JP5353526B2 - Method for controlling lanthanoid concentration in molten steel, method for simultaneously controlling lanthanoid concentration in molten steel and non-metallic inclusion composition in molten steel, and method for processing molten steel - Google Patents
Method for controlling lanthanoid concentration in molten steel, method for simultaneously controlling lanthanoid concentration in molten steel and non-metallic inclusion composition in molten steel, and method for processing molten steel Download PDFInfo
- Publication number
- JP5353526B2 JP5353526B2 JP2009173229A JP2009173229A JP5353526B2 JP 5353526 B2 JP5353526 B2 JP 5353526B2 JP 2009173229 A JP2009173229 A JP 2009173229A JP 2009173229 A JP2009173229 A JP 2009173229A JP 5353526 B2 JP5353526 B2 JP 5353526B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- concentration
- lanthanoid
- ton
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、溶鋼に、La、Ce、Ndなどのランタノイドを添加する処理において、溶鋼中ランタノイドの歩留まりを高位で安定化することによって、溶鋼中ランタノイドの濃度制御性を向上させると同時に、介在物形態制御(本発明では「介在物組成制御」を含む概念であり、以下、単に「介在物制御」ともいう)によって鋳造性を向上させる精錬方法に関する。 The present invention improves the concentration controllability of lanthanoids in molten steel at the same time by stabilizing the yield of lanthanoids in molten steel at a high level in the process of adding lanthanoids such as La, Ce, Nd to the molten steel, and at the same time inclusions The present invention relates to a refining method for improving castability by form control (in the present invention, a concept including “inclusion composition control”, hereinafter also simply referred to as “inclusion control”).
La、Ce、Pr、Ndなどのランタノイド(原子番号57〜71。以下、「LN」という)は、一般に希土類元素(REM)とも呼ばれる。LNは、酸素(O)、硫黄(S)、リン(P)などの軽元素との親和力が強いため、これらの軽元素と鋼中で反応することで、軽元素の鋼材に対する悪影響を低減し、鋼材性能を改善することはよく知られている。 Lanthanoids (atomic numbers 57 to 71, hereinafter referred to as “LN”) such as La, Ce, Pr, and Nd are generally called rare earth elements (REM). LN has a strong affinity for light elements such as oxygen (O), sulfur (S), and phosphorus (P), and thus reacts with these light elements in steel to reduce the adverse effects of light elements on steel materials. It is well known to improve steel performance.
このため、従来からLN添加鋼は広く知られており、その添加方法や添加剤も多数開発されてきた。近年でも、LN添加による優れた性能を有する鋼材とその製造方法が活発に開発されている。 For this reason, LN-added steel has been widely known, and many addition methods and additives have been developed. Even in recent years, steel materials having excellent performance by addition of LN and methods for producing the same have been actively developed.
例えば、特許文献1にはLNを添加した耐溶接割れ性に優れた高張力鋼の製造方法が、特許文献2にはLNとCaを添加した溶接熱影響部の靭性と脆性亀裂停止特性に優れた鋼材とその製造方法が、特許文献3にはREM、Ca、Mgを添加した、熱間圧延時の耐表面割れ性に優れた薄板鋼板が、それぞれ示されている。
For example,
これらの従来技術では、技術課題として、過剰なLNの添加による粗大な硫化物系介在物の生成が共通して挙げられている。この粗大な介在物は、鋼材の靭性や延性の低下を招くため、その生成を抑制する必要がある。 In these prior arts, the generation of coarse sulfide inclusions due to the addition of excess LN is commonly cited as a technical problem. Since this coarse inclusion causes a decrease in the toughness and ductility of the steel material, it is necessary to suppress the generation thereof.
このようなLNの過剰な添加による粗大な介在物の生成を抑制する方法として、鋼中のLN濃度を上限値以下に制御する方法が一般的である。LN濃度の上限濃度は、鋼材の用途や母材の成分によって変化するが、0.02〜0.1質量%とされている。以下、鋼材、溶鉄などの成分組成についての「質量%」を、単に「%」とも表記する。 As a method of suppressing the formation of coarse inclusions due to such excessive addition of LN, a method of controlling the LN concentration in steel to an upper limit value or less is common. The upper limit concentration of the LN concentration varies depending on the use of the steel material and the component of the base material, but is 0.02 to 0.1% by mass. Hereinafter, “mass%” for the component composition of steel, molten iron, etc. is also simply expressed as “%”.
このように、鋼材にLNを添加する場合には、粗大な介在物の生成が課題とされているが、さらに生産性の課題があった。LNを添加すると生成する硫化物系介在物は、鋳片の鋳造時に取鍋または浸漬ノズルの閉塞を引き起こす。そのため、この介在物が生成すると、連続鋳造が不能となり、鋳造性が低下し、生産性が劣化することがある。 As described above, when LN is added to a steel material, generation of coarse inclusions is a problem, but there is a further problem of productivity. Sulfide inclusions produced when LN is added cause clogging of the ladle or immersion nozzle during casting of the slab. Therefore, when this inclusion is generated, continuous casting becomes impossible, castability is lowered, and productivity may be deteriorated.
このような浸漬ノズルの閉塞による鋳造性の低下を回避する技術も多数考案されている。例えば、特許文献4には酸化物介在物の低減、特許文献5には硫化物介在物の低減によるノズル閉塞の回避方法が、それぞれ示されている。 A number of techniques have been devised for avoiding such deterioration of castability due to the clogging of the immersion nozzle. For example, Patent Document 4 discloses a method for avoiding nozzle clogging by reducing oxide inclusions and Patent Document 5 by reducing sulfide inclusions.
このように、LNは製品(鋼材)の性能向上に有効な元素である一方で、その使用方法が不適当であると、生成した粗大介在物による製品の性能劣化や、鋳造性の低下による生産性の劣化といった問題を起こす元素でもある。そして、これまでに、これらの問題を回避する技術も多数提案されてきた。 As described above, LN is an element effective for improving the performance of a product (steel), but if its usage is inappropriate, the product is deteriorated due to the coarse inclusions produced or produced due to a decrease in castability. It is also an element that causes problems such as deterioration of sex. Many techniques for avoiding these problems have been proposed.
しかし、製品において、高LN濃度を要求される場合や、生産性の向上による安価な製造を要求される場合には、従来技術では十分に対応できないことがあった。 However, when a high LN concentration is required for a product, or when inexpensive production due to an improvement in productivity is required, the conventional technology may not be able to cope with it sufficiently.
例えば、鋼中のLN濃度をある上限値以下とする技術は、その濃度を超えたLN濃度が要求される鋼には適用できない。 For example, the technique of setting the LN concentration in steel to a certain upper limit value or less cannot be applied to steel that requires an LN concentration exceeding that concentration.
特許文献5に示される技術では、LNの添加前に溶鋼中のO濃度、S濃度を制御する処理が必要であり、さらに、これらの濃度をLNの添加前に測定しておく必要もあり、コストと生産性の面で限界があった。 In the technique shown in Patent Document 5, it is necessary to control O concentration and S concentration in molten steel before addition of LN, and it is also necessary to measure these concentrations before addition of LN. There were limits in terms of cost and productivity.
また、特許文献2では、LNとCa、Zrなどの添加順序について検討されているものの、記載されている技術はLNの上限濃度を制御する技術であるため、添加順序の詳細については示されていない。一般に、LNとそれ以外の元素とは分けて溶鋼に添加することが多く、特許文献2の実施例でも、例えばREMとCaを同時に添加した例は示されていない。このような元素の分割添加は、総処理時間の延長と溶鋼温度の低下を招き、製品の生産性を大幅に向上させることは難しかった。
Further, in
さらに、上記の介在物や生産性の課題に加えて、溶鋼処理の精度にも課題があった。先に述べたように、LNは、O、Sなどの軽元素との強い親和力を有するために、溶鋼に添加した際に、O、Sと反応してLNの酸化物、硫化物、硫酸化物などの介在物を形成する。この結果、溶鋼中のLN濃度が低下するが、この低下分は溶鋼中のO濃度、S濃度および両者のバランスによって変化する。換言すると、LNの歩留まりは変動しやすく不安定であり、高い精度で溶鋼を処理することは困難である。このため、溶鋼中のLN濃度やO濃度、S濃度を管理する従来技術では、歩留まりの安定性が十分とは言えなかった。 Furthermore, in addition to the above-mentioned inclusions and productivity problems, there is also a problem in the accuracy of molten steel processing. As described above, LN has a strong affinity with light elements such as O and S, so when added to molten steel, it reacts with O and S to react with oxides, sulfides, and sulfates of LN. To form inclusions. As a result, the LN concentration in the molten steel decreases, but this decrease varies depending on the O concentration, S concentration in the molten steel, and the balance between the two. In other words, the yield of LN tends to fluctuate and is unstable, and it is difficult to process molten steel with high accuracy. For this reason, the conventional technology that manages the LN concentration, O concentration, and S concentration in molten steel has not been sufficient in yield stability.
LNの歩留まりの不安定化は、溶鋼中のLN濃度の不安定化を引き起こし、その結果、介在物制御の精度も低下するため、鋼材の性能にまで影響することがあった。 The destabilization of the yield of LN causes the destabilization of the LN concentration in the molten steel, and as a result, the accuracy of inclusion control is also lowered, which may affect the performance of the steel material.
以上の従来技術の課題を鑑みて、本発明は、LNの歩留まりと介在物制御の精度とを向上させ、安定化させる溶鋼の処理方法を提供することを目的とした。また、本発明では、従来から許容されていたLN濃度の上限をより高め、生産性を改善することも併せて目的とした。 In view of the above-described problems of the prior art, an object of the present invention is to provide a molten steel processing method that improves and stabilizes the yield of LN and the accuracy of inclusion control. Another object of the present invention is to improve the productivity by further increasing the upper limit of the LN concentration that has been conventionally allowed.
本発明者らは、上記の課題を解決するために、LN添加時の脱酸、脱硫反応および介在物組成の変化の調査・解析を行い、下記の(a)〜(d)の知見を得て、本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors have investigated and analyzed deoxidation, desulfurization reaction and inclusion composition change at the time of LN addition, and obtained the following findings (a) to (d). Thus, the present invention has been completed.
(a)対象溶鉄のS、O濃度の適正範囲
S:0.005%以下
硫黄(以下、単に「S」とも記す)は、溶鉄中においてその濃度が0.005%を超えて高くなると、LN濃度によらず硫化物の生成量が多くなる。また、Sは、LNと同様に、Caとも強い親和力を有するため、CaSの生成量が増加し、後述するCa濃度の増加を妨げる。そこで、S濃度の適正範囲を0.005%以下とした。
(A) Appropriate range of S and O concentration of target molten iron S: 0.005% or less Sulfur (hereinafter also simply referred to as “S”) is LN when its concentration exceeds 0.005% in molten iron. The amount of sulfide generated increases regardless of the concentration. S, like LN, also has a strong affinity for Ca, so the amount of CaS produced increases, preventing an increase in Ca concentration, which will be described later. Therefore, the appropriate range of S concentration is set to 0.005% or less.
O(酸素):0.005%以下
酸素(以下、単に「O」とも記す)も、溶鉄中においてその濃度が0.005%を超えて高くなると、LN濃度によらず酸化物の生成量が多くなる。Oは、LNと同様に、Caとも強い親和力を有するため、CaOの生成量が増加し、後述するCa濃度の増加を妨げる。そこで、O濃度の適正範囲を0.005%以下とした。
O (oxygen): 0.005% or less Oxygen (hereinafter, also simply referred to as “O”) increases the amount of oxide produced in molten iron exceeding 0.005%, regardless of the LN concentration. Become more. O, like LN, has a strong affinity with Ca, so the amount of CaO produced increases and prevents an increase in Ca concentration, which will be described later. Therefore, the appropriate range of O concentration is set to 0.005% or less.
(b)LNの歩留まりの不安定性の改善(LNとCaの混合比の下限)
LNの歩留まりの不安定化の要因は、LNと溶鋼中のS、Oとの反応に起因する。そのため、LNの歩留まりの不安定性を改善するには、S、Oとの反応を抑制すればよい。この方法として、以下の二つの方法が考えられる。
(B) Improvement of LN yield instability (lower limit of mixing ratio of LN and Ca)
The factor of destabilizing the yield of LN is due to the reaction between LN and S and O in the molten steel. Therefore, in order to improve the instability of the yield of LN, the reaction with S and O may be suppressed. The following two methods can be considered as this method.
第一の方法は、溶鉄中のS、Oを十分に低減するか、溶鉄中のS濃度、O濃度に応じてLNの添加量またはLN濃度を調整する方法であり、物質収支的に反応を抑制する方法である。この方法は、主に従来技術で用いられる方法である。 The first method is a method of sufficiently reducing S and O in molten iron, or adjusting the addition amount of LN or LN concentration according to the S concentration and O concentration in molten iron, and reacts in a material balance. It is a method of suppressing. This method is a method mainly used in the prior art.
第二の方法は、化学反応を用いて、O、SとLNとの反応を抑制する方法である。具体的には、溶鉄の温度を調整する方法や、LN−O間、LN−S間の親和力よりも強いOおよびSとの親和力を有する、LNとは別の元素(以下、「別元素」ともいう)やフラックスを添加する方法などがある。前者の溶鉄の温度調整は工業的に不可能に近く、後者のうち、フラックスの添加は安定性が期待できる一方で、反応速度が遅く生産性に劣る可能性が懸念される。そこで、後者のうち、別元素を添加する方法を検討することとした。 The second method is a method of suppressing the reaction between O, S and LN using a chemical reaction. Specifically, a method of adjusting the temperature of the molten iron, an element different from LN having an affinity for O and S that is stronger than the affinity between LN-O and LN-S (hereinafter referred to as “different element”) Or a method of adding flux. Temperature control of the former molten iron is almost impossible industrially. Among the latter, addition of flux can be expected to be stable, but there is a concern that the reaction rate is slow and the productivity is poor. Therefore, it was decided to study a method of adding another element among the latter.
熱力学データの観点から、別元素としての候補としては、Ba、Mg、Caなどのアルカリ土類金属やZrなど多数の元素が挙げられる。本発明では、このうち最も安価なCaを選択した。ただし、Caは、沸点が溶鋼処理温度より低いため、それ自体の歩留まりが不安定という課題がある。 From the viewpoint of thermodynamic data, candidates for different elements include alkaline earth metals such as Ba, Mg, and Ca, and numerous elements such as Zr. In the present invention, the cheapest Ca is selected. However, since Ca has a boiling point lower than the molten steel processing temperature, there is a problem that its own yield is unstable.
次に、生産性の観点からは、LNとCaは別に溶鉄に添加するよりも、同時に添加することが望ましい。LNとCaのそれぞれが、歩留まりが高く安定しており、かつ一方の元素の反応が他の元素の反応に影響しないような一般的な元素であれば、その目標濃度に応じて両者を混合し、一括で添加するのは容易である。 Next, from the viewpoint of productivity, it is preferable to add LN and Ca simultaneously rather than separately adding them to the molten iron. If each of LN and Ca is a general element that has a high yield and is stable and the reaction of one element does not affect the reaction of the other element, the two are mixed according to the target concentration. It is easy to add all at once.
しかし、実際にはLNとCaは、両者とも歩留まりが不安定であり、かつ、両者の反応が相互に影響しあう元素であるため、一括で添加するのは容易ではない。特に、LNの歩留まりが不安定である原因はLNとO、Sとの反応であるのに対し、Caの歩留まりが不安定である要因はCaとO、Sとの反応に加えて蒸発がある。さらに、LNとO、Sとの反応が進行すれば、O、Sと反応するCaの挙動も変化し、その逆、すなわちCaとO、Sとの反応の進行によるO、Sと反応するLNの挙動の変化も発生する。 However, since LN and Ca are both elements whose yields are unstable and the reactions of the two influence each other, it is not easy to add them all at once. In particular, the cause of unstable LN yield is the reaction between LN and O, S, whereas the cause of unstable Ca yield is evaporation in addition to the reaction between Ca, O, and S. . Further, if the reaction between LN and O, S proceeds, the behavior of Ca reacting with O, S also changes, and conversely, that is, LN reacting with O, S due to the progress of the reaction between Ca, O, and S. Changes in the behavior also occur.
故に、LNとCaは、一般的な元素と同じように目的濃度に応じて単純に混合して一括添加することはできない。 Therefore, LN and Ca cannot be simply mixed and added together according to the target concentration in the same manner as general elements.
そこで、本発明者らは、LNとCaとの混合比の影響を実験的に調査・解析した。実験は以下の方法で行った。S、Oの濃度をそれぞれ0.005%以下に調整した溶鋼15kgにLNとCaを混合して添加する実験を行い、溶鋼成分と介在物成分を調査した。溶鋼温度は1848〜1898Kとした。本実験ではLNとして、金属La、金属Ce、金属Nd、ミッシュメタルを用い、CaとしてCa純分33%のCaSi合金を用いた。また、LNの添加量(溶鋼1tonあたり)は0.1kg/ton以上1.5kg/ton以下、Caの添加量(溶鋼1tonあたり)はCa純分で0.1kg/ton以上1.0kg/ton以下とした。 Therefore, the inventors experimentally investigated and analyzed the influence of the mixing ratio of LN and Ca. The experiment was performed as follows. An experiment was conducted in which LN and Ca were mixed and added to 15 kg of molten steel in which the concentrations of S and O were adjusted to 0.005% or less, respectively, and the molten steel components and inclusion components were investigated. Molten steel temperature was 1848-1898K. In this experiment, metal La, metal Ce, metal Nd, and misch metal were used as LN, and a CaSi alloy having a pure Ca content of 33% was used as Ca. The addition amount of LN (per 1 ton of molten steel) is 0.1 kg / ton or more and 1.5 kg / ton or less, and the addition amount of Ca (per 1 ton of molten steel) is 0.1 kg / ton or more and 1.0 kg / ton in terms of pure Ca. It was as follows.
LNとCaを所定比に調整して事前によく混合した後、鉄箔に包んで溶鋼に一括で添加した後、溶鋼サンプルを採取し、急冷後に溶鋼組成と介在物組成を定量した。介在物の組成はSEM−EPMAにより測定した。 LN and Ca were adjusted to a predetermined ratio and mixed well in advance, then wrapped in iron foil and added to the molten steel at once, then a molten steel sample was taken, and after quenching, the molten steel composition and the inclusion composition were quantified. The composition of inclusions was measured by SEM-EPMA.
(b)−1.Ca/LN混合比の下限について(LN歩留まり基準)
LNとして金属Ndを用いた実験結果について説明する。上記の添加量のLN(Nd)およびCaの添加により、溶鋼中のNd濃度は0.03%〜0.17%、溶鋼中のCa濃度は0.0015%〜0.0045%となった。この実験結果の一例を図1に示す。
(B) -1. About lower limit of Ca / LN mixture ratio (LN yield standard)
An experimental result using metal Nd as LN will be described. By the addition of LN (Nd) and Ca in the above amounts, the Nd concentration in the molten steel was 0.03% to 0.17%, and the Ca concentration in the molten steel was 0.0015% to 0.0045%. An example of the experimental results is shown in FIG.
図1は、Ca/Nd混合比とNd歩留まりの関係を示すグラフである。図1において、Ca/Nd混合比=0は、CaSiを混合せずNdのみを添加した実験結果である。図1から、Ca/Nd混合比が0.16未満では、Nd歩留まりは低位であることに加えて不安定であることが解る。しかし、Ca/Nd混合比が0.16以上となると、Nd歩留まりが向上すると同時に安定する。さらに、Ca/Nd混合比が0.31以上となると、さらにNd歩留まりが安定する。 FIG. 1 is a graph showing the relationship between the Ca / Nd mixture ratio and the Nd yield. In FIG. 1, Ca / Nd mixture ratio = 0 is an experimental result in which only Nd is added without mixing CaSi. As can be seen from FIG. 1, when the Ca / Nd mixture ratio is less than 0.16, the Nd yield is low and unstable. However, when the Ca / Nd mixture ratio is 0.16 or more, the Nd yield is improved and stabilized. Furthermore, when the Ca / Nd mixture ratio is 0.31 or more, the Nd yield is further stabilized.
Ce、La、ミッシュメタルでも、Ndと同様の結果が得られたことから、Ca/LN混合比を0.16以上とすることで、溶鋼中のS、O濃度が0.005以下であれば溶鋼中のS、O濃度、LN添加量によらずLN歩留まりを安定させることができ、その結果、LN濃度の制御精度が向上することが解る。また、Ca/LN混合比を0.31以上とすると、さらにLN歩留まりを安定させる効果が高まる。 Since the same result as Nd was obtained with Ce, La, and Misch metal, if the S / O concentration in the molten steel is 0.005 or less by setting the Ca / LN mixing ratio to 0.16 or more, It can be seen that the LN yield can be stabilized regardless of the S, O concentration and LN addition amount in the molten steel, and as a result, the control accuracy of the LN concentration is improved. When the Ca / LN mixture ratio is 0.31 or more, the effect of further stabilizing the LN yield is enhanced.
(b)−2.Ca/LN混合比の下限について(介在物組成基準)
上記のLNとして金属Ndを添加した溶鋼について介在物の組成分析を行い、介在物中Ca/Ndモル比の測定を行った。
(B) -2. About lower limit of Ca / LN mixing ratio (inclusion composition standard)
The composition analysis of inclusions was performed on the molten steel to which metal Nd was added as the above LN, and the Ca / Nd molar ratio in the inclusions was measured.
図2は、介在物の組成分析結果の一例であり、Ca/Nd混合比と介在物中Ca/Ndモル比の関係を示すグラフである。介在物の組成(介在物中Ca/Ndモル比)は、Ca/Nd混合比に対して、前記図1に示したNd歩留まりと同様の傾向を示した。しかし、Ca/Nd混合比の絶対値はやや異なっており、Ca/Nd混合比が0.23以上では介在物が低融点のCa系介在物に改質されており、浸漬ノズルの閉塞が生じにくく、鋳造性が改善される。Ca/Nd混合比が0.31以上では、さらに鋳造性改善の効果が安定する。 FIG. 2 is an example of the composition analysis result of inclusions, and is a graph showing the relationship between the Ca / Nd mixture ratio and the Ca / Nd molar ratio in inclusions. The composition of inclusions (Ca / Nd molar ratio in inclusions) showed the same tendency as the Nd yield shown in FIG. 1 with respect to the Ca / Nd mixture ratio. However, the absolute value of the Ca / Nd mixing ratio is slightly different. When the Ca / Nd mixing ratio is 0.23 or more, the inclusion is modified to a Ca-based inclusion having a low melting point, and the immersion nozzle is clogged. It is difficult and castability is improved. When the Ca / Nd mixing ratio is 0.31 or more, the effect of improving castability is further stabilized.
Ce、La、ミッシュメタルでも同様の結果が得られたことから、鋳造性改善を図る介在物制御を安定的に行うには、Ca/LN混合比を0.23以上とする必要があり、Ca/LN混合比を0.31以上とすることでさらに鋳造性改善の効果が安定する。 Since the same result was obtained with Ce, La, and Misch metal, the Ca / LN mixture ratio must be 0.23 or more in order to stably perform inclusion control for improving castability. The effect of improving castability is further stabilized by setting the / LN mixing ratio to 0.31 or more.
(b)−3.CaとLNの混合比の2種類の下限の理由について
以上のように、Ca/LN混合比には、LN歩留まりを基準にすると0.16、介在物組成を基準にすると0.23という、二つの下限が存在するが、この理由は以下のように推定される。
(B) -3. Reasons for the two lower limits of the mixing ratio of Ca and LN As described above, the Ca / LN mixing ratio is 0.16 based on the LN yield and 0.23 based on the inclusion composition. There are two lower bounds, and this reason is estimated as follows.
LNとCaは、溶鋼中のO、Sと競合的に反応する。例えば、その反応は、LN−O脱酸平衡、Ca−O脱酸平衡により支配される。CaがLNに対して相対的に不足すると、LNとOの反応(LN−O反応)が主導的になり、LNが酸化反応で消費される。このLN消費量は、LN添加量や溶鋼中O濃度によって変化する。 LN and Ca react competitively with O and S in molten steel. For example, the reaction is governed by LN-O deoxidation equilibrium, Ca-O deacidification equilibrium. If Ca is relatively insufficient with respect to LN, the reaction between LN and O (LN-O reaction) becomes dominant, and LN is consumed in the oxidation reaction. This LN consumption varies depending on the LN addition amount and the O concentration in the molten steel.
一方、CaがLNに対して相対的に過剰になれば、CaとOとの反応(Ca−O反応)が主導的になるため、LNは酸化反応による消費がなくなる。また、酸化反応の結果として生じる介在物も、LN系からCa系へと変化する。このLN歩留まりでの不足と過剰との境界のCa/LN混合比は0.16、介在物制御での境界Ca/LN混合比が0.23と考えられる。 On the other hand, if Ca is excessive relative to LN, the reaction between Ca and O (Ca—O reaction) becomes dominant, and LN is not consumed by the oxidation reaction. In addition, inclusions generated as a result of the oxidation reaction also change from the LN system to the Ca system. It is considered that the Ca / LN mixture ratio at the boundary between the shortage and excess of the LN yield is 0.16, and the boundary Ca / LN mixture ratio in the inclusion control is 0.23.
また、LN歩留まりを基準とした場合と、介在物制御を基準とした場合とで、境界Ca/LN混合比の下限の絶対値が異なる理由は、以下のように考えられる。介在物中の酸化物成分の活量は1以下であるため、溶鋼中の脱酸平衡よりも、溶鋼中のLNまたはCaの活量を高位とする必要がある。このため、介在物制御の境界Ca/LN混合比が、LN歩留まりの境界Ca/LN混合比よりも大きくなると考えられる。また、介在物も溶鋼も同一の平衡反応に従うことで安定するため、より安定な境界Ca/LN混合比は、両者で同一の値である0.31を示したと考えられる。 Further, the reason why the absolute value of the lower limit of the boundary Ca / LN mixture ratio is different between the case where the LN yield is used as a reference and the case where the inclusion control is used as a reference is considered as follows. Since the activity of the oxide component in the inclusion is 1 or less, the activity of LN or Ca in the molten steel needs to be higher than the deoxidation equilibrium in the molten steel. For this reason, it is considered that the boundary Ca / LN mixture ratio for inclusion control is larger than the boundary Ca / LN mixture ratio for LN yield. Moreover, since inclusions and molten steel are stabilized by following the same equilibrium reaction, it is considered that the more stable boundary Ca / LN mixing ratio showed 0.31 which is the same value in both cases.
(c)LNとCaの混合比上限について
次にCa/LN混合比の上限について説明する。LNの歩留まりの高位での安定化や、介在物形態制御といった目的を達成するためのCa/LN混合比の下限は前述の通りであり、前記図1および前記図2から解るように、Ca/LN混合比を下限値以上に大きくしても、本実験範囲内においては効果に変化が生じない。
(C) About the upper limit of the mixing ratio of LN and Ca Next, the upper limit of the mixing ratio of Ca / LN will be described. The lower limit of the Ca / LN mixture ratio for achieving the purpose of stabilizing the yield of LN at a high level and controlling the form of inclusions is as described above. As can be seen from FIG. 1 and FIG. Even if the LN mixing ratio is increased beyond the lower limit, the effect does not change within the experimental range.
しかし、図1および図2を詳細に検討すると、Ca/Nd混合比が1を超えて大きくなると、Nd歩留まりと介在物中Ca/Ndモル比の変動幅が大きくなっていること、すなわちNd歩留まりおよび介在物中Ca/Ndモル比が不安定となっていることが解る。これは、CaがLNに対して過剰に高濃度となるため、LNの活量の変化または飽和酸素濃度の増加が顕在化することによって発生していると考えられる。この不安定さを回避するために、Ca/LN混合比は1以下である必要がある。 However, when FIG. 1 and FIG. 2 are examined in detail, when the Ca / Nd mixture ratio exceeds 1, the Nd yield and the fluctuation range of the Ca / Nd molar ratio in the inclusion increase, that is, the Nd yield. It can also be seen that the Ca / Nd molar ratio in the inclusion is unstable. This is considered to be caused by the fact that the change in the activity of LN or the increase in the saturated oxygen concentration becomes apparent because Ca has an excessively high concentration relative to LN. In order to avoid this instability, the Ca / LN mixing ratio needs to be 1 or less.
(d)Caの添加速度について
次に、Caの添加速度の影響について説明する。前述したように、Ca濃度の不安定化の一因として、Caの溶鋼からの蒸発反応がある。したがって、溶鋼中のCa濃度は、Caの蒸発も考慮することでさらに安定性が向上すると考えた。
(D) About the addition rate of Ca Next, the influence of the addition rate of Ca is demonstrated. As described above, as a cause of destabilization of the Ca concentration, there is an evaporation reaction of Ca from molten steel. Therefore, it was considered that the Ca concentration in the molten steel was further improved by considering the evaporation of Ca.
そこで、Ca純分の溶鋼への添加速度(単位:kg/(ton・min))を変化させて、介在物組成への影響を調査した。実験条件は、S、Oの濃度をそれぞれ0.005%以下とした溶鋼成分に加えて、Ca/Nd混合比=0.4、溶鋼へのNd添加量を0.5〜1.5kg/tonとした。溶鋼中のNd濃度は、0.04〜0.14%となった。 Therefore, the effect on the inclusion composition was investigated by changing the rate of addition of pure Ca to the molten steel (unit: kg / (ton · min)). The experimental conditions were as follows: in addition to the molten steel components with S and O concentrations of 0.005% or less, the Ca / Nd mixing ratio was 0.4, and the Nd addition amount to the molten steel was 0.5 to 1.5 kg / ton. It was. The Nd concentration in the molten steel was 0.04 to 0.14%.
図3は、実験で得られた介在物中Ca/Ndモル比とCa純分添加速度の関係を示すグラフである。Ca/LN混合比(この場合、Ca/Nd混合比)が前記(b)および(c)で述べた下限および上限で規定される値を満足している。そのため、図3に示すように、平均介在物中Ca/Ndモル比は、本実験を行ったCa純分添加速度の全範囲にわたって高位に安定している。しかし、図3において、Ca純分添加速度が小さい側と大きい側では介在物組成の分布が広くなっており、介在物制御の精度が低下していることが解る。そして、介在物組成の分布が狭い範囲では、Ca純分添加速度が0.01kg/(ton・min)以上0.06kg/(ton・min)以下であることが解る。 FIG. 3 is a graph showing the relationship between the Ca / Nd molar ratio in inclusions and the Ca pure addition rate obtained in the experiment. The Ca / LN mixing ratio (in this case, the Ca / Nd mixing ratio) satisfies the values specified by the lower and upper limits described in (b) and (c) above. Therefore, as shown in FIG. 3, the Ca / Nd molar ratio in the average inclusion is stable at a high level over the entire range of the Ca pure addition rate in which this experiment was performed. However, in FIG. 3, it can be seen that the inclusion composition distribution is wide on the side where the Ca pure addition rate is low and the side where it is large, and the accuracy of inclusion control is reduced. And in the range where the distribution of inclusion composition is narrow, it can be seen that the addition rate of pure Ca is 0.01 kg / (ton · min) or more and 0.06 kg / (ton · min) or less.
この溶鋼中Ca濃度の安定性のCa純分添加速度依存性は、以下の理由により生じていると推定される。Ca純分添加速度が過小の場合、蒸発速度が添加速度を上回るため、添加中の溶鋼中Ca濃度を安定的に保持できない。このため、介在物組成の分布が広くなる。 It is presumed that the stability of the Ca concentration in molten steel depends on the pure Ca addition rate for the following reasons. When the Ca pure addition rate is too low, the evaporation rate exceeds the addition rate, so the Ca concentration in the molten steel during addition cannot be stably maintained. For this reason, the distribution of inclusion composition becomes wide.
逆に、Ca純分添加速度が過大の場合、蒸発速度を添加速度が上回るため、Caを添加中の溶鋼中Ca濃度が非常に高く保持されるものの、添加時間が短くなる。この結果、Caを添加中の溶鋼中のCa濃度が高かったことに起因する高Ca濃度介在物と、添加時間が短く反応時間が短くなったことに起因する低Ca濃度介在物とが生成するため、介在物組成の分布が広くなる。 Conversely, when the Ca pure addition rate is excessive, the addition rate exceeds the evaporation rate, so the Ca concentration in the molten steel during addition of Ca is kept very high, but the addition time is shortened. As a result, a high Ca concentration inclusion resulting from a high Ca concentration in the molten steel during the addition of Ca and a low Ca concentration inclusion resulting from a short addition time and a short reaction time are generated. Therefore, the distribution of inclusion composition is widened.
本発明は、以上の知見に基づいてなされたものであり、その要旨は下記(1)に示す溶鋼中ランタノイド濃度の制御方法、(2)に示す溶鋼中ランタノイド濃度と溶鋼中非金属介在物組成の同時制御方法、および(3)に示す溶鋼の処理方法にある。 The present invention has been made on the basis of the above findings, the gist of which is the following (1) method for controlling the lanthanoid concentration in molten steel, and (2) the lanthanoid concentration in molten steel and the nonmetallic inclusion composition in molten steel. Are the simultaneous control method and the molten steel treatment method shown in (3).
(1)質量%で、S:0.005%以下、およびO(酸素):0.005%以下を含有する溶鋼に0.1kg/ton以上1.5kg/ton以下のランタノイドと0.1kg/ton以上1.0kg/ton以下のCaとを同時に添加する溶鋼の処理方法において、ランタノイドとCaの混合比(Ca/ランタノイド)を質量比で0.16以上1.0以下とすることを特徴とする溶鋼中ランタノイド濃度の制御方法。 (1) A molten steel containing, by mass%, S: 0.005% or less and O (oxygen): 0.005% or less and a lanthanoid of 0.1 kg / ton to 1.5 kg / ton and 0.1 kg / ton In the molten steel processing method of simultaneously adding ton and 1.0 kg / ton or less of Ca, the mixing ratio of lanthanoid and Ca (Ca / lanthanoid) is 0.16 to 1.0 in terms of mass ratio. To control lanthanide concentration in molten steel.
(2)質量%で、S:0.005%以下、およびO(酸素):0.005%以下を含有する溶鋼に0.1kg/ton以上1.5kg/ton以下のランタノイドと0.1kg/ton以上1.0kg/ton以下のCaとを同時に添加する溶鋼の処理方法において、ランタノイドとCaの混合比(Ca/ランタノイド)を質量比で0.23以上1.0以下とすることを特徴とする溶鋼中ランタノイド濃度と溶鋼中非金属介在物形態の同時制御方法。
(2) In a molten steel containing, by mass%, S: 0.005% or less and O (oxygen): 0.005% or less, a lanthanoid of 0.1 kg / ton to 1.5 kg / ton and 0.1 kg / ton In the method for treating molten steel in which Ca of ton and 1.0 kg / ton or less is simultaneously added, the mixing ratio of lanthanoid and Ca (Ca / lanthanoid) is 0.23 or more and 1.0 or less by mass ratio. Method for simultaneous control of lanthanoid concentration in molten steel and non-metallic inclusion morphology in molten steel.
(3)ランタノイドとCaを同時かつ連続的に溶鋼に添加する処理において、Ca純分の添加速度を0.01kg/(ton・min)以上0.06kg/(ton・min)以下とすることを特徴とする前記(1)または(2)に記載の溶鋼の処理方法。 (3) In the process of adding lanthanoid and Ca simultaneously and continuously to the molten steel, the addition rate of pure Ca should be 0.01 kg / (ton · min) or more and 0.06 kg / (ton · min) or less. The method for treating molten steel as described in (1) or (2) above,
本発明の溶鋼中ランタノイド濃度の制御方法によれば、Ca/LN混合比を0.16以上1.0以下とすることにより、LNの歩留まりを高位に安定させることができる。本発明の溶鋼中ランタノイド濃度と溶鋼中非金属介在物形の同時制御方法によれば、Ca/LN混合比を0.23以上1.0以下とすることにより、非金属介在物組成を安定的に精度よく制御することができる。さらに、Ca純分添加速度を0.01kg/(ton・min)以上0.06kg・(ton/min)以下とすることで、介在物組成の制御性をさらに向上させることができる。 According to the method for controlling the lanthanoid concentration in molten steel of the present invention, the yield of LN can be stabilized at a high level by setting the Ca / LN mixing ratio to 0.16 or more and 1.0 or less. According to the simultaneous control method of the lanthanoid concentration in molten steel and the nonmetallic inclusion type in molten steel according to the present invention, the nonmetallic inclusion composition is stabilized by setting the Ca / LN mixing ratio to 0.23 or more and 1.0 or less. Can be controlled accurately. Furthermore, the controllability of the inclusion composition can be further improved by setting the Ca pure component addition rate to 0.01 kg / (ton · min) or more and 0.06 kg · (ton / min) or less.
また、本発明は、0.1%以上のLN濃度でも対応することが可能であり、製造製品の品種の増加に寄与する。それとともに、CaとLNの添加を別処理ではなく同一処理で行うことによる、生産性向上を図ることができる。 Further, the present invention can cope with an LN concentration of 0.1% or more, and contributes to an increase in the variety of manufactured products. At the same time, productivity can be improved by adding Ca and LN in the same process instead of separate processes.
本発明の実施形態について、転炉と連続鋳造機を用いて実施する場合を例に説明する。初めに、溶鋼の組成について説明する。 The embodiment of the present invention will be described by taking as an example a case of using a converter and a continuous casting machine. First, the composition of the molten steel will be described.
(a)溶鋼組成
(a)−1.S、O成分の濃度の好適範囲
本発明の方法は、上述の通り、S濃度が0.005%以下、およびO濃度が0.005%以下の溶鉄を対象としている。LN添加前におけるS濃度は0.0025%以下、O濃度は0.0030%以下とすることが好ましい。これにより、Nd添加量およびCa添加量をさらに低減することができる。
(A) Molten steel composition (a) -1. As described above, the method of the present invention is intended for molten iron having an S concentration of 0.005% or less and an O concentration of 0.005% or less. It is preferable that the S concentration before addition of LN is 0.0025% or less and the O concentration is 0.0030% or less. Thereby, Nd addition amount and Ca addition amount can further be reduced.
また、介在物組成の制御性をさらに高めるために、S濃度については0.0001%以上0.001%以下、O濃度については0.0005%以上0.0015%以下が、それぞれ好ましい。 In order to further improve the controllability of the inclusion composition, the S concentration is preferably 0.0001% or more and 0.001% or less, and the O concentration is preferably 0.0005% or more and 0.0015% or less.
(a)−2.C、Si、Mn、Alその他の成分組成の好適範囲
次に、C、Si、Mn、Alその他の成分組成の好ましい範囲について述べる。
(A) -2. Preferred ranges of C, Si, Mn, Al and other component compositions Next, preferred ranges of C, Si, Mn, Al and other component compositions will be described.
(a)−2−1.C、Si
CおよびSiは、その濃度が高いと、鋼中におけるPの活量を上昇させる作用を有する元素である。C濃度が3.5%を超えて高いと、Pの活量に与える影響が顕著となり、P化合物の生成条件が変化するおそれがあることから、C濃度は3.5%以下であることが好ましい。同様の理由により、Si濃度は2.5%以下であることが好ましい。
(A) -2-1. C, Si
C and Si are elements having an action of increasing the activity of P in steel when its concentration is high. If the C concentration is higher than 3.5%, the effect on the activity of P becomes significant, and the production conditions of the P compound may change. Therefore, the C concentration may be 3.5% or less. preferable. For the same reason, the Si concentration is preferably 2.5% or less.
C濃度は、鋼材特性の確保および安定した脱酸作用の確保の観点から、0.0015%以上であることがさらに好ましい。Si濃度は、予備脱酸を行う観点から、0.01%以上であることがさらに好ましい。 The C concentration is more preferably 0.0015% or more from the viewpoint of securing the steel material characteristics and securing a stable deoxidation action. The Si concentration is more preferably 0.01% or more from the viewpoint of preliminary deoxidation.
(a)−2−2.Mn
Mnは、その濃度が高いと、鋼中におけるPの活量を低下させる作用を有する元素である。Mn濃度が3%を超えて高いと、MnS生成の影響により介在物制御の精度が低下するおそれがある。したがって、Mn濃度は3%以下であることが好ましい。Mn濃度は、鋼材強度を確保する観点から、0.2%以上であることがさらに好ましい。
(A) -2-2. Mn
Mn is an element having an action of reducing the activity of P in the steel when its concentration is high. If the Mn concentration is higher than 3%, the accuracy of inclusion control may be lowered due to the influence of MnS generation. Therefore, the Mn concentration is preferably 3% or less. The Mn concentration is more preferably 0.2% or more from the viewpoint of securing the steel material strength.
(a)−2−3.Al
Alは、鋼中の溶解酸素との平衡関係から、溶解酸素濃度に極めて大きな影響を及ぼす。Al濃度が3%を超えて高くなると、平衡溶解酸素濃度が急激に高くなり、酸化物介在物が増加して鋼の清浄性が悪化するおそれがある。このことから、Al濃度は3%以下であることが好ましい。また、Al濃度は、LNの歩留まり向上およびLNの歩留まりの安定性確保の観点から、0.0035%以上であることがさらに好ましい。本明細書において、「Al濃度」とは、「酸可溶Al(sol.Al)の濃度」を意味する。
(A) -2-3. Al
Al has an extremely large influence on the dissolved oxygen concentration because of the equilibrium relationship with the dissolved oxygen in the steel. If the Al concentration exceeds 3%, the equilibrium dissolved oxygen concentration increases rapidly, and oxide inclusions increase, which may deteriorate the cleanliness of the steel. Therefore, the Al concentration is preferably 3% or less. Further, the Al concentration is more preferably 0.0035% or more from the viewpoint of improving the yield of LN and ensuring the stability of the yield of LN. In the present specification, “Al concentration” means “concentration of acid-soluble Al (sol. Al)”.
(a)−2−4.その他の元素について
上記の溶鉄において、鉄(Fe)の一部に替えて、Ni、Mo、V、Ti、Cr、Bなどの元素が下記の濃度範囲で含有されていてもよい。これらの元素は、溶鉄中におけるLN、Caと、O、Sとの反応にほとんど影響を及ぼさないからである。すなわち、0.01%〜30%の濃度範囲のNi、0.01%〜1%の濃度範囲のMo、0.001%〜0.1%の濃度範囲のV、0.005%〜0.3%の濃度範囲のTi、0.001%〜35%の濃度範囲のCr、0.0001%〜0.003%の濃度範囲のBなどである。
(A) -2-4. Other Elements In the above molten iron, elements such as Ni, Mo, V, Ti, Cr, and B may be contained in the following concentration ranges in place of a part of iron (Fe). This is because these elements have little influence on the reaction between LN, Ca and O, S in molten iron. That is, Ni in a concentration range of 0.01% to 30%, Mo in a concentration range of 0.01% to 1%, V in a concentration range of 0.001% to 0.1%, 0.005% to 0.00. Ti in a concentration range of 3%, Cr in a concentration range of 0.001% to 35%, B in a concentration range of 0.0001% to 0.003%, and the like.
(b)LNとCaの添加方法
(b)−1.二次精錬について
転炉から溶鋼を取鍋に出鋼した後、または出鋼中にCaOなどのフラックス、Si、Mn、Alといった合金元素を添加し、取鍋をガス吹き込み攪拌処理装置やRH(還流型真空脱ガス装置)などの真空脱ガス処理装置などの二次精錬装置に移送する。
(B) LN and Ca addition method (b) -1. Secondary refining After removing molten steel from the converter into the ladle, or adding alloy elements such as flux, such as CaO, Si, Mn, and Al to the ladle, the ladle is gas blown into the stirring treatment device or RH ( It is transferred to a secondary refining apparatus such as a vacuum degassing apparatus such as a reflux type vacuum degassing apparatus.
二次精錬では、必要に応じて脱硫、脱ガス、脱介在物などの不純物除去の他、合金元素添加による成分調整および温度調整を行うが、これらの処理は任意である。 In secondary refining, components such as desulfurization, degassing, and inclusions are removed as necessary, and component adjustment and temperature adjustment are performed by addition of alloy elements. These treatments are optional.
ただし、S、Oは、前述した好適範囲まで低減されていることが望ましい。Sの低減方法としては、CaO系スラグを用いてガス攪拌により溶鋼とスラグを反応させる方法、CaOフラックスなどの脱硫剤を溶鋼に吹き込む方法、RHなどの真空脱ガス装置で溶鋼表面に脱硫フラックスを吹き付ける方法などがあるが、いかなる方法でもよい。Oの低減方法としては、溶鋼に不活性ガスを吹き込む方法、RHなどの真空脱ガス装置で所定時間乾留する方法などがあるが、いかなる方法でもよい。 However, it is desirable that S and O are reduced to the preferred range described above. As a method for reducing S, a method of reacting molten steel and slag by gas stirring using CaO-based slag, a method of blowing a desulfurizing agent such as CaO flux into the molten steel, and a desulfurization flux on the surface of the molten steel with a vacuum degassing apparatus such as RH. There are methods such as spraying, but any method may be used. As a method for reducing O, there are a method of blowing an inert gas into molten steel, a method of dry distillation with a vacuum degassing apparatus such as RH, etc., but any method may be used.
(b)−2.スラグ組成、スラグ量について
取鍋内の溶鋼表面のスラグ組成の好適範囲は以下の通りである。スラグ中のFeO、MnO、Fe2O3の濃度は合計で5%以下、さらに望ましくは1.5%以下である。これらは、濃度が高いと、LN、Caと反応してしまい、介在物制御の精度が低下するのに加え、二次精錬処理後もスラグから溶鋼へ酸素が供給され続けるため、溶鋼の清浄性が悪化する。これらの現象を「スラグによる再酸化」と称するが、この再酸化を抑制するには、スラグ中のFeO、MnO、Fe2O3の濃度は合計で5%以下が望ましい。これらの合計濃度を1.5%以下まで低減すると再酸化はほぼ完全に抑制される。
(B) -2. Slag composition and slag amount The preferred range of the slag composition on the surface of the molten steel in the ladle is as follows. The total concentration of FeO, MnO, and Fe 2 O 3 in the slag is 5% or less, more preferably 1.5% or less. When these are high in concentration, they react with LN and Ca, and the accuracy of inclusion control is reduced. In addition, oxygen continues to be supplied from the slag to the molten steel after the secondary refining treatment. Gets worse. These phenomena are referred to as “reoxidation by slag”. In order to suppress this reoxidation, the total concentration of FeO, MnO, and Fe 2 O 3 in the slag is desirably 5% or less. When these total concentrations are reduced to 1.5% or less, reoxidation is almost completely suppressed.
スラグ中のCaO濃度とAl2O3濃度の比(以下「C/A」ともいう)は、1.0以上が望ましく、さらに望ましくは1.5以上である。C/Aが1.0未満の場合、スラグ中のCaOの活量が低くなるため、溶鋼中でのCa脱酸が不安定になることがある。さらに、C/Aが1.5以上となると、スラグはCaOが飽和状態となるため、CaOの活量が1となり、不安定要素を排除できる。 The ratio of the CaO concentration to the Al 2 O 3 concentration in the slag (hereinafter also referred to as “C / A”) is preferably 1.0 or more, and more preferably 1.5 or more. When C / A is less than 1.0, the activity of CaO in the slag becomes low, and thus Ca deoxidation in the molten steel may become unstable. Further, when C / A is 1.5 or more, since CaO is saturated in the slag, the activity of CaO becomes 1, and unstable elements can be eliminated.
スラグ量(溶鋼1tonあたり)は、10kg/ton以上25kg/ton以下が望ましい。10kg/ton未満では、スラグ量が少なすぎ、スラグ−メタル間反応による溶鋼脱酸の安定性が低下する。逆に25kg/tonを超えて多いと、スラグの影響が過大となり、例えばスラグ中の微量のMnOでも影響を与える可能性が生じる。 The amount of slag (per 1 ton of molten steel) is preferably 10 kg / ton or more and 25 kg / ton or less. If it is less than 10 kg / ton, the amount of slag is too small, and the stability of deoxidation of molten steel due to the slag-metal reaction is lowered. On the other hand, if the amount exceeds 25 kg / ton, the influence of slag becomes excessive, and there is a possibility that even a small amount of MnO in the slag will have an influence.
(b)−3.LNとCaの添加について
ガス吹き込み攪拌処理装置やRHなど真空脱ガス処理装置などを用いて、鋼からの不純物除去、溶鋼組成調整、溶鋼温度調整、スラグ温度調整などの二次精錬を行った後、本発明に従い、取鍋内溶鋼にLNとCaを添加する。
(B) -3. About the addition of LN and Ca After performing secondary refining such as removal of impurities from steel, adjustment of molten steel composition, adjustment of molten steel temperature, adjustment of slag temperature, etc., using a gas blowing stirring treatment device or a vacuum degassing treatment device such as RH According to the present invention, LN and Ca are added to the molten steel in the ladle.
LNとCaの添加量は、LNの目標濃度に応じて行う。前記図1から解るように、本発明の方法に従えば、安定したLNの歩留まりが得られるため、目標LN濃度に応じてLN添加量を容易に決定できる。 LN and Ca are added in accordance with the target concentration of LN. As can be seen from FIG. 1, according to the method of the present invention, since a stable yield of LN can be obtained, the amount of LN added can be easily determined according to the target LN concentration.
次に、本発明に従い、Ca添加量を決定する。Ca添加量は、目的に応じて前記(1)または前記(2)に規定する範囲に設定する必要がある。Ca添加量は、特に制約がなければ前記規定範囲の中央値に設定する。溶鋼温度や処理時間に制約がある場合は前記規定範囲の下限側に、安定した鋳造性を確保するには前記規定範囲の上限側に、それぞれCa添加量を設定する。 Next, according to the present invention, the Ca addition amount is determined. The amount of Ca added needs to be set in the range defined in (1) or (2) according to the purpose. The Ca addition amount is set to the median value of the specified range unless otherwise specified. When there are restrictions on the molten steel temperature and processing time, the Ca addition amount is set on the lower limit side of the specified range, and on the upper limit side of the specified range to ensure stable castability.
添加するLNは、金属Laなどの金属LN、La−Ce、La−Alなどの合金など、いかなるものでも添加剤として用いてよい。Caも、金属Ca、Ca−Fe、Ca−Si、Ca−Alなどの合金など、いかなるものでも添加剤として用いてよい。また、LN分とCa分はあらかじめ合金化したものを用いてもよいが、単に混合したものでもよい。 LN to be added may be any additive such as metal LN such as metal La, alloy such as La-Ce, La-Al, or the like. Any Ca may be used as an additive such as an alloy such as metal Ca, Ca—Fe, Ca—Si, and Ca—Al. Further, the LN content and the Ca content may be previously alloyed, or may be simply mixed.
さらに、これらのLN分、Ca分の他にCaO、Al2O3などの酸化物を添加剤としてフラックスに混合してもよい。ただし、添加剤中の純LN分と純Ca分(「Ca純分」ともいう)は、前記(1)または前記(2)に規定する範囲を満足する必要がある。Ca純分とは、金属Caまたは合金中のCaなどの金属Ca混合物中のCaを指し、CaOやCaF2といったCa化合物中のCaはCa純分には加算しない。 Furthermore, in addition to these LN and Ca components, oxides such as CaO and Al 2 O 3 may be added to the flux as additives. However, the pure LN content and the pure Ca content (also referred to as “Ca pure content”) in the additive need to satisfy the range defined in (1) or (2). The Ca pure component refers to Ca in a metal Ca mixture such as metal Ca or Ca in an alloy, and Ca in a Ca compound such as CaO or CaF 2 is not added to the Ca pure component.
LNとCaの添加方法には、例えば以下の方法がある。一つは、前記(1)または(2)を満足する前述のLNとCa、その他物質の混合物を添加剤として、溶鋼に一括で添加する方法である。別法として、前記(1)または(2)を満足する前述のLNとCa、その他物質の混合物を添加剤として、溶鋼に浸漬した吹き込みランスを用いてキャリヤーガスとともに直接溶鋼中に吹き込むインジェクション法がある。また、さらなる別法として、前記(1)または(2)を満足する前述のLNとCa、その他物質の混合物を、鉄被覆ワイヤ内に充填したワイヤを添加剤として、溶鋼に送り込むワイヤ法がある。 Examples of methods for adding LN and Ca include the following methods. One is a method in which the mixture of LN, Ca and other substances satisfying the above (1) or (2) is added to molten steel as an additive. As another method, there is an injection method in which a mixture of the aforementioned LN, Ca, and other substances satisfying the above (1) or (2) is used as an additive and is directly blown into the molten steel together with a carrier gas using a blowing lance immersed in the molten steel. is there. Further, as a further alternative method, there is a wire method in which a mixture of the above-described LN, Ca, and other substances satisfying the above (1) or (2) is filled into an iron-coated wire and fed into molten steel as an additive. .
LNとCaの添加方法として、これらの何れの方法を用いてもよいが、インジェクション法またはワイヤ法が望ましい。これは、一括添加の場合、LN、Caの溶解速度の僅かな差がLN濃度および介在物の制御精度の低下を招くおそれがあるからである。これに対して、インジェクション法とワイヤ法は、一定時間をかけてLN、Caの添加を行うため、溶解速度の僅差による影響を回避できる。 Any of these methods may be used as a method for adding LN and Ca, but an injection method or a wire method is desirable. This is because in the case of batch addition, a slight difference in the dissolution rate of LN and Ca may cause a decrease in LN concentration and inclusion control accuracy. On the other hand, in the injection method and the wire method, since LN and Ca are added over a certain period of time, the influence of a slight difference in dissolution rate can be avoided.
さらに、前記(3)に記載のCa純分の添加速度を満足するには、ワイヤ法が望ましい。これは、インジェクション法と比較して、ワイヤ法は添加速度の制御性に優れているからである。ただし、ワイヤ法の場合、溶鋼の攪拌が不充分となるため、ワイヤ添加中に吹き込みランスなどを用いて不活性ガスを0.2Nl/(min・ton)以上1.0Nl/(min・ton)以下の流量で溶鋼に吹き込むことが望ましい。不活性ガスの吹き込み量が、0.2Nl/(min・ton)未満では攪拌力が得られず、1.0Nl/(min・ton)を超えて大きいとCa蒸発反応と相まってスプラッシュ等の溶鋼の飛散が激しくなる。 Furthermore, the wire method is desirable to satisfy the addition rate of pure Ca as described in (3) above. This is because the wire method is superior in controllability of the addition rate as compared with the injection method. However, in the case of the wire method, since the stirring of the molten steel becomes insufficient, an inert gas of 0.2 Nl / (min · ton) or more and 1.0 Nl / (min · ton) is used by using a blowing lance during the addition of the wire. It is desirable to blow into the molten steel at the following flow rate. When the amount of inert gas blown is less than 0.2 Nl / (min · ton), the stirring force cannot be obtained, and when it exceeds 1.0 Nl / (min · ton), the amount of the molten steel such as splash is combined with the Ca evaporation reaction. Scattering becomes intense.
(b)−4.Ca純分の添加速度
次に、前記(3)に記載のCa純分の添加速度の制御方法について説明する。添加速度の基準となるCa純分の定義は、上述のように、金属Caまたは合金中のCaなどの金属Ca混合物中のCaであり、CaOやCaF2といったCa化合物中のCaは含まない。
(B) -4. Next, the method for controlling the addition rate of pure Ca as described in (3) will be described. As described above, the definition of pure Ca as a reference for the addition rate is Ca in a metallic Ca mixture such as metallic Ca or Ca in an alloy, and does not include Ca in Ca compounds such as CaO and CaF 2 .
Ca純分の添加速度の調整方法は、インジェクション法での粉体供給速度(単位:kg/min等)またはワイヤ法のワイヤ送り込み速度(単位:m/min)を前記(3)の規定範囲を満足するように調整する方法がある。また、粉体供給速度またはワイヤ送り込み速度を一定として、例えば添加剤中にMgOやFeといった第三成分を混合することで、Ca純分の添加速度を調整する方法がある。後者の第三成分を混合する方法の場合、溶鋼に添加する添加剤の総量が増加することがあるものの、添加装置の改造を必要としない。 The method for adjusting the addition rate of pure Ca is to set the powder supply rate (unit: kg / min, etc.) in the injection method or the wire feed rate (unit: m / min) in the wire method within the prescribed range of (3). There are ways to adjust it to your satisfaction. Also, there is a method of adjusting the addition rate of pure Ca by mixing a third component such as MgO or Fe in the additive, for example, with the powder supply rate or the wire feed rate being constant. In the case of the latter method of mixing the third component, although the total amount of the additive added to the molten steel may increase, no modification of the addition device is required.
Ca純分は、添加開始から添加終了まで前記(3)の規定範囲を満足する添加速度で添加することが最も望ましい。しかし、添加時間が長くなる場合には、前記(3)の規定範囲よりも速い速度で添加を開始し、添加途中から前記(3)の規定範囲を満足する添加速度に変更しても一定の効果が得られる。
(b)−5.まとめ
It is most desirable to add pure Ca at an addition rate that satisfies the specified range of (3) from the start of addition to the end of addition. However, when the addition time becomes long, the addition is started at a rate faster than the prescribed range of (3), and even if the addition rate is changed to satisfy the prescribed range of (3) from the middle of the addition, it is constant. An effect is obtained.
(B) -5. Summary
以上のように、二次精錬において必要な処理を行った後に、本発明の方法に従い溶鋼にLNとCaを添加し、その後、連続鋳造することが望ましい。LNとCaの添加後に、何らかの溶鋼処理を施すと、介在物組成の分布が広がるおそれがあるからである。 As described above, it is desirable to add LN and Ca to molten steel according to the method of the present invention after performing the necessary treatment in secondary refining, and then continuously cast. This is because if some molten steel treatment is performed after the addition of LN and Ca, the distribution of the inclusion composition may spread.
ただし、本発明の方法は、RHなどを用いた二次精錬処理終了後に、連続鋳造時に連続鋳造機のタンディッシュ内で実施することができる。タンディッシュ内で実施する方法には、取鍋からタンディッシュ内に落下流入する溶鋼へ本発明に従ったLN、Caを含有した添加剤を吹き付ける方法や、落下流入部やタンディッシュ内の溶鋼の表面上に連続的に添加剤を添加する方法、タンディッシュ内の溶鋼にワイヤを添加剤として添加する方法などがある。 However, the method of the present invention can be carried out in the tundish of a continuous casting machine at the time of continuous casting after completion of the secondary refining treatment using RH or the like. The method implemented in the tundish includes a method of spraying the additive containing LN and Ca according to the present invention to the molten steel falling and flowing into the tundish from the ladle, and a method of spraying the molten steel in the falling inflow portion and the tundish. There are a method of continuously adding an additive on the surface, a method of adding a wire as an additive to molten steel in a tundish, and the like.
タンディッシュにて本発明の方法を実施する場合、すなわち前記(1)または(2)の規定を適用する場合は、添加量とCa/LN混合比を決定した後、溶鋼の鋳造開始から終了までの間、常時、定常的に添加剤の添加を行えばよい。 When carrying out the method of the present invention in a tundish, that is, when applying the provisions of (1) or (2) above, after determining the addition amount and the Ca / LN mixing ratio, from the start to the end of the casting of the molten steel During this time, the additive may be constantly added constantly.
したがって、タンディッシュで本発明の方法を適用する場合、目標LN濃度が決定されるとLNの添加量(単位:kg/ton)が一義的に決まり、添加量と鋳造時間(単位:min)が決定されると添加速度(単位:kg/(ton・min))が一義的に決定される。そのため、前記(3)の規定をそのまま適用することはできない。ただし、鋳造が定常状態である時のタンディッシュ内の溶鋼量(単位:ton)を用いた添加速度(単位:kg/(タンディッシュ内溶鋼ton・min))が前記(3)の規定を満足することが望ましい。 Therefore, when applying the method of the present invention in tundish, when the target LN concentration is determined, the addition amount (unit: kg / ton) of LN is uniquely determined, and the addition amount and casting time (unit: min) are determined. Once determined, the addition rate (unit: kg / (ton · min)) is uniquely determined. Therefore, the rule (3) cannot be applied as it is. However, the addition rate (unit: kg / (molten steel in tundish ton · min)) using the molten steel amount (unit: ton) in the tundish when casting is in a steady state satisfies the above-mentioned provision (3). It is desirable to do.
本発明の方法の効果を確認するため、下記の連続鋳造試験を行うとともに、添加したLNの歩留まりおよび介在物組成の評価を行った。 In order to confirm the effect of the method of the present invention, the following continuous casting test was performed, and the yield and inclusion composition of the added LN were evaluated.
1.試験条件
101kPaのAr雰囲気下の溶鋼1500kgを1873Kに加熱し、そのC、Si、Mn、P、S、O、Cr、Al濃度を表1に示す濃度に調整した。
1. Test conditions 1500 kg of molten steel in an Ar atmosphere of 101 kPa was heated to 1873 K, and its C, Si, Mn, P, S, O, Cr, and Al concentrations were adjusted to the concentrations shown in Table 1.
La、Ce、Ndは、La:Ce:Nd=4:3:3の比率(質量比)で金属La、金属Ce、金属Ndを混合して混合金属(表1で「LN」と表記)とした。さらにこの混合金属と金属Caを、表1に示す混合比(質量比。以下、「混合金属と金属Caの混合比」を単に「混合比」ともいう)で混合し、これを鉄ワイヤに充填して添加剤として溶鋼に添加した。添加剤を溶鋼に添加した後、溶鋼からサンプルを採取し、溶鋼成分(LN、Ca)と介在物組成を分析した。 La, Ce, and Nd are mixed metals (indicated as “LN” in Table 1) by mixing metal La, metal Ce, and metal Nd at a ratio (mass ratio) of La: Ce: Nd = 4: 3: 3. did. Further, this mixed metal and metal Ca are mixed at a mixing ratio shown in Table 1 (mass ratio; hereinafter, “mixing ratio of mixed metal and metal Ca” is also simply referred to as “mixing ratio”), and this is filled into an iron wire. And added to the molten steel as an additive. After adding an additive to molten steel, the sample was extract | collected from molten steel and the molten steel component (LN, Ca) and the inclusion composition were analyzed.
試験番号1〜10は本発明の実施例、試験番号11〜20は比較例、試験番号21〜22は参考例である。本発明の実施例である試験番号1〜10は前記(1)の規定を満足し、試験番号4〜10は前記(2)の規定を満足した。試験番号3および7〜10はCa純分の添加速度について、前記(3)の規定を満足した。
比較例または参考例である試験番号11〜22は、前記(1)および(2)のいずれの規定も満足しなかった。試験番号11〜16は、混合比が前記(1)の規定範囲の低位側に外れた比較例であり、試験番号17〜20は高位側に外れた比較例である。試験番号21、22は、Caを添加せず、混合金属のみを添加した。また、試験番号18〜20はCa純分の添加速度について、前記(3)の規定を満足した。表1の(1)〜(3)の欄において、○はそれぞれ前記(1)〜(3)の規定を満足したこと、×はそれぞれ前記(1)〜(3)の規定を満足しなかったことを示す。 Test numbers 11 to 22, which are comparative examples or reference examples, did not satisfy any of the provisions of (1) and (2). Test numbers 11 to 16 are comparative examples in which the mixing ratio deviated to the lower side of the specified range of (1), and test numbers 17 to 20 were comparative examples deviated to the higher side. In Test Nos. 21 and 22, only Ca was added without adding Ca. Test Nos. 18 to 20 satisfied the above-mentioned rule (3) with respect to the addition rate of pure Ca. In the columns of (1) to (3) in Table 1, “◯” satisfied the provisions of (1) to (3), and “x” did not satisfy the provisions of (1) to (3), respectively. It shows that.
2.試験結果
表1には溶鋼の組成と併せて、LNの歩留まりと介在物組成の分析結果を示す。LNの歩留まりは、溶鋼成分の分析によって得られたLNの濃度(A)を、溶鋼に添加したLNの質量を溶鋼の質量で除した値(B)で除した値(A/B)として算出し、表1では百分率で表記した。表1において、介在物組成の分析結果は、「介在物中Ca/LNモル比」および「介在物分布幅」として示した。表1において、「介在物中Ca/LNモル比」とは観察された介在物のCa/LNモル比の平均値、「介在物分布幅」とは観察された介在物の最大Ca/LNモル比と最小Ca/LNモル比の差である。
2. Test results Table 1 shows the analysis results of the yield of LN and the composition of inclusions together with the composition of the molten steel. The yield of LN is calculated as a value (A / B) obtained by dividing the LN concentration (A) obtained by analysis of the molten steel component by the value (B) obtained by dividing the mass of LN added to the molten steel by the mass of the molten steel. In Table 1, it is expressed as a percentage. In Table 1, the analysis results of the inclusion composition are shown as “Ca / LN molar ratio in inclusions” and “inclusion distribution width”. In Table 1, “Ca / LN molar ratio in inclusions” is the average value of the observed Ca / LN molar ratio of inclusions, and “inclusion distribution width” is the maximum Ca / LN mole of the observed inclusions. The difference between the ratio and the minimum Ca / LN molar ratio.
試験番号1〜3は、前記(1)の規定のみを満足した場合であり、比較例である試験番号11〜17と比較して、LN歩留まりが高位で安定しており、介在物中Ca/LNモル比も高かった。 Test Nos. 1 to 3 are cases where only the provision of (1) was satisfied. Compared with Test Nos. 11 to 17 as comparative examples, the LN yield was high and stable, and Ca / The LN molar ratio was also high.
試験番号4〜6は、前記(2)の規定を満足した場合であり、試験番号1〜3と比較して介在物中のCa/LNモル比が高く、介在物制御がさらに進行したことが解る。また、試験番号4でのLN濃度は0.22%であり、従来は製造困難であった高ランタノイド濃度鋼の製造も可能であることが解る。 Test Nos. 4 to 6 are cases in which the provisions of (2) were satisfied, and the Ca / LN molar ratio in the inclusions was higher than in Test Nos. 1 to 3, and inclusion control further advanced. I understand. In addition, the LN concentration in Test No. 4 is 0.22%, and it can be seen that it is possible to manufacture high lanthanoid steel, which has been difficult to manufacture.
試験番号7〜10は、前記(1)〜(3)の規定を全て満足した場合であり、試験番号1〜6と比較して介在物分布幅が小さかった。本結果は、試験番号7〜10では介在物が安定してCa系に制御されており、連続鋳造時の鋳造性が著しく改善されたことを示す。 Test Nos. 7 to 10 are cases where all the provisions of (1) to (3) were satisfied, and the inclusion distribution width was smaller than those of Test Nos. 1 to 6. This result shows that in the test numbers 7 to 10, the inclusions are stably controlled to Ca, and the castability during continuous casting is remarkably improved.
一方、試験番号11〜16は、混合比が前記(1)の規定範囲の低位側に外れた比較例であり、試験番号1〜10と比較して、LN歩留まり、介在物中のCa/LNモル比ともに低位であり、介在物分布幅も大きかった。 On the other hand, Test Nos. 11 to 16 are comparative examples in which the mixing ratio deviates to the lower side of the specified range of (1). Compared with Test Nos. 1 to 10, the LN yield and Ca / LN in inclusions The molar ratio was low and the inclusion distribution width was large.
試験番号17〜20は、混合比が前記(1)の規定範囲の高位側に外れた比較例であり、LN歩留まり、介在物中のCa/LNモル比がともに変動しており、試験ごとの差が大きく、安定性に欠けていることが解る。 Test Nos. 17 to 20 are comparative examples in which the mixing ratio deviated to the higher side of the specified range of (1), and the LN yield and the Ca / LN molar ratio in the inclusions both fluctuated. It can be seen that the difference is large and lacks stability.
参考として、LNのみを添加した場合として、試験番号21、22の結果を示す。この結果から試験番号21、22は、試験番号1〜20と比較してLN歩留まりが非常に低かったことがわかる。また、試験番号21、22は、いずれも介在物分布幅は0である。これは、介在物としてLN−O−S系介在物のみが生成したことを示している。従来技術でも説明されている通り、このような介在物が生成する場合には、ノズルなどの閉塞により鋳造が困難である。
As a reference, the results of test numbers 21 and 22 are shown when only LN is added. From this result, it can be seen that the test numbers 21 and 22 have a very low LN yield compared to the
以上から、前記(1)の規定に従うことで、LN歩留まりが向上し、製品の製造コストが低減される。また、前記(2)の規定に従うことで、LN歩留まりの確保と同時に介在物組成の制御が可能となり、鋳造性が改善すると同時に、従来は製造が困難であった高ランタノイド濃度鋼の製造が可能となる。さらに、前記(3)の規定に従うことで、介在物制御の精度が向上し、製造安定性と製品性能の安定が得られる。 From the above, by following the provision (1), the LN yield is improved and the manufacturing cost of the product is reduced. In addition, by following the provision of (2), it is possible to control the composition of inclusions while ensuring the LN yield, and at the same time, the castability is improved, and at the same time, it is possible to manufacture high lanthanide concentration steel that was difficult to manufacture in the past. It becomes. Furthermore, by following the provision of the above (3), the accuracy of inclusion control is improved, and manufacturing stability and product performance stability can be obtained.
本発明の溶鋼の処理方法によれば、ランタノイドとCaを所定の比率に調整して添加することにより、ランタノイドの歩留まりを高位に安定させることが可能となると同時に、非金属介在物を精度よく制御することができる。 According to the molten steel treatment method of the present invention, by adding lanthanoid and Ca adjusted to a predetermined ratio, it becomes possible to stabilize the yield of lanthanoid at a high level and at the same time accurately control nonmetallic inclusions. can do.
これにより、ランタノイド原単位の削減と、鋳造性の改善が図れ、ランタノイド添加鋼をより安価に量産することができる。さらに、これまで製造が困難であった高ランタノイド鋼も製造可能となる。 Thereby, reduction of lanthanoid basic unit and improvement of castability can be achieved, and lanthanoid-added steel can be mass-produced at a lower cost. Furthermore, high lanthanide steels that have been difficult to manufacture can be manufactured.
したがって、本発明の方法は、高い生産性、かつ、連続鋳造性の良好な溶鋼を精錬供給できる溶鋼の処理方法として、製鋼技術分野において広範に適用できる。 Therefore, the method of the present invention can be widely applied in the steelmaking technical field as a molten steel treatment method capable of refining and supplying molten steel with high productivity and good continuous castability.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009173229A JP5353526B2 (en) | 2009-07-24 | 2009-07-24 | Method for controlling lanthanoid concentration in molten steel, method for simultaneously controlling lanthanoid concentration in molten steel and non-metallic inclusion composition in molten steel, and method for processing molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009173229A JP5353526B2 (en) | 2009-07-24 | 2009-07-24 | Method for controlling lanthanoid concentration in molten steel, method for simultaneously controlling lanthanoid concentration in molten steel and non-metallic inclusion composition in molten steel, and method for processing molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011026659A JP2011026659A (en) | 2011-02-10 |
JP5353526B2 true JP5353526B2 (en) | 2013-11-27 |
Family
ID=43635727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009173229A Active JP5353526B2 (en) | 2009-07-24 | 2009-07-24 | Method for controlling lanthanoid concentration in molten steel, method for simultaneously controlling lanthanoid concentration in molten steel and non-metallic inclusion composition in molten steel, and method for processing molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5353526B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5586522B2 (en) * | 2011-04-28 | 2014-09-10 | 株式会社神戸製鋼所 | Manufacturing method of REM added steel |
CN105143490B (en) | 2013-04-25 | 2017-03-08 | 新日铁住金株式会社 | Steel plate |
JP6524801B2 (en) * | 2015-05-29 | 2019-06-05 | 日本製鉄株式会社 | High purity steel and its refining method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS563319Y2 (en) * | 1975-04-01 | 1981-01-24 | ||
JPH01149917A (en) * | 1987-12-04 | 1989-06-13 | Kawasaki Steel Corp | Manufacture of steel ingot with very slight segregation of phosphorus |
JP4025696B2 (en) * | 2003-08-18 | 2007-12-26 | 新日本製鐵株式会社 | Method of melting molten steel that can prevent nozzle clogging |
JP4022190B2 (en) * | 2003-09-12 | 2007-12-12 | 新日本製鐵株式会社 | Method of adding rare earth elements to molten steel |
JP4656007B2 (en) * | 2006-06-09 | 2011-03-23 | 住友金属工業株式会社 | Method of processing molten iron by adding Nd and Ca |
-
2009
- 2009-07-24 JP JP2009173229A patent/JP5353526B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011026659A (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6524801B2 (en) | High purity steel and its refining method | |
CN101784680A (en) | Steel for steel pipes excellent in sour resistance and process for manufacturing the same | |
JP5151448B2 (en) | Method of melting ultra-low sulfur ultra-low oxygen ultra-low nitrogen steel | |
US8828117B2 (en) | Composition and process for improved efficiency in steel making | |
JP5353526B2 (en) | Method for controlling lanthanoid concentration in molten steel, method for simultaneously controlling lanthanoid concentration in molten steel and non-metallic inclusion composition in molten steel, and method for processing molten steel | |
US7785393B2 (en) | Refinement of steel | |
JP4656007B2 (en) | Method of processing molten iron by adding Nd and Ca | |
JP6874521B2 (en) | Inclusion morphology control steel and its manufacturing method | |
US20110017018A1 (en) | Novel additive for treating resulphurized steel | |
JP2010132982A (en) | Method of denitrizing molten steel | |
JP5326201B2 (en) | Method for melting aluminum killed steel | |
JP5056826B2 (en) | Steel for continuous casting and method for producing the same | |
JP2007270178A (en) | Method for manufacturing extra-low sulfur steel | |
JP6555068B2 (en) | Flux for refining molten steel and method for refining molten steel | |
JP5267513B2 (en) | High-speed desulfurization denitrification method for molten steel | |
JP4609325B2 (en) | Treatment method of molten iron by Nd addition | |
JP2012158789A (en) | Method for desulfurizing molten metal using vacuum degassing apparatus | |
JP5712945B2 (en) | Method for melting low-sulfur steel | |
JP5333423B2 (en) | Hot metal dephosphorization method | |
RU2366724C1 (en) | Method of production of electric steel | |
CA2665220C (en) | Refinement of steel | |
RU2212452C1 (en) | Method of alloying steel by manganese | |
JP2008189975A (en) | Molten steel treatment method by addition of magnesium thereto | |
JP2004344891A (en) | Ca ADDING METHOD IN CONTINUOUS CASTING OF BILLET | |
JP2016141871A (en) | Desulfurizing agent for molten steel and desulfurizing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130611 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130709 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130812 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5353526 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |