[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5360800B2 - Surface plasma generator - Google Patents

Surface plasma generator Download PDF

Info

Publication number
JP5360800B2
JP5360800B2 JP2008225001A JP2008225001A JP5360800B2 JP 5360800 B2 JP5360800 B2 JP 5360800B2 JP 2008225001 A JP2008225001 A JP 2008225001A JP 2008225001 A JP2008225001 A JP 2008225001A JP 5360800 B2 JP5360800 B2 JP 5360800B2
Authority
JP
Japan
Prior art keywords
voltage
plasma
waveform
surface plasma
applied voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008225001A
Other languages
Japanese (ja)
Other versions
JP2010061919A (en
Inventor
武彦 瀬川
博夫 吉田
信也 武川
チョイ クィンソー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008225001A priority Critical patent/JP5360800B2/en
Publication of JP2010061919A publication Critical patent/JP2010061919A/en
Application granted granted Critical
Publication of JP5360800B2 publication Critical patent/JP5360800B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface plasma generation device for stably generating high-speed surface plasma by properly setting the rising speed of voltage to be applied between electrodes. <P>SOLUTION: The surface plasma generation device includes the surface side electrode and the back side electrode with an insulting material therebetween, wherein a voltage is applied between both electrodes to generate surface plasma. The rising speed of the voltage to be applied between the electrodes is 3-7 &mu;s/kV, preferably 4-5 &mu;s/kV. Preferably, this applied voltage is pulsed to set the rising speed of the applied voltage to be a predetermined value. It can be triangle-waveformed to rise at the predetermined value. At this point, the waveform lowering on the negative side can be set to be smaller. Additionally, when the surface side electrode is doughnut-shaped, surface plasma jet rises vertically from the surface, and so the rising speed of the applied voltage is easily and properly set. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は絶縁体を挟んで表裏両面に設けた電極に対して高電圧高周波電流を印加することにより、絶縁体表面に沿ってプラズマを発生させる表面プラズマ発生装置に関し、特に印加する高周波電流の立ち上がり電圧の速度を適切に設定することにより、高効率で高速のプラズマを発生することができるようにした表面プラズマ発生装置に関する。   The present invention relates to a surface plasma generator that generates plasma along the surface of an insulator by applying a high-voltage, high-frequency current to electrodes provided on both the front and back sides of the insulator, and in particular, the rising of the applied high-frequency current. The present invention relates to a surface plasma generator capable of generating high-efficiency and high-speed plasma by appropriately setting the voltage speed.

従来より各種アクチュエータが開発されているが、近年表面プラズマを用いたアクチュエータが注目されている。表面プラズマアクチュエータは、例えば図7(a)に示すように、樹脂、セラミック等の絶縁体71を挟んで表面側電極72と裏面側電極73を設け、両電極に交流電源74によって交流電界を発生させると、表面側電極72の端縁75から絶縁体71の表面に沿って表面プラズマとしてのプラズマジェット76が発生することを利用するものである。このような表面プラズマはDBD(dielectric barrier discharge)プラズマアクチュエータとも呼ばれている。特にこのような表面プラズマは周囲の気体を誘導し誘導気流77も発生するため、この作用を有効に利用する研究もなされている。   Various actuators have been developed so far, but in recent years, actuators using surface plasma have attracted attention. For example, as shown in FIG. 7A, the surface plasma actuator is provided with a front-side electrode 72 and a back-side electrode 73 with an insulator 71 made of resin, ceramic or the like interposed therebetween, and an AC electric field is generated by an AC power source 74 on both electrodes. Then, the fact that a plasma jet 76 as surface plasma is generated from the edge 75 of the surface-side electrode 72 along the surface of the insulator 71 is utilized. Such surface plasma is also called a DBD (dielectric barrier discharge) plasma actuator. In particular, since such surface plasma induces ambient gas and generates an induced airflow 77, studies have been made to effectively use this action.

特に図7(a)に示すように、交流電源74を制御装置80によって制御可能とし、且つセンサ81によって気体速度や温度を検出し、或いは実際の電極印加電圧を検出して、その信号によって制御装置80が交流電源74を制御可能となっている。このときの電極に印加する交流電源からの電圧は、例えば図(b)に示すような正弦波、或いは図7(c)に示すような所定の狭い幅の交流パルス波を出力する。このような制御状態からより強いプラズマジェットを発生させようとするときには、正弦波の場合は周波数を高くし、パルス波の場合は供給時間を多くするデューティー比制御を行うことにより対応することができる。 In particular, as shown in FIG. 7A, the AC power supply 74 can be controlled by the control device 80, and the gas velocity and temperature are detected by the sensor 81, or the actual electrode applied voltage is detected and controlled by the signal. The device 80 can control the AC power source 74. Voltage from the AC power supply applied to the electrode at this time is, for example, a sine wave as shown in FIG. 7 (b), walk outputs AC pulse wave having a predetermined narrow width, as shown in FIG. 7 (c) . When trying to generate a stronger plasma jet from such a controlled state, it can be dealt with by performing duty ratio control that increases the frequency in the case of a sine wave and increases the supply time in the case of a pulse wave. .

表面プラズマは現在各種用途への適用が検討されており、飛行機や風車の翼、タービンのブレード等において、渦流の発生等による翼からの気流の剥がれ防止等に用いる研究もなされている。このようなアクチュエータの研究の過程で表面プラズマの特性が更に明らかになり、この表面プラズマアクチュエータは、電極の形状や配置により特有のプラズマジェットを発生させることができ、また、そのプラズマの発生特性に合わせてより広い分野のアクチュエータとして利用することが可能であることが明らかとなってきた。   The application of surface plasma to various applications is currently under study, and research is being conducted on the use of airflow from the blades due to the generation of eddy currents in airplanes, windmill blades, turbine blades, and the like. The characteristics of surface plasma are further clarified in the course of research on such actuators, and this surface plasma actuator can generate a specific plasma jet depending on the shape and arrangement of electrodes, In addition, it has become clear that it can be used as a wider range of actuators.

即ち、表面プラズマを発生させる表面側電極の形状と配置によって種々のプラズマジェットを発生させることができ、例えば図(a)(b)のように絶縁体91の表面に互いに間隔をもって平行に第1表面側電極92と第2表面側電極93とを対向して配置し、裏面に設けた裏面側電極94との間に高電界を発生させると、表面側電極と裏面側電極の配置関係により、各表面側電極の互いに対向する端縁から表面に平行に前記と同様の表面プラズマが発生する。これらのプラズマジェットは各電極の中間部で衝突し、図8(b)に示すように絶縁体91の表面から立ち上がるプラズマジェット95が形成される。その際には周囲の気体は図示するように表面にほぼ直角に誘導される誘導気流96が発生する。 That is, it is possible to generate a variety of plasma jet by the arrangement and shape of the surface side electrodes for generating surface plasmon, the parallel with intervals to each other in the surface of the insulator 91, for example, as FIG. 8 (a) (b) When the first surface side electrode 92 and the second surface side electrode 93 are arranged to face each other and a high electric field is generated between the back surface side electrode 94 provided on the back surface, the arrangement relationship between the front surface side electrode and the back surface side electrode Then, surface plasma similar to the above is generated in parallel to the surface from the edge of each surface side electrode facing each other. These plasma jets collide at the middle part of each electrode, and as shown in FIG. 8B, a plasma jet 95 rising from the surface of the insulator 91 is formed. At that time, an induced air flow 96 is generated in which the surrounding gas is guided substantially perpendicularly to the surface as shown in the figure.

その他例えば図9(a)に示すように表面側電極98を、中心開口97を備えたドーナツ型、或いは図(b)に示すように円形中心開口97を備えた矩形に形成し、図9(c)に示すように、絶縁体99の裏面に設けた裏面側電極10との間に高電界を発生させると、表面側電極98と裏面側電極102の配置関係により、表面側電極98の中心開口97側の端縁から中心に向けて表面プラズマ103が表面に平行に発生する。この表面プラズマ103は、中心部において互いに衝突し、表面から立ち上がるプラズマジェット100が形成される。また、そのプラズマジェット100に誘導されて誘導気流101が表面に直角に発生する。 To form a surface side electrode 98 as shown in other example FIG. 9 (a), the donut-shaped with a central opening 97, or a rectangle with a circular central opening 97 as shown in FIG. 9 (b), 9 (c), the by the generating high electric fields, the arrangement of the surface side electrode 98 and the back-side electrode 102 relationship between the back-side electrode 10 2 which is provided on the back surface of the insulator 99, the surface-side electrode 98 Surface plasma 103 is generated parallel to the surface from the edge on the side of the central opening 97 toward the center. The surface plasmas 103 collide with each other at the center, and a plasma jet 100 rising from the surface is formed. In addition, an induced airflow 101 is generated at a right angle to the surface by being induced by the plasma jet 100.

このように、電極の形状や配置により、種々のプラズマジェットを発生させることができ、これを前記のような翼の渦流発生制御による剥離防止作用を行わせるほか、更に各種のアクチュエータとして利用することが考えられる。   As described above, various plasma jets can be generated depending on the shape and arrangement of the electrodes, and this can be used as various actuators in addition to performing the anti-separation action by controlling the vortex generation of the blade as described above. Can be considered.

なお、プラズマアクチュエータについては下記文献に詳細に記載されている。
Roth, J. R., Sherman, D. M., and Wilkinson, S. P. (1998). Boundary layer flow control with a one atmosphere uniform glow discharge. AIAA Paper 98-0328, 36th Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Corke, T. C., Jumper, E. J., Post, M. L., Orlov, D., and McLaughlin, T. E. (2002). Application of weakly-ionized plasmas as wing flow-control devices. AIAA paper 2002-0350, 40th Aerospace Sciences Meeting & Exhibit, Reno, Nevada. Santhanakrishnan, A. and Jacob, J. D. (2006). On plasma synthetic jet actuators. AIAA paper 2006-0317, 44th Aerospace Sciences Meeting, Reno, Nevada.
The plasma actuator is described in detail in the following document.
Roth, JR, Sherman, DM, and Wilkinson, SP (1998) .Boundary layer flow control with a one atmosphere uniform glow discharge.AIAA Paper 98-0328, 36th Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Corke, TC, Jumper, EJ, Post, ML, Orlov, D., and McLaughlin, TE (2002) .Application of weakly-ionized plasmas as wing flow-control devices.AIAA paper 2002-0350, 40th Aerospace Sciences Meeting & Exhibit , Reno, Nevada. Santhanakrishnan, A. and Jacob, JD (2006) .On plasma synthetic jet actuators.AIAA paper 2006-0317, 44th Aerospace Sciences Meeting, Reno, Nevada.

上記のような表面プラズマを用いるプラズマアクチュエータにおいて、前記のように種々のプラズマを発生させることができ、多様な用途に適用できるようになったものであるが、このプラズマをより効率よく、且つ高速で発生させる手法を研究開発することは、この表面プラズマ発生装置を広く利用するに際して最も基本的なことである。そのため、従来より表面プラズマの発生特性を詳細に研究しながら、より高速の表面プラズマを発生させる研究がなされている。しかしながら、現在までの研究成果によると、未だ必ずしも効果的な手法が開発されていない。更に近年はDBDプラズマをいかに低電圧で発生することができるか、という点が大きな課題となっているが、現在では必ずしも十分な手法が開発されているとはいえない。 In the plasma actuator using the surface plasma as described above, various plasmas can be generated as described above and can be applied to various applications. However, this plasma can be used more efficiently and at high speed. in studying developed a method of generating is the most basic this when used widely this surface plasma generator. For this reason, research has been conducted to generate higher-speed surface plasma while studying the generation characteristics of surface plasma in detail. However, according to the research results to date, effective methods have not yet been developed. Further, in recent years, how to generate DBD plasma at a low voltage has become a big problem, but it cannot be said that a sufficient method has been developed at present.

したがって本発明は、高速の表面プラズマを低電圧で安定して発生させることができるようにした表面プラズマ発生装置を提供することを主たる目的とする。   Therefore, a main object of the present invention is to provide a surface plasma generator capable of stably generating a high-speed surface plasma at a low voltage.

本発明者等は前記のようなDBD(dielectric barrier discharge)プラズマアクチュエータとも呼ばれる表面プラズマアクチュエータについて多くの実験を行い、研究を重ねた結果、電極への印加電流の態様を異ならせることにより表面プラズマの発生態様、特にプラズマの速度が変化することが系統立てて明らかになると共に、単に図7に示すような表面に平行に発生するプラズマの様子を観察するのでは明瞭に把握することができないことから、特に図9に示すようなドーナツ型電極によるプラズマを発生させると、プラズマの発生の程度を、表面から垂直に立ち上がるプラズマの状態で観察することができることに着目して各種の実験を試みた。   The present inventors have conducted many experiments on the surface plasma actuator, also referred to as a DBD (dielectric barrier discharge) plasma actuator as described above, and as a result of repeated research, the inventors have studied the surface plasma by varying the mode of current applied to the electrodes. It is systematically revealed that the generation mode, in particular, the plasma velocity changes, and it is not possible to clearly grasp by simply observing the state of the plasma generated parallel to the surface as shown in FIG. In particular, various experiments were attempted focusing on the fact that when plasma is generated by a donut-shaped electrode as shown in FIG. 9, the degree of plasma generation can be observed in the state of plasma rising vertically from the surface.

更に、このようにして垂直に立ち上がる表面プラズマの様子を明瞭に把握するため、レーザーによってプラズマを可視化し、更に可視化粒子を試験部の周囲に供給することにより、個々の可視化粒子の速度を測定することによって、垂直に立ち上がる表面プラズマの挙動を観察することを考えた。実際に実験行うために製作した装置を図3に示す。同図に示す実験装置においては、図9(d)に示すように、厚さ130μmのポリエステルからなる絶縁体の両面に、35μm程度の銅箔からなる電極パターンを接着し、エッチングにより表面側電極は、内径diが50mmで幅が10mmのドーナツ型に形成し、裏面側電極はドーナツ型の内径と同径で同位置の外周を備えた円形に形成している。   Furthermore, in order to clearly grasp the state of the surface plasma rising vertically in this way, the velocity of each visualized particle is measured by visualizing the plasma with a laser and supplying the visualized particles around the test section. We thought to observe the behavior of the surface plasma rising vertically. FIG. 3 shows an apparatus manufactured for an actual experiment. In the experimental apparatus shown in FIG. 9, as shown in FIG. 9 (d), an electrode pattern made of a copper foil of about 35 μm is adhered to both surfaces of an insulator made of polyester having a thickness of 130 μm, and the surface side electrode is etched. Is formed in a donut shape having an inner diameter di of 50 mm and a width of 10 mm, and the back side electrode is formed in a circular shape having the same diameter and the same outer periphery as the inner diameter of the donut shape.

このようなドーナツ型電極を用い、図3に示すようなアクリル製の透明な容器C内の底面上にセットし、信号発生器HV−RFにより所定の波形の電圧を印加した。通常の表面プラズマの観察には多くの場合は図7(b)に示すような正弦波を用いることが多いが、その場合はプラズマ発生速度の周波数依存性を調べるに際して、入力周波数(fp)の変化と共に電圧立ち上がり速度(dV/dt)も変化してしまうため、プラズマジェット発生速度に対する影響を両者の面から論ずる必要が生じる。   Using such a donut-shaped electrode, it was set on the bottom surface in an acrylic transparent container C as shown in FIG. 3, and a voltage having a predetermined waveform was applied by a signal generator HV-RF. In many cases, a normal surface plasma is observed by using a sine wave as shown in FIG. 7B. In this case, when investigating the frequency dependence of the plasma generation speed, the input frequency (fp) Since the voltage rising speed (dV / dt) also changes with the change, it is necessary to discuss the influence on the plasma jet generation speed from both aspects.

それに対して印加電圧波形を矩形波とすると、仮にdV/dtを一定にできれば、プラズマジェットの速度の入力周波数(fp)依存性、或いは逆に印加電圧波形の依存性を直接調べることが可能となる。そのため図3に示す実験装置では、図2(a)に示すようなパルス波を発生させている。このパルス波の例では、振幅が±3.5kVで、周波数Fpを2.5、5.0、7.5、10.0kHに変化可能とし、一連の印加電圧波形の幅Tbを0.1secとし、一連の印加電圧波形が発生する時間間隔Tr、即ち1/frを2.0secとし、それにより一連の印加電圧波形の時間間隔Tsを1.9secとした例を示している。   On the other hand, if the applied voltage waveform is a rectangular wave, if dV / dt can be made constant, it is possible to directly investigate the dependency of the plasma jet velocity on the input frequency (fp), or conversely, the dependency of the applied voltage waveform. Become. Therefore, the experimental apparatus shown in FIG. 3 generates a pulse wave as shown in FIG. In this pulse wave example, the amplitude is ± 3.5 kV, the frequency Fp can be changed to 2.5, 5.0, 7.5, 10.0 kH, and the width Tb of a series of applied voltage waveforms is 0.1 sec. In this example, the time interval Tr where a series of applied voltage waveforms is generated, that is, 1 / fr is 2.0 sec, and the time interval Ts of the series of applied voltage waveforms is 1.9 sec.

但し、このパルス波は一見矩形波のようであるが、これを拡大した同図(b)から明らかなように、一般的な台形波となっている。本発明者等はプラズマジェットの速度の印加電圧波形の依存性について、特にこの台形波について印加電圧の立ち上がり速度dV/dt、即ち波形の立ち上がり部分の速度を変化させて観察することを考え、この印加電圧の立ち上がり速度を変化させる制御により電圧の立上り速度を図2(c)のようにaから、b、c、d、e、f、g、hと同図に波形模式図として示すような、印加電圧の立ち上がり速度dV/dtが変化する波形を形成して印加した。   However, although this pulse wave appears to be a rectangular wave, it is a general trapezoidal wave as is apparent from FIG. The inventors consider the dependence of the plasma jet velocity on the applied voltage waveform, in particular, to observe this trapezoidal wave by changing the rising speed dV / dt of the applied voltage, that is, changing the speed of the rising portion of the waveform. As shown in FIG. 2C, the rising speed of the voltage is controlled by changing the rising speed of the applied voltage from a to b, c, d, e, f, g, and h as shown in the waveform schematic diagram in FIG. A waveform in which the rising speed dV / dt of the applied voltage changes was formed and applied.

図3に示す実験装置においては、上記のような印加電圧によってドーナツ型電極の中心から立ち上がるプラズマジェットに対して、容器Cの外部から2重パルスYAGレーザーで発生したレーザーを照射することにより可視化し、更に可視化粒子として数μmに微粒化したプロピレングリコールを用いて、空気圧縮機Dにより容器C内に供給する。微粒化したプロピレングリコールは空気よりも重いため、大気状態の容器Cの下部に設置したプラズマ発生装置の周囲に一定時間滞在させることができる。このような可視化粒子の供給により、前記のように照射したレーザーによってプラズマジェットを明瞭に可視化することができる。また、この可視化粒子の挙動を計測することにより、プラズマジェット各部、及びその周囲での気流の方向、速度を計測することができる。その計測に際しては、CCDカメラとして示しているデジタルビデオカメラによりレーザー光で可視化した部分をレーザー光とは直角方向から、0.04秒間隔程度で撮影する。   In the experimental apparatus shown in FIG. 3, the plasma jet rising from the center of the donut-shaped electrode by the applied voltage as described above is visualized by irradiating a laser generated by a double pulse YAG laser from the outside of the container C. Further, propylene glycol atomized to several μm is used as the visualization particle, and is supplied into the container C by the air compressor D. Since the atomized propylene glycol is heavier than air, the propylene glycol can stay around the plasma generator installed in the lower part of the atmospheric container C for a certain period of time. By supplying such visualization particles, the plasma jet can be clearly visualized by the laser irradiated as described above. Further, by measuring the behavior of the visualized particles, it is possible to measure the direction and velocity of each part of the plasma jet and the airflow around it. In the measurement, a portion visualized with a laser beam by a digital video camera shown as a CCD camera is photographed at intervals of about 0.04 seconds from a direction perpendicular to the laser beam.

この実験装置による観察によって、プラズマジェットの発生の様子を観察し、各部分での速度解析を行った結果、例えば、図2のに示す電圧の立ち上がり速度については図4に示すような速度線図が得られた。同図において画面内の矢印は気流の方向と大きさを示している。また図中では白黒で示している画像は実際には速度の大きさにしたがって着色して表示され、図中赤、黄、緑、青として示している。その結果一見してプラズマジェットとその周辺の速度分布がわかるものであるが、特に垂直に立ち上がるプラズマジェットの両側に渦が発生し、この渦の中心の高さhv(図1((b)参照)が、プラズマジェットの気流の大きさに直接関連していることがわかった。図4に示す例においては渦中心高さhvはほぼ42mmで、後述するように可変抵抗値R=80(図2(c)参照)としたときの印加電圧の立ち上がり速度dV/dtが、最も大きなプラズマジェットの速度となることがわかり、それよりも大きくても、また少なくてもプラズマジェットの速度は低下することがわかり、本発明に至ったものである。 As a result of observing the state of generation of the plasma jet and analyzing the velocity at each part by observation with this experimental apparatus, for example , the voltage rising speed shown in d of FIG. 2 is a velocity line as shown in FIG. A figure was obtained. In the figure, arrows in the screen indicate the direction and size of the airflow. In the figure, images shown in black and white are actually colored and displayed according to the magnitude of the speed, and are shown as red, yellow, green, and blue in the figure. As a result, the velocity distribution around the plasma jet and its surroundings can be seen at first glance. In particular, vortices are generated on both sides of the vertically rising plasma jet, and the height hv of the vortex center (see FIG. 1 (b)). ) were found to be directly related to the magnitude of the air flow of the plasma jet. vortex center height hv in the example shown in FIG. 4 is a substantially 42mm, the variable resistance value R = 80 (Fig. as described later 2 (c)) , the rising speed dV / dt of the applied voltage is the largest plasma jet velocity, and the velocity of the plasma jet decreases even if it is larger or smaller than that. As a result, the present invention has been achieved.

上記のような本発明について、より具体的には次のようなものである。即ち、本発明に係る表面プラズマ発生装置は、前記課題を解決するため、絶縁材を挟んで表面側電極と裏面側電極を設け、両電極間に交流電源からの交流電圧を印加することにより表面プラズマを発生する表面プラズマ発生装置において、前記電極に印加する電圧のパルス波形を、最大電圧に到るまで直線的に上昇する三角形状波と、その波形に連続するマイナス側に同様の波形で立ち下がる三角形状波からなる波形とし、前記最大電圧に到るまで立ち上がる三角形状波については、1kV上昇するのに要する時間、すなわち、電圧の立ち上がり速度の逆数を4μs/kV以上5μs/kVの範囲の所定値とするとともに、マイナス側に立ち下がる三角形状波については、前記立ち上がる三角形状波より短時間としたことを特徴とする。 More specifically, the present invention as described above is as follows. That is, in order to solve the above problems, the surface plasma generator according to the present invention is provided with a surface side electrode and a back surface side electrode with an insulating material interposed therebetween, and an AC voltage from an AC power source is applied between both electrodes. In a surface plasma generator that generates plasma, the pulse waveform of the voltage applied to the electrode is a triangular wave that rises linearly until reaching the maximum voltage, and a similar waveform on the negative side that follows the waveform. For a triangular wave that rises up to the maximum voltage, the triangular wave that rises up to the maximum voltage has a time required to increase by 1 kV, that is, the reciprocal of the voltage rising speed is in the range of 4 μs / kV to 5 μs / kV. The triangular wave falling to the minus side while having a predetermined value is characterized in that it has a shorter time than the rising triangular wave .

上記のような本発明によって、印加電圧の立ち上がり速度を適切な値に設定することにより、低電圧で高速の表面プラズマを安定して発生させることができる。   According to the present invention as described above, by setting the rising speed of the applied voltage to an appropriate value, it is possible to stably generate a high-speed surface plasma at a low voltage.

本発明は、高速の表面プラズマを安定して発生させることができるようにするという課題を、絶縁材を挟んで表面側電極と裏面側電極を設け、両電極間に電圧を印加することにより表面プラズマを発生する表面プラズマ発生装置において、前記電極に印加する電圧を最大電圧に到るまで台形波状に直線的に上昇させ、かつ、1kv上昇するのに要する時間、すなわち、電圧の立ち上がり速度の逆数を4μs/kV以上5μs/kV以下の範囲の所定値とすることによって実現した。 The present invention provides a problem that a high-speed surface plasma can be stably generated by providing a surface-side electrode and a back-side electrode with an insulating material interposed therebetween, and applying a voltage between the two surfaces. In a surface plasma generator for generating plasma, the voltage applied to the electrode is increased linearly in a trapezoidal waveform until reaching the maximum voltage, and the time required to increase by 1 kv, that is, the reciprocal of the voltage rising speed Is realized by setting a predetermined value in the range of 4 μs / kV to 5 μs / kV .

本発明の実施例を図面に沿って説明する。本発明は前記のように図3に示す実験装置により、印加電圧の立ち上がり速度を変えることによって発生するプラズマジェット流の速度変化の関係を測定したものであるが、その際の印加電圧の立ち上がり速度変更は、前記のように、また図2(c)に示すように立上り電圧制御によりaから、b、c、d、e:、f、g、hと変化させることにより、同図に波形模式図として示すような、印加電圧の立ち上がり速度dV/dtが変化する波形を形成して印加したものである。このような印加電圧の立ち上がり速度については、図1(e)にも別の態様で示している。即ち図1に示す例においては、同図(b)に示すようなドーナツ型表面電極を用いた表面プラズマジェット発生装置に対して、同図(c)に示すようなパルス状の印加電圧を加えるものとする。このパルス状の印加電圧の一部を拡大して示す図1(d)のように、この印加電圧は矩形波形状をなし、この波形の印加電圧の立ち上がり速度を前記図2(c)のように変化させたパルス電圧を印加する。それにより図1(e)に示すように、パルス印加時点t=0から1kVに立ち上がるまでの時間をa〜hのように変化させた。   Embodiments of the present invention will be described with reference to the drawings. In the present invention, as described above, the experimental apparatus shown in FIG. 3 is used to measure the relation of the change in the speed of the plasma jet flow generated by changing the rising speed of the applied voltage. The rising speed of the applied voltage at that time is measured. As shown in FIG. 2C, the change is made by changing the voltage from a to b, c, d, e :, f, g, h by the rising voltage control as shown in FIG. As shown in the figure, a waveform in which the rising speed dV / dt of the applied voltage changes is formed and applied. Such rising speed of the applied voltage is also shown in another manner in FIG. That is, in the example shown in FIG. 1, a pulsed applied voltage as shown in FIG. 1C is applied to a surface plasma jet generator using a donut-shaped surface electrode as shown in FIG. Shall. As shown in FIG. 1 (d) showing a part of the pulse-like applied voltage in an enlarged manner, this applied voltage has a rectangular wave shape, and the rising speed of the applied voltage of this waveform is as shown in FIG. 2 (c). A pulse voltage changed to is applied. As a result, as shown in FIG. 1E, the time from the pulse application time t = 0 to the rise to 1 kV was changed as a to h.

その結果、各々について前記実験装置により図4に示すようなデータが得られた。それをまとめたものが図5のa〜hである。なお、図5a〜hは、それぞれ、図1(e)に示す電圧立ち上がり速度の変化例a〜hに対応している。同図には特に渦中心位置を各図の左側に示しており、dの電圧立ち上がり速度のときに発生した渦中心高さを全ての図に示すと共に、それぞれの条件における渦中心高さを示して比較を容易にしている。なお、これらの図はそれぞれ50回実験を行った平均値を示したものである。この図からも明らかなように、dの電圧立ち上がり速度の逆数である(dV/dt)-1=4μsec/kVの時の渦中心高さが最も高く、eの電圧立ち上がり速度の逆数である(dV/dt) -1 =5μsec/kVの時の渦中心高さがほぼ同様のものとなり、したがってその他は全て低いことがわかり、このことから電圧立ち上がり速度の逆数である(dV/dt)-1=4μsec/kVあるいは(dV/dt) -1 =5μsec/kVの時の印加電圧の立ち上がり速度dV/dtが最もプラズマジェットの速度が速いことがわかった。 As a result, data as shown in FIG. 4 was obtained by the experimental apparatus for each. These are summarized as ah in FIG. 5A to 5H correspond to voltage rise rate change examples a to h shown in FIG. 1E, respectively. In this figure, the vortex center position is shown on the left side of each figure, and the vortex center height generated at the voltage rising speed of d is shown in all the figures, and the vortex center height in each condition is shown. Making the comparison easier. In addition, these figures each show an average value obtained by performing the experiment 50 times. As is clear from this figure, the vortex center height is the highest when (dV / dt) −1 = 4 μsec / kV, which is the reciprocal of the voltage rise rate of d, and is the reciprocal of the voltage rise rate of e ( dV / dt) −1 = 5 μsec / kV, the height of the vortex center is substantially the same, and therefore all others are low. From this, it is the reciprocal of the voltage rise rate (dV / dt) −1. = 4 μsec / kV or (dV / dt) −1 = 5 μsec / kV It was found that the rising speed dV / dt of the applied voltage was the fastest plasma jet.

これをグラフ化したものが図1(a)である。即ち図1(a)は、前記のような同図(e)に示す印加電圧の立ち上がり速度変化、即ち前記図5(a)〜(h)に対応する印加電圧の立ち上がり速度の変化a〜hについて、更に同様の各種の多くの実験を行った結果をまとめ、これをグラフ化したものである。   A graph of this is shown in FIG. That is, FIG. 1A shows a change in the rising speed of the applied voltage shown in FIG. 1E, that is, a change in the rising speed of the applied voltage corresponding to FIGS. 5A to 5H. Further, the results of many similar experiments are summarized and graphed.

この図から明らかなように、印加電圧の立ち上がり速度の逆数、すなわち所定電圧に上昇するまでの時間[μs/kV]として表したとき、3〜7μs/kVの範囲で効果的な円環噴流高さ(hv)mmが得られることがわかり、特に、4〜5μs/kVの範囲では特に好適な範囲であることがわかる。本発明により、DBDプラズマ発生装置において、このような範囲に設定すると、電圧には特に関係なく、低電圧であっても所定の流速をうることができることがわかる。逆に電圧や周波数を上昇させても、最適条件に近い印加電圧の立ち上がり速度変化がなければ流速は低下することも示唆している。 As is apparent from this figure, when expressed as the reciprocal of the rising speed of the applied voltage , that is , the time to rise to the predetermined voltage [μs / kV], an effective annular jet height in the range of 3 to 7 μs / kV. is (hv) Ri see that mm is obtained, in particular, it can be seen that a particularly suitable range is in the range of 4~5μs / kV. According to the present invention, when the DBD plasma generator is set within such a range, it can be seen that a predetermined flow rate can be obtained even at a low voltage regardless of the voltage. Conversely, even if the voltage or frequency is increased, it is suggested that the flow rate decreases if there is no change in the rising speed of the applied voltage close to the optimum condition.

上記のような印加電圧の立ち上がり速度の逆数において特に好適な範囲であることがわかったものであるが、そのときの印加電圧は前記のような台形パルス以外に、図6(a)に示すような三角波形とする。即ち図6(a)に示す例においては、印加電圧の立ち上がり速度の逆数をほぼ最適値である4μs/kVとしており、所定電圧であるVa(kV)になったとき0kV迄立ち下がり、次は−側に同様の波形を発生し、更にその後はこの+と−の波形を1周期として連続して供給するものである。このときには三角波は4Va×10-6でプラスとマイナス側に繰り返す波となり、V=3(kV)の場合はfp(max)がほぼ41kHzとなる。また、最大効率はfpは125,000/EHzであることが推定される。このことから、周波数を上げれば最大電圧を下げることができることも意味している。 Although it has been found that the reciprocal of the rising speed of the applied voltage as described above is in a particularly suitable range, the applied voltage at that time is as shown in FIG. 6A in addition to the trapezoidal pulse as described above. and a triangular waveform. That is, in the example shown in FIG. 6A, the reciprocal of the rising speed of the applied voltage is set to 4 μs / kV which is an optimum value, and when it reaches Va (kV) which is a predetermined voltage, it falls to 0 kV. A similar waveform is generated on the − side, and thereafter, the + and − waveforms are continuously supplied as one cycle. At this time, the triangular wave is 4Va × 10 −6 and repeats to the plus and minus sides. When V = 3 (kV), fp (max) is approximately 41 kHz. The maximum efficiency is estimated to be 125,000 / EHz for fp. This also means that the maximum voltage can be lowered by increasing the frequency.

更に図6(b)のように、印加電圧の立ち上がり速度の逆数を4μs/kVとしており、所定電圧であるV(kV)で0kV迄立ち下がり、次は−側に同様の波形で短時間だけ印加し、その後これらの波形を1周期として連続して供給するものである。このときには−側の駆動量が少なくなるので、最大効率は250,000/VaHzと、同図(a)の例よりもほぼ2倍の効率とすることが可能となる。 Further, as in FIG. 6 (b), has the inverse of the rising speed of the applied voltage and the 4 .mu.s / kV, falls until 0kV at a predetermined voltage V (kV), next - a short time similar waveform to the side Only after that, these waveforms are continuously supplied as one period. At this time, since the amount of driving on the minus side is reduced, the maximum efficiency can be 250,000 / VaHz, which is almost twice the efficiency of the example of FIG.

前記のように本発明においては、発明者等による多くの実験の結果、電極への印加電圧の立ち上がり速度には最適値を中心とした最適範囲があることが推定され、それを確かめるためには単なる表面に沿ったプラズマでは不適切であり、特にドーナツ型の電極を用いて発生するプラズマを表面から垂直方向に立ち上げるとプラズマジェットの速度の状態を観察しやすいことを見出し、また可視化する手法を検討すると共に、発生するプラズマジェットを観察する中で渦の発生の状態において特に渦の中心の高さがプラズマジェットの速度と直接関連することを見出し、更に、印加電圧の波形は正弦波では不適切であり、パルス波とすると共に、このパルス波について印加電圧の立ち上がり速度を変更する手法を採用し、その変更と渦中心の高さの変化の関係を測定することによって、表面プラズマジェットの速度は印加電圧の立ち上がり速度の特定の値で最高値となり、所定の幅で特に効果的な範囲が存在することを見出し、その値を特定して本発明に至ったものある。   As described above, in the present invention, as a result of many experiments by the inventors, it has been estimated that the rising speed of the voltage applied to the electrode has an optimum range centered on the optimum value. It is not appropriate to use plasma along the surface. In particular, it is easy to observe and visualize the state of the plasma jet velocity when the plasma generated using a donut-shaped electrode is raised vertically from the surface. In the observation of the generated plasma jet, it was found that the height of the center of the vortex is directly related to the velocity of the plasma jet, especially in the state of vortex generation. Inappropriate and adopting a method to change the rising speed of the applied voltage for this pulse wave, and the change and the height of the vortex center By measuring the relationship between changes in the surface voltage, the surface plasma jet velocity reaches its maximum value at a specific value of the rising speed of the applied voltage, and a particularly effective range exists within a predetermined width. Thus, the present invention has been achieved.

したがって本発明については、表面プラズマ発生装置がドーナツ型である必要はなく、従来から提案されている電極形状の表面プラズマ発生装置に提供可能であることは明らかである。また、前記のようにパルス波によって前記表面プラズマ発生の特性を見出したものである。 Therefore, the present invention does not need to be a donut-shaped surface plasma generator, and it is apparent that the present invention can be provided for a conventionally proposed electrode-shaped surface plasma generator. Also, Ru der those found properties of the surface plasma generated by the pulse waves as described above.

本発明の実施例を示す図であり、(a)は表面プラズマ発生用印加電圧の立ち上がり速度最適範囲を示す図であり、(b)は表面プラズマジェットの速度を観察するために用いたドーナツ型電極を備えた表面プラズマ発生装置の例であり、(c)はこの表面プラズマ発生用電極への印加電圧波形の例を示し、(d)はその波形の一部拡大図であり、(e)は印加電圧の立ち上がり速度変化例を示す図であって、同図中のa〜hは(a)の指示点に対応している。It is a figure which shows the Example of this invention, (a) is a figure which shows the rising speed optimal range of the applied voltage for surface plasma generation, (b) is a donut type used in order to observe the speed of a surface plasma jet It is an example of the surface plasma generator provided with the electrode, (c) shows the example of the voltage waveform applied to this surface plasma generation electrode, (d) is a partially enlarged view of the waveform, (e) Is a diagram showing an example of change in rising speed of the applied voltage, in which a to h correspond to the indicated points of (a). 電極印加電圧の例を示す図であり、(a)は印加電圧パルスの全体を示す図であり、(b)はその印加電圧の一部拡大図であり、(c)は印加電圧を可変抵抗で変更するに際して、可変抵抗と印加電圧の変化を示す波形模式図である。It is a figure which shows the example of an electrode applied voltage, (a) is a figure which shows the whole applied voltage pulse, (b) is the one part enlarged view of the applied voltage, (c) is a variable resistance FIG. 6 is a waveform schematic diagram showing changes in the variable resistance and applied voltage when changing in FIG. 印加電圧の立ち上がり速度とプラズマジェット速度の関係を測定する実験装置の例である。It is an example of the experimental apparatus which measures the relationship between the rising speed of an applied voltage, and a plasma jet velocity. 同実験装置で得られる表面から垂直に立ち上がるプラズマジェットの各部の方向と速度を、dとしたときの例を示す速度分布図である。FIG. 3 is a velocity distribution diagram showing an example where d is the direction and velocity of each part of a plasma jet that rises vertically from the surface obtained by the experimental apparatus. 同実験装置で得られた、印加電圧の立ち上がり速度を変化させたときにおける、それぞれ図4と同様の速度線図を示す図である。It is a figure which shows the velocity diagram similar to FIG. 4, respectively when changing the rising speed of the applied voltage obtained with the same experimental device. 印加電圧の立ち上がり速度を最適にした状態で三角波状の印加電圧波形例を示す図であり、(a)はプラスとマイナス側に同等の波形を形成した例、(b)はマイナス側には小さな波形を形成した例を示す図である。It is a figure which shows the example of a triangular wave-like applied voltage waveform in the state which optimized the rising speed of the applied voltage, (a) is an example which formed the same waveform on the plus and minus side, (b) is small on the minus side. It is a figure which shows the example which formed the waveform. (a)は表面プラズマの発生装置の例を示す図であり、(b)は電極への印加電圧が正弦波であるときの波形図であり、(c)は電極への印加電圧がパルス波であるときの波形図である。(A) is a figure which shows the example of the generator of surface plasma, (b) is a wave form diagram when the applied voltage to an electrode is a sine wave, (c) is a pulse wave when the applied voltage to an electrode is a pulse wave. It is a wave form diagram when it is. 従来から提案されている互いに対向する平行な縁を形成した表面電極を備えた表面プラズマ発生装置の例を示す図である。It is a figure which shows the example of the surface plasma generator provided with the surface electrode which formed the parallel edge mutually opposed conventionally proposed. 従来から提案されているドーナツ型の表面電極を備えた表面プラズマ発生装置の例を示す図である。It is a figure which shows the example of the surface plasma generator provided with the donut type surface electrode proposed conventionally.

Claims (2)

絶縁材を挟んで表面側電極と裏面側電極を設け、両電極間に交流電源からの交流電圧を印加することにより表面プラズマを発生する表面プラズマ発生装置において、
前記電極に印加する電圧のパルス波形を、最大電圧に到るまで直線的に上昇する三角形状波と、その波形に連続するマイナス側に同様の波形で立ち下がる三角形状波からなる波形とし、前記最大電圧に到るまで立ち上がる三角形状波については、1kV上昇するのに要する時間、すなわち、電圧の立ち上がり速度の逆数を4μs/kV以上5μs/kVの範囲の所定値とするとともに、マイナス側に立ち下がる三角形状波については、前記立ち上がる三角形状波より短時間としたことを特徴とする表面プラズマ発生装置。
In the surface plasma generator for generating the surface plasma by providing the surface side electrode and the back side electrode across the insulating material and applying the AC voltage from the AC power source between both electrodes,
The pulse waveform of the voltage applied to the electrode is a triangular waveform that rises linearly until reaching the maximum voltage, and a waveform consisting of a triangular waveform that falls in a similar waveform on the negative side continuous with the waveform, For the triangular wave that rises up to the maximum voltage, the time required to rise by 1 kV, that is, the reciprocal of the voltage rise speed is set to a predetermined value in the range of 4 μs / kV to 5 μs / kV, and rises to the minus side. The descending triangular wave has a shorter time than the rising triangular wave .
前記表面側電極がドーナツ状であることを特徴とする請求項1記載の表面プラズマ発生装置。   2. The surface plasma generation apparatus according to claim 1, wherein the surface side electrode has a donut shape.
JP2008225001A 2008-09-02 2008-09-02 Surface plasma generator Expired - Fee Related JP5360800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225001A JP5360800B2 (en) 2008-09-02 2008-09-02 Surface plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225001A JP5360800B2 (en) 2008-09-02 2008-09-02 Surface plasma generator

Publications (2)

Publication Number Publication Date
JP2010061919A JP2010061919A (en) 2010-03-18
JP5360800B2 true JP5360800B2 (en) 2013-12-04

Family

ID=42188511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225001A Expired - Fee Related JP5360800B2 (en) 2008-09-02 2008-09-02 Surface plasma generator

Country Status (1)

Country Link
JP (1) JP5360800B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582603B2 (en) * 2010-05-06 2014-09-03 公立大学法人首都大学東京 Induced flow control surface plasma actuator, fluid separation or vortex flow control device, and flying vehicle propulsion device
CN103109584A (en) * 2010-10-27 2013-05-15 京瓷株式会社 Ion wind generator and ion wind generating device
JP5875155B2 (en) * 2012-07-27 2016-03-02 国立大学法人大阪大学 Deposition equipment
EP2884823B3 (en) * 2012-08-08 2019-03-06 National Institute of Advanced Industrial Science and Technology Surface plasma actuator
JP6421296B2 (en) * 2012-09-04 2018-11-14 公立大学法人首都大学東京 Plasma actuator
JP2014186900A (en) * 2013-03-25 2014-10-02 Murata Mfg Co Ltd Discharge element and method of manufacturing the same
JP6488088B2 (en) * 2014-03-28 2019-03-20 マイクロプラズマ株式会社 Electrode for generating low voltage plasma and plasma irradiation method using the same
JP6036771B2 (en) * 2014-09-09 2016-11-30 トヨタ自動車株式会社 Intake device for internal combustion engine
JP2017053261A (en) * 2015-09-08 2017-03-16 国立研究開発法人産業技術総合研究所 Pressure loss reduction device for fluid machinery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960190B2 (en) * 2002-10-11 2007-08-15 松下電工株式会社 Plasma processing apparatus and plasma processing method
JP4023302B2 (en) * 2002-11-22 2007-12-19 松下電工株式会社 Plasma processing apparatus and plasma processing method
JP2005129493A (en) * 2003-09-30 2005-05-19 Sekisui Chem Co Ltd Plasma treatment device and its electrode structure
JP4793769B2 (en) * 2005-12-22 2011-10-12 雅章 大久保 Method for improving light transmission of plate, windshield device and rearview mirror device using this method

Also Published As

Publication number Publication date
JP2010061919A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5360800B2 (en) Surface plasma generator
Pons et al. Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics
Erfani et al. Plasma actuator: influence of dielectric surface temperature
Benard et al. EHD force and electric wind produced by plasma actuators used for airflow control
Du et al. The study of flow separation control by a nanosecond pulse discharge actuator
Moralev et al. Gas-dynamic disturbances created by surface dielectric barrier discharge in the constricted mode
Mohammadi et al. Active flow control by dielectric barrier discharge to increase stall angle of a NACA0012 airfoil
CN107072024A (en) A kind of three electrode actuators device and methods of acquisition surface gliding spark discharge
Moshkunov et al. Electrohydrodynamic effect resulting from high-frequency barrier discharge in gas
Shuqun et al. Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet
Potočar et al. Control of separation flow over a wind turbine blade with plasma actuators
Bolitho et al. Thrust vectoring flow control using plasma synthetic jet actuators
Md Daud et al. Control of leading edge separation on airfoil using DBD plasma actuator with signal amplitude modulation
Xue et al. Vortex of duty-cycled flow induced by dielectric-barrier-discharge plasma in quiescent air
Benard et al. Electric wind produced by a surface plasma discharge energized by a burst modulated high voltage
Sun et al. Shockwave—boundary layer interaction control by plasma aerodynamic actuation: An experimental investigation
Correale et al. NS-DBD plasma actuation on a backward facing step
Dedrick et al. Induced flow and optical emission generated by a pulsed 13.56 MHz–5 kHz plasma actuator
Liu et al. Investigation on 3D flow field induced by a plasma actuator with serrated electrode
Sato et al. Performance improvement of dielectric barrier discharge plasma actuator with two-stroke cycle operation
Cui et al. Flow separation control over a ramp with nanosecond-pulsed plasma actuators
Santhanakrishnan et al. Effect of plasma morphology on flow control using plasma synthetic jet actuators
CN110049612A (en) Filamentous sliding discharge closed loop plasma control system and its control method
Matsuno et al. Development of trielectrode plasma actuator and its application to delta wing vortex control
Segawa et al. Wall normal jet produced by DBD plasma actuator with doughnut-shaped electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5360800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees