JP5364140B2 - Laminated polyester film - Google Patents
Laminated polyester film Download PDFInfo
- Publication number
- JP5364140B2 JP5364140B2 JP2011229307A JP2011229307A JP5364140B2 JP 5364140 B2 JP5364140 B2 JP 5364140B2 JP 2011229307 A JP2011229307 A JP 2011229307A JP 2011229307 A JP2011229307 A JP 2011229307A JP 5364140 B2 JP5364140 B2 JP 5364140B2
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- coating
- polyester film
- oxide
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、積層ポリエステルフィルムに関するものであり、例えば、タッチパネル等の透明電極や電磁波シールドフィルム等、透明性、導電性および外光反射による干渉ムラの軽減が求められる用途に好適な積層ポリエステルフィルムに関するものである。 The present invention relates to a laminated polyester film, and relates to a laminated polyester film suitable for applications that require reduction of interference unevenness due to transparency, conductivity, and external light reflection, such as transparent electrodes such as touch panels and electromagnetic wave shielding films. Is.
導電性フィルムは、タッチパネル、電子ペーパー、フラットパネルディスプレイ、太陽電池、電磁波シールドフィルムなどに用いられている。 Conductive films are used in touch panels, electronic paper, flat panel displays, solar cells, electromagnetic wave shielding films, and the like.
現在、導電性フィルムとして、ITO(酸化インジウムスズ)が主流であるが、ITOフィルムには、レアメタルであるインジウムの供給不安やそれに伴う高コスト化などの問題がある。また、ITOフィルムは曲げによってクラックが入り、導電性が著しく低下するという問題点もある。 At present, ITO (Indium Tin Oxide) is mainly used as the conductive film, but the ITO film has problems such as anxiety of supplying indium which is a rare metal and cost increase associated therewith. In addition, the ITO film has a problem in that it is cracked by bending and the conductivity is remarkably lowered.
上記問題点を解決するために、各種の方法が検討されている。例えば、銅箔をメッシュ状にエッチングすることで、導電性部分が銅であるメッシュ状導電性フィルム(特許文献1)や、ポリチオフェン系導電性ポリマーを塗布した導電性フィルム(特許文献2)、金属微粒子をスクリーン印刷などによりパターン化して設けた導電性フィルム(特許文献3、4)が提案されている。 In order to solve the above problems, various methods have been studied. For example, by etching a copper foil into a mesh shape, a mesh-like conductive film whose conductive portion is copper (Patent Document 1), a conductive film coated with a polythiophene-based conductive polymer (Patent Document 2), metal A conductive film (Patent Documents 3 and 4) in which fine particles are patterned by screen printing or the like has been proposed.
しかし、前述した従来の技術には次のような問題点がある。すなわち、特許文献1に記載の銅箔をエッチングする方法は、一般的に収率が悪く、各工程の製品ロスが発生しやすい。特許文献2に記載の導電性ポリマーをコーティングして導電層を得る方法では、導電性レベルとしては不十分な点がある。特許文献3、4に記載の金属微粒子をパターン化して導電層を得る方法では、塗布した金属微粒子の大部分がエッチング工程などで除去されるため、金属微粒子のロスが問題となっている。 However, the above-described conventional technique has the following problems. That is, the method of etching a copper foil described in Patent Document 1 generally has a low yield, and product loss in each process is likely to occur. The method of obtaining a conductive layer by coating a conductive polymer described in Patent Document 2 has an insufficient level of conductivity. In the method of obtaining a conductive layer by patterning metal fine particles described in Patent Documents 3 and 4, most of the applied metal fine particles are removed by an etching process or the like, and therefore, loss of metal fine particles is a problem.
ところで、透明導電フィルムの導電層を形成する側とは反対側には、傷つき防止、表面硬度等の性能を向上させるために、ハードコート加工されることが多い。基材として用いるポリエステルフィルムとハードコート層との密着性を向上させるために、中間層として易接着の塗布層が設けられる場合が一般的である。そのため、ポリエステルフィルム、易接着の塗布層、ハードコート層の3層の屈折率を考慮しないと干渉ムラが発生してしまう。 By the way, the side of the transparent conductive film opposite to the side on which the conductive layer is formed is often subjected to hard coat processing in order to improve performance such as scratch prevention and surface hardness. In order to improve the adhesion between the polyester film used as a substrate and the hard coat layer, an easily adhesive coating layer is generally provided as an intermediate layer. For this reason, interference unevenness occurs unless the refractive index of the three layers of the polyester film, the easily adhesive coating layer, and the hard coat layer is taken into consideration.
干渉ムラのあるフィルムをタッチパネル等のディスプレイに使用すると、視認性の悪いものになってしまい、使用しづらいものとなってしまう。そのため干渉ムラ対策をすることが求められている。一般的には、干渉ムラを軽減させるための塗布層の屈折率は、基材のポリエステルフィルムの屈折率とハードコート層の屈折率の相乗平均付近と考えられ、この辺りの屈折率に調整することが理想的である。ポリエステルフィルムの屈折率が高いため、一般的には塗布層の屈折率を高く設計する必要がある。 When a film with interference unevenness is used for a display such as a touch panel, the visibility becomes poor and it is difficult to use. Therefore, it is required to take measures against interference unevenness. In general, the refractive index of the coating layer for reducing interference unevenness is considered to be around the geometric mean of the refractive index of the polyester film of the substrate and the refractive index of the hard coat layer, and is adjusted to the refractive index around this. Ideally. Since the refractive index of the polyester film is high, it is generally necessary to design the coating layer with a high refractive index.
塗布層の屈折率を高くして、干渉ムラを改善した例としては、例えば、塗布層中に屈折率の高い金属キレート化合物と樹脂とを組み合わせる方法がある。この場合は、水溶液中での金属キレートの不安定さから、組み合わせによっては塗布液の安定性が十分でない場合があり、長時間の生産を行う場合、液交換作業の増加を招く可能性がある。また、金属キレート化合物を使用する場合は、耐湿熱処理をするとハードコート層との密着性が低下する場合がある(特許文献5)。また通常用いられる高屈折率材料はハードコート層等の表面機能層との密着性に劣るため、高屈折率材料と組み合わせても効果的に密着性を向上することができる塗布層が求められている。 An example of improving interference unevenness by increasing the refractive index of the coating layer is, for example, a method of combining a metal chelate compound having a high refractive index and a resin in the coating layer. In this case, the stability of the coating solution may not be sufficient depending on the combination due to the instability of the metal chelate in the aqueous solution, which may lead to an increase in the liquid exchange work when producing for a long time. . Moreover, when using a metal chelate compound, the adhesiveness with a hard-coat layer may fall if it carries out moisture-proof heat processing (patent document 5). Moreover, since a high refractive index material usually used is inferior in adhesion to a surface functional layer such as a hard coat layer, a coating layer that can effectively improve adhesion even when combined with a high refractive index material is required. Yes.
本発明は、上記実情に鑑みなされたものであって、その解決課題は、透明性と導電性を有し、かつ、外光反射による干渉ムラの軽減とハードコート層等の各種の表面機能層との密着性に優れた積層ポリエステルフィルムを提供することにある。 The present invention has been made in view of the above circumstances, and the problem to be solved thereof is transparency and conductivity, reduction of interference unevenness due to reflection of external light, and various surface functional layers such as a hard coat layer. It is providing the laminated polyester film excellent in adhesiveness.
本発明者らは、上記実情に鑑み、鋭意検討した結果、特定の構成からなる積層ポリエステルフィルムを用いれば、上述の課題を容易に解決できることを知見し、本発明を完成させるに至った。 As a result of intensive studies in view of the above circumstances, the present inventors have found that the use of a laminated polyester film having a specific configuration can easily solve the above-described problems, and have completed the present invention.
すなわち、本発明の要旨は、ポリビニルアルコールを含有する塗布液を塗布して形成された第1塗布層をポリエステルフィルムの一方の面に有し、酸化ジルコニウム、酸化チタン、酸化スズ、酸化イットリウム、酸化アンチモン、酸化インジウム、酸化亜鉛、アンチモンチンオキサイド、インジウムチンオキサイドから選ばれる少なくとも1種の金属酸化物を第2塗布層を形成する塗布液中の全不揮発成分に対する割合として3〜70重量%、オキサゾリン化合物およびエポキシ化合物を含有する塗布液から形成された第2塗布層であって、当該第2塗布層表面の絶対反射率が波長400〜800nmの範囲で極小値を1つ有し、当該極小値における絶対反射率が4.0%以上である第2塗布層をもう一方の面に有することを特徴とする積層ポリエステルフィルムに存する。 That is, the gist of the present invention is to have a first coating layer formed by coating a coating solution containing polyvinyl alcohol on one surface of a polyester film, zirconium oxide, titanium oxide, tin oxide, yttrium oxide, oxidation At least one metal oxide selected from antimony, indium oxide, zinc oxide, antimonytin oxide, and indium tin oxide is 3 to 70% by weight as a proportion of the total nonvolatile components in the coating solution for forming the second coating layer, oxazoline A second coating layer formed from a coating solution containing a compound and an epoxy compound , wherein the absolute reflectance of the surface of the second coating layer has one minimum value in the wavelength range of 400 to 800 nm, and the minimum value And a second coating layer having an absolute reflectance of 4.0% or more on the other surface. Reester film.
本発明の積層ポリエステルフィルムによれば、金属微粒子を塗布した際に、ランダムな網目状の導電層を形成し、ハードコート層等の種々の表面機能層を積層した際に外光反射による干渉ムラが少なく、種々の表面機能層との密着性に優れ、例えば、導電層/基材フィルム/ハードコート層等の表面機能層という構成を形成するための基材フィルムを提供することができ、その工業的価値は高い。 According to the laminated polyester film of the present invention, when metal fine particles are applied, a random mesh-like conductive layer is formed, and when various surface functional layers such as a hard coat layer are laminated, interference unevenness due to external light reflection is caused. There are few, and it is excellent in adhesiveness with various surface functional layers, for example, can provide the base film for forming the composition of surface functional layers, such as a conductive layer / base film / hard coat layer, Industrial value is high.
本発明における積層ポリエステルフィルムを構成するポリエステルフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。 The polyester film constituting the laminated polyester film in the present invention may have a single layer structure or a multilayer structure, and may have four or more layers as long as it does not exceed the gist of the present invention other than a two-layer or three-layer structure. It may be a multilayer, and is not particularly limited.
本発明において使用するポリエステルは、ホモポリエステルであっても共重合ポリエステルであってもよい。ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、テレフタル酸、2,6−ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。代表的なポリエステルとしては、ポリエチレンテレフタレート等が例示される。一方、共重合ポリエステルのジカルボン酸成分としては、イソフタル酸、フタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えば、p−オキシ安息香酸など)等の一種または二種以上が挙げられ、グリコール成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、4−シクロヘキサンジメタノール、ネオペンチルグリコール等の一種または二種以上が挙げられる。 The polyester used in the present invention may be a homopolyester or a copolyester. In the case of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid, and examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol. Typical polyester includes polyethylene terephthalate and the like. On the other hand, the dicarboxylic acid component of the copolyester includes isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, p-oxybenzoic acid, etc.), etc. 1 type or 2 types or more are mentioned, As a glycol component, 1 type or 2 types or more, such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexane dimethanol, neopentyl glycol, is mentioned.
ポリエステルの重合触媒としては、特に制限はなく、従来公知の化合物を使用することができ、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物、カルシウム化合物等が挙げられる。この中でも特にフィルムの輝度が高くなるという観点から、チタン化合物であることが好ましい。 There is no restriction | limiting in particular as a polymerization catalyst of polyester, A conventionally well-known compound can be used, For example, an antimony compound, a titanium compound, a germanium compound, a manganese compound, an aluminum compound, a magnesium compound, a calcium compound etc. are mentioned. Among these, a titanium compound is preferable from the viewpoint of increasing the brightness of the film.
本発明のポリエステルフィルム中にはフィルムの耐候性の向上、タッチパネル等に用いられる液晶ディスプレイの液晶等の劣化防止のために、紫外線吸収剤を含有させることも可能である。紫外線吸収剤は、紫外線を吸収する化合物で、ポリエステルフィルムの製造工程で付加される熱に耐えうるものであれば特に限定されない。 The polyester film of the present invention may contain an ultraviolet absorber in order to improve the weather resistance of the film and to prevent deterioration of the liquid crystal of a liquid crystal display used for a touch panel or the like. The ultraviolet absorber is not particularly limited as long as it is a compound that absorbs ultraviolet rays and can withstand the heat applied in the production process of the polyester film.
紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤があるが、透明性の観点からは有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、特に限定されないが、例えば、環状イミノエステル系、ベンゾトリアゾール系、ベンゾフェノン系などが挙げられる。耐久性の観点からは環状イミノエステル系、ベンゾトリアゾール系がより好ましい。また、紫外線吸収剤を2種類以上併用して用いることも可能である。 As the ultraviolet absorber, there are an organic ultraviolet absorber and an inorganic ultraviolet absorber. From the viewpoint of transparency, an organic ultraviolet absorber is preferable. Although it does not specifically limit as an organic type ultraviolet absorber, For example, a cyclic imino ester type, a benzotriazole type, a benzophenone type etc. are mentioned. From the viewpoint of durability, a cyclic imino ester type and a benzotriazole type are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
本発明のフィルムのポリエステル層中には、易滑性の付与および各工程での傷発生防止を主たる目的として、粒子を配合することも可能である。配合する粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等が挙げられる。さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。 In the polyester layer of the film of the present invention, particles can be blended mainly for the purpose of imparting slipperiness and preventing scratches in each step. The kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness. Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid. Examples include inorganic particles such as magnesium, kaolin, aluminum oxide, and titanium oxide, and organic particles such as acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, and benzoguanamine resin. Furthermore, precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。また、その硬度、比重、色等についても特に制限はない。
これら一連の粒子は、必要に応じて2種類以上を併用してもよい。
The shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction | limiting in particular about the hardness, specific gravity, a color, etc.
These series of particles may be used in combination of two or more as required.
また、粒子の平均粒径は、通常5μm以下、好ましくは0.01〜3μmの範囲である。平均粒径が5μmを超える場合には、フィルムの表面粗度が粗くなりすぎて、後工程において種々の表面機能層等を塗設させる場合等に不具合が生じる場合がある。 The average particle diameter of the particles is usually 5 μm or less, preferably 0.01 to 3 μm. When the average particle diameter exceeds 5 μm, the surface roughness of the film becomes too rough, and there may be a problem when various surface functional layers and the like are applied in a subsequent process.
さらにポリエステル層中の粒子含有量は、通常5重量%以下、好ましくは0.0003〜2重量%の範囲である。粒子含有量が5重量%を超える場合にはフィルムの透明性が不十分な場合がある。 Furthermore, the content of particles in the polyester layer is usually 5% by weight or less, preferably 0.0003 to 2% by weight. If the particle content exceeds 5% by weight, the transparency of the film may be insufficient.
ポリエステル層中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化もしくはエステル交換反応終了後、添加するのが良い。 The method for adding particles to the polyester layer is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage for producing the polyester constituting each layer, but it is preferably added after completion of esterification or transesterification.
なお、本発明におけるポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。 In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments, and the like can be added to the polyester film in the present invention as necessary.
本発明におけるポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常10〜300μm、好ましくは25〜250μmの範囲である。 Although the thickness of the polyester film in this invention will not be specifically limited if it can be formed into a film as a film, Usually, 10-300 micrometers, Preferably it is the range of 25-250 micrometers.
次に本発明におけるポリエステルフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。すなわち、先に述べたポリエステル原料を乾燥したペレットを、単軸押出機を用いて、ダイから押し出された溶融シートを冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと回転冷却ドラムとの密着性を高めることが好ましく、静電印加密着法や液体塗布密着法が好ましく採用される。次に得られた未延伸シートは二軸方向に延伸される。その場合、まず、前記の未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70〜120℃、好ましくは80〜110℃であり、延伸倍率は通常2.5〜7倍、好ましくは3.0〜6倍である。次いで、一段目の延伸方向と直交する方向に延伸するが、その場合、延伸温度は通常70〜170℃であり、延伸倍率は通常3.0〜7倍、好ましくは3.5〜6倍である。そして、引き続き180〜270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る。上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。 Next, although the manufacture example of the polyester film in this invention is demonstrated concretely, it is not limited to the following manufacture examples at all. That is, a method of obtaining an unstretched sheet by cooling and solidifying a molten sheet extruded from a die using a single-screw extruder from a pellet obtained by drying the polyester raw material described above. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine. The stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times. Next, the film is stretched in the direction perpendicular to the first stretching direction. In that case, the stretching temperature is usually 70 to 170 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there. Subsequently, heat treatment is performed at a temperature of 180 to 270 ° C. under tension or under relaxation within 30% to obtain a biaxially oriented film. In the above-described stretching, a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
また、本発明においては積層ポリエステルフィルムを構成するポリエステルフィルム製造に関しては同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70〜120℃、好ましくは80〜110℃で温度コントロールされた状態で機械方向および幅方向に同時に延伸し配向させる方法であり、延伸倍率としては、面積倍率で4〜50倍、好ましくは7〜35倍、さらに好ましくは10〜25倍である。そして、引き続き、170〜250℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。 In the present invention, the simultaneous biaxial stretching method can be adopted for the production of the polyester film constituting the laminated polyester film. The simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is usually stretched and oriented in the machine direction and the width direction at a temperature controlled normally at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film. With respect to the simultaneous biaxial stretching apparatus that employs the above-described stretching method, a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
次に本発明における積層ポリエステルフィルムを構成する塗布層の形成について説明する。塗布層に関しては、ポリエステルフィルムの製膜工程中にフィルム表面を処理する、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外で塗布する、オフラインコーティングを採用してもよい。製膜と同時に塗布が可能であるため、製造が安価に対応可能であることから、インラインコーティングが好ましく用いられる。 Next, formation of the coating layer which comprises the laminated polyester film in this invention is demonstrated. Regarding the coating layer, it may be provided by in-line coating which treats the film surface during the process of forming a polyester film, or offline coating which is applied outside the system on a once produced film may be adopted. Since the coating can be performed simultaneously with the film formation, the production can be handled at a low cost, and therefore in-line coating is preferably used.
インラインコーティングについては、以下に限定するものではないが、例えば、逐次二軸延伸においては、特に縦延伸が終了した横延伸前にコーティング処理を施すことができる。インラインコーティングによりポリエステルフィルム上に塗布層が設けられる場合には、製膜と同時に塗布が可能になると共に、延伸後のポリエステルフィルムの熱処理工程で、塗布層を高温で処理することができるため、塗布層上に形成され得る各種の表面機能層との密着性や耐湿熱性等の性能を向上させることができる。また、延伸前にコーティングを行う場合は、塗布層の厚みを延伸倍率により変化させることもでき、オフラインコーティングに比べ、薄膜コーティングをより容易に行うことができる。すなわち、インラインコーティング、特に延伸前のコーティングにより、ポリエステルフィルムとして好適なフィルムを製造することができる。 The in-line coating is not limited to the following, but for example, in the sequential biaxial stretching, the coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished. When the coating layer is provided on the polyester film by in-line coating, it is possible to apply at the same time as the film formation, and the coating layer can be processed at a high temperature in the heat treatment process of the polyester film after stretching. Performances such as adhesion to various surface functional layers that can be formed on the layer and heat-and-moisture resistance can be improved. Moreover, when coating before extending | stretching, the thickness of an application layer can also be changed with a draw ratio, and compared with offline coating, thin film coating can be performed more easily. That is, a film suitable as a polyester film can be produced by in-line coating, particularly coating before stretching.
本発明においては、ポリビニルアルコールを含有する塗布液を塗布して形成された塗布層(以下、第1塗布層と略記することがある)をポリエステルフィルムの一方の面に有し、金属酸化物および2種類以上の架橋剤を含有する塗布液から形成され、絶対反射率が波長400〜800nmの範囲で極小値を1つ有し、当該極小値における絶対反射率が4.0%以上である塗布層(以下、第2塗布層と略記することがある)をもう一方の面に有することを特徴とする積層ポリエステルフィルム In the present invention, a polyester film has a coating layer formed by coating a coating solution containing polyvinyl alcohol (hereinafter sometimes abbreviated as a first coating layer), a metal oxide and A coating formed from a coating solution containing two or more kinds of crosslinking agents, having an absolute reflectance of one minimum value in the wavelength range of 400 to 800 nm, and having an absolute reflectance of 4.0% or more at the minimum value. A laminated polyester film having a layer (hereinafter sometimes abbreviated as a second coating layer) on the other surface
本発明のフィルムの第1塗布層は、金属微粒子を含有する塗布液を塗布した際に、ランダムな網目状を形成させるための塗布層であり、特に、自己組織化する銀微粒子や銅微粒子溶液を塗布した際にランダムな網目状を形成させるために使用することができる。 The first coating layer of the film of the present invention is a coating layer for forming a random network when a coating solution containing metal fine particles is applied, and in particular, a silver fine particle or copper fine particle solution that self-organizes. Can be used to form a random network.
本発明者らは、未処理のポリエステルフィルムでは、金属微粒子溶液を塗布した際に、ランダムな網目状を形成しないことを突き止め、ランダム網目状を形成させるために塗布による各種の樹脂層を検討したころ、ポリビニルアルコールを加えることで問題が解決できることを見いだした。 In the untreated polyester film, the present inventors have determined that a random network is not formed when the metal fine particle solution is applied, and studied various resin layers by coating in order to form a random network. At that time, it was found that the problem could be solved by adding polyvinyl alcohol.
本発明のフィルムの第1塗布層の形成に使用するポリビニルアルコールとは、ポリビニルアルコール部位を有する化合物であり、例えば、ポリビニルアルコールに対し、部分的にアセタール化やブチラール化等された変性化合物も含め、従来公知のポリビニルアルコールを使用することができる。ポリビニルアルコールの重合度は特に限定されるものではないが、通常100以上、好ましくは300〜40000の範囲のものが用いられる。重合度が100未満の場合、塗布層の耐水性が低下する場合がある。また、ポリビニルアルコールのケン化度は特に限定されるものではないが、70モル%以上、好ましくは70〜99.9モル%の範囲であるポリ酢酸ビニルケン化物が実用上用いられる。 The polyvinyl alcohol used for forming the first coating layer of the film of the present invention is a compound having a polyvinyl alcohol moiety, and includes, for example, modified compounds partially acetalized or butyralized with respect to polyvinyl alcohol. Conventionally known polyvinyl alcohol can be used. The degree of polymerization of polyvinyl alcohol is not particularly limited, but is usually 100 or more, preferably 300 to 40,000. When the degree of polymerization is less than 100, the water resistance of the coating layer may decrease. Further, the saponification degree of polyvinyl alcohol is not particularly limited, but a polyvinyl acetate saponified product in a range of 70 mol% or more, preferably in the range of 70 to 99.9 mol% is practically used.
さらに本発明のフィルムの第1塗布層上に金属の網目状導電層が形成されたときの密着性の向上や透明性の向上、塗布外観を良化させる等のために、本発明の主旨を越えない範囲において、ポリビニルアルコール以外の任意のポリマーを併用することも可能である。ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。上記中でも特に塗布外観や密着性の向上という観点からポリエステル樹脂、アクリル樹脂、ウレタン樹脂を併用することが好ましく、その中でもポリエステル樹脂を併用することがさらに好ましい。 Furthermore, in order to improve adhesion and transparency when the metal network conductive layer is formed on the first coating layer of the film of the present invention, improve the appearance of the coating, etc. Any polymer other than polyvinyl alcohol can be used in combination within the range not exceeding. Specific examples of the polymer include polyester resin, acrylic resin, urethane resin, polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starches and the like. Among these, polyester resins, acrylic resins, and urethane resins are preferably used in combination from the viewpoint of improving the coating appearance and adhesion, and among them, polyester resins are more preferably used in combination.
ポリエステル樹脂とは、主な構成成分として例えば、下記のような多価カルボン酸および多価ヒドロキシ化合物からなる。すなわち、多価カルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、フタル酸、4,4’−ジフェニルジカルボン酸、1,4−シクロヘキサンジカルボン酸、2−カリウムスルホテレフタル酸、5−ソジウムスルホイソフタル酸、2,6−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、および2,7−ナフタレンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、ピロメリット酸、無水トリメリット酸、無水フタル酸、p−ヒドロキシ安息香酸、トリメリット酸モノカリウム塩およびそれらのエステル形成性誘導体などを用いることができ、多価ヒドロキシ化合物としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−プロパンジオ−ル、1,4−ブタンジオール、1,6−ヘキサンジオ−ル、2−メチル−1,5−ペンタンジオ−ル、ネオペンチルグリコール、1,4−シクロヘキサンジメタノ−ル、p−キシリレングリコ−ル、ビスフェノ−ルA−エチレングリコ−ル付加物、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコ−ル、ポリプロピレングリコ−ル、ポリテトラメチレングリコ−ル、ポリテトラメチレンオキシドグリコ−ル、ジメチロ−ルプロピオン酸、グリセリン、トリメチロ−ルプロパン、ジメチロ−ルエチルスルホン酸ナトリウム、ジメチロ−ルプロピオン酸カリウムなどを用いることができる。これらの化合物の中から、それぞれ適宜1つ以上を選択し、常法の重縮合反応によりポリエステル樹脂を合成すればよい。 The polyester resin includes, for example, the following polyvalent carboxylic acid and polyvalent hydroxy compound as main components. That is, as the polyvalent carboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 4,4′-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2-potassium sulfoterephthalic acid, 5-sodium sulfone Isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, glutar Acid, succinic acid, trimellitic acid, trimesic acid, pyromellitic acid, trimellitic anhydride, phthalic anhydride, p-hydroxybenzoic acid, trimellitic acid monopotassium salt and ester-forming derivatives thereof can be used. As the polyvalent hydroxy compound, ethylene Recall, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 2-methyl-1,5-pentanediol , Neopentyl glycol, 1,4-cyclohexanedimethanol, p-xylylene glycol, bisphenol A-ethylene glycol adduct, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol Polytetramethylene glycol, polytetramethylene oxide glycol, dimethylolpropionic acid, glycerin, trimethylolpropane, sodium dimethylolethylsulfonate, potassium dimethylolpropionate, and the like can be used. One or more compounds may be appropriately selected from these compounds, and a polyester resin may be synthesized by a conventional polycondensation reaction.
アクリル樹脂とは、アクリル系、メタアクリル系のモノマーに代表されるような、炭素−炭素二重結合を持つ重合性モノマーからなる重合体である。これらは、単独重合体あるいは共重合体いずれでも差し支えない。また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えば、ブロック共重合体、グラフト共重合体である。あるいは、ポリエステル溶液、またはポリエステル分散液中で炭素−炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で炭素−炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、または分散液中で炭素−炭素二重結合を持つ重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれる。 The acrylic resin is a polymer composed of a polymerizable monomer having a carbon-carbon double bond, as typified by acrylic and methacrylic monomers. These may be either a homopolymer or a copolymer. Moreover, the copolymer of these polymers and other polymers (for example, polyester, polyurethane, etc.) is also included. For example, a block copolymer or a graft copolymer. Alternatively, a polymer (possibly a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyester solution or a polyester dispersion is also included. Similarly, a polymer (in some cases, a mixture of polymers) obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in a polyurethane solution or polyurethane dispersion is also included. Similarly, a polymer obtained by polymerizing a polymerizable monomer having a carbon-carbon double bond in another polymer solution or dispersion (in some cases, a polymer mixture) is also included.
上記炭素−炭素二重結合を持つ重合性モノマーとしては、特に限定はしないが、特に代表的な化合物としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸のような各種カルボキシル基含有モノマー類、およびそれらの塩;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキルフマレート、モノブチルヒドロキシイタコネートのような各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種の(メタ)アクリル酸エステル類;(メタ)アクリルミド、ジアセトンアクリルアミド、N−メチロールアクリルアミドまたは(メタ)アクリロニトリル等のような種々の窒素含有ビニル系モノマー類;スチレン、α−メチルスチレン、ジビニルベンゼン、ビニルトルエンのような各種スチレン誘導体、酢酸ビニル、プロピオン酸ビニルのような各種のビニルエステル類;γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等のような種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビニリデンのような各種のハロゲン化ビニル類;ブタジエンのような各種共役ジエン類が挙げられる。 The polymerizable monomer having a carbon-carbon double bond is not particularly limited, but particularly representative compounds include, for example, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, fumaric acid, maleic acid, citracone. Various carboxyl group-containing monomers such as acids, and salts thereof; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, monobutyl hydroxyl fumarate, Various hydroxyl group-containing monomers such as monobutylhydroxy itaconate; various monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate ( (Meth) acrylic acid esters; Various nitrogen-containing vinyl monomers such as (meth) acrylimide, diacetone acrylamide, N-methylol acrylamide or (meth) acrylonitrile; various styrene derivatives such as styrene, α-methylstyrene, divinylbenzene, vinyltoluene, Various vinyl esters such as vinyl acetate and vinyl propionate; various silicon-containing polymerizable monomers such as γ-methacryloxypropyltrimethoxysilane and vinyltrimethoxysilane; phosphorus-containing vinyl monomers; vinyl chloride And various vinyl halides such as vinylidene chloride; and various conjugated dienes such as butadiene.
ウレタン樹脂とは、分子内にウレタン構造を有する高分子化合物のことである。通常ウレタン樹脂はポリオールとイソシアネートの反応により作成される。ポリオールとしては、ポリカーボネートポリオール類、ポリエステルポリオール類、ポリエーテルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられ、これらの化合物は単独で用いても、複数種用いてもよい。 The urethane resin is a polymer compound having a urethane structure in the molecule. Usually, urethane resin is prepared by reaction of polyol and isocyanate. Examples of the polyol include polycarbonate polyols, polyester polyols, polyether polyols, polyolefin polyols, and acrylic polyols. These compounds may be used alone or in combination.
ポリカーボネートポリオール類は、多価アルコール類とカーボネート化合物とから、脱アルコール反応によって得られる。多価アルコール類としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、3,3−ジメチロールヘプタン等が挙げられる。カーボネート化合物としては、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等が挙げられ、これらの反応から得られるポリカーボネート系ポリオール類としては、例えば、ポリ(1,6−ヘキシレン)カーボネート、ポリ(3−メチル−1,5−ペンチレン)カーボネート等が挙げられる。 Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction. Examples of the polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane. Diol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Diol, neopentyl glycol, 3-methyl-1,5-pentanediol, 3,3-dimethylol heptane and the like can be mentioned. Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate. Examples of polycarbonate polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
ポリエステルポリオール類としては、多価カルボン酸(マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等)またはそれらの酸無水物と多価アルコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2−メチル−2−プロピル−1,3−プロパンジオール、1,8−オクタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2,5−ジメチル−2,5−ヘキサンジオール、1,9−ノナンジオール、2−メチル−1,8−オクタンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−ブチル−2−ヘキシル−1,3−プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等)の反応から得られるものが挙げられる。 Polyester polyols include polycarboxylic acids (malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or their acid anhydrides. Product and polyhydric alcohol (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol 2-methyl-2-propyl-1 3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol 1,9-nonanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-butyl-2-hexyl-1,3-propanediol, cyclohexane Diol, bishydroxymethylcyclohexane, dimethanolbenzene, bishydroxyethoxybenzene, alkyl dialkanolamine, lactone diol, etc.).
ポリエーテルポリオール類としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。 Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol, and the like.
ウレタン樹脂を得るために使用されるポリイソシアネート化合物としては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族ジイソシアネート等が例示される。これらは単独で用いても、複数種併用してもよい。 Examples of the polyisocyanate compound used for obtaining the urethane resin include aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, α, α, α ′, α ′. -Aliphatic diisocyanates having aromatic rings such as tetramethylxylylene diisocyanate, aliphatic diisocyanates such as methylene diisocyanate, propylene diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl Methanzi Cyanate, alicyclic diisocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination.
ウレタン樹脂を合成する際に鎖延長剤を使用しても良く、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基またはアミノ基を2個有する鎖延長剤を主に用いることができる。 A chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
水酸基を2個有する鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。また、アミノ基を2個有する鎖延長剤としては、例えば、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、プロピレンジアミン、ヘキサンジアミン、2,2−ジメチル−1,3−プロパンジアミン、2−メチル−1,5−ペンタンジアミン、トリメチルヘキサンジアミン、2−ブチル−2−エチル−1,5−ペンタンジアミン、1 ,8−オクタンジアミン、1 ,9−ノナンジアミン、1 ,10−デカンジアミン等の脂肪族ジアミン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、イソプロビリチンシクロヘキシル−4,4’−ジアミン、1,4−ジアミノシクロヘキサン、1 ,3−ビスアミノメチルシクロヘキサン等の脂環族ジアミン等が挙げられる。 Examples of the chain extender having two hydroxyl groups include aliphatic glycols such as ethylene glycol, propylene glycol and butanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, and esters such as neopentyl glycol hydroxypivalate. And glycols such as glycols. Examples of the chain extender having two amino groups include aromatic diamines such as tolylenediamine, xylylenediamine, and diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isoprobilitincyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexa And alicyclic diamines such as
さらに本発明のフィルムの第1塗布層中には、本発明の主旨を損なわない範囲において、オキサゾリン化合物、メラミン化合物、エポキシ化合物、カルボジイミド系化合物、イソシアネート系化合物等の架橋剤を併用することも可能である。 Furthermore, in the first coating layer of the film of the present invention, a crosslinking agent such as an oxazoline compound, a melamine compound, an epoxy compound, a carbodiimide compound, and an isocyanate compound can be used in combination as long as the gist of the present invention is not impaired. It is.
オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2−ビニル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−ビニル−5−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリン、2−イソプロペニル−5−エチル−2−オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。これらの中でも2−イソプロペニル−2−オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、スチレンスルホン酸およびその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミド、N,N−ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα−オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β−不飽和モノマー類;スチレン、α−メチルスチレン、等のα,β−不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。 The oxazoline compound is a compound having an oxazoline group in the molecule, and a polymer containing an oxazoline group is particularly preferable, and can be prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. Addition polymerizable oxazoline group-containing monomers include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and the like can be mentioned, and one or a mixture of two or more thereof can be used. Among these, 2-isopropenyl-2-oxazoline is preferred because it is easily available industrially. The other monomer is not limited as long as it is a monomer copolymerizable with an addition polymerizable oxazoline group-containing monomer. For example, alkyl (meth) acrylate (the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, (Meth) acrylic acid esters such as n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrene Unsaturated carboxylic acids such as sulfonic acid and its salts (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); Unsaturated nitriles such as acrylonitrile, methacrylonitrile; (meth) acrylamide, N-alkyl ( (Meth) acrylamide, N, N-dialkyl (meth) acrylamide, ( As alkyl groups, unsaturated amides such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, 2-ethylhexyl, cyclohexyl, etc.); vinyl acetate Vinyl esters such as vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; halogen-containing α, β-unsaturated monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride And α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene, and the like, and one or more of these monomers can be used.
メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことである。例えば、アルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、およびこれらの混合物を用いることができる。エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n−ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために触媒を使用することも可能である。 A melamine compound is a compound having a melamine skeleton in the compound. For example, an alkylolated melamine derivative, a compound partially or completely etherified by reacting an alcohol with an alkylolated melamine derivative, and a mixture thereof can be used. As alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Moreover, as a melamine compound, either a monomer or a multimer more than a dimer may be sufficient, or a mixture thereof may be used. Further, a product obtained by co-condensing urea or the like with a part of melamine can be used, and a catalyst can be used to increase the reactivity of the melamine compound.
エポキシ化合物とは、分子内にエポキシ基を有する化合物であり、例えば、エピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物が挙げられ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等がある。ポリエポキシ化合物としては、例えば、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2−ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’,−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン等が挙げられる。 The epoxy compound is a compound having an epoxy group in the molecule, and examples thereof include condensates of epichlorohydrin with ethylene glycol, polyethylene glycol, glycerin, polyglycerin, bisphenol A and the like hydroxyl groups and amino groups, There are polyepoxy compounds, diepoxy compounds, monoepoxy compounds, glycidylamine compounds, and the like. Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyl tris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, trimethylolpropane. Examples of the polyglycidyl ether and diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, poly Examples of tetramethylene glycol diglycidyl ether and monoepoxy compound include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and glycidyl amine compound such as N, N, N ′, N ′,-tetraglycidyl-m-. Examples include xylylenediamine and 1,3-bis (N, N-diglycidylamino) cyclohexane.
カルボジイミド系化合物とは、カルボジイミド構造を有する化合物のことであり、分子内にカルボジイミド構造を1つ以上有する化合物であるが、より良好な密着性等のために、分子内に2つ以上有するポリカルボジイミド系化合物がより好ましい。 A carbodiimide-based compound is a compound having a carbodiimide structure, and is a compound having one or more carbodiimide structures in the molecule, but for better adhesion, etc., the polycarbodiimide having two or more in the molecule More preferred are system compounds.
カルボジイミド系化合物は従来公知の技術で合成することができ、一般的には、ジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが挙げられる。 The carbodiimide compound can be synthesized by a conventionally known technique, and generally a condensation reaction of a diisocyanate compound is used. The diisocyanate compound is not particularly limited, and any of aromatic and aliphatic compounds can be used. Specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, hexa Examples include methylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl diisocyanate, and dicyclohexylmethane diisocyanate.
さらに本発明の効果を消失させない範囲において、ポリカルボジイミド系化合物の水溶性や水分散性を向上するために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩、ヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。 Furthermore, in order not to lose the effect of the present invention, in order to improve the water solubility and water dispersibility of the polycarbodiimide compound, adding a surfactant, polyalkylene oxide, quaternary ammonium salt of dialkylamino alcohol, You may add and use hydrophilic monomers, such as a hydroxyalkyl sulfonate.
イソシアネート系化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’−テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等が例示される。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネートまたは脂環族イソシアネートがより好ましい。 The isocyanate compound is a compound having an isocyanate derivative structure typified by isocyanate or blocked isocyanate. Examples of isocyanate include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate, and aromatic rings such as α, α, α ′, α′-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanate, methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), isopropylidene dicyclohexyl diisocyanate Ne Alicyclic isocyanates such as bets are exemplified. Further, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimide modified products of these isocyanates are also included. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates in order to avoid yellowing due to ultraviolet rays.
ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。 When used in the state of blocked isocyanate, the blocking agent includes, for example, bisulfites, phenolic compounds such as phenol, cresol, and ethylphenol, and alcohols such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol. Compounds, active methylene compounds such as dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, lactam compounds such as ε-caprolactam and δ-valerolactam , Amine compounds such as diphenylaniline, aniline, ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetoald Examples include oxime compounds such as oxime, acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime, and these may be used alone or in combination of two or more.
また、本発明におけるイソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することが好ましい。 In addition, the isocyanate compound in the present invention may be used alone, or may be used as a mixture or bond with various polymers. In the sense of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
これらの架橋剤の中でも、特にオキサゾリン化合物を併用することにより、密着性や耐湿熱性の向上が期待できる。また、これら架橋剤は、インラインコーティングへの適用等を配慮した場合、水溶性または水分散性を有することが好ましい。 Among these cross-linking agents, improvement of adhesion and heat-and-moisture resistance can be expected by using an oxazoline compound in combination. These cross-linking agents preferably have water solubility or water dispersibility in consideration of application to in-line coating.
なお、これら架橋剤は、乾燥過程や、製膜過程において、反応させて塗布層の性能を向上させる設計で用いている。できあがった塗布層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。 These cross-linking agents are used in a design that improves the performance of the coating layer by reacting in the drying process or film forming process. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.
また、本発明の第1塗布層中に、塗布層の固着性、滑り性改良を目的として、粒子を含有することも可能である。用いる粒子としては、例えば、シリカ、アルミナ、酸化金属等の無機粒子、あるいは架橋高分子粒子等の有機粒子等を挙げることができる。 In addition, the first coating layer of the present invention may contain particles for the purpose of improving the adhesion and slipperiness of the coating layer. Examples of the particles used include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles.
本発明のフィルムの第2塗布層はハードコート層等の表面機能層形成後、外光による干渉ムラが軽減される設計で、かつ表面機能層との密着性を向上させるために設けられるものである。 The second coating layer of the film of the present invention is designed to reduce interference unevenness due to external light after the surface functional layer such as a hard coat layer is formed, and is provided to improve adhesion with the surface functional layer. is there.
本発明のフィルムの第2塗布層の形成に使用する金属酸化物は、主に塗布層の屈折率調整のために使用するものである。特に塗布層中に使用する樹脂の屈折率が低いために、高い屈折率を有する金属酸化物を使用することが好ましく、屈折率として1.7以上のものを使用することが好ましい。金属酸化物の具体例としては、例えば、酸化ジルコニウム、酸化チタン、酸化スズ、酸化イットリウム、酸化アンチモン、酸化インジウム、酸化亜鉛、アンチモンチンオキサイド、インジウムチンオキサイド等が挙げられ、これらを単独で使用しても良いし、2種類以上使用しても良い。これらの中でも酸化ジルコニウムや酸化チタンがより好適に用いられ、特に、耐候性の観点から酸化ジルコニウムがより好適に用いられる。 The metal oxide used for forming the second coating layer of the film of the present invention is mainly used for adjusting the refractive index of the coating layer. In particular, since the refractive index of the resin used in the coating layer is low, it is preferable to use a metal oxide having a high refractive index, and it is preferable to use a refractive index of 1.7 or more. Specific examples of the metal oxide include, for example, zirconium oxide, titanium oxide, tin oxide, yttrium oxide, antimony oxide, indium oxide, zinc oxide, antimontin oxide, indium tin oxide, and the like. You may use 2 or more types. Among these, zirconium oxide and titanium oxide are more preferably used. In particular, zirconium oxide is more preferably used from the viewpoint of weather resistance.
金属酸化物は、使用形態によっては密着性が低下する懸念があるため、粒子の状態で使用することが好ましく、また、その平均粒径は透明性の観点から、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは25nm以下である。 The metal oxide is preferably used in the form of particles because there is a concern that the adhesion may be lowered depending on the use form, and the average particle size is preferably 100 nm or less, more preferably from the viewpoint of transparency. It is 50 nm or less, more preferably 25 nm or less.
本発明においては、第2塗布層を形成させるための塗布液に2種類以上の架橋剤を含有するものであるが、これらは塗布層上に設けられるハードコート層等の表面機能層との密着性を向上させることができる。1種類の架橋剤でも密着性を向上させることができることを見いだしたが、2種類以上の架橋剤を併用することにより、さらに密着性を向上させることができ、特に湿熱試験後の密着性を改善できることを見いだした。 In the present invention, the coating liquid for forming the second coating layer contains two or more types of crosslinking agents, but these are in close contact with a surface functional layer such as a hard coat layer provided on the coating layer. Can be improved. We have found that even one type of cross-linking agent can improve the adhesion, but by using two or more types of cross-linking agents together, the adhesion can be further improved, especially the adhesion after the wet heat test. I found what I could do.
本発明のフィルムの第2塗布層の形成に使用する架橋剤とは、オキサゾリン化合物、エポキシ化合物、メラミン化合物、イソシアネート系化合物、カルボジイミド系化合物、シランカップリング化合物等が挙げられる。これら架橋剤の中でも密着性が良好であるという観点において、特にオキサゾリン化合物あるいはエポキシ化合物を使用することが好ましく、さらに好ましくはオキサゾリン化合物とエポキシ化合物を併用することである。 Examples of the crosslinking agent used for forming the second coating layer of the film of the present invention include oxazoline compounds, epoxy compounds, melamine compounds, isocyanate compounds, carbodiimide compounds, and silane coupling compounds. Among these crosslinking agents, from the viewpoint of good adhesion, it is particularly preferable to use an oxazoline compound or an epoxy compound, and it is more preferable to use an oxazoline compound and an epoxy compound in combination.
上記の架橋剤は、第1塗布層に用いられうるものと同様な化合物を使用することができる。 As the crosslinking agent, the same compounds as those used for the first coating layer can be used.
なお、これら架橋剤は、第1塗布層と同様、乾燥過程や、製膜過程において、反応させて塗布層の性能を向上させる設計で用いている。できあがった塗布層中には、これら架橋剤の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。 These cross-linking agents are used in a design to improve the performance of the coating layer by reacting in the drying process or the film forming process as in the case of the first coating layer. It can be inferred that unreacted products of these crosslinking agents, compounds after the reaction, or mixtures thereof exist in the finished coating layer.
本発明の第2塗布層における積層ポリエステルフィルムにおいて、塗布外観の向上、塗布面上にハードコート層等の種々の表面機能層が積層されたときの干渉ムラの低減、透明性や密着性の向上等のために各種のポリマーを併用することが好ましい。 In the laminated polyester film in the second coating layer of the present invention, the coating appearance is improved, interference unevenness is reduced when various surface functional layers such as a hard coat layer are laminated on the coating surface, and transparency and adhesion are improved. For this reason, it is preferable to use various polymers in combination.
ポリマーの具体例としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリビニル(ポリビニルアルコール、ポリ塩化ビニル、塩化ビニル酢酸ビニル共重合体等)、ポリアルキレングリコール、ポリアルキレンイミン、メチルセルロース、ヒドロキシセルロース、でんぷん類等が挙げられる。これらの中でもハードコート層等の表面機能層との密着性向上、塗布外観向上の観点から、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂を使用することが好ましい。また、分子内にベンゼン環等の芳香族化合物を数多く含有させることができ、それにより屈折率を高くすることができるという観点から、特にポリエステル樹脂が好ましい。 Specific examples of the polymer include polyester resin, acrylic resin, urethane resin, polyvinyl (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymer, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose, hydroxycellulose, starches. Etc. Among these, it is preferable to use a polyester resin, an acrylic resin, or a urethane resin from the viewpoint of improving adhesion with a surface functional layer such as a hard coat layer and improving the appearance of coating. In addition, a polyester resin is particularly preferable from the viewpoint that a large number of aromatic compounds such as a benzene ring can be contained in the molecule, thereby increasing the refractive index.
また、さらに塗布層の屈折率をより調整しやすくするため、下記式で例示されるような、ナフタレン、アントラセン、フェナントレン、ナフタセン、ベンゾ[a]アントラセン、ベンゾ[a]フェナントレン、ピレン、ベンゾ[c]フェナントレン、ペリレン等の縮合多環式芳香族構造を有する化合物を併用することが好ましい。 Further, in order to make it easier to adjust the refractive index of the coating layer, naphthalene, anthracene, phenanthrene, naphthacene, benzo [a] anthracene, benzo [a] phenanthrene, pyrene, benzo [c It is preferable to use a compound having a condensed polycyclic aromatic structure such as phenanthrene or perylene.
ポリエステルフィルム上への塗布性を考慮すると、縮合多環式芳香族を有する化合物は、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂等の高分子化合物が好ましい。特にポリエステル樹脂にはより多くの縮合多環式芳香族を導入することができるためより好ましい。 In consideration of applicability on the polyester film, the compound having a condensed polycyclic aromatic is preferably a polymer compound such as a polyester resin, an acrylic resin, or a urethane resin. In particular, polyester resins are more preferable because more condensed polycyclic aromatics can be introduced.
縮合多環式芳香族をポリエステル樹脂に組み込む方法としては、例えば、縮合多環式芳香族に置換基として水酸基を2つあるいはそれ以上導入してジオール成分あるいは多価水酸基成分とするか、あるいはカルボン酸基を2つあるいはそれ以上導入してジカルボン酸成分あるいは多価カルボン酸成分として作成する方法がある。 As a method of incorporating the condensed polycyclic aromatic into the polyester resin, for example, two or more hydroxyl groups are introduced into the condensed polycyclic aromatic as a substituent to form a diol component or a polyvalent hydroxyl component, or There is a method in which two or more acid groups are introduced to prepare a dicarboxylic acid component or a polyvalent carboxylic acid component.
積層ポリエステルフィルム製造工程において、着色がしにくいという点で、塗布層に含有する縮合多環式芳香族はナフタレン骨格を有する化合物が好ましい。また、塗布層上に形成される各種表面機能層との密着性や、透明性が良好であるという点で、ポリエステル構成成分としてナフタレン骨格を組み込んだ樹脂が好適に用いられる。当該ナフタレン骨格としては、代表的なものとして、1,5−ナフタレンジカルボン酸および2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸が挙げられる。 In the laminated polyester film production process, the condensed polycyclic aromatic contained in the coating layer is preferably a compound having a naphthalene skeleton in that it is difficult to be colored. In addition, a resin in which a naphthalene skeleton is incorporated as a polyester component is suitably used in terms of good adhesion to various surface functional layers formed on the coating layer and transparency. Representative examples of the naphthalene skeleton include 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid.
なお、縮合多環式芳香族には、水酸基やカルボン酸基以外にも、硫黄元素を含有する置換基、フェニル基等の芳香族置換基、ハロゲン元素基等を導入することにより、屈折率の向上が期待でき、塗布性や密着性の観点から、アルキル基、エステル基、アミド基、スルホン酸基、カルボン酸基、水酸基等の置換基を導入してもよい。 In addition to the hydroxyl group and the carboxylic acid group, the condensed polycyclic aromatic has a refractive index of a refractive index by introducing a substituent containing a sulfur element, an aromatic substituent such as a phenyl group, a halogen element group, and the like. Improvements can be expected, and substituents such as alkyl groups, ester groups, amide groups, sulfonic acid groups, carboxylic acid groups, and hydroxyl groups may be introduced from the viewpoint of coating properties and adhesion.
また、本発明は、第2塗布層中に、塗布層の固着性、滑り性改良を目的として上述の金属酸化物以外の粒子を含有してもよい。その平均粒径はフィルムの透明性の観点から好ましくは1.0μm以下の範囲であり、さらに好ましくは0.5μm以下、特に好ましくは0.2μm以下の範囲である。粒子の具体例としてはシリカ、アルミナ、カオリン、炭酸カルシウム、有機粒子等が挙げられる。 Moreover, this invention may contain particle | grains other than the above-mentioned metal oxide in the 2nd application layer for the purpose of the adhesiveness and slipperiness improvement of an application layer. The average particle size is preferably in the range of 1.0 μm or less, more preferably 0.5 μm or less, particularly preferably 0.2 μm or less from the viewpoint of the transparency of the film. Specific examples of the particles include silica, alumina, kaolin, calcium carbonate, and organic particles.
さらに本発明の主旨を損なわない範囲において、第1塗布層および第2塗布層には必要に応じて消泡剤、塗布性改良剤、増粘剤、有機系潤滑剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等が含有されてもよい。 Furthermore, as long as the gist of the present invention is not impaired, the first coating layer and the second coating layer have an antifoaming agent, coating property improving agent, thickening agent, organic lubricant, antistatic agent, ultraviolet absorption as necessary. Agents, antioxidants, foaming agents, dyes, pigments and the like may be contained.
本発明の積層ポリエステルフィルムにおける第1塗布層を形成する塗布液中の全不揮発成分に対する割合として、ポリビニルアルコールは、通常1〜60重量%、好ましくは3〜40重量%、より好ましくは5〜25重量%の範囲である。上記の範囲を外れる場合は、導電層を塗布した際に、網目構造が形成されなかったり、網目が途切れたりする可能性がある。 As a ratio with respect to all the non-volatile components in the coating liquid which forms the 1st coating layer in the laminated polyester film of this invention, polyvinyl alcohol is 1-60 weight% normally, Preferably it is 3-40 weight%, More preferably, it is 5-25. It is in the range of wt%. When the above range is not satisfied, there is a possibility that the network structure is not formed or the mesh is interrupted when the conductive layer is applied.
本発明の積層ポリエステルフィルムにおける第2塗布層を形成する塗布液中の全不揮発成分に対する割合として、金属酸化物は、通常3〜70重量%の範囲、好ましくは5〜50重量%の範囲、さらに好ましくは5〜40重量%の範囲、特に好ましくは8〜30重量%の範囲である。金属酸化物の量が3重量%未満の場合は塗布層の屈折率を十分に高くすることができないことにより、干渉ムラが軽減されない場合があり、70重量%を超える場合は、塗布層の透明性が悪化する場合がある。 As a ratio with respect to all the non-volatile components in the coating liquid which forms the 2nd coating layer in the lamination | stacking polyester film of this invention, a metal oxide is the range of 3-70 weight% normally, Preferably it is the range of 5-50 weight%, Furthermore, Preferably it is the range of 5-40 weight%, Most preferably, it is the range of 8-30 weight%. When the amount of the metal oxide is less than 3% by weight, the refractive index of the coating layer cannot be made sufficiently high, so that interference unevenness may not be reduced. When it exceeds 70% by weight, the coating layer is transparent. Sexuality may worsen.
本発明の積層ポリエステルフィルムにおける第2塗布層を形成する塗布液中の全不揮発成分に対する割合として、2種類以上の架橋剤は、通常2〜80重量%の範囲、より好ましくは4〜60重量%の範囲、さらに好ましくは10〜40重量%の範囲である。これらの範囲より外れる場合は、ハードコート層等の表面機能層との密着性が低下する可能性が懸念される場合、塗布外観が悪化する場合、ハードコート層等の表面機能層形成後の干渉ムラにより、視認性が良くない場合がある。 As a ratio with respect to all the non-volatile components in the coating liquid for forming the second coating layer in the laminated polyester film of the present invention, the two or more kinds of crosslinking agents are usually in the range of 2 to 80% by weight, more preferably 4 to 60% by weight. More preferably, it is the range of 10 to 40 weight%. If it is out of these ranges, there is a concern that the adhesion with the surface functional layer such as the hard coat layer may be lowered, if the coating appearance deteriorates, interference after the formation of the surface functional layer such as the hard coat layer The visibility may not be good due to unevenness.
架橋剤としてオキサゾリン化合物を使用する場合、第2塗布層を形成する塗布液中の全不揮発成分に対する割合として、オキサゾリン化合物の含有量は、通常1〜50重量%の範囲、より好ましくは1〜30重量%、さらに好ましくは3〜20重量%の範囲である。
1重量%未満の場合、ハードコート層等の表面機能層との密着性が低下する可能性が懸念され、50重量%を超える場合、塗布層の屈折率が低くなることにより、ハードコート層等の表面機能層形成後の干渉ムラにより、視認性が良くない場合がある。
When an oxazoline compound is used as a crosslinking agent, the content of the oxazoline compound is usually in the range of 1 to 50% by weight, more preferably 1 to 30 as a ratio to the total nonvolatile components in the coating liquid for forming the second coating layer. % By weight, more preferably in the range of 3-20% by weight.
If the amount is less than 1% by weight, there is a concern that the adhesion to the surface functional layer such as a hard coat layer may be lowered. If the amount exceeds 50% by weight, the refractive index of the coating layer is lowered, thereby causing a hard coat layer or the like. Visibility may not be good due to interference unevenness after the surface functional layer is formed.
架橋剤としてエポキシ化合物を使用する場合、第2塗布層を形成する塗布液中の全不揮発成分に対する割合として、エポキシ化合物の含有量は、通常1〜50重量%の範囲、より好ましくは3〜30重量%の範囲、さらに好ましくは5〜20重量%の範囲である。これらの範囲より外れる場合は、ハードコート層等の表面機能層との密着性が低下する可能性が懸念される場合や、塗布外観が悪化する場合がある。 When using an epoxy compound as a crosslinking agent, the content of the epoxy compound is usually in the range of 1 to 50% by weight, more preferably 3 to 30 as a ratio to the total nonvolatile components in the coating liquid for forming the second coating layer. It is in the range of wt%, more preferably in the range of 5-20 wt%. If it is out of these ranges, there is a possibility that the adhesion with the surface functional layer such as the hard coat layer may be lowered, or the coating appearance may be deteriorated.
本発明における積層ポリエステルフィルムを構成する第2塗布層に用いられうる縮合多環式芳香族を有する化合物は、その化合物中で縮合多環式芳香族の占める割合は、好ましくは5〜80重量%の範囲であり、より好ましくは10〜60重量%の範囲である。また、塗布層中の縮合多環式芳香族を有する化合物の含有量は、好ましくは80重量%以下の範囲、より好ましくは5〜70重量%の範囲、さらに好ましくは10〜50重量%の範囲である。これらの範囲で使用することにより、塗布層の屈折率の調整が容易となり、ハードコート層等の表面機能層を形成後の干渉ムラの軽減がしやすくなる。なお、縮合多環式芳香族の割合は、例えば、適当な溶剤または温水で塗布層を溶解抽出し、クロマトグラフィーで分取し、NMRやIRで構造を解析、さらに熱分解GC−MS(ガスクロマトグラフィー質量分析)や光学的な分析等で解析することにより求めることができる。 In the compound having a condensed polycyclic aromatic that can be used in the second coating layer constituting the laminated polyester film in the present invention, the proportion of the condensed polycyclic aromatic in the compound is preferably 5 to 80% by weight. More preferably, it is the range of 10 to 60% by weight. The content of the compound having a condensed polycyclic aromatic in the coating layer is preferably in the range of 80% by weight or less, more preferably in the range of 5 to 70% by weight, and still more preferably in the range of 10 to 50% by weight. It is. By using within these ranges, the refractive index of the coating layer can be easily adjusted, and interference unevenness after forming a surface functional layer such as a hard coat layer can be easily reduced. The ratio of the condensed polycyclic aromatic can be determined by, for example, dissolving and extracting the coating layer with an appropriate solvent or warm water, separating by chromatography, analyzing the structure by NMR or IR, and further pyrolyzing GC-MS (gas It can be determined by analyzing by chromatography mass spectrometry) or optical analysis.
塗布層中の成分の分析は、例えば、TOF−SIMS、ESCA、蛍光X線等の分析によって行うことができる。 Analysis of the components in the coating layer can be performed by analysis of TOF-SIMS, ESCA, fluorescent X-rays, and the like, for example.
インラインコーティングによって塗布層を設ける場合は、上述の一連の化合物を水溶液または水分散体として、固形分濃度が0.1〜50重量%程度を目安に調整した塗布液をポリエステルフィルム上に塗布する要領にて積層ポリエステルフィルムを製造するのが好ましい。また、本発明の主旨を損なわない範囲において、水への分散性改良、造膜性改良等を目的として、塗布液中には少量の有機溶剤を含有していてもよい。有機溶剤は1種類のみでもよく、適宜、2種類以上を使用してもよい。 When providing a coating layer by in-line coating, the above-mentioned series of compounds is applied as an aqueous solution or dispersion, and the coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight as a guide is applied onto the polyester film. It is preferable to produce a laminated polyester film. Moreover, in the range which does not impair the main point of this invention, a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.
本発明における積層ポリエステルフィルムに関して、ポリエステルフィルム上に設けられる第1塗布層の膜厚は、通常0.002〜1.0μm、好ましくは0.01〜0.5μm、より好ましくは0.02〜0.2μmの範囲である。膜厚が上記範囲より外れる場合は、密着性や塗布外観が悪化する場合がある。 Regarding the laminated polyester film in the present invention, the thickness of the first coating layer provided on the polyester film is usually 0.002 to 1.0 μm, preferably 0.01 to 0.5 μm, more preferably 0.02 to 0. .2 μm range. When the film thickness is out of the above range, the adhesion and the coating appearance may be deteriorated.
本発明における積層ポリエステルフィルムに関して、ポリエステルフィルム上に設けられる第2塗布層の膜厚は、通常0.04〜0.20μm、好ましくは0.07〜0.15μmの範囲である。膜厚が上記範囲より外れる場合は、表面機能層を積層後の干渉ムラにより、視認性が悪化する場合がある。 Regarding the laminated polyester film in the present invention, the thickness of the second coating layer provided on the polyester film is usually in the range of 0.04 to 0.20 μm, preferably 0.07 to 0.15 μm. When the film thickness is out of the above range, visibility may deteriorate due to interference unevenness after the surface functional layer is laminated.
本発明において、塗布層を設ける方法はリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。 In the present invention, as a method for providing the coating layer, a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating or the like can be used.
本発明において、ポリエステルフィルム上に塗布層を形成する際の乾燥および硬化条件に関しては特に限定されるわけではなく、例えば、オフラインコーティングにより塗布層を設ける場合、通常、80〜200℃で3〜40秒間、好ましくは100〜180℃で3〜40秒間を目安として熱処理を行うのが良い。 In the present invention, the drying and curing conditions for forming the coating layer on the polyester film are not particularly limited. For example, when the coating layer is provided by off-line coating, it is usually 3 to 40 at 80 to 200 ° C. The heat treatment may be performed for 2 seconds, preferably 100 to 180 ° C. for 3 to 40 seconds.
一方、インラインコーティングにより塗布層を設ける場合、通常、70〜280℃で3〜200秒間を目安として熱処理を行うのが良い。 On the other hand, when the coating layer is provided by in-line coating, heat treatment is usually performed at 70 to 280 ° C. for 3 to 200 seconds as a guide.
また、オフラインコーティングあるいはインラインコーティングに係わらず、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。本発明における積層ポリエステルフィルムを構成するポリエステルフィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。 Further, irrespective of off-line coating or in-line coating, heat treatment and active energy ray irradiation such as ultraviolet irradiation may be used in combination as required. The polyester film constituting the laminated polyester film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
本発明における第2塗布層は干渉ムラの発生を抑制するために、屈折率の調整がされたものであり、その屈折率は基材のポリエステルフィルムとハードコート層等の表面機能層の相乗平均付近に設計したものである。塗布層の屈折率と塗布層の反射率は密接な関係がある。本発明のフィルムの絶対反射率は、横軸に波長、縦軸に反射率を示すグラフを描き、反射率の極小値が波長400〜800nmの範囲に1つである必要があり、その極小値は4.0%以上である。本発明の絶対反射率の範囲においては、その極小値が同じ波長に現れるならば、極小値の反射率は、屈折率が高い場合は高い値となり、屈折率が低い場合は低い値となる。 The second coating layer in the present invention has a refractive index adjusted in order to suppress the occurrence of interference unevenness, and the refractive index is a geometric mean of the surface functional layer such as the polyester film of the substrate and the hard coat layer. It is designed in the vicinity. The refractive index of the coating layer and the reflectance of the coating layer are closely related. The absolute reflectance of the film of the present invention is a graph in which the horizontal axis indicates the wavelength and the vertical axis indicates the reflectance, and the minimum value of the reflectance needs to be one in the wavelength range of 400 to 800 nm. Is 4.0% or more. In the range of the absolute reflectance of the present invention, if the minimum value appears at the same wavelength, the reflectance of the minimum value is a high value when the refractive index is high, and a low value when the refractive index is low.
本発明における第2塗布層の絶対反射率は、波長400〜800nmの範囲に極小値が1つ存在、より好ましくは波長500〜700nmの範囲に極小値が1つ存在するものである。また、その極小値の値が、好ましくは4.0〜6.5%、より好ましくは4.5〜6.2%の範囲である。波長400〜800nmの範囲にある極小値が1つではない場合、また、極小値の絶対反射率が上記の値を外れる場合は、ハードコート層等の表面機能層を形成後に干渉ムラが発生し、フィルムの視認性が低下する場合がある。 In the present invention, the absolute reflectance of the second coating layer has one minimum value in the wavelength range of 400 to 800 nm, more preferably one minimum value in the wavelength range of 500 to 700 nm. The minimum value is preferably in the range of 4.0 to 6.5%, more preferably 4.5 to 6.2%. If the minimum value in the wavelength range of 400 to 800 nm is not one, and if the absolute reflectance of the minimum value deviates from the above value, interference unevenness occurs after the surface functional layer such as a hard coat layer is formed. The visibility of the film may be reduced.
本発明のポリエステルフィルムには、第1塗布層に金属の網目状導電層を設けることを必須の要件とするものである。導電層に使用される材料としては、特に限定されないが、例えば、金属微粒子、金属箔、金属酸化物等が挙げられる。これらのうち導電性および生産性の両立の観点より、金属微粒子を含有する組成物であることが特に好ましい。 In the polyester film of the present invention, it is an essential requirement to provide a metal mesh conductive layer in the first coating layer. Although it does not specifically limit as a material used for a conductive layer, For example, a metal microparticle, metal foil, a metal oxide, etc. are mentioned. Among these, from the viewpoint of achieving both conductivity and productivity, a composition containing metal fine particles is particularly preferable.
金属微粒子に用いられる金属としては特に限定されず、白金、金、銀、銅、ニッケル、パラジウム、ロジウム、ルテニウム、ビスマス、コバルト、鉄、アルミニウム、亜鉛、錫などが挙げられる。金属は1種で用いてもよく、2種以上を組み合わせて用いてもよい。
その中でも、導電性に優れるという点で、銀を用いることが好ましい。
The metal used for the metal fine particles is not particularly limited, and examples thereof include platinum, gold, silver, copper, nickel, palladium, rhodium, ruthenium, bismuth, cobalt, iron, aluminum, zinc, and tin. A metal may be used by 1 type and may be used in combination of 2 or more type.
Among these, it is preferable to use silver in terms of excellent conductivity.
金属微粒子の調整法としては、例えば、液層中で金属イオンを還元して金属原子とし、原子クラスターを経てナノ粒子へ成長させる化学的方法や、バルク金属を不活性ガス中で蒸発させて微粒子となった金属をコールドトラップで捕捉する手法や、ポリマー薄膜上に真空蒸着させて得られた金属薄膜を加熱して金属薄膜を壊し、固相状態でポリマー中に金属ナノ粒子を分散させる物理的手法などを用いることができる。 Examples of the method for adjusting the metal fine particles include a chemical method in which metal ions are reduced to metal atoms in a liquid layer to grow into nanoparticles through atomic clusters, or bulk metal is evaporated in an inert gas to form fine particles. A method of trapping the resulting metal with a cold trap, or a method in which a metal thin film obtained by vacuum deposition on a polymer thin film is heated to break the metal thin film, and the metal nanoparticles are dispersed in the polymer in a solid state. A technique or the like can be used.
金属微粒子の大きさは特に限定されるものではないが、数平均粒子径が0.001〜5μmであることが好ましく、より好ましくは0.001〜2μmであり、さらに好ましくは0.002〜1.5μmである。数平均粒子径が0.001μmより小さい場合には、金属微粒子同士の連続的な接触が途切れる場合が多くなり、その結果、十分な導電性が得られない場合がある。数平均粒子径が5μmよりも大きい場合には、後述する焼成後の処理での導電性を高める効果が得られなくなり、十分な導電性が得られない場合がある。導電層を形成し得る組成物中の金属微粒子の粒径分布は大きくても、小さくてもよく、粒径が不揃いであっても、均一であってもよい。 The size of the metal fine particles is not particularly limited, but the number average particle diameter is preferably 0.001 to 5 μm, more preferably 0.001 to 2 μm, and further preferably 0.002 to 1. .5 μm. When the number average particle diameter is smaller than 0.001 μm, continuous contact between the metal fine particles is often interrupted, and as a result, sufficient conductivity may not be obtained. When the number average particle diameter is larger than 5 μm, the effect of enhancing the conductivity in the treatment after firing described later cannot be obtained, and sufficient conductivity may not be obtained. The particle size distribution of the metal fine particles in the composition capable of forming the conductive layer may be large or small, and the particle size may be uneven or uniform.
ポリエステルフィルム上に導電層を積層する方法は、特に制限されないが、金属微粒子を含有する組成物を塗布することで、微粒子が部分的に凝集して、網目線を形成する現象、いわゆる自己組織化現象を利用して網目状の導電層を形成させる手法が好ましい。このような手法を用いると、網目がランダムになりやすく、さらに線幅が細くなりやすく、透明性を損なわないので、自己組織化する金属微粒子溶液が好ましい。 The method for laminating the conductive layer on the polyester film is not particularly limited. However, by applying a composition containing metal fine particles, the fine particles partially aggregate to form a network line, so-called self-organization. A method of forming a mesh-like conductive layer using the phenomenon is preferable. When such a method is used, the mesh is likely to be random, the line width is likely to be narrowed, and transparency is not impaired. Therefore, a metal fine particle solution that is self-organized is preferable.
ここで、自己組織化する金属微粒子溶液とは、ポリエステルフィルム上に当該溶液を塗布して放置しておくと、自然にポリエステルフィルム上に網目状の構造を形成することのできる溶液である。自己組織化する金属微粒子溶液を用いて網目状の構造を形成させる場合、例えば、金属微粒子と、分散剤などの有機成分とからなる粒子を主成分とする溶液、すなわち金属コロイド溶液などを用いることができる。金属コロイド溶液の溶媒としては、水または各種の有機溶媒を用いることができる。 Here, the metal fine particle solution that self-assembles is a solution that can naturally form a network structure on a polyester film when the solution is applied on a polyester film and left to stand. When forming a network structure using a metal fine particle solution that self-assembles, for example, a solution containing metal fine particles and organic components such as a dispersant as a main component, that is, a metal colloid solution or the like is used. Can do. As a solvent for the metal colloid solution, water or various organic solvents can be used.
金属コロイド溶液には、金属微粒子、分散剤以外に、他の各種添加剤、例えば、界面活性剤、保護樹脂、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、顔料、染料、有機または非金属の無機の微粒子、充填剤、帯電防止剤などが含有されてもよい。 In addition to fine metal particles and dispersants, other various additives such as surfactants, protective resins, antioxidants, heat stabilizers, weather stabilizers, UV absorbers, pigments, dyes, organics Alternatively, non-metallic inorganic fine particles, fillers, antistatic agents and the like may be contained.
導電層の形成方法は、金属微粒子を用いた場合にはバーコート法、ダイコート法等の一般的なウェットコート法が採用される。形成された導電層には必要に応じて加熱を施し、焼成することができる。さらに焼成された導電層が積層されたポリエステルフィルムを有機溶剤や酸などで処理を施し、導電性を上げることができる。 As a method for forming the conductive layer, a general wet coat method such as a bar coat method or a die coat method is employed when metal fine particles are used. The formed conductive layer can be heated and fired as necessary. Furthermore, the polyester film on which the fired conductive layer is laminated can be treated with an organic solvent or acid to increase the conductivity.
本発明のポリエステルフィルムにおいては、塗布層上に、金属の網目状導電層を積層することによって、透明で、導電性のあるフィルムを得ることができる。本発明におけるポリエステルフィルムの全光線透過率は好ましくは60%以上であり、より好ましくは65%以上、さらに好ましくは70%以上である。光線透過率が60%より小さいと、導電性フィルムの透明性の点で問題が生じる場合がある。 In the polyester film of the present invention, a transparent and conductive film can be obtained by laminating a metal network conductive layer on the coating layer. The total light transmittance of the polyester film in the present invention is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more. If the light transmittance is less than 60%, there may be a problem in terms of transparency of the conductive film.
本発明の積層ポリエステルフィルムの導電性に関しては、表面抵抗が300Ω以下であることが好ましく、より好ましくは100Ω以下、さらに好ましくは50Ω以下である。表面抵抗が300Ω以下であると、導電性フィルムとして通電して用いる際に、抵抗による負荷が小さくなるため、発熱が抑えられることや、低電圧で用いることができるなどの点から、好ましい。 Regarding the conductivity of the laminated polyester film of the present invention, the surface resistance is preferably 300Ω or less, more preferably 100Ω or less, and further preferably 50Ω or less. When the surface resistance is 300 Ω or less, a load due to resistance is reduced when the conductive film is used while being energized. Therefore, it is preferable from the viewpoint that heat generation can be suppressed and that a low voltage can be used.
本発明のポリエステルフィルムには、第2塗布層の上にハードコート層等の表面機能層を設けるのが一般的である。ハードコート層に使用される材料としては、特に限定されないが、例えば、単官能(メタ)アクリレート、二官能(メタ)アクリレート、多官能(メタ)アクリレート、テトラエトキシシラン等の反応性珪素化合物等の硬化物が挙げられる。これらのうち生産性及び硬度の両立の観点より、活性エネルギー線硬化性の多官能(メタ)アクリレートを含む組成物の重合硬化物であることが特に好ましい。 The polyester film of the present invention is generally provided with a surface functional layer such as a hard coat layer on the second coating layer. Although it does not specifically limit as a material used for a hard-coat layer, For example, reactive silicon compounds, such as monofunctional (meth) acrylate, bifunctional (meth) acrylate, polyfunctional (meth) acrylate, tetraethoxysilane, etc. A cured product is mentioned. Among these, from the viewpoint of achieving both productivity and hardness, a polymerization cured product of a composition containing an active energy ray-curable polyfunctional (meth) acrylate is particularly preferable.
活性エネルギー線硬化性の多官能(メタ)アクリレートを含む組成物としては特に限定されるものでない。例えば、公知の紫外線硬化性の多官能(メタ)アクリレートを一種類以上混合したもの、紫外線硬化性ハードコート材として市販されているもの、或いはこれら以外に本実施形態の目的を損なわない範囲において、その他の成分を更に添加したものを用いることができる。 It does not specifically limit as a composition containing active energy ray-curable polyfunctional (meth) acrylate. For example, a mixture of one or more known ultraviolet curable polyfunctional (meth) acrylates, those commercially available as ultraviolet curable hard coat materials, or the range that does not impair the purpose of this embodiment other than these, What added the other component further can be used.
活性エネルギー線硬化性の単官能(メタ)アクリレートとしては、特に限定されるものではないが、例えばメチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等ヒドロキシアルキル(メタ)アクリレート、メトキシエチル(メタ)アクリート、エトキシエチル(メタ)アクリレート、メトキシプロピル(メタ)アクリレート、エトキシプロピル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族(メタ)アクリレート、ジアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリール(メタ)アクリレート、フェニルフェノールエチレンオキサイド変性(メタ)アクリレート等のエチレンオキサイド変性(メタ)アクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(メタ)アクリル酸等が挙げられる。 The active energy ray-curable monofunctional (meth) acrylate is not particularly limited. For example, methyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) ) Acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, alkyl (meth) acrylate such as isobornyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, etc. Alkyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, ethoxypropyl (meth) acrylate, etc. Amino group-containing (meth) acrylates such as xylalkyl (meth) acrylate, benzyl (meth) acrylate, aromatic (meth) acrylate such as phenoxyethyl (meth) acrylate, diaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, Methoxyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, ethylene oxide modified (meth) acrylate such as phenylphenol ethylene oxide modified (meth) acrylate, glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, Examples include (meth) acrylic acid.
活性エネルギー線硬化性の二官能(メタ)アクリレートとしては、特に限定されるものではないが、例えば1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ) アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート等のアルカンジオールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールFエチレンオキサイド変性ジ(メタ)アクリレート等のビスフェノール変性ジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ウレタンジ(メタ)アクリレート、エポキシジ(メタ)アクリレート等が挙げられる。 The active energy ray-curable difunctional (meth) acrylate is not particularly limited, and for example, 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6- Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, alkanediol di (meth) acrylate such as tricyclodecane dimethylol di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) acrylate Bisphenol F ethylene oxide modified di (meth) acrylate and other bisphenol modified di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, urethane di (meth) acrylate And epoxy di (meth) acrylate.
活性エネルギー線硬化性の多官能(メタ)アクリレートとしては、特に限定されるものではないが、例えばジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、ε−カプロラクトン変性トリス(アクロキシエチル)イソシアヌレート等のイソシアヌル酸変性トリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー等のウレタンアクリレート等が挙げられる。 The active energy ray-curable polyfunctional (meth) acrylate is not particularly limited. For example, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate , Pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, isocyanuric acid ethylene oxide modified tri (meth) acrylate, ε-caprolactone modified tris (acryloxyethyl) isocyanurate Acrylate, pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urea Down prepolymers, urethane acrylates such as dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, and the like.
活性エネルギー線硬化性樹脂を含む組成物に含まれるその他の成分は特に限定されるものではない。例えば、無機又は有機の微粒子、重合開始剤、重合禁止剤、酸化防止剤、帯電防止剤、分散剤、界面活性剤、光安定剤及びレベリング剤等が挙げられる。また、ウェットコーティング法において成膜後乾燥させる場合には、任意の量の溶媒を添加することができる。 Other components contained in the composition containing the active energy ray-curable resin are not particularly limited. Examples thereof include inorganic or organic fine particles, polymerization initiators, polymerization inhibitors, antioxidants, antistatic agents, dispersants, surfactants, light stabilizers, and leveling agents. In addition, when the film is dried after film formation in the wet coating method, an arbitrary amount of solvent can be added.
ハードコート層の形成方法は、有機材料を用いた場合にはロールコート法、ダイコート法等の一般的なウェットコート法が採用される。形成されたハードコート層には必要に応じて加熱や紫外線、電子線等の活性エネルギー線照射を施し、硬化反応を行うことができる。 As a method for forming the hard coat layer, when an organic material is used, a general wet coat method such as a roll coat method or a die coat method is employed. The formed hard coat layer can be subjected to a curing reaction by heating, irradiation with active energy rays such as ultraviolet rays and electron beams as necessary.
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。また、本発明で用いた測定法および評価方法は次のとおりである。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The measurement method and evaluation method used in the present invention are as follows.
(1)ポリエステルの極限粘度の測定方法
ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
(1) Method for measuring the intrinsic viscosity of polyester 1 g of polyester from which other polymer components and pigments incompatible with polyester have been removed are precisely weighed, and 100 ml of a mixed solvent of phenol / tetrachloroethane = 50/50 (weight ratio) is added. And dissolved at 30 ° C.
(2)平均粒径の測定方法
TEM(株式会社日立ハイテクノロジーズ製 H−7650、加速電圧100V)を使用して塗布層を観察し、粒子10個の粒径の平均値を平均粒径とした。
(2) Measuring method of average particle diameter The coating layer was observed using TEM (H-7650 manufactured by Hitachi High-Technologies Corporation, acceleration voltage 100V), and the average value of the particle diameters of 10 particles was defined as the average particle diameter. .
(3)塗布層の膜厚測定方法
塗布層の表面をRuO4で染色し、エポキシ樹脂中に包埋した。その後、超薄切片法により作成した切片をRuO4で染色し、塗布層断面をTEM(株式会社日立ハイテクノロジーズ製 H−7650、加速電圧100V)を用いて測定した。
(3) Method for measuring film thickness of coating layer The surface of the coating layer was dyed with RuO 4 and embedded in an epoxy resin. Thereafter, the section prepared by ultramicrotomy stained with RuO 4, a coating layer cross-section was measured by using a TEM (Hitachi High-Technologies Ltd. H-7650, accelerating voltage 100 V).
(4)金属微粒子の数平均粒子径
導電層形成溶液の金属微粒子をTEM(株式会社日立ハイテクノロジーズ製 H−7650、加速電圧100V)で観察し、金属微粒子10個の粒径の平均値を平数平均粒径とした。
《導電層形成溶液》
導電層形成溶液として、下記組成からなる銀微粒子溶液を用いた。
平均粒径0.08μmの銀微粒子/BYK−410(ビックケミー株式会社製)/SPAN−60/シクロヘキサノン/アニリン/トルエン/ヘキサデカノール/ヘキサメチロールメラミン/蒸留水=5.0/0.3/0.2/4.6/56.0/0.8/0.1/33.0(重量%)
(4) Number average particle diameter of metal fine particles The metal fine particles of the conductive layer forming solution are observed with a TEM (H-7650, Hitachi High-Technologies Corporation, acceleration voltage 100V), and the average value of the particle diameters of 10 metal fine particles is calculated. The number average particle size was taken.
<< Conductive layer forming solution >>
As the conductive layer forming solution, a silver fine particle solution having the following composition was used.
Silver fine particles having an average particle diameter of 0.08 μm / BYK-410 (manufactured by BYK Chemie) / SPAN-60 / cyclohexanone / aniline / toluene / hexadecanol / hexamethylolmelamine / distilled water = 5.0 / 0.3 / 0 0.2 / 4.6 / 56.0 / 0.8 / 0.1 / 33.0 (% by weight)
(5)第1塗布層の表面観察
ポリエステルフィルムの塗膜形成面に(4)に記載の導電層形成溶液を#24メイヤーバーを用いて塗布した後、150℃で2分間乾燥することにより導電性フィルムを得た。
得られた導電性フィルムの導電層を、SEM(株式会社堀場製作所製 S3400N)を用いて観察し、網目の形状を観察し、ランダムな網目構造が形成されていれば◎、網目構造が形成されているが、一部に網目の欠陥があれば○、一部が網目構造を形成していれば△、網目構造を形成していなければ×とした。
(5) Surface observation of the first coating layer The conductive layer forming solution described in (4) was applied to the coating film forming surface of the polyester film using a # 24 Mayer bar, and then dried by drying at 150 ° C. for 2 minutes. A characteristic film was obtained.
The conductive layer of the obtained conductive film is observed using SEM (S3400N manufactured by Horiba, Ltd.), the shape of the mesh is observed, and if a random network structure is formed, ◎, a network structure is formed. However, if there is a mesh defect in a part, the mark is ◯, if a part forms a mesh structure, the mark is Δ, and if a mesh structure is not formed, the mark is ×.
(6)導電性測定
(5)に記載の方法により得られた導電性フィルムの導電性は、表面抵抗により測定した。表面抵抗の測定は、常態(23℃、相対湿度65%)において24時間放置後、その雰囲気下で、JIS−K−7194に準拠した形で、ロレスターEP(三菱化学株式会社製、型番:MCP−T360)を用いて実施した。なお、本測定器は1×106 Ω以下が測定可能である。表面抵抗が300Ω以下であれば導電性は十分である。
(6) Conductivity measurement The conductivity of the conductive film obtained by the method described in (5) was measured by surface resistance. The surface resistance was measured after being allowed to stand for 24 hours in a normal state (23 ° C., relative humidity 65%), and in that atmosphere, in a form conforming to JIS-K-7194, Lorester EP (manufactured by Mitsubishi Chemical Corporation, model number: MCP) -T360). In addition, this measuring device can measure 1 × 10 6 Ω or less. If the surface resistance is 300Ω or less, the conductivity is sufficient.
(7)全光線透過率
全光線透過率は、常態(23℃、相対湿度65%)において、(5)に記載の方法により得られた導電性フィルムを2時間放置した後、その雰囲気下で、JIS−K−7136に準拠した形で、村上色彩科学株式会社製ヘーズメーター「HM−150」を用いて測定した。4回測定した平均値を該導電性フィルムの全光線透過率とした。全光線透過率が60%以上であれば透明性は十分である。なお、導電層を積層した面側より光が入るように導電性フィルムを設置して測定した。
(7) Total light transmittance Total light transmittance is measured under the atmosphere after leaving the conductive film obtained by the method described in (5) for 2 hours in the normal state (23 ° C., relative humidity 65%). Measured in accordance with JIS-K-7136 using a haze meter “HM-150” manufactured by Murakami Color Science Co., Ltd. The average value measured four times was defined as the total light transmittance of the conductive film. If the total light transmittance is 60% or more, the transparency is sufficient. In addition, it measured by installing a conductive film so that light may enter from the surface side which laminated | stacked the conductive layer.
(8)ポリエステルフィルムにおける第2塗布層表面からの絶対反射率の評価方法
あらかじめ、ポリエステルフィルムの測定裏面に黒テープ(ニチバン株式会社製ビニールテープVT―50)を貼り、分光光度計(日本分光株式会社製 紫外可視分光光度計 V−570 および自動絶対反射率測定装置 ARM−500N)を使用して同期モード、入射角5°、N偏光、レスポンス Fast、データ取区間隔1.0nm、バンド幅10nm、走査速度1000m/minで塗布層面を波長範囲400〜800nmの絶対反射率を測定し、その極小値における波長(ボトム波長)と反射率を評価した。
(8) Evaluation method of absolute reflectance from the surface of the second coating layer in the polyester film In advance, a black tape (vinyl tape VT-50 manufactured by Nichiban Co., Ltd.) is pasted on the measurement back surface of the polyester film, and a spectrophotometer (JASCO Corporation) Using UV-Vis spectrophotometer V-570 and automatic absolute reflectance measuring device ARM-500N), synchronous mode, incident angle 5 °, N-polarized light, response Fast, data collection interval 1.0 nm, bandwidth 10 nm The absolute reflectance in the wavelength range of 400 to 800 nm was measured on the coating layer surface at a scanning speed of 1000 m / min, and the wavelength (bottom wavelength) and reflectance at the minimum value were evaluated.
(9)干渉ムラの評価方法
ポリエステルフィルムの第2塗布層側に、ジペンタエリスリトールヘキサアクリレート72重量部、2−ヒドロキシ−3−フェノキシプロピルアクリレート18重量部、五酸化アンチモン10重量部、光重合開始剤(商品名:イルガキュア184、BASF株式会社製)1重量部、メチルエチルケトン200重量部の混合塗液を乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させハードコート層を形成した。得られたフィルムを3波長光域型蛍光灯下で目視にて、干渉ムラを観察し、干渉ムラが確認できないものを◎、薄くまばらな干渉ムラが確認されるものを○、薄いが線状の干渉ムラが確認できるものを△、明瞭な干渉ムラが確認されるものを×とした。
(9) Interference unevenness evaluation method On the second coating layer side of the polyester film, 72 parts by weight of dipentaerythritol hexaacrylate, 18 parts by weight of 2-hydroxy-3-phenoxypropyl acrylate, 10 parts by weight of antimony pentoxide, photopolymerization start A mixed coating solution of 1 part by weight of an agent (trade name: Irgacure 184, manufactured by BASF Corporation) and 200 parts by weight of methyl ethyl ketone is applied to a dry film thickness of 5 μm and cured by irradiating with ultraviolet rays to form a hard coat layer. did. The obtained film is visually observed under a three-wavelength fluorescent lamp, and interference unevenness is observed. If the interference unevenness is not confirmed, ◎, thin sparse interference unevenness is confirmed, thin, linear The case where the interference unevenness was confirmed was indicated by Δ, and the case where clear interference unevenness was confirmed was indicated by ×.
(10)第2塗布層の密着性の評価方法
より厳しい密着性の評価を行うために、上記(9)の評価で使用したハードコート液から五酸化アンチモンを除いた材料で検討した。すなわち、ジペンタエリスリトールヘキサアクリレート80重量部、2−ヒドロキシ−3−フェノキシプロピルアクリレート20重量部、光重合開始剤(商品名:イルガキュア184、BASF株式会社製)5重量部、メチルエチルケトン200重量部の混合塗液を乾燥膜厚が5μmになるように塗布し、紫外線を照射して硬化させハードコート層を形成した。得られたフィルムに対して、80℃、90%RHの環境下で100時間後、10×10のクロスカットをして、その上に18mm幅のテープ(ニチバン株式会社製セロテープ(登録商標)CT−18)を貼り付け、180度の剥離角度で急激にはがした後の剥離面を観察し、剥離面積が3%未満ならば◎、3%以上10%未満なら○、10%以上50%未満なら△、50%以上ならば×とした。
(10) Method for evaluating adhesion of second coating layer In order to perform a more stringent evaluation of adhesion, examination was made with materials obtained by removing antimony pentoxide from the hard coat liquid used in the evaluation of (9) above. That is, 80 parts by weight of dipentaerythritol hexaacrylate, 20 parts by weight of 2-hydroxy-3-phenoxypropyl acrylate, 5 parts by weight of a photopolymerization initiator (trade name: Irgacure 184, manufactured by BASF Corporation), and 200 parts by weight of methyl ethyl ketone The coating liquid was applied so as to have a dry film thickness of 5 μm and cured by irradiating with ultraviolet rays to form a hard coat layer. The obtained film was subjected to 10 × 10 cross-cut after 100 hours in an environment of 80 ° C. and 90% RH, and then a 18 mm wide tape (cello tape (registered trademark) CT manufactured by Nichiban Co., Ltd.). -18) is pasted and the peeled surface is observed after being peeled off rapidly at a peeling angle of 180 °. If the peeled area is less than 3%, ◎ if it is 3% or more but less than 10%, ○, 10% or more and 50%. If it was less than △, it was marked as x if it was 50% or more.
実施例および比較例において使用したポリエステルは、以下のようにして準備したものである。
<ポリエステル(A)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、エチルアシッドフォスフェートを生成ポリエステルに対して30ppm、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して100ppmを窒素雰囲気下、260℃でエステル化反応をさせた。引き続いて、テトラブチルチタネートを生成ポリエステルに対して50ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.3kPaまで減圧し、さらに80分、溶融重縮合させ、極限粘度0.63のポリエステル(A)を得た。
The polyester used in the examples and comparative examples was prepared as follows.
<Method for producing polyester (A)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, 30 ppm of ethyl acid phosphate with respect to the resulting polyester, and 100 ppm of magnesium acetate tetrahydrate with respect to the resulting polyester as the catalyst at 260 ° C. in a nitrogen atmosphere at 260 ° C. The reaction was allowed to proceed. Subsequently, 50 ppm of tetrabutyl titanate was added to the resulting polyester, the temperature was raised to 280 ° C. over 2 hours and 30 minutes, the pressure was reduced to 0.3 kPa in absolute pressure, and melt polycondensation was further carried out for 80 minutes. 0.63 polyester (A) was obtained.
<ポリエステル(B)の製造方法>
テレフタル酸ジメチル100重量部、エチレングリコール60重量部、触媒として酢酸マグネシウム・四水和物を生成ポリエステルに対して900ppmを窒素雰囲気下、225℃でエステル化反応をさせた。引き続いて、正リン酸を生成ポリエステルに対して3500ppm、二酸化ゲルマニウムを生成ポリエステルに対して70ppm添加し、2時間30分かけて280℃まで昇温すると共に、絶対圧力0.4kPaまで減圧し、さらに85分、溶融重縮合させ、極限粘度0.64のポリエステル(B)を得た。
<Method for producing polyester (B)>
100 parts by weight of dimethyl terephthalate, 60 parts by weight of ethylene glycol, and magnesium acetate tetrahydrate as a catalyst were subjected to an esterification reaction at 225 ° C. in a nitrogen atmosphere at 900 ppm with respect to the produced polyester. Subsequently, 3500 ppm of orthophosphoric acid was added to the produced polyester, and 70 ppm of germanium dioxide was added to the produced polyester. The temperature was raised to 280 ° C. over 2 hours and 30 minutes, and the pressure was reduced to an absolute pressure of 0.4 kPa. After 85 minutes of melt polycondensation, polyester (B) having an intrinsic viscosity of 0.64 was obtained.
<ポリエステル(C)の製造方法>
ポリエステル(A)の製造方法において、溶融重合前に平均粒径2μmのシリカ粒子を0.3重量部添加する以外はポリエステル(A)の製造方法と同様の方法を用いてポリエステル(C)を得た。
<Method for producing polyester (C)>
In the production method of polyester (A), polyester (C) is obtained using the same method as the production method of polyester (A), except that 0.3 part by weight of silica particles having an average particle diameter of 2 μm is added before melt polymerization. It was.
塗布層を構成する化合物例は以下のとおりである。
(化合物例)
・金属酸化物:(IA)平均粒径15nmの酸化ジルコニウム粒子
・金属酸化物:(IB)平均粒径15nmの酸化チタン粒子
Examples of compounds constituting the coating layer are as follows.
(Example compounds)
Metal oxide: (IA) Zirconium oxide particles having an average particle diameter of 15 nm Metal oxide: (IB) Titanium oxide particles having an average particle diameter of 15 nm
・オキサゾリン化合物:(IIA)
オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリルポリマー エポクロスWS−500(株式会社日本触媒製、1−メトキシ−2−プロパノール溶剤約38重量%を含有するタイプ)
・オキサゾリン化合物:(IIB)
オキサゾリン基及びポリアルキレンオキシド鎖を有するアクリルポリマー エポクロスWS−700(株式会社日本触媒製、VOCフリータイプ)
・ Oxazoline compounds: (IIA)
Acrylic polymer having an oxazoline group and a polyalkylene oxide chain Epocros WS-500 (manufactured by Nippon Shokubai Co., Ltd., containing about 38% by weight of 1-methoxy-2-propanol solvent)
・ Oxazoline compounds: (IIB)
Acrylic polymer having oxazoline group and polyalkylene oxide chain Epocros WS-700 (Nippon Shokubai Co., Ltd., VOC free type)
・エポキシ化合物:(IIIA)ポリグリセロールポリグリシジルエーテルである、デナコールEX−521(ナガセケムテックス株式会社製)。
・エポキシ化合物:(IIIB)エポキシ樹脂である、デナコールEX−1410(ナガセケムテックス株式会社製)。
Epoxy compound: (IIIA) Denacol EX-521 (manufactured by Nagase ChemteX Corporation), which is polyglycerol polyglycidyl ether.
Epoxy compound: (IIIB) Denacol EX-1410 (manufactured by Nagase ChemteX Corporation), which is an epoxy resin.
・縮合多環式芳香族を有するポリエステル樹脂:(IVA)
下記組成で共重合したポリエステル樹脂の水分散体
モノマー組成:(酸成分)2,6−ナフタレンジカルボン酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/ジエチレングリコール=92/8//80/20(mol%)
・ Condensed polycyclic aromatic polyester resin: (IVA)
Water dispersion of polyester resin copolymerized with the following composition: Monomer composition: (acid component) 2,6-naphthalenedicarboxylic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / diethylene glycol = 92/8 // 80/20 (mol%)
・ポリエステル樹脂:(IVB)
下記組成で共重合したポリエステル樹脂の水分散体
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5−ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4−ブタンジオール/ジエチレングリコール=56/40/4//70/20/10(mol%)
・ポリエステル樹脂:(IVC)下記方法で得られたポリエステル樹脂の水分散体
下記組成で共重合したポリエステル樹脂の粉体100重両部を水400重量部中に撹拌下分散しつつ、つづいて重炭酸アンモニウム4.2重両部を投入し、反応溶解させた反応生成物。
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/無水トリメリット酸//(ジオール成分)エチレングリコール/ジエチレングリコール=21/21/6//18/34(mol%)
・ Polyester resin: (IVB)
Water dispersion of polyester resin copolymerized with the following composition: Monomer composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / 1,4-butanediol / diethylene glycol = 56/40/4 // 70/20/10 (mol%)
-Polyester resin: (IVC) Aqueous dispersion of polyester resin obtained by the following method 100 parts of polyester resin powder copolymerized with the following composition was dispersed in 400 parts by weight of water while stirring, A reaction product obtained by adding 4.2 parts of ammonium carbonate and reacting and dissolving them.
Monomer composition: (acid component) terephthalic acid / isophthalic acid / trimellitic anhydride // (diol component) ethylene glycol / diethylene glycol = 21/21/6 // 18/34 (mol%)
・アクリル樹脂:(IVD)下記組成で重合したアクリル樹脂の水分散体
エチルアクリレート/n−ブチルアクリレート/メチルメタクリレート/N−メチロールアクリルアミド/アクリル酸=65/21/10/2/2(重量%)の乳化重合体(乳化剤:アニオン系界面活性剤)
Acrylic resin: (IVD) Aqueous dispersion of acrylic resin polymerized with the following composition: ethyl acrylate / n-butyl acrylate / methyl methacrylate / N-methylol acrylamide / acrylic acid = 65/21/10/2/2 (% by weight) Emulsion polymer (emulsifier: anionic surfactant)
・ウレタン樹脂(IVE)
カルボン酸水分散型ポリエステルポリウレタン樹脂である、ハイドランAP−40(DIC株式会社製)
・ Urethane resin (IVE)
Hydran AP-40 (manufactured by DIC Corporation), which is a carboxylic acid water-dispersed polyester polyurethane resin
・ポリビニルアルコール樹脂:(V)
ケン化度88モル%、重合度500のポリビニルアルコール
・ Polyvinyl alcohol resin: (V)
Polyvinyl alcohol having a saponification degree of 88 mol% and a polymerization degree of 500
・ヘキサメトキシメチルメラミン(VI) ・ Hexamethoxymethylmelamine (VI)
・粒子:(VIIA) 平均粒径0.07μmのシリカ粒子
・粒子:(VIIB) 平均粒径0.15μmのシリカ粒子
-Particles: (VIIA) Silica particles with an average particle size of 0.07 µm · Particles: (VIIB) Silica particles with an average particle size of 0.15 µm
実施例1:
ポリエステル(A)、(B)、(C)をそれぞれ89%、5%、6%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(B)をそれぞれ95%、5%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=1:18:1の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。
次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.4倍延伸した後、この縦延伸フィルムの片面に、下記表1に示す塗布液A1を塗布し(第1塗布層の形成)、反対面に下記表2に示す塗布液B3を塗布し(第2塗布層の形成)、テンターに導き、横方向に120℃で4.0倍延伸し、225℃で熱処理を行った後、横方向に2%弛緩し、第1塗布層の膜厚(乾燥後)が0.05μm、第2塗布層の膜厚(乾燥後)が0.10μmの塗布層を有する厚さ100μmのポリエステルフィルムを得た。
Example 1:
A mixed raw material in which polyesters (A), (B), and (C) are mixed at a ratio of 89%, 5%, and 6%, respectively, is used as a raw material of the outermost layer (surface layer), and polyesters (A) and (B) are 95 %, 5% mixed raw materials were used as intermediate layer raw materials, each was supplied to two extruders, melted at 285 ° C., and then on a cooling roll set at 40 ° C. Coextruded with a layer structure of layers (surface layer / intermediate layer / surface layer = 1: 18: 1 discharge amount) and cooled and solidified to obtain an unstretched sheet.
Next, the film was stretched 3.4 times in the machine direction at a film temperature of 85 ° C. using the roll peripheral speed difference, and then the coating liquid A1 shown in Table 1 below was applied to one side of the longitudinally stretched film (first coating layer). The coating liquid B3 shown in Table 2 below is applied to the opposite surface (formation of the second coating layer), led to a tenter, stretched 4.0 times at 120 ° C in the transverse direction, and heat-treated at 225 ° C. Thereafter, the film is relaxed by 2% in the lateral direction, and the thickness of the first coating layer (after drying) is 0.05 μm and the thickness of the second coating layer (after drying) is 0.10 μm. A polyester film was obtained.
得られたポリエステルフィルムの第1塗布層上に導電層形成溶液を#24メイヤーバーを用いて塗布した。続いて、150℃で2分間乾燥して、ランダムな網目状導電層を積層したポリエステルフィルムを得た。次に25℃のアセトンに30秒浸漬した後、室温で30秒間乾燥させた。続いて、1M(mol/L)の塩酸に1分間浸漬した後、フィルムを水洗いした。その後、150℃で1分間乾燥し、水分を飛ばして導電性フィルムを得た。表面抵抗は7Ωであった。得られたポリエステルフィルムに関して表面観察および全光線透過率測定をしたところ、いずれの評価でも良好であった。また、第2塗布層の絶対反射率を測定したところ、極小値は600nmで、その反射率は5.0%であり、ハードコート層を形成後のフィルムには明瞭な干渉ムラはなく、また密着性も良好であった。このフィルムの特性を下記表3および4に示す。 The conductive layer forming solution was applied onto the first coated layer of the obtained polyester film using a # 24 Mayer bar. Then, it dried at 150 degreeC for 2 minute (s), and obtained the polyester film which laminated | stacked the random network-like conductive layer. Next, after being immersed in acetone at 25 ° C. for 30 seconds, it was dried at room temperature for 30 seconds. Subsequently, after immersing in 1M (mol / L) hydrochloric acid for 1 minute, the film was washed with water. Then, it dried at 150 degreeC for 1 minute, the moisture was skipped, and the electroconductive film was obtained. The surface resistance was 7Ω. When the surface of the obtained polyester film was observed and the total light transmittance was measured, both evaluations were good. Further, when the absolute reflectance of the second coating layer was measured, the minimum value was 600 nm, the reflectance was 5.0%, and there was no clear interference unevenness in the film after forming the hard coat layer. Adhesion was also good. The properties of this film are shown in Tables 3 and 4 below.
実施例2〜24:
実施例1において、塗布剤組成を表1および表2に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がったポリエステルフィルムは表3および4に示すとおり、第1塗布層上にはランダムな網目状導電層が積層し、良好な表面抵抗であった。また、第2塗布層の密着性は良好であり、第2塗布層は高い反射率を有し、干渉ムラレベルも良好なものであった。
Examples 2-24:
In Example 1, it manufactured like Example 1 except having changed the coating composition into the coating composition shown in Table 1 and Table 2, and obtained the polyester film. As shown in Tables 3 and 4, the finished polyester film had a good surface resistance because a random network conductive layer was laminated on the first coating layer. Further, the adhesion of the second coating layer was good, the second coating layer had a high reflectance, and the interference unevenness level was also good.
比較例1:
実施例1において、第1塗布層を設けないこと以外は、実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がった積層ポリエステルフィルムを評価したところ、下記表5および6に示すとおり、ランダムな網目状導電層が形成されず、透明性が劣るフィルムとなった。
Comparative Example 1:
In Example 1, it manufactured like Example 1 except not providing a 1st coating layer, and obtained the polyester film. When the completed laminated polyester film was evaluated, as shown in Tables 5 and 6 below, a random network conductive layer was not formed, and the film was inferior in transparency.
比較例2〜10:
実施例1において、塗布剤組成を表1および表2に示す塗布剤組成に変更する以外は実施例1と同様にして製造し、ポリエステルフィルムを得た。でき上がった積層ポリエステルフィルムを評価したところ、下記表5および6に示すとおり、ランダムな網目状導電層が形成されず、透明性が劣る場合、密着性が劣る場合、明瞭な干渉ムラが観察できる場合が見られた。
Comparative Examples 2 to 10:
In Example 1, it manufactured like Example 1 except having changed the coating composition into the coating composition shown in Table 1 and Table 2, and obtained the polyester film. When the finished laminated polyester film was evaluated, as shown in Tables 5 and 6 below, when a random network conductive layer is not formed, transparency is poor, adhesion is poor, and clear interference unevenness can be observed It was observed.
本発明のフィルムは、例えば、タッチパネル等の透明電極や電磁波シールドフィルム等、透明性、導電性、ハードコート層等の表面機能層との密着性および視認性を重視する用途に好適に利用することができる。 The film of the present invention is suitably used for applications that place importance on adhesion and visibility with surface functional layers such as transparency, conductivity, and hard coat layers, such as transparent electrodes such as touch panels and electromagnetic shielding films. Can do.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011229307A JP5364140B2 (en) | 2011-10-19 | 2011-10-19 | Laminated polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011229307A JP5364140B2 (en) | 2011-10-19 | 2011-10-19 | Laminated polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013086373A JP2013086373A (en) | 2013-05-13 |
JP5364140B2 true JP5364140B2 (en) | 2013-12-11 |
Family
ID=48530796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011229307A Active JP5364140B2 (en) | 2011-10-19 | 2011-10-19 | Laminated polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5364140B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62188394A (en) * | 1986-02-14 | 1987-08-17 | 株式会社フジクラ | Conductive film and manufacture of the same |
JP5424987B2 (en) * | 2009-06-12 | 2014-02-26 | 三菱樹脂株式会社 | Laminated polyester film |
JP5471077B2 (en) * | 2009-06-30 | 2014-04-16 | 東洋紡株式会社 | Polyester film for molding and hard coat film for molding |
-
2011
- 2011-10-19 JP JP2011229307A patent/JP5364140B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013086373A (en) | 2013-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013058164A1 (en) | Polyester film | |
WO2013125288A1 (en) | Coated film | |
WO2013058212A1 (en) | Coating film | |
JP5520274B2 (en) | Laminated polyester film | |
JP5520275B2 (en) | Laminated polyester film | |
JP5863384B2 (en) | Laminated polyester film | |
JP5753129B2 (en) | Laminated polyester film | |
JP5839645B2 (en) | Laminated polyester film | |
JP5778724B2 (en) | Laminated polyester film | |
JP2013086498A (en) | Laminated polyester film | |
JP5536717B2 (en) | Laminated polyester film | |
JP5536716B2 (en) | Laminated polyester film | |
JP5364140B2 (en) | Laminated polyester film | |
JP2016026933A (en) | Laminated polyester film | |
JP5655029B2 (en) | Laminated polyester film | |
JP6029717B2 (en) | Method for producing laminated polyester film | |
JP5819506B2 (en) | Laminated polyester film | |
JP5818253B2 (en) | Laminated polyester film | |
JP5943849B2 (en) | Laminated polyester film | |
JP5694115B2 (en) | Laminated polyester film | |
JP5595994B2 (en) | Laminated polyester film | |
JP2017170721A (en) | Laminated polyester film | |
JP5679947B2 (en) | Laminated polyester film | |
JP5753130B2 (en) | Laminated polyester film | |
JP5822999B2 (en) | Laminated polyester film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130812 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5364140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |