crystal is large at 65 × 10 −7 / K, and the difference between the average linear thermal expansion coefficients at 30 to 380 ° C. between the matrix glass and the crystal is Since it was smaller than 35 × 10 −7 / K, a low expansion crystallized glass article could not be obtained. Moreover, since the linear thermal expansion coefficient of the crystallized glass article in Comparative Examples 3 and 4 was 60 × 10 −7 / K, which was larger than 30 × 10 −7 / K, the thermal durability was low.
本発明の結晶化ガラス物品は、調理器用トッププレート、特にガスコンロトッププレート、厨房器具天板、テーブルトップ等の厨房設備装飾材や、その他の各種内外装材として好適である。 The crystallized glass article of the present invention is suitable as a cooking appliance top plate, particularly a gas stove top plate, a kitchen appliance top plate, a table top and other kitchen equipment decoration materials, and other various interior and exterior materials.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008152930A JP5365975B2 (en) | 2007-06-12 | 2008-06-11 | Crystallized glass article and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007154614 | 2007-06-12 | ||
JP2007154614 | 2007-06-12 | ||
JP2008152930A JP5365975B2 (en) | 2007-06-12 | 2008-06-11 | Crystallized glass article and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009018986A JP2009018986A (en) | 2009-01-29 |
JP5365975B2 true JP5365975B2 (en) | 2013-12-11 |
Family
ID=40358956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008152930A Expired - Fee Related JP5365975B2 (en) | 2007-06-12 | 2008-06-11 | Crystallized glass article and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5365975B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010018512A (en) * | 2008-06-11 | 2010-01-28 | Nippon Electric Glass Co Ltd | Crystallized glass |
JP5510885B2 (en) * | 2009-07-30 | 2014-06-04 | 日本電気硝子株式会社 | Light reflecting substrate |
JP5762677B2 (en) * | 2009-09-30 | 2015-08-12 | 株式会社オハラ | Method for producing crystallized glass |
JP5842561B2 (en) * | 2011-11-16 | 2016-01-13 | 奥野製薬工業株式会社 | Low expansion glass and pasty glass composition |
US8664130B2 (en) * | 2012-04-13 | 2014-03-04 | Corning Incorporated | White, opaque β-spodumene/rutile glass-ceramic articles and methods for making the same |
KR101660288B1 (en) * | 2015-01-29 | 2016-09-27 | 한국세라믹기술원 | Manufacturing method of shaped body using 3-D printer |
KR101660293B1 (en) * | 2015-01-29 | 2016-09-27 | 한국세라믹기술원 | Manufacturing method of machinable glass ceramic shaped body using 3-D printer |
FR3067345B1 (en) | 2017-06-07 | 2020-09-25 | Eurokera | LOW LITHIUM QUARTZ-BETA TRANSPARENT VITROCERAMICS |
FR3088321B1 (en) * | 2018-11-09 | 2021-09-10 | Eurokera | LOW LITHIUM TRANSPARENT QUARTZ-BETA VITROCERAMICS |
EP4112576B1 (en) * | 2020-02-28 | 2024-08-07 | Panasonic Intellectual Property Management Co., Ltd. | Cooking device top plate |
JP6934628B2 (en) * | 2020-02-28 | 2021-09-15 | パナソニックIpマネジメント株式会社 | Top plate for cooker |
CN113683309B (en) * | 2021-08-25 | 2022-09-23 | 清远南玻节能新材料有限公司 | Microcrystalline glass and preparation method and application thereof |
CN115448599B (en) * | 2022-09-27 | 2023-10-31 | 山东国瓷功能材料股份有限公司 | Glass ceramic with opalescence effect and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3421284B2 (en) * | 1998-10-23 | 2003-06-30 | 株式会社オハラ | Negatively heat-expandable glass ceramics and method for producing the same |
JP4677743B2 (en) * | 2004-08-05 | 2011-04-27 | 日本電気硝子株式会社 | Li2O-Al2O3-SiO2 transparent crystallized glass for combustion device window |
-
2008
- 2008-06-11 JP JP2008152930A patent/JP5365975B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009018986A (en) | 2009-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5365975B2 (en) | Crystallized glass article and method for producing the same | |
US9446982B2 (en) | Transparent or transparent colored lithium aluminum silicate glass ceramic articles having adapted thermal expansion and use thereof | |
KR102687714B1 (en) | Transparent β-quartz glass-ceramic with low lithium content | |
JP6553129B2 (en) | Transparent thin lithium aluminum silicate glass ceramic and its use | |
US10562808B2 (en) | Highly crystalline lithium aluminium silicate glass-ceramic and its use | |
US10626046B2 (en) | Glass ceramics | |
US6132832A (en) | Tile glaze | |
JP6890425B2 (en) | A method for producing a glass-ceramic material, preferably uncolored, which exhibits a small percentage of scattered light, and a glass-ceramic material produced by that method and its use. | |
CN102712521A (en) | Beta-quartz glass ceramics and related precursor glasses | |
CN102892725A (en) | Li2o-al2o3-sio2-based crystallized glass | |
JP2017222561A (en) | Crystallizable lithium aluminum silicate glass, and transparent glass ceramic produced therefrom, and method for producing glass and glass ceramic, and use of glass ceramic | |
JP2010018512A (en) | Crystallized glass | |
JP2007197310A (en) | Crystallized glass, reflection mirror base material and reflection mirror using the same | |
JP2010503601A (en) | Manufacturing method of glass ceramic material in thin plate shape, thin plate including them and method of using them | |
CN113321421A (en) | Lithium aluminosilicate glass, glass ceramic made therefrom, method for producing same and use thereof | |
WO2019016338A1 (en) | Beta-spodumene glass-ceramics that are white, opalescent, or opaque, with low titanium content, and tin-fined | |
JP2012201526A (en) | Crystallized glass article and method for manufacturing the same | |
JP4911427B2 (en) | Patterned crystallized glass article and method for producing the same | |
JP2013067525A (en) | Crystallized glass article | |
CN115304279B (en) | Spinel crystal phase and India Dan Jingxiang composite microcrystalline glass and preparation method thereof | |
TWI751779B (en) | Lio-alo-sio-based crystallized glass and lio-alo-sio-based crystalline glass | |
TW201627246A (en) | Glass powder, composite powder, and low expansion substrate with decorative layer | |
KR20210110519A (en) | Crystallizable lithium aluminium silicate glass and glass-ceramic produced therefrom, method for producing the glass and the glass-ceramic, and use of the glass-ceramic | |
JP2003192386A (en) | Glass composition and glass ceramic | |
JP2012197188A (en) | White crystallized glass article and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110502 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130527 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130819 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130901 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |