[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5349759B2 - Liquid detection sensor - Google Patents

Liquid detection sensor

Info

Publication number
JP5349759B2
JP5349759B2 JP2007015199A JP2007015199A JP5349759B2 JP 5349759 B2 JP5349759 B2 JP 5349759B2 JP 2007015199 A JP2007015199 A JP 2007015199A JP 2007015199 A JP2007015199 A JP 2007015199A JP 5349759 B2 JP5349759 B2 JP 5349759B2
Authority
JP
Japan
Prior art keywords
liquid
light
tube
light receiving
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007015199A
Other languages
Japanese (ja)
Other versions
JP2008180643A (en
Inventor
貴志 和田
健司 西垣
明寿 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOKKO ELECTRIC CO Ltd
Original Assignee
KYOKKO ELECTRIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOKKO ELECTRIC CO Ltd filed Critical KYOKKO ELECTRIC CO Ltd
Priority to JP2007015199A priority Critical patent/JP5349759B2/en
Publication of JP2008180643A publication Critical patent/JP2008180643A/en
Application granted granted Critical
Publication of JP5349759B2 publication Critical patent/JP5349759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/12Flow or pressure control devices or systems, e.g. valves, gas pressure control, level control in storage containers
    • B67D1/1247Means for detecting the presence or absence of liquid

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は液体流通チューブ内を流通する液体の状態及び液体チューブの品質判断についての技術に関するものである。 The present invention relates to a technique for determining a state of a liquid flowing through a liquid distribution tube and quality of the liquid tube.

飲料メーカーでは製造した飲料をチューブを通じて貯蔵用容器や輸送用容器に送り、飲食店や医療現場では飲料や薬液を、チューブを通じて使用の都度容器から取り出す。液切れ等チューブ内の状態を検知するためには透明のチューブが用いられることが多いが、目視で常時観察することは困難である。このため、チューブ内の液切れ等の状態を検知する装置に関する様々な考案が提案されている。   A beverage manufacturer sends a manufactured beverage to a storage container or a transport container through a tube, and at a restaurant or a medical site, the beverage or chemical is taken out from the container every time it is used through the tube. In order to detect the state in the tube such as running out of liquid, a transparent tube is often used, but it is difficult to always observe visually. For this reason, various devices related to an apparatus for detecting a state such as a liquid shortage in the tube have been proposed.

管内に一対の電極を設置し、液体の有無を判断する液切れセンサが提案されている(特許文献1)。また、液の有無による光の屈折率の相違を利用した液切れセンサも提案されている(特許文献2,3)。さらに、管を挟んで発光部と受光部より成るフォトセンサを設けて、流通する液の有無による受光量の相違を利用したフォトセンサも提案されている(特許文献4)。   There has been proposed a liquid shortage sensor that installs a pair of electrodes in a tube and determines the presence or absence of liquid (Patent Document 1). In addition, a liquid shortage sensor using a difference in the refractive index of light depending on the presence or absence of liquid has been proposed (Patent Documents 2 and 3). In addition, a photosensor using a difference in the amount of received light depending on the presence or absence of a circulating liquid by providing a photosensor including a light emitting portion and a light receiving portion with a tube interposed therebetween is proposed (Patent Document 4).

特開2000−170663号公報JP 2000-170663 A 特開2004−045319号公報JP 2004-045319 A 特開2006−10597号公報JP 2006-10597 A 特開2003−248012号公報Japanese Patent Laid-Open No. 2003-248812

しかし、前記管内に電極を設置するセンサは電極の腐食、磨耗による感度低下という問題に加え、飲料用や医療用液体用に用いるためには衛生面、安全面で問題が生じる。したがって、広範囲な用途に用いるためには、内部液体に非接触で液切れ等の状態を検知する装置が望ましい。   However, the sensor in which the electrode is installed in the pipe has problems in terms of hygiene and safety in order to be used for beverages and medical liquids in addition to the problem of sensitivity reduction due to electrode corrosion and wear. Therefore, in order to use for a wide range of applications, an apparatus that detects a state such as running out of liquid without contacting the internal liquid is desirable.

また、前記液の有無による光の屈折率の相違を利用する液切れセンサは、チューブの径や液体の種類によって受光位置が変化するので、受光素子の位置変更や一定の位置を維持するための複雑な演算や調整器具が必要であるなど装置設定の複雑化、コスト増大という問題があった。   In addition, the liquid breakage sensor that uses the difference in the refractive index of light depending on the presence or absence of the liquid changes the light receiving position depending on the diameter of the tube and the type of the liquid. There are problems such as complicated device settings and increased costs, such as complicated calculations and adjustment tools.

受光量の相違を利用したフォトセンサは、非接触で簡便にチューブ内液体の有無を検知できる。しかし、液体がフルに流通している場合と全く流通していない場合を区別するだけでは十分ではない。液体は常に同じ状態で流通しているのではなく、液量不足によって泡状となる場合があり、異物が混入する場合もある。又、液量不足ではないものの瞬間的に泡が発生する場合もある。このような多様な内部状態を適切に判断できるものでなければならない。さらに、当該フォトセンサは液体供給路の途中に、前後の配管と別個にフォトセンサを有する光透過性管体よりなる接続部を設けており、装置の複雑化という問題もあった。   A photosensor using the difference in the amount of received light can easily detect the presence or absence of liquid in the tube without contact. However, it is not sufficient to distinguish between the case where the liquid is fully distributed and the case where the liquid is not distributed at all. The liquid does not always circulate in the same state, but may be foamed due to a lack of liquid volume, and foreign matter may be mixed in. In addition, although there is no shortage of liquid, bubbles may be generated instantaneously. It must be able to appropriately determine such various internal states. Further, the photosensor is provided with a connecting portion made of a light transmissive tube having a photosensor separately from the front and rear pipes in the middle of the liquid supply path, and there is a problem that the apparatus is complicated.

本発明はこのような事情に鑑みたものであり、チューブ内を流通する液体の内部状態および液体流通チューブの品質を正確迅速に検知する検知センサの提供、内部状態を表示する装置の提供及び異常状態の場合にアラームを発する液体異常警報装置の提供を目的とするものである。   The present invention has been made in view of such circumstances, and provides a detection sensor for accurately and quickly detecting the internal state of the liquid flowing through the tube and the quality of the liquid distribution tube, the provision of a device for displaying the internal state, and an abnormality. An object of the present invention is to provide a liquid abnormality alarm device that issues an alarm in the case of a state.

液体が流通チューブ内に満ちている場合や完全に液切れの場合以外に、気泡が発生している場合、異物が混入する場合等の状態が生じる。又、液体の有無以外に長期間の使用等によりチューブの透明度が低下する場合がある。これらの状況により受光素子の受光量のレベルが変わる。
この受光量のレベルを信号処理部で仕分けすることにより様々な内部状態を検知することが可能になる。従来の技術では、気泡の存在は液体有無判断のためのノイズと捉えられていたが、本発明では、受光量によって気泡を検知し、かつ気泡の存在自体を液切れの前兆やガス圧の不足等流通液体内部の有力な情報として活用することが可能となった。
In addition to the case where the liquid is filled in the flow tube or the case where the liquid is completely drained, there are cases where bubbles are generated, foreign matters are mixed, and the like. In addition to the presence or absence of liquid, the transparency of the tube may decrease due to long-term use. The level of the amount of light received by the light receiving element changes depending on these situations.
Various internal states can be detected by sorting the level of the amount of received light by the signal processing unit. In the prior art, the presence of bubbles was regarded as noise for determining the presence or absence of liquid, but in the present invention, bubbles are detected based on the amount of received light, and the presence of bubbles itself is a sign of liquid shortage and insufficient gas pressure. It has become possible to use it as influential information inside the equal circulation liquid.

すなわち、本発明より、投光素子と受光素子と信号処理部よりなる液体検知センサであって、前記投光素子は液体流通チューブの外側に配され、前記受光素子は投光素子の発する光を受光するために前記投光素子に対向した前記液体流通チューブ外側に配され、前記信号処理部が前記受光素子の計測時間軸に対する受光量の変動幅および単位時間あたりの変動回数に基づいて、前記液体流通チューブ内を流通する気泡の有無を検知し得るものであることを特徴とする液体検知センサが提供される。
気泡発生等による液体と気体が混じった状態の場合には受光量が激しく変動し、通常の受光量が安定している場合とは計測時間軸に対する受光量の変動幅および単位時間あたりの変動回数が大きく異なる。受光量の変動状態を検知することにより気泡発生等の内部状態をきわめて的確に判断することが可能になる。
That is, more to the present invention, there is provided a liquid detection sensor consisting of a light projecting element light receiving element and a signal processing unit, the light emitting element is disposed outside of the fluid transfer tube, the light receiving element is emitted from the light projecting element light disposed outside of the fluid transfer tube facing the light projecting element for receiving, the signal processing unit on the basis of the number of times of the change in the per fluctuation range and units of the received light amount time for measuring the time axis of the light receiving element , the liquid detection sensor, wherein the it is capable of detecting the presence or absence of air bubbles flowing through the liquid flow in the tube is provided.
When the liquid and gas are mixed due to bubbles, etc., the amount of received light changes drastically, and when the normal amount of received light is stable, the amount of fluctuation in the amount of received light with respect to the measurement time axis and the number of fluctuations per unit time Are very different. By detecting the fluctuation state of the amount of received light, the internal state such as the generation of bubbles can be determined very accurately.

受光素子が複数の場合には、投光素子の正面に対向する受光素子と正面以外に位置する受光素子間では、受光量に差異が生じるが、流通液の有無等の場合によって、受光素子間で生じる受光量の差異の度合いが異なることとなる。したがい、この差分を検知することによって流通液の有無等を判断することができる。投光素子が複数の場合も同様である。   If there are multiple light receiving elements, there will be a difference in the amount of light received between the light receiving element facing the front of the light projecting element and the light receiving element located outside the front. Therefore, the degree of difference in the amount of received light is different. Therefore, by detecting this difference, it is possible to determine the presence or absence of the circulating fluid. The same applies when there are a plurality of light projecting elements.

本発明において、前記投光素子と前記受光素子のいずれかが複数基備えられており、前記対向する1組の投光素子と受光素子が前記液体流通チューブの長さ方向に複数組配設されていることが好ましい Oite the present invention, the is either the light emitting element and the light receiving element is provided with a plurality groups, a plurality of sets distribution in the longitudinal direction of the opposing pair of light projecting element and the light receiving element is the fluid transfer tube It is preferable to be provided.

本発明液体検知センサを用いて、液体の有無、液体の特定(例えばビールかオレンジジュースか)、が判断できる。又、受光量のレベルによりチューブが古くなって交換時期が到来しているか否か判断できる。古くなったチューブの壁面には異物付着やカビ類繁殖しやすく、その結果液質を低下させてしまう上、品質劣化による液漏れ等のトラブルが発生する可能性があるが、それを未然に防止することが可能となる。さらに、一定時間内の大きく異なる数値の混在により、気泡や異物の存在を検知できる。 Using the liquid detection sensor of the present invention, it is possible to determine the presence or absence of a liquid and the identification of the liquid (for example, beer or orange juice). Further, it can be determined whether the replacement time has arrived due to the tube becoming old based on the level of the amount of received light. On the wall of the old tube, it is easy for foreign matter to adhere and molds to propagate. As a result, the liquid quality is lowered, and there is a possibility that problems such as liquid leakage due to quality deterioration may occur. It becomes possible to do. Furthermore, the presence of bubbles and foreign matters can be detected by mixing a large number of different values within a certain time.

本発明液体検知センサを用いることにより、気泡の発生を迅速に把握することができる。気泡の発生は液切れの前段階である場合があり、又、ガス圧の不足に起因する場合がある。これらの情報を早期に把握することにより、液切れの予防を徹底したり、ガス圧不足による泡ばかりのビールの供給を事前防止することが可能となる。 By using the liquid detection sensor of the present invention , it is possible to quickly grasp the generation of bubbles. The generation of bubbles may be in a stage before running out of liquid, or may be due to insufficient gas pressure. By grasping these pieces of information at an early stage, it becomes possible to thoroughly prevent the liquid from running out or to prevent the supply of foamy beer due to insufficient gas pressure in advance.

本発明液体検知センサでは、複数組の検知センサを設置することにより、1つのみの検知センサでは見逃していた気泡の発生等を更に迅速に把握することが可能となる。逆に、液切れとは無関係にごく微量発生した気泡については、複数の検知センサが同時に気泡を検知することはほとんどない。このような場合には、総合的に判断することにより液切れ等の誤作動を防止することができる。又、気泡の先端を捉えた検知センサ間の時間差を分析することにより、液体の流速を計測することができる。流速の把握により、気泡発生から液切れまでの時間を予測することも可能となる。 In the liquid detection sensor of the present invention , by installing a plurality of sets of detection sensors, it is possible to more quickly grasp the generation of bubbles that were missed by only one detection sensor. On the contrary, for a very small amount of bubbles that are generated regardless of the liquid running out, the plurality of detection sensors hardly detect the bubbles at the same time. In such a case, malfunctions such as running out of liquid can be prevented by comprehensively judging. Moreover, the flow rate of the liquid can be measured by analyzing the time difference between the detection sensors capturing the tip of the bubble. By grasping the flow velocity, it is possible to predict the time from bubble generation to liquid breakage.

以下、図面を参照しつつ、本発明を実施するための最良の形態について説明する。
図1は、本発明に係る液体検知装置の斜面図である。図1(a)は液体検知センサ筐体9が閉じられて液体流通チューブ1に装着された状態を示している。筐体外面にはLED10とスイッチ11が組み込まれて、電源はDC電源を用いている。図1(b)は液体検知センサ筐体が開かれた状態を示している。筐体内部には、投光素子3と受光素子4が嵌め込まれており、筐体が閉じられたときには投光素子と受光素子が液体流通チューブを挟んで対向するようになっている。受光素子は信号処理部13(図示していない)に接続されている。信号処理部には受光信号の増幅やフィルタも含まれる。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view of a liquid detection device according to the present invention. FIG. 1A shows a state where the liquid detection sensor housing 9 is closed and attached to the liquid circulation tube 1. An LED 10 and a switch 11 are incorporated on the outer surface of the housing, and a DC power source is used as a power source. FIG. 1B shows a state where the liquid detection sensor housing is opened. The light projecting element 3 and the light receiving element 4 are fitted inside the casing, and when the casing is closed, the light projecting element and the light receiving element are opposed to each other with the liquid circulation tube interposed therebetween. The light receiving element is connected to a signal processing unit 13 (not shown). The signal processing unit includes amplification of received light signals and filters.

図3−1は、本発明に係る液体検知センサを液体流通チューブにセッティングした状態の断面図である。投光素子3は対向する受光素子4に流通チューブ1を通して投光する。投光素子としては寿命等からLEDが好ましいがこれに限定されるものではない。投光波長は800〜1000nmの赤外光を用いる。又、受光素子としてはフォトダイオードが好ましいが、これに限定されない。図3−1(a)はチューブ内には液体が満たされておらず、空気2aの状態を示す。図3−1(b)はチューブ内にビール等の液体2bが満たされている状態を示す。図3−1(c)はチューブ内にビール等の液体が満たされており、かつ液体流通チューブ5が汚れている状態を示す。   FIG. 3A is a cross-sectional view of a state in which the liquid detection sensor according to the present invention is set in a liquid circulation tube. The light projecting element 3 projects light to the opposing light receiving element 4 through the flow tube 1. As the light projecting element, an LED is preferable from the viewpoint of lifetime, but is not limited thereto. As the projection wavelength, infrared light of 800 to 1000 nm is used. The light receiving element is preferably a photodiode, but is not limited thereto. FIG. 3A shows the state of the air 2a when the tube is not filled with liquid. FIG. 3-1 (b) shows a state where the tube is filled with a liquid 2b such as beer. FIG. 3C shows a state where the tube is filled with a liquid such as beer and the liquid circulation tube 5 is dirty.

図3−2は、図3−1の投光赤外光の照射状態を示した概念図である。投光素子3から投光された赤外光が受光素子によって受光される際に流通チューブ内が空気(気体)の場合は、液体と気体の屈折率の差により拡散するので受光素子の受光量は相対的に低くなる。一方、流通チューブ内にビール等の液体が満たされている場合には、投光光はあまり拡散しないので受光素子の受光量は相対的に高くなる。流通チューブが汚れている場合には、チューブ内で投光光が遮蔽され、散乱するので受光素子の受光量はチューブが清浄である場合に比較して相対的に低くなる。気泡が発生した場合や異物が混入した場合には、内部状態により受光量のレベルが変化することになる。   FIG. 3B is a conceptual diagram illustrating an irradiation state of the projected infrared light in FIG. When infrared light projected from the light projecting element 3 is received by the light receiving element, if the inside of the flow tube is air (gas), it diffuses due to the difference in refractive index between the liquid and the gas, so the amount of light received by the light receiving element Is relatively low. On the other hand, when the distribution tube is filled with a liquid such as beer, the light projection is not diffused so much that the amount of light received by the light receiving element becomes relatively high. When the flow tube is dirty, the projection light is shielded and scattered in the tube, so that the amount of light received by the light receiving element is relatively lower than when the tube is clean. When bubbles are generated or foreign substances are mixed, the level of the amount of received light changes depending on the internal state.

ビール内に気泡が発生した状態では、液体が満たされた状態と空の状態が混合し、かつ激しく入れ替わることとなる。そのため、受光量のレベルが単位時間に対して激しく変動する。この受光量の変動率を分析することにより、気泡発生をより確実に把握することが可能になる。受光量の変動率は受光素子の受光信号を信号処理部で処理し、判断される。 上記受光量レベルによる判断に加え、この受光量の変動率による判断をも組合わせて信号処理部で判断されることが迅速正確な判断に直結することとなり、より好ましい。 In a state where bubbles are generated in the beer, the liquid-filled state and the empty state are mixed and vigorously switched. For this reason, the level of the amount of received light varies drastically with respect to unit time. By analyzing the fluctuation rate of the amount of received light, it is possible to grasp the generation of bubbles more reliably. The variation rate of the amount of received light is determined by processing the light reception signal of the light receiving element by the signal processing unit. In addition to the determination based on the received light amount level, it is more preferable that the determination based on the variation rate of the received light amount is combined to be determined by the signal processing unit, which directly leads to a quick and accurate determination.

図4は受光素子の受光量値についての概念図である。図4において、流通チューブ内に液体が満たされている場合16bでは受光量は最も高くなる。流通チューブ内に液がない場合16aでは受光量は最も低くなる。流通チューブ内に液体が満たされているが、チューブが汚れている場合16cでは、受光量は中間値を示す。したがって、受光量値間にしきい値6、7を設定すれば、3つの状態を判断することができる。   FIG. 4 is a conceptual diagram of the amount of light received by the light receiving element. In FIG. 4, when the liquid is filled in the flow tube, the amount of received light is the highest in 16b. When there is no liquid in the flow tube, the amount of received light is the lowest in 16a. In the case where the liquid is filled in the flow tube but the tube is dirty, in 16c, the amount of received light shows an intermediate value. Accordingly, if threshold values 6 and 7 are set between the received light amount values, three states can be determined.

信号処理部で判断された液体の有無、異物の有無、泡の有無、チューブの汚れについての信号は表示部(図示しない)でその内容が表示される。例えば、ビールが適正に流通している場合にはLEDの緑色が点灯し、チューブが汚れ交換時期が到来している場合には橙色が点灯し、ビールの液切れでチューブ内が空になっている場合には赤色が点灯し、気泡や異物の存在により液切れの前兆又は液体の状態が悪い場合には緑色が点滅することにより状態を明確に表示することができる。   The signal about the presence / absence of liquid, the presence / absence of foreign matter, the presence / absence of bubbles, and dirt on the tube determined by the signal processing unit is displayed on a display unit (not shown). For example, when beer is properly distributed, the green LED lights up. When the tube is dirty, the orange light turns on. If it is, red is lit, and if there is a sign of running out of liquid or the state of liquid is bad due to the presence of bubbles or foreign matter, the state can be clearly displayed by blinking green.

制御部の判断処理はマイコンを用いても良いし、単純なコンパレータやロジック回路によっても可能である。又、制御部から通信装置を介して遠隔地に設置した表示部に信号を送ることもできる。又、表示部と連動して警報装置が作動する。例えばビールの液切れでチューブが空になっている場合には、表示部で赤色点灯されると同時に警報ブザーを鳴らすことができる。   The determination process of the control unit may use a microcomputer, or a simple comparator or logic circuit. In addition, a signal can be sent from the control unit to a display unit installed at a remote place via a communication device. Also, the alarm device operates in conjunction with the display unit. For example, when the tube is empty due to beer liquid running out, the alarm buzzer can be sounded simultaneously with the red light on the display unit.

図2は第2の実施形態を示している。投光素子は1基であるのに対し受光素子は2基設置されていて、3基で1組の液体検知センサを構成する。受光素子4は投光素子3の正面に対向しているのに対し、受光素子12は液体流通チューブの長さ方向に対して位置ずれして対向している。各々の受光素子は信号処理部13に接続されている。信号処理部はLED10と接続されており、さらに、出力接点14、外部出力端子15にも接続されている。外部出力はリレーや半導体などの有接点/無接点出力、あるいは外部機器との通信手段を用いることが可能である。また無線などを用いてワイヤレスで出力部を構成してもよい。装置の電源は特に図示していないが外部から電源線を接続あるいは電池駆動など可能である。   FIG. 2 shows a second embodiment. While there are one light projecting element, two light receiving elements are provided, and three units constitute a set of liquid detection sensors. The light receiving element 4 is opposed to the front surface of the light projecting element 3, while the light receiving element 12 is opposed to the longitudinal direction of the liquid flow tube while being displaced. Each light receiving element is connected to the signal processing unit 13. The signal processing unit is connected to the LED 10, and is further connected to the output contact 14 and the external output terminal 15. As the external output, it is possible to use a contact / non-contact output such as a relay or a semiconductor, or a communication means with an external device. Further, the output unit may be configured wirelessly using wireless or the like. Although the power supply of the apparatus is not particularly shown, it is possible to connect a power supply line from the outside or to drive a battery.

投光素子から投光された光は、図3−2で説明したように、図2(a)のように液体が満たされていない場合には拡散するので、受光素子4と受光素子12の受光量の差分は比較的小さい。それに対して図2(b)のように液体が満たされている場合にはあまり拡散しないので、正面の受光素子4の受光量が相対的に大きくなる。したがって、受光素子4と受光素子12の受光量の差分は大きくなる。このように投光素子の正面に位置する受光素子と正面から離れた位置にある受光素子間の受光量の差分を分析することによっても液体流通チューブ内の液体の状態を把握することができる。   As described with reference to FIG. 3B, the light projected from the light projecting element diffuses when the liquid is not filled as shown in FIG. The difference in the amount of received light is relatively small. On the other hand, when the liquid is filled as shown in FIG. 2B, it does not diffuse so much, so that the amount of light received by the front light receiving element 4 becomes relatively large. Therefore, the difference in the amount of light received between the light receiving element 4 and the light receiving element 12 is increased. Thus, the state of the liquid in the liquid circulation tube can also be grasped by analyzing the difference in the amount of light received between the light receiving element located in front of the light projecting element and the light receiving element located away from the front.

図5は第3の実施形態を示している。投光素子、受光素子は各々3基あり、液体流通チューブ中の長さ方向に離れて配設されている。3a、3b、3cの投光素子は4a、4b、4cの受光素子と対向してそれぞれ1組の液体検知センサを構成し、合計3組の液体検知センサを構成している。又、投光素子と受光素子は基板8上に配設されており、受光素子は信号処理部13に接続されている。(図示していない)   FIG. 5 shows a third embodiment. There are three light projecting elements and three light receiving elements, respectively, which are arranged apart in the length direction in the liquid circulation tube. The light projecting elements 3a, 3b, and 3c are opposed to the light receiving elements 4a, 4b, and 4c to constitute one set of liquid detection sensors, respectively, and constitute a total of three sets of liquid detection sensors. The light projecting element and the light receiving element are arranged on the substrate 8, and the light receiving element is connected to the signal processing unit 13. (Not shown)

各々の組の液体検知センサ素子はチューブ内液体の有無等受光量レベル及び受光量変動率を受光し、信号処理部でその内容が判断される。各組の液体検知センサは一定距離を保っているので、それぞれの位置の正面を通過する流通チューブ内液体等の状況を、独立して把握することができる。したがって、液体等の1点の情報のみならず、一定範囲の広い状況を把握することができ、かつ、1組の液体検知センサが把握した液体の上流側の特定の状況を、一定時間後に下流側に位置する1組の液体検知センサが把握することができる。このため、検知漏れを防止すること、ごく一部のみの状況により過剰に反応し誤作動を起こすことを防止すること、気泡等の広がりを把握することが可能となる。又、正面を通過する気泡等の先頭位置把握について各組の液体検知センサ間の時間差分析により、液体の流速を計測する等の分析が可能となる。   Each set of liquid detection sensor elements receives the received light amount level such as the presence or absence of liquid in the tube and the received light amount fluctuation rate, and the contents thereof are determined by the signal processing unit. Since each set of liquid detection sensors maintains a certain distance, it is possible to independently grasp the situation of the liquid in the flow tube passing through the front of each position. Therefore, not only information on one point such as liquid, but also a wide range of a certain range can be grasped, and a specific situation upstream of the liquid grasped by one set of liquid detection sensors is downstream after a certain time. A set of liquid detection sensors located on the side can be grasped. For this reason, it becomes possible to prevent a detection omission, to prevent an excessive reaction and malfunction due to only a part of the situation, and to grasp the spread of bubbles and the like. In addition, it is possible to perform analysis such as measuring the liquid flow velocity by analyzing the time difference between each pair of liquid detection sensors for grasping the head position of bubbles or the like passing through the front.

次に、実験データに基づいて説明する。投光素子はLEDを、受光素子はフォトダイオードを各1基用いた液体検知センサを2組用いて実験を行った。投光素子、受光素子共に液体流通チューブの外面から1ミリメートルの対向した位置に配設した。液体流通チューブは外形10ミリメートル、肉厚2.5ミリメートルのナイロンチューブを使用した。投光素子から950nmの赤外光を投光し、受光素子で受光する受光量の時間軸(ms)に対する値をプロットした。受光量は5vをNで除し、Nをデジタル値として表している。   Next, a description will be given based on experimental data. The experiment was conducted using two sets of liquid detection sensors each using an LED as a light projecting element and one photodiode as a light receiving element. Both the light projecting element and the light receiving element were disposed at positions facing each other by 1 mm from the outer surface of the liquid circulation tube. As the liquid distribution tube, a nylon tube having an outer shape of 10 mm and a wall thickness of 2.5 mm was used. The infrared light of 950 nm was projected from the light projecting element, and the value with respect to the time axis (ms) of the amount of light received by the light receiving element was plotted. The amount of received light is expressed by dividing 5v by N and N is a digital value.

図7はチューブ内が空の状態の受光量値である。デジタル値は256〜300近辺を示し、安定して推移している。図8はチューブ内をビールが満たしている状態の受光量値である。デジタル値1〜2近辺を示し、安定して推移している。チューブ内を液体であるビールが満たしているので、空の状態と比べて受光量値が格段に高いことが示されている。図9はチューブ内をビールが満たしていてかつチューブが汚れている状態である。チューブは白濁して交換時期に来ているものを使用した。デジタル値は64近辺を示し、やはり安定して推移している。チューブの遮光性が高くなったことにより図8の数値より受光量値が低くなったものと考えられる。   FIG. 7 shows received light amount values when the tube is empty. The digital value is in the vicinity of 256 to 300 and is stable. FIG. 8 shows the received light amount value when the inside of the tube is filled with beer. The digital value is around 1 to 2, and it is stable. It is shown that the amount of light received is much higher than the empty state because the beer, which is a liquid, fills the tube. FIG. 9 shows a state where the tube is filled with beer and the tube is dirty. The tube was cloudy and used when it was time to replace. The digital value shows around 64, and it is still stable. It is considered that the light reception amount value is lower than the numerical value of FIG. 8 due to the high light shielding property of the tube.

図10は受光素子を遮光した状態の受光量値である。液体検知センサの筐体を、投光光が受光素子に受光されない角度に開いた状態で計測した。デジタル値は512近辺を安定的に示している。図11は気泡が発生した状態の受光量値である。デジタル値は64〜500近辺を激しく変動して推移している。気泡が発生した場合には、受光量レベルそのものも変化するが、変動率も他の状態と比べはるかに大きい。よって変動率により他の状態と差別化することが可能である。
また、図11の第1軸と第2軸の時間差に着目してみると、記録開始時は100m秒程度だった遅延が最終時は300m秒まで延びており、この測定の間にも徐々にチューブ内ビールの流速が落ちていることが判断出来る。このように光軸間の時間差を簡便に測定・利用することが可能である。
FIG. 10 shows received light amount values in a state where the light receiving element is shielded from light. Measurement was performed with the casing of the liquid detection sensor opened at an angle at which the projected light was not received by the light receiving element. The digital value stably indicates around 512. FIG. 11 shows the amount of received light in a state where bubbles are generated. The digital value fluctuates violently around 64 to 500. When bubbles are generated, the received light amount level itself changes, but the rate of change is much larger than in other states. Therefore, it is possible to differentiate from other states by the fluctuation rate.
When attention is paid to the time difference between the first axis and the second axis in FIG. 11, the delay which was about 100 msec at the start of recording extends to 300 msec at the end, and gradually during this measurement. It can be judged that the flow rate of the beer in the tube has dropped. Thus, the time difference between the optical axes can be easily measured and used.

図12はチューブ内を醤油が満たしている状態の受光量値である。ビールの場合とほぼ同様のデジタル値を示している。図13はチューブ内を23%オレンジジュースが、図14は100%オレンジジュースが満たしている状態の受光量値である。23%オレンジジュースの場合は64近辺を、100%オレンジジュースの場合は400近辺を安定して推移している。ビール、醤油の場合と比して受光量が少ないのは、オレンジが近赤外光を吸収するためであると推察される。100%オレンジジュースの場合には、より吸収度が高くなるので、受光素子の受光量が液体流通チューブが空の場合よりも、受光量が低くなる。このように、液体の吸光性を利用して、受光量による流通液体の特定や液の混在の発見を行なうことも可能である。   FIG. 12 shows the amount of received light when the tube is filled with soy sauce. The digital values are almost the same as in the case of beer. FIG. 13 shows the amount of light received when 23% orange juice is filled in the tube and FIG. 14 shows the state where 100% orange juice is filled. In the case of 23% orange juice, the vicinity is around 64, and in the case of 100% orange juice, the vicinity is around 400. The reason why the amount of light received is smaller than in the case of beer and soy sauce is presumed to be because orange absorbs near-infrared light. In the case of 100% orange juice, since the absorbance is higher, the amount of light received by the light receiving element is lower than when the liquid circulation tube is empty. As described above, it is possible to identify the circulating liquid by the amount of received light and discover the mixture of liquids by utilizing the light absorbency of the liquid.

本発明は、ビール等チューブ内を流通する液体の有無、気泡の発生等内部状態を的確に把握できるので、液切れや異物混入等を早期に発見することが可能となる。又、把握した情報に基づいて、迅速に対応することが可能である。本発明は、液体全般に限らず、気体等に広範囲に利用可能な技術である。   According to the present invention, since it is possible to accurately grasp the internal state such as the presence or absence of liquid flowing in the tube such as beer and the generation of bubbles, it becomes possible to detect liquid breakage, foreign matter contamination and the like at an early stage. Moreover, it is possible to respond quickly based on the grasped information. The present invention is not limited to liquids in general and is a technology that can be used in a wide range of gases.

液体検知センサを組み込んだ筐体の構成図である。It is a block diagram of the housing | casing incorporating a liquid detection sensor. 投光素子が1基、受光素子が2基の態様の液体検知センサの構成図である。It is a block diagram of the liquid detection sensor of a mode with one light projecting element and two light receiving elements. 液体検知センサの構成図である。It is a block diagram of a liquid detection sensor. 液体検知センサの受光・投光に関する構成図である。It is a block diagram regarding light reception and light projection of a liquid detection sensor. 受光量レベルに関する説明図である。It is explanatory drawing regarding a light reception level. 3組の投光素子と受光素子より成る液体検知センサの構成図である。It is a block diagram of the liquid detection sensor which consists of 3 sets of light projection elements and a light receiving element. 気泡発生時の受光量推移に関する説明図である。It is explanatory drawing regarding the light reception amount transition at the time of bubble generation | occurrence | production. 液体流通チューブが空の状態の受光量推移データ図である。It is a light reception amount transition data figure of the state where the liquid distribution tube is empty. 液体流通チューブの中がビールで満たされている状態の受光量推移データ図である。It is a light reception amount transition data figure of the state with which the inside of a liquid distribution tube is filled with beer. 液体流通チューブの中がビールで満たされており、かつ流通チューブが汚れている状態の受光量推移データ図である。It is a light reception amount transition data figure of the state where the inside of a liquid distribution tube is filled with beer, and a distribution tube is dirty. 受光素子が遮光されている状態の受光量推移データ図である。It is a light reception amount transition data figure in the state where the light receiving element is shielded from light. 液体流通チューブの中のビールに気泡が発生している状態の受光量推移データ図である。It is a light reception amount transition data figure in the state where the bubble has occurred in beer in a liquid distribution tube. 液体流通チューブの中が醤油で満たされている状態の受光量推移データ図である。It is a light reception amount transition data figure of the state with which the inside of a liquid distribution tube is filled with soy sauce. 液体流通チューブの中が23%オレンジジュースで満たされている状態の受光量推移データ図である。It is a light reception amount transition data figure of the state with which the inside of a liquid distribution tube is filled with 23% orange juice. 液体流通チューブの中が100%オレンジジュースで満たされている状態の受光量推移データ図である。It is a light reception amount transition data figure of the state with which the inside of a liquid distribution tube is filled with 100% orange juice.

符号の説明Explanation of symbols

1 液体流通チューブ
2a 液体流通チューブ内の空気
2b 液体流通チューブ内の液体
3a〜3c 投光素子
4a〜4c 受光素子
5 チューブの汚れ
6 チューブ内の液の有無と判定しきい値
7 チューブの汚れの判定用しきい値
8 基板
9 筐体
10 LED
11 スイッチ
12 受光素子
13 信号処理部
14 出力接点
15 外部出力端子
16a 液体流通チューブ内に液体がない場合の透過率
16b 液体流通チューブ内が液体で満たされている場合の透過率
16c 液体流通チューブ内が液体で満たされているが、チューブが汚れている場合の透過率
16d チューブを流通する液体に泡や異物が含まれている場合の透過率
DESCRIPTION OF SYMBOLS 1 Liquid distribution tube 2a Air in liquid distribution tube 2b Liquid in liquid distribution tube 3a-3c Light emitting element 4a-4c Light receiving element 5 Tube dirt 6 Presence / absence of liquid in the tube and determination threshold 7 Tube dirt Judgment threshold value 8 Substrate 9 Case 10 LED
DESCRIPTION OF SYMBOLS 11 Switch 12 Light receiving element 13 Signal processing part 14 Output contact 15 External output terminal 16a Transmittance when there is no liquid in a liquid distribution tube 16b Transmittance when the liquid distribution tube is filled with liquid 16c In a liquid distribution tube Is filled with liquid, but the transmittance when the tube is dirty 16d Transmittance when the liquid flowing through the tube contains bubbles or foreign matter

Claims (2)

投光素子と受光素子と信号処理部よりなる液体検知センサであって、前記投光素子は液体流通チューブの外側に配され、前記受光素子は投光素子の発する光を受光するために前記投光素子に対向した前記液体流通チューブの外側に配され、前記信号処理部が前記受光素子の計測時間軸に対する受光量の変動幅および単位時間あたりの変動回数に基づいて、前記液体流通チューブ内を流通する気泡の有無を検知し得ることを特徴とする液体検知センサ。 A liquid detection sensor comprising a light projecting element, a light receiving element, and a signal processing unit, wherein the light projecting element is disposed outside a liquid circulation tube, and the light receiving element receives the light emitted from the light projecting element. The liquid processing tube is disposed outside the liquid circulation tube facing the optical element, and the signal processing unit moves the inside of the liquid circulation tube based on the fluctuation range of the amount of received light with respect to the measurement time axis of the light receiving element and the number of fluctuations per unit time. A liquid detection sensor capable of detecting the presence or absence of circulating bubbles. 前記投光素子と前記受光素子のいずれかが複数基備えられており、前記対向する1組の投光素子と受光素子が前記液体流通チューブの長さ方向に複数組配設されていることを特徴とする請求項1に記載の液体検知センサ。   A plurality of the light projecting elements and the light receiving elements are provided, and a plurality of sets of the light projecting elements and the light receiving elements facing each other are arranged in the length direction of the liquid circulation tube. The liquid detection sensor according to claim 1.
JP2007015199A 2007-01-25 2007-01-25 Liquid detection sensor Active JP5349759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015199A JP5349759B2 (en) 2007-01-25 2007-01-25 Liquid detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015199A JP5349759B2 (en) 2007-01-25 2007-01-25 Liquid detection sensor

Publications (2)

Publication Number Publication Date
JP2008180643A JP2008180643A (en) 2008-08-07
JP5349759B2 true JP5349759B2 (en) 2013-11-20

Family

ID=39724646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015199A Active JP5349759B2 (en) 2007-01-25 2007-01-25 Liquid detection sensor

Country Status (1)

Country Link
JP (1) JP5349759B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599144B2 (en) * 2008-10-15 2014-10-01 シーバイエス株式会社 Liquid outage sensor for commercial automatic dishwasher and liquid supply device for commercial automatic dishwasher using the same
EP2548839A1 (en) 2009-06-03 2013-01-23 ASAHI BREWERIES, Ltd. Liquid delivery system, liquid-delivery switching device, and liquid-flowpath regulation device
JP5649801B2 (en) * 2009-06-03 2015-01-07 アサヒビール株式会社 Fluid distribution and liquid dispensing system
JP5393389B2 (en) * 2009-10-13 2014-01-22 アサヒビール株式会社 Liquid quality control system
CN102652258B (en) * 2009-12-11 2015-11-25 埃科莱布有限公司 Fouling detection device and fouling detection method
JP2012063328A (en) * 2010-09-17 2012-03-29 Welco Co Ltd Liquid sensor
JP5559646B2 (en) * 2010-09-17 2014-07-23 株式会社ウエルコ Liquid sensor
JP5963587B2 (en) * 2012-07-13 2016-08-03 サントリーホールディングス株式会社 Beverage dispenser system
JP6294672B2 (en) * 2014-01-08 2018-03-14 株式会社エムケイティタイセー Foreign substance / bubble detection device and object detection device
JP6896243B2 (en) * 2017-03-28 2021-06-30 アサヒビール株式会社 Liquid detection sensor
JP6656287B2 (en) * 2017-03-31 2020-03-04 サントリーホールディングス株式会社 Liquid detection device, beverage dispenser provided with the same, and beverage dispenser management system
JP6667703B1 (en) * 2019-04-24 2020-03-18 サントリーホールディングス株式会社 Beverage serving device management system
TW202200988A (en) * 2020-03-09 2022-01-01 日商東京威力科創股份有限公司 Foreign matter detection device, substrate processing device, foreign matter detection method, and storage medium
WO2024051893A1 (en) * 2022-09-08 2024-03-14 Dsi Micro Matic Gmbh Arrangement for tapping a beverage, equipped with sensors and internal connection for further preparing the information
DE102022122876B3 (en) * 2022-09-08 2023-12-21 D. S. I. Getränkearmaturen GmbH Tap with sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135726A (en) * 1983-12-23 1985-07-19 Mitsuwa Seiki Co Ltd Movement detector for transparent liquid level
JPS613034A (en) * 1984-06-15 1986-01-09 Masanori Nomura Air bubble detection sensor
JPH02248892A (en) * 1989-03-23 1990-10-04 Izumi Food Mach:Kk Detector for foreign matter in fluidized food
JPH0821798A (en) * 1994-07-06 1996-01-23 Kanegafuchi Chem Ind Co Ltd Method and apparatus for detecting foreign matter
JP2895466B1 (en) * 1998-02-10 1999-05-24 有限会社さつき電子 Beer foam detection alarm
JP3548092B2 (en) * 2000-06-22 2004-07-28 サンクス株式会社 Liquid detector
JP2004241169A (en) * 2003-02-04 2004-08-26 Matsushita Electric Ind Co Ltd Fuel cell system and portable equipment using the same
JP2005288765A (en) * 2004-03-31 2005-10-20 Seiko Epson Corp Liquid ejector and cleaning method of liquid ejector
JP2006010597A (en) * 2004-06-29 2006-01-12 Takashi Wada Detection sensor for out of liquid

Also Published As

Publication number Publication date
JP2008180643A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5349759B2 (en) Liquid detection sensor
US8252582B2 (en) Disposable bioreactor comprising a sensor arrangement
KR100749318B1 (en) Apparatus for optimum water-quality test and notice for water-supply course and the method for the same
JP5274903B2 (en) Fluid detection sensor
EP2596335A2 (en) Chemical and physical degradation sensing in oil
US8927922B2 (en) Fluid diagnostic devices and methods of using the same
US6543493B2 (en) Optical monitoring processes and apparatus for combined liquid level sensing and quality control
US20090185188A1 (en) Pass-fail tool for testing particulate contamination level in a fluid
JP6403433B2 (en) Leak detector
JP2014059214A (en) Water quality measuring apparatus
JP6656287B2 (en) Liquid detection device, beverage dispenser provided with the same, and beverage dispenser management system
JP2006010597A (en) Detection sensor for out of liquid
KR102468515B1 (en) Easy moving sample collection and analysis device
EP3715830B1 (en) System for detection of particles in fluids
CN210180617U (en) Valve leakage detection device
JP4996369B2 (en) Liquid detector
WO2008119987A1 (en) Beverage property measurement
JP4365804B2 (en) Apparatus and method for determining clogged state in pipe
JP4467447B2 (en) Leak sensor
KR20210141149A (en) Liquid Level Measuring Apparatus With Built-in Alarm By Using LED-module
JP6667703B1 (en) Beverage serving device management system
KR102325841B1 (en) Liquid Level Measuring Method and Liquid Level Measuring Apparatus With Built-in Alarm By Using LED-module
US20200080884A1 (en) Out-of-pocket detection using sensors and bubble collector
CN113155236A (en) Judgment method of liquid inlet of target container, liquid taking device and water quality analyzer
KR20210115962A (en) Water purifier and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120529

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5349759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250