[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5360719B2 - Method for producing solid acid catalyst comprising sulfonic acid group-containing carbonaceous material and use thereof - Google Patents

Method for producing solid acid catalyst comprising sulfonic acid group-containing carbonaceous material and use thereof Download PDF

Info

Publication number
JP5360719B2
JP5360719B2 JP2009509268A JP2009509268A JP5360719B2 JP 5360719 B2 JP5360719 B2 JP 5360719B2 JP 2009509268 A JP2009509268 A JP 2009509268A JP 2009509268 A JP2009509268 A JP 2009509268A JP 5360719 B2 JP5360719 B2 JP 5360719B2
Authority
JP
Japan
Prior art keywords
carbonaceous material
solid acid
acid catalyst
sulfonic acid
containing carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009509268A
Other languages
Japanese (ja)
Other versions
JPWO2008123530A1 (en
Inventor
真一朗 柳川
秀怜 近藤
亨和 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Eneos Corp
Original Assignee
Tokyo Institute of Technology NUC
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, JXTG Nippon Oil and Energy Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2009509268A priority Critical patent/JP5360719B2/en
Publication of JPWO2008123530A1 publication Critical patent/JPWO2008123530A1/en
Application granted granted Critical
Publication of JP5360719B2 publication Critical patent/JP5360719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/08Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by decomposition of hydroperoxides, e.g. cumene hydroperoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/04Phenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/53Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、有機物を加熱による炭化処理した後にスルホン化処理して得られるスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法およびその用途に関する。   The present invention relates to a method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material obtained by subjecting an organic substance to carbonization treatment by heating and then sulfonation treatment, and use thereof.

硫酸は様々な化学反応に広く用いられている重要な触媒である。しかし一般的に大量の硫酸を必要とすること、装置の腐食の問題があること、反応後の生成物からの硫酸の分離、回収、精製、再利用の工程、生成物中に残留する硫酸の中和、およびそれにより生成する塩の除去および廃棄、排水処理などの工程を必要とすること、さらにこれら工程では多くのエネルギーを要することなど多くの問題がある。固体酸触媒は、硫酸等の鉱酸触媒の代替として利用することにより、装置の腐食がなく、上記の反応後の種々の工程が省略もしくは大幅に簡略化されることから、各種化学反応に対する触媒として有用であり、様々な固体酸が開発されている。代表的な固体酸としては、シリカ・アルミナ、結晶性アルミノ珪酸塩(ゼオライト)、ヘテロポリ酸などの無機化合物がある。
一方、オレフィンの水和反応はアルコール類やケトン類の製造等のために工業的に重要な反応であり、この反応には酸触媒が使用される。イソプロピルアルコールまたは2−ブタノールは、プロピレンまたはn−ブテンの水和を利用した各種方法によって製造される(非特許文献1、非特許文献2)。水和反応工程の多くのプロセスでは硫酸を触媒として使用しているが、前記の問題点の他に副生物が多い問題もあり、これらの問題を解消する目的で、固体酸触媒も一部使用されている。この場合、前記した無機固体酸触媒は一般には水の存在下には活性が低下することから使用されず、無機担体にリン酸を担持した触媒等が使用されるが、反応中にリン酸が担体上から脱離する問題がある。さらに架橋ポリスチレン骨格上にスルホン酸基を有するポリマーである強酸型イオン交換樹脂も使用されるが、耐熱性が低い、高価である等の問題から使用範囲が限定されている。耐熱性を有するフッ素置換オレフィンポリマーをベースとする超強固体酸「ナフィオン」(デュポン社登録商標)なども開発されているが、工業用途に利用するには高価に過ぎる。
そうした中、芳香族化合物や石油系重質油、糖類といった有機物を、加熱による炭化処理およびスルホン化処理して得られるスルホン化炭素質材料が開発され(特許文献1)、固体酸触媒として種々の化学反応に高活性であること、耐熱性に優れること、低コストであること等から最近注目を集めており、脂肪酸のエステル化反応、エステルの加水分解反応、アルキル化反応、オレフィンの水和反応等の触媒としての評価が試みられている(非特許文献3、非特許文献4、非特許文献5、特許文献2)。しかし、例えばオレフィンの水和反応については、2,3−ジメチル−2−ブテンを水和して低い収率で2,3−ジメチル−2−ブタノールを得た例が報告されているのみであり、実用性の観点から、更に触媒活性の高い固体酸の開発が望まれている。
ところで、ノルマルブテンを水和すると2−ブタノールが得られ、この2−ブタノールを脱水素するとメチルエチルケトンが得られることは良く知られている。メチルエチルケトンは塗料やインク、接着剤等の溶剤として、また、各種用途の洗浄剤として極めて重要な工業薬品である。現在、2−ブタノールは硫酸を触媒として用いる方法やヘテロポリ酸触媒を用いる方法などで生産されている。しかしながら硫酸法は廃硫酸の問題や装置の腐食の問題が有り、一方ヘテロポリ酸法は超臨界状態を用いるなど技術的に困難を伴うものであり、安価で効率的な2−ブタノールの製造技術が望まれている。
また、クメンヒドロペルオキシドを分解してアセトンとフェノールを製造する方法は工業的に極めて重要な化学プロセスである。この反応は酸触媒下で進行し、現在は希硫酸が用いられている(非特許文献6)。硫酸水溶液は腐食性が大きく、また廃硫酸の問題がある。また、反応液から生成物の分離に多大なエネルギーを要するなどの問題があり、同じく代替の固体酸触媒が望まれている。
上記スルホン化炭素質材料を製造するためのスルホン化方法は、これまで有機物の炭化処理品を、もしくは直接有機物を濃硫酸もしくは発煙硫酸中でスルホン化することにより得られることが明らかとなっている。しかしながら固体酸触媒の製造を目的とした最適なスルホン化条件に関しては明らかにされておらない。さらには有機物を直接スルホン化する一段階法が良いのか或いは有機物を炭化処理した後にスルホン化するに二段階法が良いのかについては全くまったく明らかにされていない。多環式芳香族炭化水素類を濃硫酸或いは発煙硫酸中で加熱処理してスルホン化することにより固体酸触媒を得る方法が知られているが、二段階方式については何の言及も無い。
以上のように、本スルホン化炭素質材料製造における、固体酸触媒の製造を目的としたスルホン化工程の最適化は、いまだなされていない状況にある。
触媒,18(6),180(1976) 石油学会誌,34(3),201(1991) 堂免他,「カーボン系固体強酸の合成条件と触媒作用」,日本化学会第85回春季年会(2005),2B5−43 Hara,M.et al.Nature,438(10),178,November(2005) 原他,PETROTECH,29(6),411(2006) 新石油化学プロセス,p239(1986),幸書房 特開2004−238311号公報 国際公開WO 2005/029508 A1号公報
Sulfuric acid is an important catalyst widely used in various chemical reactions. However, it generally requires a large amount of sulfuric acid, there is a problem of corrosion of the equipment, separation of sulfuric acid from the product after the reaction, recovery, purification, reuse process, sulfuric acid remaining in the product There are many problems such as the need for neutralization and the removal and disposal of the salt produced thereby, and wastewater treatment, and the fact that these steps require a lot of energy. The solid acid catalyst can be used as a substitute for a mineral acid catalyst such as sulfuric acid, so that there is no corrosion of the apparatus, and various steps after the above reaction are omitted or greatly simplified. Various solid acids have been developed. Typical solid acids include inorganic compounds such as silica / alumina, crystalline aluminosilicate (zeolite), and heteropolyacid.
On the other hand, olefin hydration is an industrially important reaction for the production of alcohols and ketones, and an acid catalyst is used for this reaction. Isopropyl alcohol or 2-butanol is produced by various methods utilizing the hydration of propylene or n-butene (Non-patent Documents 1 and 2). Many processes in the hydration reaction process use sulfuric acid as a catalyst, but there are also problems with many by-products in addition to the above problems, and some solid acid catalysts are also used to solve these problems. Has been. In this case, the inorganic solid acid catalyst described above is generally not used because its activity decreases in the presence of water, and a catalyst having phosphoric acid supported on an inorganic carrier is used. There is a problem of desorption from the carrier. Further, a strong acid ion exchange resin which is a polymer having a sulfonic acid group on a crosslinked polystyrene skeleton is also used, but the range of use is limited due to problems such as low heat resistance and high cost. A super strong solid acid “Nafion” (registered trademark of DuPont) based on a fluorine-substituted olefin polymer having heat resistance has been developed, but is too expensive to be used for industrial applications.
Under such circumstances, sulfonated carbonaceous materials obtained by subjecting organic substances such as aromatic compounds, petroleum heavy oils and sugars to carbonization and sulfonation by heating have been developed (Patent Document 1), and various solid acid catalysts have been developed. Recently, it has attracted attention because of its high activity in chemical reactions, excellent heat resistance, and low cost. Fatty acid esterification, ester hydrolysis, alkylation, olefin hydration Etc. have been tried (Non-patent document 3, Non-patent document 4, Non-patent document 5, Patent document 2). However, for example, for olefin hydration, only 2,3-dimethyl-2-butanol has been reported in a low yield by hydrating 2,3-dimethyl-2-butene. From the viewpoint of practicality, development of a solid acid having higher catalytic activity is desired.
By the way, it is well known that 2-butanol can be obtained by hydrating normal butene, and methyl ethyl ketone can be obtained by dehydrogenating this 2-butanol. Methyl ethyl ketone is an extremely important industrial chemical as a solvent for paints, inks, adhesives and the like, and as a cleaning agent for various uses. Currently, 2-butanol is produced by a method using sulfuric acid as a catalyst or a method using a heteropolyacid catalyst. However, the sulfuric acid method has the problem of waste sulfuric acid and the problem of corrosion of the equipment, while the heteropoly acid method is technically difficult such as using a supercritical state, and an inexpensive and efficient production technique of 2-butanol is not available. It is desired.
In addition, a method for producing acetone and phenol by decomposing cumene hydroperoxide is an extremely important chemical process industrially. This reaction proceeds under an acid catalyst, and dilute sulfuric acid is currently used (Non-Patent Document 6). The sulfuric acid aqueous solution is highly corrosive and has a problem of waste sulfuric acid. In addition, there is a problem that a large amount of energy is required to separate the product from the reaction solution, and an alternative solid acid catalyst is also desired.
It has been clarified that the sulfonation method for producing the sulfonated carbonaceous material can be obtained by sulfonating an organic carbonized product or directly sulfating the organic substance in concentrated sulfuric acid or fuming sulfuric acid. . However, the optimum sulfonation conditions for the production of solid acid catalysts are not clarified. Furthermore, it has not been clarified at all whether a one-step method for directly sulfonating an organic substance is good or a two-step method for sulfonation after carbonizing an organic substance. There is known a method for obtaining a solid acid catalyst by heat-treating polycyclic aromatic hydrocarbons in concentrated sulfuric acid or fuming sulfuric acid to sulfonate, but there is no mention of a two-stage system.
As described above, in the production of the sulfonated carbonaceous material, the optimization of the sulfonation process for the purpose of producing a solid acid catalyst has not yet been made.
Catalyst, 18 (6), 180 (1976) Journal of Petroleum Society, 34 (3), 201 (1991) Domen et al., “Synthesis Conditions and Catalysis of Carbon-Based Solid Strong Acids”, The 85th Annual Meeting of the Chemical Society of Japan (2005), 2B5-43 Hara, M .; et al. Nature, 438 (10), 178, November (2005). Hara et al., PETROTECH, 29 (6), 411 (2006) New Petrochemical Process, p239 (1986), Sachishobo Japanese Patent Laid-Open No. 2004-238111 International Publication WO 2005/029508 A1

本発明の課題は、オレフィン水和等の各種酸触媒反応に対して有用な、高い反応活性を有するスルホン酸基含有炭素質材料からなる固体酸触媒の製造法を提供することにある。またそれにより、固体酸触媒を用いたオレフィンの水和反応や脂肪酸によるエステル化反応で得られる化合物の効率的な製造方法を提供することにある。またそれにより、安価で効率的なケトンの製造方法を提供すること、さらには、安価で効率的なフェノール類の製造方法を提供することにある。
前記従来技術の問題点に鑑み、本発明者らは鋭意研究を重ねた結果、本スルホン酸基含有炭素質材料からなる固体酸触媒の製造工程において、有機物を加熱処理して炭化した後にスルホン化する二段階工程を用いることおよび炭化処理条件を制御することさらには、スルホン化工程におけるスルホン化時間を制御することにより、飛躍的に固体酸触媒としての反応活性を向上させることを見出し、本発明を完成するに至った。
すなわち、本発明の第一は、有機物を不活性ガス雰囲気下の加熱による炭化処理及びスルホン化処理することにより得られるスルホン酸基含有炭素質材料からなる固体酸触媒の製造法において、炭化処理を行った後にスルホン化処理を行い、当該炭化処理の温度が300〜600℃、かつスルホン化時間が5分〜150分であることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法に関する。
本発明の第二は、本発明の第一において、スルホン化温度が20〜250℃であることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法に関する。
さらに本発明の第三は、本発明の第一から第二において、スルホン化剤として濃硫酸を用いることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法に関する。
さらに本発明の第四は、本発明の第一から第三において、有機物としてセルロースを用いることを特徴とするスルホン酸基含有炭素質材料の製造方法に関する。
さらに本発明の第五は、本発明の第一から第三において、有機物としてフェノール樹脂を用いることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法に関する。
さらに本発明の第六は本発明の第一から第三において有機物として木本類および/又は草本類を用いることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法である。
さらに本発明の第七は、本発明の第一から第六において、スルホン酸基含有炭素質材料のラマン分析値のDピークの積分強度/Gピークの積分強度が0.0〜0.7あるいは該ラマンスペクトルのピークが観測されないことを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法に関する。
さらに本発明の第八は、本発明の第一から第七に記載の方法により得られた固体酸触媒を用いて、オレフィンの水和反応を行うことを特徴とするオレフィン水和生成物の製造方法に関する。
さらに本発明の第九は、本発明の第一から第七に記載の方法により得られた固体酸触媒を用いて、オレフィンのエーテル化反応を行うことを特徴とするエーテル類の製造方法に関する。
さらに本発明の第十は本発明の第一から第七に記載の方法により得られた固体酸触媒を用いて、アラルキルヒドロペルオキシドの酸分解反応を行うことを特徴とする、アラルキルヒドロペルオキシドからフェノール類を製造する方法に関する。
さらに本発明の第十一はアラルキルヒドロペルオキシドがクメンヒドロペルオキシドであり、フェノール類がフェノールであるところの本発明第十記載のフェノール類を製造する方法に関する。
さらに本発明の第十二は本発明の第一から第七に記載の方法により得られた固体酸触媒を用いて、アルコールおよびカルボン酸をエステル化反応することを特徴とするエステル類の製造方法に関する。
さらに本発明の第十三は本発明の第八により得られたオレフィン水和生成物の脱水素反応を行うことを特徴とするケトン類を製造する方法に関する。
さらに本発明の第十四はオレフィン水和生成物が2−ブタノールであり、脱水素反応により得られるケトンがメチルエチルケトンである、本発明の第十三記載のケトン類を製造する方法に関する。
発明の効果
本発明のスルホン酸基含有炭素質材料からなる固体酸触媒は、各種化学反応、中でもオレフィン類の水和反応、エーテル化反応、あるいはアラルキルヒドロペルオキシドの酸分解反応等に対し固体酸触媒として高い活性を有し、簡便かつ安価に製造できるため工業用として大量に供給可能である。また、本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を用いて、オレフィンの水和物やエーテル等の製造、あるいはアラルキルヒドロペルオキシドの酸分解反応によるフェノール類の製造を行った場合には、触媒の活性が高く、反応後の触媒の中和、精製等の工程が不要で、触媒の分離が容易で再利用が可能であり、装置の腐食の問題もなく、低コストかつ効率的に目的物を製造することができる。また、本発明のスルホン酸基含有炭素質材料からなる固体酸触媒は、エステル化反応、エステルやエーテル類の加水分解反応等にも用いることができる。また、本発明の固体酸触媒を用いると前述のようにオレフィンの水和物を低コストかつ効率的に製造できるので、得られたオレフィン水和物を脱水素することにより安価で効率的にケトン類を製造できる。
An object of the present invention is to provide a method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material having high reaction activity, which is useful for various acid catalyst reactions such as olefin hydration. Moreover, it is providing the efficient manufacturing method of the compound obtained by the hydration reaction of the olefin using the solid acid catalyst, and the esterification reaction by a fatty acid. It is also intended to provide an inexpensive and efficient method for producing ketones, and further to provide an inexpensive and efficient method for producing phenols.
In view of the problems of the prior art, the present inventors have conducted extensive research, and as a result, in the production process of the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material, the organic substance is heat treated and carbonized and then sulfonated. The present invention has been found to dramatically improve the reaction activity as a solid acid catalyst by using a two-step process and controlling the carbonization conditions, and further controlling the sulfonation time in the sulfonation process. It came to complete.
That is, the first of the present invention is a method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material obtained by carbonizing and sulfonating an organic substance by heating in an inert gas atmosphere. A solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material, wherein the carbonization treatment is performed at a temperature of 300 to 600 ° C. and the sulfonation time is 5 to 150 minutes. It relates to a manufacturing method.
2nd of this invention is related with the manufacturing method of the solid acid catalyst which consists of a sulfonic acid group containing carbonaceous material characterized by the sulfonation temperature being 20-250 degreeC in 1st of this invention.
Furthermore, a third aspect of the present invention relates to a method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material according to the first to second aspects of the present invention, wherein concentrated sulfuric acid is used as a sulfonating agent.
Further, a fourth aspect of the present invention relates to a method for producing a sulfonic acid group-containing carbonaceous material according to any one of the first to third aspects of the present invention, wherein cellulose is used as the organic substance.
Furthermore, a fifth aspect of the present invention relates to a method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material according to the first to third aspects of the present invention, wherein a phenol resin is used as the organic substance.
Further, a sixth aspect of the present invention is a method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material, wherein woods and / or herbs are used as organic substances in the first to third aspects of the present invention. .
Further, a seventh aspect of the present invention is the first to sixth aspects of the present invention, wherein the integrated intensity of the D peak / the integrated intensity of the G peak of the Raman analysis value of the sulfonic acid group-containing carbonaceous material is 0.0 to 0.7 or The present invention relates to a method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material, wherein the Raman spectrum peak is not observed.
Further, according to an eighth aspect of the present invention, there is provided production of an olefin hydrated product characterized in that the hydration reaction of olefin is performed using the solid acid catalyst obtained by the method according to any one of the first to seventh aspects of the present invention. Regarding the method.
Furthermore, a ninth aspect of the present invention relates to a method for producing ethers, wherein an olefin etherification reaction is carried out using the solid acid catalyst obtained by the method according to the first to seventh aspects of the present invention.
Further, according to a tenth aspect of the present invention, from the aralkyl hydroperoxide to the phenol, the acid decomposition reaction of the aralkyl hydroperoxide is performed using the solid acid catalyst obtained by the method according to any one of the first to seventh aspects of the present invention. The present invention relates to a method for producing a kind.
Furthermore, an eleventh aspect of the present invention relates to a method for producing a phenol according to the tenth aspect of the present invention, wherein the aralkyl hydroperoxide is cumene hydroperoxide and the phenol is phenol.
Furthermore, a twelfth aspect of the present invention is a method for producing an ester, characterized in that an alcohol and a carboxylic acid are esterified using the solid acid catalyst obtained by the method according to any one of the first to seventh aspects of the present invention. About.
Furthermore, the thirteenth aspect of the present invention relates to a method for producing a ketone characterized by carrying out a dehydrogenation reaction of the olefin hydrate product obtained according to the eighth aspect of the present invention.
Furthermore, the fourteenth aspect of the present invention relates to a method for producing a ketone according to the thirteenth aspect of the present invention, wherein the olefin hydration product is 2-butanol and the ketone obtained by the dehydrogenation reaction is methyl ethyl ketone.
Effects of the Invention The solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention is a solid acid catalyst for various chemical reactions, especially olefin hydration reaction, etherification reaction, aralkyl hydroperoxide acid decomposition reaction, etc. Since it has a high activity and can be produced easily and inexpensively, it can be supplied in large quantities for industrial use. In addition, when the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention is used to produce olefin hydrates, ethers, etc., or to produce phenols by acid decomposition reaction of aralkyl hydroperoxide. Has high catalyst activity, does not require neutralization and purification of the catalyst after the reaction, can be easily separated and reused, has no problem of equipment corrosion, and is low cost and efficient. The desired product can be manufactured. Moreover, the solid acid catalyst which consists of a sulfonic acid group containing carbonaceous material of this invention can be used also for esterification reaction, hydrolysis reaction of ester, and ethers. Further, when the solid acid catalyst of the present invention is used, the olefin hydrate can be produced at low cost and efficiently as described above. Therefore, by dehydrogenating the obtained olefin hydrate, the ketone can be efficiently and inexpensively produced. Can be manufactured.

以下に本発明をさらに詳しく説明する。
本発明のスルホン酸基含有炭素質材料からなる固体酸触媒は、出発原料である有機合成化合物又は有機天然化合物、或いはそれらの組成物を炭化処理し、次いでスルホン化処理して得られる。
(原料について)
スルホン酸基含有炭素質材料からなる固体酸触媒を製造するための原料は、炭化が可能な有機物であればいずれも適用可能である。例えば、芳香族炭化水素等の有機低分子量化合物、重油、石油系ピッチ・タール等の石油系重質炭化水素混合物、糖類・デンプン・セルロース・アミロース・等の天然有機物、フェノール樹脂、フラン樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等の熱硬化性樹脂などの有機高分子化合物などが挙げられる。これらの有機物の中でもセルロースあるいはセルロースを含有する有機物を原料に用いた場合、得られるスルホン酸基含有炭素質材料からなる固体酸の耐熱性が優れており特に好ましい。とくに、セルロースを含有する有機物として、木本類および/又は草本類を用いた場合は、精製したセルロースと異なり極めて安価であり、したがってスルホン酸基含有炭素質材料からなる固体酸触媒も極めて安価に製造することが出来る。また、フェノール樹脂を原料に用いた場合、得られるスルホン酸基含有炭素質材料からなる固体酸触媒の活性が優れており特に好ましい。
(スルホン酸基含有炭素質材料からなる固体酸触媒の製造条件)
本発明のスルホン酸基含有炭素質材料からなる固体酸触媒の製造においては、炭化処理の後にスルホン化処理を行う。炭化処理とスルホン化を同時に行う方法においては、活性の高い固体酸触媒は得られない。以下に炭化処理の後にスルホン化処理を行う場合の好ましい態様を記載する。
(炭化)
炭化処理は窒素、アルゴン等の不活性ガス雰囲気下で加熱することにより行われる。炭化処理の条件は、使用する原料の種類、目的とするスルホン酸基含有炭素質材料からなる固体酸触媒の性状により適宜選択され、それにより無定形の黒色固体(炭化物)が得られる。温度は300〜600℃、好ましくは350〜550℃である。炭化処理の温度がこの範囲の下限に満たない場合には、これをスルホン化処理して得られるスルホン酸基含有炭素質材料からなる固体酸触媒の活性が劣る、あるいは水または有機物への溶解分が多いなどの問題を生じる傾向にある。一方、この範囲の上限を超える温度の場合には、これをスルホン化処理する際に十分な量のスルホン酸基を付与することができず、得られるスルホン酸基含有炭素質材料からなる固体酸触媒の種々の化学反応に対する触媒活性が不十分なものとなる傾向にある。
炭化処理のための加熱時間は、1〜100時間、好ましくは2〜15時間である。炭化処理の時間がこの範囲の下限に満たない場合には、これをスルホン化処理して得られるスルホン酸基含有炭素質材料からなる固体酸触媒の活性が劣る、あるいは水または有機物等への溶解分が多いなどの問題を生じる傾向にある。一方、この範囲の上限の時間で必要な炭化は十分進行しており、それを超える時間をかけることは不要である。
なお、木本類或いは草本類を原料として用いる場合は、予め粉砕するなどして粒度をそろえておくことが、均一な炭化を進める上で望ましい。
(スルホン化)
スルホン化処理の条件は、使用する原料の種類、目的とするスルホン酸基含有炭素質材料からなる固体酸触媒の性状により適宜選択されるが、炭化処理で得られた炭化物を、窒素、アルゴン等の不活性ガス雰囲気下で濃硫酸または発煙硫酸中で加熱することにより行われ、それにより炭化物の骨格にスルホン酸基が付加される。発煙硫酸を用いる場合には、導入されるスルホン酸基の含有量は大きくなるが、得られるスルホン酸基含有炭素質材料からなる固体酸触媒の活性が低下する傾向にあるので、濃硫酸を使用することが好ましい。使用する濃硫酸又は発煙硫酸の量は特に限定されないが、スルホン化を行う炭化物の量の5〜100倍(質量比)、好ましくは10〜80倍である。この範囲の下限に満たない場合には、炭化物に十分な量のスルホン酸基を付与することができず、得られるスルホン酸基含有炭素質材料からなる固体酸触媒の種々の化学反応に対する触媒活性が不十分なものとなる傾向にある。一方、この範囲の上限を超える場合には、必要以上の濃硫酸又は発煙硫酸を使用することとなり、使用済みの硫酸の処理を含めコスト上昇をもたらす。
スルホン化処理の温度は、20〜250℃、好ましくは50〜200℃である。スルホン化処理の温度がこの範囲の下限に満たない場合には、炭化物に十分な量のスルホン酸基を付与することができず、得られるスルホン酸基含有炭素質材料からなる固体酸触媒の種々の化学反応に対する触媒活性が不十分なものとなる傾向にある。一方、この範囲の上限を超える温度の場合には、付加したスルホン酸基が分解する。スルホン化処理の時間は5分〜150分であることが必要で、さらに好ましくは15分〜90分である。スルホン化処理の時間がこの範囲の下限に満たない場合には、炭化物に十分なスルホン酸基を付与することができないばかりか、制御が極めて困難となる。しかしながら、単位スルホン酸基あたりの触媒活性は時間が短いほど高い傾向にあるため、150分以上のスルホン化は十分な反応活性が得られず好ましくない。また、スルホン酸量は150分までにほぼ飽和することから、スルホン酸基を増やす目的においても、150分以上のスルホン化時間は不要である。5分以上〜150分以下という短時間のスルホン化処理により、得られるスルホン酸基含有炭素質材料からなる固体酸触媒が高い活性が得られることは今まで知られておらず、従来は5時間以上という長い時間のスルホン化処理が望ましいとされてきた(特許文献2)。
炭化およびスルホン化処理工程後には、好ましくは熱水で、スルホン化物を洗浄することにより余剰の硫酸を除去し、さらに乾燥することによって、黒色粉末状の本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を得ることができる。熱水による洗浄は、例えばソックスレー抽出法等により、約100℃での還流下で行うのが簡便である。加圧下にさらなる高温で洗浄することにより、洗浄時間を短縮することも可能である。
(酸基含有量について)
本発明のスルホン酸基含有炭素質材料の酸基含有量は、1mmol/g以上、好ましくは1.5mmol/g以上である。酸基の含有量が1mmol/g未満の場合には、得られるスルホン酸基含有炭素質材料からなる固体酸触媒の種々の化学反応に対する固体酸触媒としての活性が不十分となる傾向にある。なおここでいう酸基含有量とは、スルホン酸基含有炭素質材料からなる固体酸を逆滴定法により測定するものであり、スルホン化処理により生成するスルホン酸基と炭化処理時に生成するカルボン酸基を併せたものの含有量を指す。
(黒鉛化度=ラマン分光分析について)
一般に有機物を加熱により炭化処理する際の炭化の程度は、黒鉛化度により表されることが多く、黒鉛化度を示すひとつの指標として、ラマン分光分析法におけるDピークとGピークの強度比が利用される。すなわち、Dピークの積分強度/Gピークの積分強度比の値が大きいほど黒鉛化度が進行していることが示されている。例えば非特許文献5に開示されている、出発原料として芳香族炭化水素、重油、グルコース等を使用した従来のスルホン化炭素質材料においては、このラマン分光分析法による黒鉛化度の測定、あるいはそれからカーボンシートの大きさの推測がなされている。本発明のスルホン酸基含有炭素質材料からなる固体酸触媒においても、スルホン化時間の増加に伴ない、Dピークの積分強度/Gピークの積分強度比が増大し、この比が大きくなりすぎると触媒活性が低下することが認められている。好ましいDピークの積分強度/Gピークの積分強度比は0.0〜0.7である。また、本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を製造するための原料によっては、該ラマンスペクトルのピークが得られないものもあるが、このようなものも好ましく用いられる。
(X線回折分析について)
本発明のスルホン酸基含有炭素質材料からなる固体酸触媒は、エックス線回折パターンからはいかなる構造も確認することができず、実質的に無定形である。特許文献1においては、原料のピッチ等を炭化する際に、炭素質メソフェーズを形成することが記載されており、これは得られるスルホン化炭素質材料が結晶性の構造を有することを示唆している。また、特許文献3においては、得られるスルホン酸基が導入された炭素質材料に、〔002〕面のピークが検出されることが好ましいとの記載があり、「無定形炭素」とは言いながら、一部結晶性の構造を有することを示唆している。この点でも、本発明のスルホン酸基含有炭素質材料はこれら先行技術に開示されたスルホン化炭素質材料とは異なる。
本発明の固体酸触媒は、その形状は、粉末であってもよく、また顆粒状、球状、板状、ペレット状等に成型されたものであってもよい。これらの形状に成型する場合には、バインダーと呼ばれる無機物質を配合して成型を行ってもよい。このバインダーは成型性の向上、成型された触媒の強度、耐摩擦性等の機械的特性の向上などを目的に配合するものであり、アルミナ、アルミナ・ボリア、シリカ・アルミナ等が好ましく使用される。
以上のようにして得られる本発明のスルホン酸基含有炭素質材料からなる固体酸触媒は、固体酸触媒として各種化学反応に十分な程度の酸強度および酸量を有している。本発明のスルホン酸基含有炭素質材料からなる固体酸触媒はオレフィンの水和反応やエーテル化反応、アルコールと酸のエステル化反応、エーテルの加水分解等の各種極性条件下での反応の触媒に特に有用である。すなわち、反応基質にアルコール、水等の極性物質を用いる反応において優れた活性および耐性を示すので、これら極性反応の固体酸触媒として優れた特性を示す。また、アラルキルヒドロペルオキシドの酸分解反応触媒としても優れた特性を示す。
以下、本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を用いるオレフィンの水和反応(オレフィンと水の反応),エーテル化反応(オレフィンとアルコール類の反応)及びエステル化反応(カルボン酸とアルコールの反応)について説明する。
(反応原料について)
本発明に用いられるオレフィンは、特に制限はなく、直鎖状、分岐状、環状のいずれでもよいが、炭素数2〜5のオレフィン、具体的にはプロピレンや1−ブテン、2−ブテン、イソブテン等のブテン類が好ましい。また、水和反応に用いる水は、特に制限はないが、イオン交換水、蒸留水(蒸気凝縮水を含む)を用いることが好ましい。
エーテル化反応に用いるアルコール類は、特に制限はないが、炭素数1〜4のアルコール類、具体的にはメタノール、エタノール、イソプロピルアルコールが好ましい。
オレフィンに対する水またはアルコール類のモル比は、特に制限はないが、水またはアルコール類の量が少なすぎると、オレフィンの二量化などの副反応が起こり、多すぎると生産性が悪くなるので好ましくない。
本発明に係るエステル化反応に用いるアルコール類は、上記アルコール類と同様とすることができる。またカルボン酸は、炭素数1〜4の飽和または不飽和カルボン酸、具体的には酢酸、アクリル酸、メタクリル酸等が挙げられる。酸に対するアルコール類のモル比は、特に制限はないが、通常は0.1〜100である。カルボン酸には、無水物を用いてもよい。
(反応条件について)
本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を用いたオレフィンの水和反応及びエーテル化反応の反応条件は適宜選択することが出来る。ただし、反応温度が250℃を超えると反応中にスルホン酸基含有炭素質材料が分解するおそれがあるので250℃以下にするのが好ましい。また、カルボン酸をアルコール類によりエステル化反応を行う場合にも反応条件を適宜選択することが出来る。また、本発明のスルホン酸基含有炭素質材料を含む固体酸触媒を用いた上記の各反応においては反応蒸留の手段を用いることも可能である。
反応圧力は特に制限はなく適宜選択できるが、反応圧力が20MPaを超える場合には、設備コストが増大するなどの問題が生ずる。
反応相は、気相、液相、気液混相のいずれも採用することができる。エステル化反応の場合は、反応進行に伴い生成する水を適宜に反応系から除去すると反応が進行しやすい。
水和反応を行う際、溶媒を使用することもできる。溶媒としては、反応液が水相と油相に分離しないようにするために両親媒性のものが好ましく、例えばエーテル類、グリコールエーテル類、アルコール類、ケトン類などを使用することができる。エーテル化反応の場合も同様に溶媒を使用可能であるが、相分離を起こさなければ溶媒不要である。
(本発明の固体酸触媒を用いた反応プロセスついて)
本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を用いたオレフィンの水和反応は、直接水和法(1段反応)であるため、硫酸触媒を用いた間接水和法(硫酸エステル化および加水分解の2段反応)に比較して工程が簡略である。また、間接水和法では硫酸除去のための中和精製工程と硫酸再利用のための濃縮工程等が必要であり工程が煩雑であるが、本発明の方法では、触媒が固体であるため、濾過や遠心分離等により触媒を容易に分離して再使用することが可能であり、また、触媒除去後の反応液には酸触媒成分が含まれないため、間接水和法のような中和精製工程が不要である。触媒除去後は、蒸留等により適宜精製することができる。反応蒸留も可能である。本発明のオレフィンのエーテル化反応は、反応蒸留または固定床による方法が一般的である。
本発明のオレフィンの水和反応、エーテル化反応あるいはエステル化反応を行う場合の反応器の形態は特に限定されないが、回分式、連続式、半連続式のいずれであってもよい。また槽型反応器、塔型反応器、ループ型反応器などいずれの形状であってもよい。触媒と反応物の接触の形式は、懸濁相、固定床などいずれであってもよい。中でも撹拌設備を備えた槽型反応器内で触媒を懸濁される形式、あるいは触媒を固定床とし、反応物を連続的に流通させる形式が好ましく採用される。
水和反応およびエーテル化反応あるいはエステル化反応のいずれの場合も、本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を用いることにより、その高い耐熱性により高温下での運転が可能となり、その結果として反応速度が向上するため、反応器の小型化が実現できる。また、触媒の耐熱性により、触媒交換頻度も低減される。
次に本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を用いたアラルキルヒドロペルオキシドの酸分解反応について述べる。ここで用いるアラルキルヒドロペルオキシドとは、アルキル置換芳香族炭化水素化合物の側鎖の第二級あるいは第三級炭素原子がヒドロペルオキシ基で置換したものであり、下記式1で表される構造を有する。このものは酸触媒存在下で分解すると対応するフェノール類とケトン或いはアルデヒドが生成する。クメンヒドロペルオキシドからは下記式2で表されるようにフェノールとアセトンが生成する。

Figure 0005360719
ここで式1において、RとRはアルキル基あるいは水素原子を表し、RとRの炭素原子数の合計は1以上である。
Figure 0005360719
アラルキルヒドロペルオキシドの酸分解反応を行う方法に関して、クメンヒドロペルオキシドを例に触れる。反応は液相状態で行われる。反応器の形態は固体酸触媒を充填した固定相流通式、あるいは触媒を反応液中に懸濁させた回分式攪拌層型反応器、何れも用いることが出来る。反応温度は50℃から90℃、望ましくは60℃から80℃である。クメンヒドロペルオキシドの酸分解反応は発熱反応であるので、必要であれば反応熱による温度上昇を緩和するために不活性希釈剤で反応液を希釈することが望ましい。回分式反応器を用いた場合、適切な沸点を有する希釈剤を使用し、その希釈剤を沸騰させ還流させることにより、反応温度を維持し且つ反応熱を除去することが可能である。回分式反応の場合、固体酸触媒として用いる本発明のスルホン酸基含有炭素質材料の使用割合は、仕込んだヒドロペルオキシドの1/100から1(重量比)である。反応時間は15分から8時間が望ましい。固定相流通式の場合、反応原料混合液のLHSVは0.1から1.0(L−feed/L−触媒/Hr)が望ましい。
ここでケトンの製造について触れる。本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を用い、前記記載のオレフィンの水和反応(オレフィンと水の反応)により第二アルコールを製造することが出来る。この第二アルコールを脱水素反応することにより対応するケトンを製造することが出来る。例えば、プロピレンの水和反応で得られた2−プロパノールを脱水素することによりアセトンが得られる。また、ノルマルブテンの水和反応で得られた2−ブタノールを脱水素することによりメチルエチルケトンを製造することが出来る。脱水素反応は一般的に知られている方法で行うことが出来る。例えば銅‐亜鉛系触媒を用い、反応温度300−500℃、圧力0−1MPaで行うことが出来る。この脱水素反応は吸熱反応であるため化学平衡の面からは高温ほど有利であるが、過度な高温は分解反応を併起したり、触媒の焼結が起こったりして好ましくなく、上記した温度範囲が好ましい。また、脱水素反応であるので低圧ほど反応は有利に進む。
本発明のスルホン酸基含有炭素質材料からなる固体酸触媒を用いて製造されたアルコールは従来の硫酸を用いる方法や,超臨界条件を用いるヘテロポリ酸を用いる方法で製造されたアルコールに比べ、その製造方法が簡便で装置の腐食も無くまた廃棄物の少ない方法であるため安価であり、それを脱水素して製造されるケトンも安価に製造することが出来る。すなわち、安価で環境負荷の少ない経済的に有利な、ノルマルブテンからメチルエチルケトンを製造する方法を提供できるものである。
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。The present invention is described in further detail below.
The solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention is obtained by carbonizing and then sulfonating an organic synthetic compound or organic natural compound or a composition thereof as a starting material.
(About raw materials)
Any raw material for producing a solid acid catalyst made of a sulfonic acid group-containing carbonaceous material can be used as long as it is an organic substance that can be carbonized. For example, organic low molecular weight compounds such as aromatic hydrocarbons, heavy oils, petroleum heavy hydrocarbon mixtures such as petroleum pitch and tar, natural organics such as sugars, starch, cellulose, amylose, phenol resins, furan resins, urea Examples thereof include organic polymer compounds such as resins, melamine resins, unsaturated polyester resins, and thermosetting resins such as epoxy resins. Among these organic materials, when cellulose or an organic material containing cellulose is used as a raw material, the heat resistance of a solid acid made of the obtained sulfonic acid group-containing carbonaceous material is excellent, which is particularly preferable. In particular, when woods and / or herbs are used as organic substances containing cellulose, they are extremely inexpensive unlike purified cellulose, and therefore solid acid catalysts made of sulfonic acid group-containing carbonaceous materials are also extremely inexpensive. Can be manufactured. Moreover, when a phenol resin is used as a raw material, the activity of the solid acid catalyst which consists of a sulfonic acid group containing carbonaceous material obtained is excellent, and it is especially preferable.
(Conditions for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material)
In the production of the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention, the sulfonation treatment is performed after the carbonization treatment. In a method in which carbonization treatment and sulfonation are performed simultaneously, a highly active solid acid catalyst cannot be obtained. In the following, preferred embodiments in the case of carrying out the sulfonation treatment after the carbonization treatment will be described.
(Carbonization)
Carbonization is performed by heating in an inert gas atmosphere such as nitrogen or argon. The conditions for the carbonization treatment are appropriately selected depending on the type of raw materials used and the properties of the solid acid catalyst made of the target sulfonic acid group-containing carbonaceous material, whereby an amorphous black solid (carbide) is obtained. The temperature is 300 to 600 ° C, preferably 350 to 550 ° C. When the temperature of the carbonization treatment is less than the lower limit of this range, the activity of the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material obtained by sulfonation treatment is inferior, or the amount dissolved in water or organic matter Tend to cause problems such as On the other hand, in the case of a temperature exceeding the upper limit of this range, a sufficient amount of sulfonic acid groups cannot be imparted when sulfonating the solid acid, and the resulting solid acid comprising a sulfonic acid group-containing carbonaceous material is obtained. The catalyst activity for various chemical reactions of the catalyst tends to be insufficient.
The heating time for the carbonization treatment is 1 to 100 hours, preferably 2 to 15 hours. If the carbonization time is less than the lower limit of this range, the activity of the solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material obtained by sulfonation is inferior, or dissolved in water or organic matter. It tends to cause problems such as a lot of minutes. On the other hand, the necessary carbonization proceeds sufficiently in the upper limit of the range, and it is not necessary to spend more time.
In the case of using woody or herbaceous materials as raw materials, it is desirable to obtain a uniform particle size by, for example, pulverizing in advance in order to promote uniform carbonization.
(Sulfonation)
The conditions for the sulfonation treatment are appropriately selected depending on the type of raw materials used and the properties of the solid acid catalyst made of the target sulfonic acid group-containing carbonaceous material. The carbide obtained by the carbonization treatment may be nitrogen, argon, etc. By heating in concentrated sulfuric acid or fuming sulfuric acid under an inert gas atmosphere, thereby adding sulfonic acid groups to the carbide skeleton. When fuming sulfuric acid is used, the content of the introduced sulfonic acid group increases, but the activity of the solid acid catalyst comprising the resulting sulfonic acid group-containing carbonaceous material tends to decrease, so concentrated sulfuric acid is used. It is preferable to do. The amount of concentrated sulfuric acid or fuming sulfuric acid to be used is not particularly limited, but is 5 to 100 times (mass ratio), preferably 10 to 80 times the amount of carbide to be sulfonated. If the lower limit of this range is not reached, a sufficient amount of sulfonic acid groups cannot be imparted to the carbide, and the resulting solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material has catalytic activity for various chemical reactions. Tends to be insufficient. On the other hand, if the upper limit of this range is exceeded, excessive concentrated sulfuric acid or fuming sulfuric acid will be used, resulting in an increase in cost including the treatment of used sulfuric acid.
The temperature of the sulfonation treatment is 20 to 250 ° C, preferably 50 to 200 ° C. When the temperature of the sulfonation treatment is less than the lower limit of this range, a sufficient amount of the sulfonic acid group cannot be imparted to the carbide, and various solid acid catalysts comprising the resulting sulfonic acid group-containing carbonaceous material can be obtained. The catalytic activity for the chemical reaction tends to be insufficient. On the other hand, when the temperature exceeds the upper limit of this range, the added sulfonic acid group is decomposed. The time for the sulfonation treatment needs to be 5 minutes to 150 minutes, and more preferably 15 minutes to 90 minutes. When the time for the sulfonation treatment is less than the lower limit of this range, not only cannot a sufficient sulfonic acid group be imparted to the carbide, but control becomes extremely difficult. However, since the catalyst activity per unit sulfonic acid group tends to be higher as the time is shorter, sulfonation for 150 minutes or more is not preferable because sufficient reaction activity cannot be obtained. Further, since the amount of sulfonic acid is almost saturated by 150 minutes, a sulfonation time of 150 minutes or more is not required for the purpose of increasing the sulfonic acid group. It has not been known so far that a solid acid catalyst made of a sulfonic acid group-containing carbonaceous material can be obtained with a short sulfonation treatment of 5 minutes to 150 minutes, and conventionally 5 hours. It has been considered that sulfonation treatment for a long time as described above is desirable (Patent Document 2).
After the carbonization and sulfonation treatment steps, excess sulfuric acid is removed by washing the sulfonated product, preferably with hot water, and further dried to obtain the sulfonic acid group-containing carbonaceous material of the present invention in the form of a black powder. A solid acid catalyst can be obtained. Washing with hot water is conveniently performed under reflux at about 100 ° C., for example, by a Soxhlet extraction method. It is also possible to shorten the washing time by washing at a higher temperature under pressure.
(About acid group content)
The acid group content of the sulfonic acid group-containing carbonaceous material of the present invention is 1 mmol / g or more, preferably 1.5 mmol / g or more. When the acid group content is less than 1 mmol / g, the activity of the resulting solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material as a solid acid catalyst for various chemical reactions tends to be insufficient. In addition, acid group content here is what measures the solid acid which consists of a sulfonic acid group containing carbonaceous material with a back titration method, and is the carboxylic acid produced | generated at the time of carbonization process with the sulfonic acid group produced | generated by sulfonation process. It refers to the content of the group.
(Graphitization degree = Raman spectroscopic analysis)
In general, the degree of carbonization when an organic substance is carbonized by heating is often expressed by the degree of graphitization. As one index indicating the degree of graphitization, the intensity ratio of the D peak to the G peak in Raman spectroscopy is used. Used. That is, it is shown that the graphitization degree progresses as the value of the integrated intensity ratio of D peak / integrated intensity ratio of G peak increases. For example, in a conventional sulfonated carbonaceous material disclosed in Non-Patent Document 5 using aromatic hydrocarbon, heavy oil, glucose or the like as a starting material, measurement of graphitization degree by this Raman spectroscopy or The size of the carbon sheet has been estimated. Even in the solid acid catalyst made of the sulfonic acid group-containing carbonaceous material of the present invention, as the sulfonation time increases, the integrated intensity ratio of D peak / integrated intensity of G peak increases, and this ratio becomes too large. It has been observed that catalytic activity is reduced. A preferable integrated intensity ratio of the D peak / G peak is 0.0 to 0.7. Some raw materials for producing a solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention do not provide the Raman spectrum peak. Such a material is also preferably used.
(About X-ray diffraction analysis)
The solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention cannot be confirmed from any structure from the X-ray diffraction pattern, and is substantially amorphous. Patent Document 1 describes that a carbonaceous mesophase is formed when carbonizing a pitch or the like of a raw material, which suggests that the obtained sulfonated carbonaceous material has a crystalline structure. Yes. Further, in Patent Document 3, there is a description that it is preferable to detect a peak of the [002] plane in the obtained carbonaceous material into which a sulfonic acid group has been introduced, while saying “amorphous carbon”. , Suggesting that it has a partially crystalline structure. Also in this respect, the sulfonic acid group-containing carbonaceous material of the present invention is different from the sulfonated carbonaceous materials disclosed in these prior arts.
The solid acid catalyst of the present invention may be in the form of powder, or may be molded into a granular shape, a spherical shape, a plate shape, a pellet shape, or the like. When molding into these shapes, molding may be performed by blending an inorganic substance called a binder. This binder is blended for the purpose of improving the moldability, the strength of the molded catalyst, the mechanical properties such as the friction resistance, etc., and alumina, alumina / boria, silica / alumina, etc. are preferably used. .
The solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention obtained as described above has an acid strength and an acid amount sufficient for various chemical reactions as a solid acid catalyst. The solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention is a catalyst for reactions under various polar conditions such as hydration reaction of olefins, etherification reaction, esterification reaction of alcohol and acid, and hydrolysis of ether. It is particularly useful. That is, since it exhibits excellent activity and resistance in reactions using polar substances such as alcohol and water as reaction substrates, it exhibits excellent characteristics as a solid acid catalyst for these polar reactions. In addition, it exhibits excellent properties as an acid decomposition reaction catalyst for aralkyl hydroperoxide.
Hereinafter, olefin hydration reaction (olefin-water reaction), etherification reaction (olefin-alcohol reaction) and esterification reaction (carboxylic acid) using the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention. And the reaction of alcohol).
(Reaction raw materials)
The olefin used in the present invention is not particularly limited and may be linear, branched, or cyclic. However, the olefin having 2 to 5 carbon atoms, specifically, propylene, 1-butene, 2-butene, and isobutene. Butenes such as The water used for the hydration reaction is not particularly limited, but it is preferable to use ion exchange water or distilled water (including steam condensed water).
The alcohol used in the etherification reaction is not particularly limited, but alcohols having 1 to 4 carbon atoms, specifically methanol, ethanol, and isopropyl alcohol are preferable.
The molar ratio of water or alcohol to olefin is not particularly limited, but if the amount of water or alcohol is too small, side reactions such as dimerization of olefin occur, and if too large, productivity is unfavorable. .
The alcohols used in the esterification reaction according to the present invention can be the same as the above alcohols. Examples of the carboxylic acid include saturated or unsaturated carboxylic acids having 1 to 4 carbon atoms, such as acetic acid, acrylic acid, and methacrylic acid. The molar ratio of the alcohol to the acid is not particularly limited, but is usually 0.1 to 100. An anhydride may be used for the carboxylic acid.
(Reaction conditions)
The reaction conditions of the olefin hydration reaction and etherification reaction using the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention can be appropriately selected. However, if the reaction temperature exceeds 250 ° C., the sulfonic acid group-containing carbonaceous material may be decomposed during the reaction, and therefore, the reaction temperature is preferably 250 ° C. or less. Also, the reaction conditions can be appropriately selected when the esterification reaction of carboxylic acid with alcohols is performed. Further, in each of the above reactions using the solid acid catalyst containing the sulfonic acid group-containing carbonaceous material of the present invention, it is possible to use means for reactive distillation.
The reaction pressure is not particularly limited and can be appropriately selected. However, when the reaction pressure exceeds 20 MPa, problems such as an increase in equipment cost arise.
As the reaction phase, any of a gas phase, a liquid phase, and a gas-liquid mixed phase can be adopted. In the case of an esterification reaction, the reaction is likely to proceed if water generated as the reaction proceeds is appropriately removed from the reaction system.
A solvent can also be used when performing a hydration reaction. The solvent is preferably amphiphilic in order to prevent the reaction solution from separating into an aqueous phase and an oil phase, and for example, ethers, glycol ethers, alcohols, ketones and the like can be used. In the case of the etherification reaction, a solvent can be used in the same manner, but the solvent is unnecessary if phase separation does not occur.
(Reaction process using the solid acid catalyst of the present invention)
Since the hydration reaction of an olefin using a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material of the present invention is a direct hydration method (one-stage reaction), an indirect hydration method using a sulfuric acid catalyst (sulfate ester) Compared with the two-stage reaction of crystallization and hydrolysis, the process is simple. In addition, the indirect hydration method requires a neutralization purification step for sulfuric acid removal and a concentration step for sulfuric acid reuse, and the process is complicated, but in the method of the present invention, the catalyst is a solid, The catalyst can be easily separated and reused by filtration, centrifugation, etc., and the reaction solution after removing the catalyst contains no acid catalyst component. A purification step is not necessary. After removing the catalyst, it can be appropriately purified by distillation or the like. Reactive distillation is also possible. The olefin etherification reaction of the present invention is generally performed by reactive distillation or a fixed bed method.
The form of the reactor in the case of performing the olefin hydration reaction, etherification reaction or esterification reaction of the present invention is not particularly limited, but may be any of batch type, continuous type and semi-continuous type. Moreover, any shape, such as a tank reactor, a column reactor, and a loop reactor, may be used. The type of contact between the catalyst and the reactant may be any of a suspended phase, a fixed bed, and the like. In particular, a form in which the catalyst is suspended in a tank reactor equipped with stirring equipment or a form in which the catalyst is used as a fixed bed and the reactants are continuously circulated is preferably employed.
In any case of the hydration reaction and the etherification reaction or the esterification reaction, the use of the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention makes it possible to operate at a high temperature due to its high heat resistance. As a result, the reaction rate is improved, and the reactor can be downsized. Moreover, the catalyst replacement frequency is also reduced due to the heat resistance of the catalyst.
Next, the acid decomposition reaction of aralkyl hydroperoxide using the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention will be described. The aralkyl hydroperoxide used here is one in which a secondary or tertiary carbon atom in the side chain of an alkyl-substituted aromatic hydrocarbon compound is substituted with a hydroperoxy group, and has a structure represented by the following formula 1. . When this is decomposed in the presence of an acid catalyst, the corresponding phenols and ketones or aldehydes are produced. From cumene hydroperoxide, phenol and acetone are produced as represented by the following formula 2.
Figure 0005360719
Here, in Formula 1, R 1 and R 2 represent an alkyl group or a hydrogen atom, and the total number of carbon atoms of R 1 and R 2 is 1 or more.
Figure 0005360719
Cumene hydroperoxide is mentioned as an example for a method for carrying out an acid decomposition reaction of aralkyl hydroperoxide. The reaction is carried out in a liquid phase state. As the form of the reactor, either a stationary phase flow type filled with a solid acid catalyst or a batch type stirred layer type reactor in which a catalyst is suspended in a reaction solution can be used. The reaction temperature is 50 ° C to 90 ° C, preferably 60 ° C to 80 ° C. Since the acid decomposition reaction of cumene hydroperoxide is an exothermic reaction, it is desirable to dilute the reaction liquid with an inert diluent to reduce the temperature rise due to reaction heat if necessary. When a batch reactor is used, it is possible to maintain the reaction temperature and remove the heat of reaction by using a diluent having an appropriate boiling point and boiling and diluting the diluent. In the case of a batch reaction, the proportion of the sulfonic acid group-containing carbonaceous material of the present invention used as a solid acid catalyst is 1/100 to 1 (weight ratio) of the charged hydroperoxide. The reaction time is preferably 15 minutes to 8 hours. In the case of the stationary phase flow type, the LHSV of the reaction raw material mixture is preferably 0.1 to 1.0 (L-feed / L-catalyst / Hr).
Here we touch on the production of ketones. Using the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention, the second alcohol can be produced by the olefin hydration reaction described above (reaction of olefin and water). The corresponding ketone can be produced by dehydrogenating the secondary alcohol. For example, acetone is obtained by dehydrogenating 2-propanol obtained by the hydration reaction of propylene. Moreover, methyl ethyl ketone can be produced by dehydrogenating 2-butanol obtained by the hydration reaction of normal butene. The dehydrogenation reaction can be performed by a generally known method. For example, a copper-zinc catalyst can be used at a reaction temperature of 300 to 500 ° C. and a pressure of 0 to 1 MPa. Since this dehydrogenation reaction is endothermic, a higher temperature is advantageous from the viewpoint of chemical equilibrium. However, an excessively high temperature is not preferable because it causes a decomposition reaction or sintering of the catalyst. A range is preferred. Moreover, since it is a dehydrogenation reaction, the reaction proceeds more advantageously at a lower pressure.
The alcohol produced using the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material of the present invention is more in comparison with the alcohol produced by the conventional method using sulfuric acid or the method using heteropoly acid using supercritical conditions. Since the production method is simple, there is no corrosion of the apparatus, and there is little waste, it is inexpensive, and a ketone produced by dehydrogenating it can also be produced at low cost. That is, an inexpensive and economically advantageous method for producing methyl ethyl ketone from normal butene can be provided.
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

[実施例1]
(スルホン酸基含有炭素質材料からなる固体酸触媒の調製)
セルロース40.0gを窒素雰囲気下で400℃、4時間加熱処理して11.2gの炭化物を得た。この炭化物3.0gに濃硫酸150gを加え、窒素雰囲気下で150℃、15分加熱処理してスルホン化を行った。スルホン化後、黒色固形物をガラスフィルターを用いてろ過し、還流下(約100℃)で熱水による洗浄を繰り返し行い、洗浄液中に硫酸が検出されなくなるまで継続した。次いで乾燥を行い、アモルファス状の黒色粉末のスルホン酸基含有炭素質材料からなる固体酸触媒Aを3.1g得た。得られたスルホン酸基含有炭素質材料からなる固体酸触媒の酸量を、逆滴定により調べた結果、2.3mmol/gであった。
(固体酸触媒の分析)
スルホン酸基含有炭素質材料からなる固体酸触媒AのX線解析を行った。X線解析には、マックサイエンス社製のX線回折装置(MXP18VAHF)を使用して測定した。その結果、得られたスルホン酸基含有炭素質材料からなる固体酸触媒の解析パターンからは構造を特定できるピークは検出されず、アモルファス物質であることが判った。スルホン酸基含有炭素質材料からなる固体酸触媒Aの元素分析を実施した。なお、元素分析は、Elementar Vario ELを使用して測定した。その結果、本スルホン酸基含有炭素質材料からなる固体酸触媒にはS/C比で7.0×10−3の硫黄が検出され、スルホン酸基が導入されていることが判明した。
スルホン酸基含有炭素質材料からなる固体酸触媒Aの13C−DDMAS核磁気共鳴スペクトル分析を実施した。なお、本分析には、Varian社製 NMR System 400WBを使用して測定した。その結果、大半が芳香族に由来する炭素であることが確認された。
スルホン酸基含有炭素質材料からなる固体酸触媒Aの黒鉛化度を測定した。測定には、ラマン分光分析装置を用いた。なお、本分析にはレーザーラマン分光分析装置 HOLOLAB5000Rを用いた。その際、1580cm−1付近に見られるGピークと1400cm−1付近に見られるDピークの積分強度比を算出し、そのピーク強度比D/Gを黒鉛化度とした。その結果、黒鉛化度は0.597であることが認められた。
(水和反応)
200ccの撹拌機付きオートクレーブに、蒸留水9.0g(0.5モル)とジオキサン(溶媒)15.0gを仕込み、スルホン酸基含有炭素質材料からなる固体酸触媒Aを0.20g加えて密閉し、プロピレンを10.5g(0.25モル)封入した。次いで、700rpmで撹拌しながら120℃まで昇温し、窒素により5MPaに圧力調整を行った後、120℃保ったまま2時間水和反応を行った。反応終了後は、反応液を冷却してからTCD−GCにより定量分析を行った。その結果、単位触媒量、単位時間当たりに換算したイソプロピルアルコールの生成量は0.57mmol/g−cat./hrであった。結果を表1に示す。
(エーテル化反応)
200ccの撹拌機付きオートクレーブに、イソプロピルアルコール15g(0.25モル)を仕込み、スルホン酸基含有炭素質材料からなる固体酸触媒Aを0.20g加えて密閉し、プロピレンを21.0g(0.5モル)封入した。次いで、700rpmで撹拌しながら110℃まで昇温し、窒素により5MPaに圧力調整を行った後、110℃に保ったまま2時間エーテル化反応を行った。反応終了後は、反応液を冷却してからTCD−GCにより生成物の定量分析を行った。その結果、単位触媒量、単位時間当たりに換算したジイソプロピルエーテルの生成量は1.26mmol/g−cat./hrであった。結果を表1に示す。
[実施例2]及び[比較例1、2]
(スルホン酸基含有炭素質材料からなる固体酸触媒の調製)
表1に記載した原料、炭化処理およびスルホン化処理条件を用い、それ以外は前記実施例1と同様の操作により、それぞれスルホン酸基含有炭素質材料からなる固体酸触媒B、D,Eを製造した。なお、原料に使用したセルロースは、全て実施例1に使用したものと同一のものを使用した。得られたスルホン酸基含有炭素質材料からなる固体酸触媒の酸量を、逆滴定により調べた結果を表1に示す。
(スルホン酸基含有炭素質材料からなる固体酸触媒の分析)
スルホン酸基含有炭素質材料からなる固体酸触媒B、D、Eに対して、前記のX線解析、13C−DDMAS核磁気共鳴スペクトル分析、ならびに黒鉛化度測定を実施した。X線解析および13C−DDMAS核磁気共鳴スペクトル分析については実施例1と同様の結果が得られた。
また実施例1と同様に方法でスルホン酸基含有炭素質材料からなる固体酸触媒B,D、Eの元素分析と炭化度測定(ラマン分光分析)を行い、その結果を表1に示した。
(水和反応)
触媒としてスルホン酸基含有炭素質材料からなる固体酸触媒Aに代えて、前記実施例2及び比較例1、2にて得られたスルホン酸基含有炭素質材料からなる固体酸触媒を用いた以外は、前記実施例1と同じ条件、操作方法でそれぞれプロピレンの水和反応を行った。単位触媒量、単位時間当たりに換算したイソプロピルアルコールの生成量を表1に示す。
(エーテル化反応)
比較例2のエーテル化反応として、触媒としてスルホン酸基含有炭素質材料からなる固体酸触媒Aに代えて、スルホン酸基含有炭素質材料からなる固体酸触媒Eを用いた以外は、前記実施例1と同じ条件、操作方法でジイソプロピルエーテルの合成反応を行った。その結果、単位触媒量、単位時間当たりに換算したジイソプロピルエーテルの生成量を表1に示す。
[実施例3]および[比較例3]
(スルホン酸基含有炭素質材料からなる固体酸触媒の調製)
表2に記載した原料、炭化処理およびスルホン化処理条件を用い、それ以外は前記実施例1と同様の操作により、それぞれスルホン酸基含有炭素質材料からなる固体酸触媒C,Fを製造した。なお、原料に使用したノボラック型フェノール樹脂は硬化剤ヘキサメチレンテトラミン8質量%を配合した組成物(大日本インキ化学工業社製フェノライト(登録商標)TD−739A)を使用した。得られたスルホン酸基含有炭素質材料からなる固体酸触媒の酸量を、逆滴定により調べた。結果を表2に示す。
(スルホン酸基含有炭素質材料からなる固体酸触媒の分析)
スルホン酸基含有炭素質材料からなる固体酸触媒C,Fに対して、前記のX線解析、13C−DDMAS核磁気共鳴スペクトル分析、ならびに黒鉛化度測定を実施した。X線解析および13C−DDMAS核磁気共鳴スペクトル分析については実施例1と同様の結果が得られた。また、実施例1と同様の方法でスルホン酸基含有炭素質材料からなる固体酸触媒C,Fの元素分析を行った結果を表2に示す。一方、炭化度測定(ラマン分光分析)においてはスルホン酸基含有炭素質材料からなる固体酸触媒C、Fすなわち原料にノボラック型フェノール樹脂を使用したスルホン酸基含有炭素質材料からなる固体酸触媒には、表2に示すように明確なスペクトルが見られず、炭化度を求めることができなかった。
(水和反応)
触媒としてスルホン酸基含有炭素質材料からなる固体酸触媒Aに代えて、前記実施例3及び比較例3にて得られたスルホン酸基含有炭素質材料からなる固体酸触媒を用いた以外は、前記実施例1と同じ条件、操作方法でそれぞれプロピレンの水和反応を行った。単位触媒量、単位時間当たりに換算したイソプロピルアルコールの生成量を表2に示す。
[比較例4]
(スルホン酸基含有炭素質材料からなる固体酸触媒の調製)
炭化処理条件とスルホン化処理条件を表2に記載した条件にしたほかは、実施例3と同一原料を使ってスルホン酸基含有炭素質材料からなる固体酸触媒Gを製造した。得られたスルホン酸基含有炭素質材料からなる固体酸触媒Gの酸量を、逆滴定により調べた結果は表2に示すように極めて少なかった。
(スルホン酸基含有炭素質材料からなる固体酸触媒の分析)
実施例3と同じ方法でスルホン酸基含有炭素質材料からなる固体酸触媒GのX線解析、13C−DDMAS核磁気共鳴スペクトル分析、ならびに黒鉛化度測定を実施した。X線解析および13C−DDMAS核磁気共鳴スペクトル分析については実施例3と同様の結果が得られた。また、実施例3と同様の方法でスルホン酸基含有炭素質材料からなる固体酸触媒Gの元素分析を行った結果は表2に示すように硫黄分が検出されず、スルホン酸基の導入は認められなかった。一方、炭化度測定(ラマン分光分析)においてはスルホン酸基含有炭素質材料からなる固体酸触媒Gは表2に示すように高い炭化度が認められた。
(水和反応)
表2に示すように極めて高い炭化温度で炭化処理し、次いでスルホン化処理をして製造した比較例4のスルホン酸基含有炭素質材料からなる固体酸触媒Gはオレフィンの水和活性を全く示さなかった。結果を表2に示す。
(クメンヒドロペルオキシドの酸分解反応)
[実施例4および比較例5]
表3に記載した原料、炭化処理およびスルホン化処理条件を用い、それ以外は前記実施例1と同様の操作により、それぞれスルホン酸基含有炭素質材料からなる固体酸触媒H,Iを製造した。Hは本発明の固体酸触媒、Iは比較のための固体酸触媒である。
固体酸触媒H及びIを用いてクメンヒドロペルオキシドを分解しフェノールを生成する酸分解反応を実施した。100ccの三口フラスコにエタノール13.8gとスルホン酸基含有炭素質材料からなる固体酸触媒をそれぞれ0.2gを仕込み、窒素雰囲気下で還流温度(80℃)に加熱・撹拌した。そこへクメンヒドロペルオキシド(含有量88%)15.2gを滴下した。滴下完了から2時間後に反応液を冷却し、LCにより定量分析を行った。その結果を表3に示す。表3からも明らかなように、本発明の固体酸触媒は比較例の固体酸触媒よりも高いフェノール収率を示す。
(酢酸エチルの合成反応)
[実施例5および比較例6]
表3に記載した原料、炭化処理およびスルホン化処理条件を用い、それ以外は前記実施例1と同様の操作により、それぞれスルホン酸基含有炭素質材料からなる固体酸触媒J,Kを製造した。Jは本発明の固体酸触媒、Kは比較のための固体酸触媒である。
内容積100mlのナス型フラスコ中に、エタノールを30ml仕込み、酢酸をアルコールに対してモル比で1/50になるように添加し、スルホン酸基含有炭素質材料を0.20g加えて加熱した。攪拌しながら還流温度(80℃)にて2時間反応させた後、水浴で急冷し、反応を停止した。反応終了後、FID検出器付きガスクロマトグラフにより生成物の定量分析を行った。その結果を同じく表3に示す。表3からも明らかなように、本発明の固体酸触媒は比較例の固体酸触媒よりも高い酢酸エチル収率を示す。
[実施例6]および[比較例7]
(木材からのスルホン酸基含有炭素質材料の製造)
表3に記載した原料、炭化処理およびスルホン化処理条件を用い、それ以外は前記実施例1と同様の操作により、それぞれスルホン酸基含有炭素質材料からなる固体酸触媒LおよびMを製造した。原料として使用したユーカリ粉末の数平均粒径は0.250mmである。得られたスルホン酸基含有炭素質材料の酸量を滴定により調べた結果を表3に示す。
(ブテン−1の水和反応)
500ccのオートクレーブ反応装置に蒸留水45.0g(2.5モル)を仕込み、スルホン酸基含有炭素質材料からなる固体酸触媒Lを4.0g加えて密閉し、ブテン−1を92.5g(1.25モル)封入した。次いで、200rpmで撹拌しながら145℃まで昇温し、窒素により5MPaに圧力調整を行った後、150℃保ったまま7.5時間水和反応を行った。反応終了後は、反応液を冷却してからTCD−GCにより定量分析を行った。その結果、2−ブタノールの単位触媒量、単位時間当たりに換算した生成量は、スルホン酸基含有炭素質材料Lおよびスルホン酸基含有炭素質材料Mを用いた場合で各々0.78mmol/g−cat./hr、0.42mmol/g−cat./hrであった。生成量は各々1.7g、0.9gであった。
[実施例7]
(2−ブタノールの脱水素反応)
実施例6で得られた2−ブタノールの脱水素反応を行った。100ccの撹拌機付きオートクレーブに、その2−ブタノール1.7gと銅亜鉛触媒(アルドリッチ製)0.1gを加え密閉し、次いで、700rpmで撹拌しながら500℃まで昇温し、1時間脱水素反応を行った。反応終了後は、反応液を冷却してからTCD−GCにより定量分析を行い、0.8gのメチルエチルケトンが得られていることを確認した。
以上より、本発明の製造方法によるスルホン酸基含有炭素質材料からなる固体酸触媒は、従来の製造技術によるスルホン酸基を含有する炭素質材料と比較して、固体酸触媒としての活性、すなわち、オレフィンの水和反応やエーテル化反応のような酸触媒反応に対して高い活性を有することが明らかになった。
[Example 1]
(Preparation of solid acid catalyst comprising sulfonic acid group-containing carbonaceous material)
40.0 g of cellulose was heat-treated at 400 ° C. for 4 hours in a nitrogen atmosphere to obtain 11.2 g of carbide. 150 g of concentrated sulfuric acid was added to 3.0 g of this carbide, followed by heat treatment at 150 ° C. for 15 minutes in a nitrogen atmosphere to perform sulfonation. After sulfonation, the black solid was filtered using a glass filter, washed repeatedly with hot water under reflux (about 100 ° C.), and continued until no sulfuric acid was detected in the washing solution. Next, drying was performed to obtain 3.1 g of a solid acid catalyst A made of an amorphous black powder-containing sulfonic acid group-containing carbonaceous material. It was 2.3 mmol / g as a result of investigating the acid amount of the solid acid catalyst which consists of the obtained sulfonic acid group containing carbonaceous material by back titration.
(Analysis of solid acid catalyst)
X-ray analysis of the solid acid catalyst A made of a sulfonic acid group-containing carbonaceous material was performed. For X-ray analysis, measurement was performed using an X-ray diffractometer (MXP18VAHF) manufactured by Mac Science. As a result, no peak capable of specifying the structure was detected from the analysis pattern of the solid acid catalyst made of the obtained sulfonic acid group-containing carbonaceous material, and it was found to be an amorphous substance. Elemental analysis of the solid acid catalyst A made of a sulfonic acid group-containing carbonaceous material was performed. In addition, the elemental analysis was measured using Elementary Vario EL. As a result, 7.0 × 10 −3 sulfur was detected in the S / C ratio in the solid acid catalyst made of the sulfonic acid group-containing carbonaceous material, and it was found that sulfonic acid groups were introduced.
The 13C-DDMAS nuclear magnetic resonance spectrum analysis of the solid acid catalyst A made of a sulfonic acid group-containing carbonaceous material was performed. In this analysis, the measurement was performed using NMR System 400WB manufactured by Varian. As a result, it was confirmed that most of the carbon was derived from aromatics.
The degree of graphitization of the solid acid catalyst A made of a sulfonic acid group-containing carbonaceous material was measured. For the measurement, a Raman spectroscopic analyzer was used. For this analysis, a laser Raman spectroscopic analyzer HOLOLAB5000R was used. At that time, it calculates the integrated intensity ratio of D peak observed around G peak and 1400 cm -1 observed around 1580 cm -1, and the peak intensity ratio D / G and degree of graphitization. As a result, it was confirmed that the degree of graphitization was 0.597.
(Hydration reaction)
A 200 cc autoclave with a stirrer is charged with 9.0 g (0.5 mol) of distilled water and 15.0 g of dioxane (solvent), and 0.20 g of a solid acid catalyst A made of a sulfonic acid group-containing carbonaceous material is added and sealed. 10.5 g (0.25 mol) of propylene was enclosed. Next, the temperature was raised to 120 ° C. while stirring at 700 rpm, the pressure was adjusted to 5 MPa with nitrogen, and a hydration reaction was performed for 2 hours while maintaining 120 ° C. After completion of the reaction, the reaction solution was cooled and then quantitative analysis was performed by TCD-GC. As a result, the amount of isopropyl alcohol converted per unit catalyst amount per unit time was 0.57 mmol / g-cat. / Hr. The results are shown in Table 1.
(Etherification reaction)
A 200 cc autoclave with a stirrer is charged with 15 g (0.25 mol) of isopropyl alcohol, 0.20 g of solid acid catalyst A made of a sulfonic acid group-containing carbonaceous material is added and sealed, and 21.0 g (0. 5 mol) was enclosed. Next, the temperature was raised to 110 ° C. while stirring at 700 rpm, the pressure was adjusted to 5 MPa with nitrogen, and then the etherification reaction was performed for 2 hours while maintaining the temperature at 110 ° C. After completion of the reaction, the reaction solution was cooled, and the product was quantitatively analyzed by TCD-GC. As a result, the amount of unit catalyst and the amount of diisopropyl ether converted per unit time were 1.26 mmol / g-cat. / Hr. The results are shown in Table 1.
[Example 2] and [Comparative Examples 1 and 2]
(Preparation of solid acid catalyst comprising sulfonic acid group-containing carbonaceous material)
Using the raw materials, carbonization treatment conditions and sulfonation treatment conditions described in Table 1, solid acid catalysts B, D, and E each made of a sulfonic acid group-containing carbonaceous material are produced by the same operations as in Example 1 above. did. The cellulose used as the raw material was the same as that used in Example 1. Table 1 shows the results of examining the acid amount of the obtained solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material by back titration.
(Analysis of solid acid catalyst made of sulfonic acid group-containing carbonaceous material)
The X-ray analysis, 13C-DDMAS nuclear magnetic resonance spectrum analysis, and graphitization degree measurement were performed on the solid acid catalysts B, D, and E made of the sulfonic acid group-containing carbonaceous material. The same results as in Example 1 were obtained for X-ray analysis and 13C-DDMAS nuclear magnetic resonance spectrum analysis.
Moreover, the elemental analysis and carbonization degree measurement (Raman spectroscopic analysis) of the solid acid catalyst B, D, and E which consist of a sulfonic acid group containing carbonaceous material were performed by the method similar to Example 1, and the result was shown in Table 1.
(Hydration reaction)
Instead of the solid acid catalyst A comprising a sulfonic acid group-containing carbonaceous material as a catalyst, a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material obtained in Example 2 and Comparative Examples 1 and 2 was used. Were hydrated with propylene under the same conditions and operating procedures as in Example 1. Table 1 shows the amount of isopropyl alcohol converted per unit catalyst amount per unit time.
(Etherification reaction)
As the etherification reaction of Comparative Example 2, the above Example was used except that instead of the solid acid catalyst A comprising a sulfonic acid group-containing carbonaceous material as a catalyst, the solid acid catalyst E comprising a sulfonic acid group-containing carbonaceous material was used. The synthesis reaction of diisopropyl ether was carried out under the same conditions and operating procedures as in 1. As a result, the amount of unit catalyst and the amount of diisopropyl ether produced per unit time are shown in Table 1.
[Example 3] and [Comparative Example 3]
(Preparation of solid acid catalyst comprising sulfonic acid group-containing carbonaceous material)
Using the raw materials, carbonization treatment conditions, and sulfonation treatment conditions described in Table 2, solid acid catalysts C and F made of a sulfonic acid group-containing carbonaceous material were produced in the same manner as in Example 1 except that. In addition, the composition (Phenolite (trademark) TD-739A by Dainippon Ink and Chemicals Inc.) which mix | blended 8 mass% of hardening | curing agents hexamethylenetetramine was used for the novolak-type phenol resin used for the raw material. The acid amount of the obtained solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material was examined by back titration. The results are shown in Table 2.
(Analysis of solid acid catalyst made of sulfonic acid group-containing carbonaceous material)
The X-ray analysis, 13C-DDMAS nuclear magnetic resonance spectrum analysis, and graphitization degree measurement were performed on the solid acid catalysts C and F made of a sulfonic acid group-containing carbonaceous material. The same results as in Example 1 were obtained for X-ray analysis and 13C-DDMAS nuclear magnetic resonance spectrum analysis. Table 2 shows the results of elemental analysis of the solid acid catalysts C and F made of the sulfonic acid group-containing carbonaceous material by the same method as in Example 1. On the other hand, in the carbonization measurement (Raman spectroscopic analysis), the solid acid catalyst C or F made of a sulfonic acid group-containing carbonaceous material, that is, a solid acid catalyst made of a sulfonic acid group-containing carbonaceous material using a novolac type phenol resin as a raw material. As shown in Table 2, no clear spectrum was observed, and the degree of carbonization could not be obtained.
(Hydration reaction)
Instead of the solid acid catalyst A comprising a sulfonic acid group-containing carbonaceous material as a catalyst, except that the solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material obtained in Example 3 and Comparative Example 3 was used, Propylene hydration was carried out under the same conditions and operating method as in Example 1. Table 2 shows the amount of isopropyl alcohol converted per unit catalyst amount per unit time.
[Comparative Example 4]
(Preparation of solid acid catalyst comprising sulfonic acid group-containing carbonaceous material)
A solid acid catalyst G made of a sulfonic acid group-containing carbonaceous material was produced using the same raw materials as in Example 3 except that the carbonization treatment conditions and the sulfonation treatment conditions were changed to the conditions described in Table 2. As shown in Table 2, the acid amount of the obtained solid acid catalyst G composed of the sulfonic acid group-containing carbonaceous material was very small as shown in Table 2.
(Analysis of solid acid catalyst made of sulfonic acid group-containing carbonaceous material)
X-ray analysis, 13C-DDMAS nuclear magnetic resonance spectrum analysis, and graphitization degree measurement of the solid acid catalyst G made of a sulfonic acid group-containing carbonaceous material were performed in the same manner as in Example 3. The same results as in Example 3 were obtained for X-ray analysis and 13C-DDMAS nuclear magnetic resonance spectrum analysis. In addition, as a result of elemental analysis of the solid acid catalyst G made of the sulfonic acid group-containing carbonaceous material by the same method as in Example 3, the sulfur content was not detected as shown in Table 2, and the introduction of the sulfonic acid group was I was not able to admit. On the other hand, in the carbonization measurement (Raman spectroscopic analysis), the solid acid catalyst G made of the sulfonic acid group-containing carbonaceous material showed a high carbonization degree as shown in Table 2.
(Hydration reaction)
As shown in Table 2, the solid acid catalyst G comprising the sulfonic acid group-containing carbonaceous material of Comparative Example 4 produced by carbonization treatment at a very high carbonization temperature and then sulfonation treatment showed no olefin hydration activity. There wasn't. The results are shown in Table 2.
(Acid decomposition reaction of cumene hydroperoxide)
[Example 4 and Comparative Example 5]
Using the raw materials, carbonization treatment conditions, and sulfonation treatment conditions described in Table 3, solid acid catalysts H and I made of a sulfonic acid group-containing carbonaceous material were produced in the same manner as in Example 1 except that. H is the solid acid catalyst of the present invention, and I is a solid acid catalyst for comparison.
The acid decomposition reaction which decomposes | disassembles cumene hydroperoxide and produces | generates a phenol using solid acid catalyst H and I was implemented. A 100 cc three-necked flask was charged with 13.8 g of ethanol and 0.2 g of a solid acid catalyst composed of a sulfonic acid group-containing carbonaceous material, and heated and stirred at a reflux temperature (80 ° C.) in a nitrogen atmosphere. 15.2 g of cumene hydroperoxide (content 88%) was added dropwise thereto. Two hours after the completion of the dropwise addition, the reaction solution was cooled and quantitative analysis was performed by LC. The results are shown in Table 3. As is clear from Table 3, the solid acid catalyst of the present invention exhibits a higher phenol yield than the solid acid catalyst of the comparative example.
(Synthesis reaction of ethyl acetate)
[Example 5 and Comparative Example 6]
Using the raw materials, carbonization treatment conditions, and sulfonation treatment conditions described in Table 3, solid acid catalysts J and K each consisting of a sulfonic acid group-containing carbonaceous material were produced in the same manner as in Example 1 except that. J is the solid acid catalyst of the present invention, and K is a solid acid catalyst for comparison.
In an eggplant-shaped flask having an internal volume of 100 ml, 30 ml of ethanol was charged, acetic acid was added at a molar ratio of 1/50 with respect to alcohol, and 0.20 g of a sulfonic acid group-containing carbonaceous material was added and heated. The mixture was reacted at reflux temperature (80 ° C.) for 2 hours with stirring, and then quenched in a water bath to stop the reaction. After completion of the reaction, the product was quantitatively analyzed by a gas chromatograph equipped with an FID detector. The results are also shown in Table 3. As is apparent from Table 3, the solid acid catalyst of the present invention shows a higher ethyl acetate yield than the solid acid catalyst of the comparative example.
[Example 6] and [Comparative Example 7]
(Manufacture of sulfonic acid group-containing carbonaceous material from wood)
Using the raw materials, carbonization treatment conditions, and sulfonation treatment conditions described in Table 3, solid acid catalysts L and M made of a sulfonic acid group-containing carbonaceous material were produced in the same manner as in Example 1 except that. The number average particle diameter of the eucalyptus powder used as a raw material is 0.250 mm. Table 3 shows the results obtained by measuring the acid amount of the obtained sulfonic acid group-containing carbonaceous material by titration.
(Butene-1 hydration reaction)
A 500 cc autoclave reactor was charged with 45.0 g (2.5 mol) of distilled water, 4.0 g of solid acid catalyst L made of a sulfonic acid group-containing carbonaceous material was added and sealed, and 92.5 g of butene-1 ( 1.25 mol) was enclosed. Next, the temperature was raised to 145 ° C. while stirring at 200 rpm, the pressure was adjusted to 5 MPa with nitrogen, and a hydration reaction was performed for 7.5 hours while maintaining 150 ° C. After completion of the reaction, the reaction solution was cooled and then quantitative analysis was performed by TCD-GC. As a result, the unit catalyst amount of 2-butanol and the amount of product converted per unit time were 0.78 mmol / g- each when the sulfonic acid group-containing carbonaceous material L and the sulfonic acid group-containing carbonaceous material M were used. cat. / Hr, 0.42 mmol / g-cat. / Hr. The amounts produced were 1.7 g and 0.9 g, respectively.
[Example 7]
(Debutation reaction of 2-butanol)
The 2-butanol obtained in Example 6 was dehydrogenated. To a 100 cc autoclave equipped with a stirrer, 1.7 g of 2-butanol and 0.1 g of copper zinc catalyst (manufactured by Aldrich) are added and sealed. Went. After completion of the reaction, the reaction solution was cooled and quantitative analysis was performed by TCD-GC to confirm that 0.8 g of methyl ethyl ketone was obtained.
From the above, the solid acid catalyst comprising the sulfonic acid group-containing carbonaceous material according to the production method of the present invention is more active as a solid acid catalyst than the carbonaceous material containing a sulfonic acid group according to the conventional production technique, that is, It has been revealed that it has high activity for acid-catalyzed reactions such as olefin hydration and etherification reactions.

以上説明したように、本発明によって、オレフィンの水和反応やエーテル化反応あるいはエステル化反応のような酸触媒反応に対して高い活性を有するスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法を提供することが可能となる。また、本発明により木本類あるいは草本類という安価な原料からスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法を提供することが可能となる。その結果、当該製造方法により得られた固体酸触媒を用いることにより、オレフィンの水和反応生成物やエーテル類あるいはエステル類のような酸触媒反応プロセスを用いた生成物の効率良い製造プロセスを提供することが可能となる。また、本発明の固体酸触媒を用いたノルマルブテンの水和反応により効率良く第二ブタノールを製造することが出来、それを脱水素することにより効率良く安価にメチルエチルケトンを製造できる。また、本発明の固体酸触媒はクメンヒドロペルオキシドの酸分解反応によるフェノールの製造にも有効である。

Figure 0005360719
Figure 0005360719
Figure 0005360719
As described above, according to the present invention, the production of a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material having high activity with respect to an acid catalyst reaction such as an olefin hydration reaction, an etherification reaction or an esterification reaction. It becomes possible to provide a method. In addition, according to the present invention, it is possible to provide a method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material from an inexpensive raw material such as woods or herbs. As a result, by using the solid acid catalyst obtained by the production method, an efficient production process of an olefin hydration reaction product or an acid-catalyzed reaction process such as ethers or esters is provided. It becomes possible to do. Further, secondary butanol can be produced efficiently by the hydration reaction of normal butene using the solid acid catalyst of the present invention, and methyl ethyl ketone can be produced efficiently and inexpensively by dehydrogenating it. The solid acid catalyst of the present invention is also effective for the production of phenol by the acid decomposition reaction of cumene hydroperoxide.
Figure 0005360719
Figure 0005360719
Figure 0005360719

Claims (14)

有機物を不活性ガス雰囲気下の加熱による炭化処理及びスルホン化処理することにより得られるスルホン酸基含有炭素質材料からなる固体酸触媒の製造法において、炭化処理を行った後にスルホン化処理を行い、当該炭化処理の温度が300〜600℃、かつスルホン化時間が5分〜150分であることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法。   In the method for producing a solid acid catalyst composed of a sulfonic acid group-containing carbonaceous material obtained by carbonizing and sulfonating an organic substance by heating in an inert gas atmosphere, performing a sulfonation treatment after performing the carbonization treatment, A method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material, wherein the carbonization temperature is 300 to 600 ° C. and the sulfonation time is 5 to 150 minutes. 請求項1に記載のスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法において、スルホン化温度が20〜250℃であることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法。   2. The method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material according to claim 1, wherein the sulfonation temperature is 20 to 250 ° C. Manufacturing method. 請求項1から2に記載のスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法において、スルホン化剤として濃硫酸を用いることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法。   3. The method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material according to claim 1 or 2, wherein concentrated sulfuric acid is used as a sulfonating agent, and the solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material. Manufacturing method. 請求項1から3に記載のスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法において、有機物としてセルロースを用いることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法。   4. A method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material according to claim 1, wherein cellulose is used as the organic substance. . 請求項1から3に記載のスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法において、有機物としてフェノール樹脂を用いることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法。   4. The method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material according to claim 1, wherein a phenol resin is used as the organic substance. Method. 請求項1から3に記載のスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法において、有機物として木本類および/又は草本類を用いることを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法。   In the manufacturing method of the solid acid catalyst which consists of a sulfonic acid group containing carbonaceous material of Claim 1 to 3, woods and / or herbs are used as organic substance, From the sulfonic acid group containing carbonaceous material characterized by the above-mentioned The manufacturing method of the solid acid catalyst which becomes. 請求項1から6に記載のスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法において、当該固体酸触媒のラマン分析値のDピークの積分強度/Gピークの積分強度が0.0〜0.7あるいは該ラマンスペクトルのピークが観測されないことを特徴とするスルホン酸基含有炭素質材料からなる固体酸触媒の製造方法。   In the manufacturing method of the solid acid catalyst which consists of a sulfonic acid group containing carbonaceous material of Claim 1 to 6, the integrated intensity of D peak / G peak integrated intensity of the Raman analysis value of the said solid acid catalyst is 0.0- A method for producing a solid acid catalyst comprising a sulfonic acid group-containing carbonaceous material, wherein 0.7 or the peak of the Raman spectrum is not observed. 請求項1から7に記載の方法により得られた固体酸触媒を用いて、オレフィンの水和反応を行うことを特徴とするオレフィン水和生成物の製造方法。   A method for producing an olefin hydrated product, comprising performing a hydration reaction of an olefin using the solid acid catalyst obtained by the method according to claim 1. 請求項1から7に記載の方法により得られた固体酸触媒を用いて、オレフィンのエーテル化反応を行うことを特徴とするエーテル類の製造方法。   A method for producing ethers, wherein an olefin etherification reaction is carried out using the solid acid catalyst obtained by the method according to claim 1. 請求項1から7に記載の方法により得られた固体酸触媒を用いてアラルキルヒドロペルオキシドの酸分解反応を行うことを特徴とする、アラルキルヒドロペルオキシドからフェノール類を製造する方法。   A method for producing phenols from aralkyl hydroperoxide, wherein an acid decomposition reaction of aralkyl hydroperoxide is performed using the solid acid catalyst obtained by the method according to claim 1. アラルキルヒドロペルオキシドがクメンヒドロペルオキシドであり、フェノール類がフェノールであるところの請求項10記載のフェノール類を製造する方法。   The method for producing a phenol according to claim 10, wherein the aralkyl hydroperoxide is cumene hydroperoxide and the phenol is phenol. 請求項1から7に記載の方法により得られた固体酸触媒を用いて、アルコールおよびカルボン酸をエステル化反応することを特徴とするエステル類の製造方法。   8. A method for producing an ester, comprising subjecting an alcohol and a carboxylic acid to an esterification reaction using the solid acid catalyst obtained by the method according to claim 1. 請求項8により得られたオレフィン水和生成物の脱水素反応を行うことを特徴とするケトン類を製造する方法   A method for producing a ketone, characterized in that a dehydrogenation reaction of the olefin hydrate product obtained according to claim 8 is carried out. オレフィン水和生成物が2−ブタノールであり、ケトン類がメチルエチルケトンである、請求項13記載のケトン類を製造する方法。   The method for producing a ketone according to claim 13, wherein the olefin hydration product is 2-butanol and the ketone is methyl ethyl ketone.
JP2009509268A 2007-03-27 2008-03-26 Method for producing solid acid catalyst comprising sulfonic acid group-containing carbonaceous material and use thereof Expired - Fee Related JP5360719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009509268A JP5360719B2 (en) 2007-03-27 2008-03-26 Method for producing solid acid catalyst comprising sulfonic acid group-containing carbonaceous material and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007082084 2007-03-27
JP2007082084 2007-03-27
JP2009509268A JP5360719B2 (en) 2007-03-27 2008-03-26 Method for producing solid acid catalyst comprising sulfonic acid group-containing carbonaceous material and use thereof
PCT/JP2008/056513 WO2008123530A1 (en) 2007-03-27 2008-03-26 Method for production of solid acid catalyst comprising carbonaceous material having sulfonate group, and use of the solid acid catalyst

Publications (2)

Publication Number Publication Date
JPWO2008123530A1 JPWO2008123530A1 (en) 2010-07-15
JP5360719B2 true JP5360719B2 (en) 2013-12-04

Family

ID=39831007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009509268A Expired - Fee Related JP5360719B2 (en) 2007-03-27 2008-03-26 Method for producing solid acid catalyst comprising sulfonic acid group-containing carbonaceous material and use thereof

Country Status (2)

Country Link
JP (1) JP5360719B2 (en)
WO (1) WO2008123530A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149014A (en) * 2011-01-20 2012-08-09 Dic Corp Method for producing ester using carbon solid acid catalyst
JP6110607B2 (en) * 2012-06-26 2017-04-05 フタムラ化学株式会社 Cellulose-based binder molded solid acid production method
JP6018431B2 (en) * 2012-06-26 2016-11-02 フタムラ化学株式会社 Method for producing granular solid acid
JP6430184B2 (en) * 2013-09-18 2018-11-28 フタムラ化学株式会社 Synthetic resin binder molded solid acid and method for producing the same
CN105013533A (en) * 2015-07-13 2015-11-04 天津师范大学 Cross-linked sulfonated poly-aromatic (sulfur) ether solid acid catalyst and preparation method and application thereof
CN106362804A (en) * 2016-09-21 2017-02-01 华南理工大学 Magnetic carbon-based solid acid catalyst as well as preparation method and application thereof
WO2020218345A1 (en) * 2019-04-22 2020-10-29 パナソニックIpマネジメント株式会社 Functional fluid state determination apparatus and functional fluid state determination system
CA3171435A1 (en) * 2020-03-13 2021-09-16 Hean Luo Inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst and preparation method and use thereof
CN113289659B (en) * 2021-05-25 2023-09-01 西安工程大学 Preparation method and application of sulfonic functional group modified carbon nitride photocatalytic material
CN114669326B (en) * 2022-04-13 2024-05-14 武汉工程大学 Novel magnetic solid acid catalyst and application thereof in extracting saponin from turmeric total saponins
CN115770623B (en) * 2022-12-09 2024-03-29 梧州黄埔化工药业有限公司 Preparation method of ion exchange membrane for camphoresterification reaction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225930A (en) * 1990-04-26 1992-08-14 Mobil Oil Corp Process for producing alcohol or ether by hydration of olefinic material
JPH0782202A (en) * 1993-09-09 1995-03-28 Tosoh Corp Production of ketones
JP2002543052A (en) * 1999-04-22 2002-12-17 モービル・オイル・コーポレイション Production of phenol
WO2005029508A1 (en) * 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof
WO2007032188A1 (en) * 2005-09-16 2007-03-22 Tokyo Institute Of Technology Solid acid catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225930A (en) * 1990-04-26 1992-08-14 Mobil Oil Corp Process for producing alcohol or ether by hydration of olefinic material
JPH0782202A (en) * 1993-09-09 1995-03-28 Tosoh Corp Production of ketones
JP2002543052A (en) * 1999-04-22 2002-12-17 モービル・オイル・コーポレイション Production of phenol
WO2005029508A1 (en) * 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof
WO2007032188A1 (en) * 2005-09-16 2007-03-22 Tokyo Institute Of Technology Solid acid catalyst

Also Published As

Publication number Publication date
WO2008123530A1 (en) 2008-10-16
JPWO2008123530A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5360719B2 (en) Method for producing solid acid catalyst comprising sulfonic acid group-containing carbonaceous material and use thereof
JP5614737B2 (en) Solid acid catalyst containing sulfonic acid group-containing carbonaceous material and method for producing various compounds by reaction using the same
JP5152992B2 (en) Carbon-based solid acid, catalyst comprising the same, and reaction using the same as a catalyst
JP5339453B2 (en) Method for producing sulfonic acid group-containing carbonaceous material, solid acid catalyst, method for producing alkylation reaction product, and method for producing olefin polymer
JP4041409B2 (en) Polycyclic aromatic carbon-based solid strong acid
Konwar et al. Efficient C–C coupling of bio-based furanics and carbonyl compounds to liquid hydrocarbon precursors over lignosulfonate derived acidic carbocatalysts
Sun et al. A porous Brønsted superacid as an efficient and durable solid catalyst
Kanakikodi et al. Catalytic tertiary butylation of phenol over sulfonated mesoporous polymer catalyst (MP-SO3H): Exceptional selectivity towards 2, 4-di-t-Butylphenol
Hasan et al. Liquid-phase dehydration of 1-phenylethanol to styrene over sulfonated D-glucose catalyst
JP2010215473A (en) Method for producing molded article of sulfonic acid group-containing carbonaceous material and application of the same
KR101290024B1 (en) Method for hydration of olefin
JP2012149014A (en) Method for producing ester using carbon solid acid catalyst
Kurniawan et al. Elucidating metal composition–coking relationships and coke formation pathways during gas-phase oxydehydration of glycerol over clay mineral-supported Mo-VO catalysts
CN112264089B (en) SAPO-11 Ni-loaded composite catalyst and preparation method and application thereof
JP2010120784A (en) Method for producing molded article of sulfonic acid group-containing carbonaceous material and application of the same
JP5531312B2 (en) Production method and use of polymer
CN116463140A (en) Method for preparing aviation kerosene by using low-carbon mixed alcohol
CN118439915A (en) Method for converting biomass into triphenyl compound
JP2001513099A (en) Method for producing carboxylic acid
Shen et al. NANOPOROUS CATALYSTS FOR SHAPE-SELECTIVE SYNTHESIS OF SPECIALTY CHEMICALS: A REVIEW OF SYNTHESIS OF 4, 4'-DIALKYLBIPHENYL
CN1680031A (en) Catalytic system for direct oxidizing benzene into phenol with hydrogen peroxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees