[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5349040B2 - Motor drive device - Google Patents

Motor drive device Download PDF

Info

Publication number
JP5349040B2
JP5349040B2 JP2008332688A JP2008332688A JP5349040B2 JP 5349040 B2 JP5349040 B2 JP 5349040B2 JP 2008332688 A JP2008332688 A JP 2008332688A JP 2008332688 A JP2008332688 A JP 2008332688A JP 5349040 B2 JP5349040 B2 JP 5349040B2
Authority
JP
Japan
Prior art keywords
phase
coil
motor
stator
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008332688A
Other languages
Japanese (ja)
Other versions
JP2010154717A (en
Inventor
力 道岡
岳彦 仲村
公宏 麻畠
徹也 幾谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2008332688A priority Critical patent/JP5349040B2/en
Publication of JP2010154717A publication Critical patent/JP2010154717A/en
Application granted granted Critical
Publication of JP5349040B2 publication Critical patent/JP5349040B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Synchronous Machinery (AREA)

Description

本発明は、円周方向に相順に複数のトロイダル巻きのコイルが隣りのコイルと励磁方向が互いに異なるように逆向きに巻かれて配置されたステータと、該ステータの内側の円周方向に複数の突極が形成されたロータとを備えたスイッチドリラクタンスモータを駆動するモータ駆動装置に関する。 The present invention includes a stator in which a plurality of toroidal coils are wound in opposite directions so that excitation directions are different from neighboring coils, and a plurality of coils in a circumferential direction inside the stator. The present invention relates to a motor drive device for driving a switched reluctance motor including a rotor having a salient pole formed thereon.

従来、電気自動車の駆動モータ等には、スイッチドリラクタンスモータ(以下、SRモータという)に代表される、ステータに相順に三相の集中巻きのコイルを配置したモータが用いられる。   2. Description of the Related Art Conventionally, as a drive motor for an electric vehicle, a motor represented by a switched reluctance motor (hereinafter referred to as an SR motor) in which a three-phase concentrated winding coil is arranged in a phase sequence on a stator is used.

そして、ステータおよびロータの両方に突極が形成された両突極型のSRモータは図9示すように形成される。図9のSRモータ100はヨークが軟磁性体(珪素鋼鈑等)で形成されたステータ200およびその内側のロータ300を備える。ステータ200のヨークの内周面には半径方向内向きの複数の突極201が円周方向に形成され、ロータ300のヨークの周面にも半径方向外向きの複数個の突極301が円周方向に形成されている。さらに、ステータ200の各突極201には集中巻きの3相A、B、Cのコイル400が順に配置されている(例えば、特許文献1参照)。 Then, SR motor of both salient-pole salient pole in both the stator and the rotor is formed is formed as shown in FIG. The SR motor 100 shown in FIG. 9 includes a stator 200 having a yoke formed of a soft magnetic material (silicon steel plate or the like) and a rotor 300 inside the stator 200. A plurality of radially inward salient poles 201 are formed in the circumferential direction on the inner peripheral surface of the yoke of the stator 200, and a plurality of radially outward salient poles 301 are also circular on the peripheral surface of the yoke of the rotor 300. It is formed in the circumferential direction. Further, concentrated winding three-phase A, B, and C coils 400 are sequentially arranged on each salient pole 201 of the stator 200 (see, for example, Patent Document 1).

上記構成のSRモータ100は図10の構成の三相インバータ部500を備えたモータ駆動装置によって駆動される。図10において、600は例えば車両のバッテリ、501はバッテリ600に並列に接続されたエネルギ蓄積コンデンサであり、バッテリ600とともに三相インバータ部500の直流電源を形成する。502ap、502anはA相のコイル400を挟んで出力側が直列に接続されたA相のブリッジ辺aの正側、負側のFET(スイッチング素子)である。502bp、502bnは前記直流電源の正負両端間にB相のコイル400を挟んで出力側が直列に接続されたB相のブリッジ辺bの正側、負側のFET(スイッチング素子)である。502cp、502cnは前記直流電源の正負両端間にC相のコイル400を挟んで出力側が直列に接続されたC相のブリッジ辺cの正側、負側のFET(スイッチング素子)である。503ap、503bp、503cpはアノードが各相のFET502an、502bn、502cnとコイル400との接続点に接続された帰還ダイオードであり、カソードは前記直流電源の正側(+)に接続されている。503an、503bn、503cnはカソードが各相のFET502ap、502bp、502cpとコイル400との接続点に接続された帰還ダイオードであり、アノードは前記直流電源の負側(−)に接続されている。なお、図10では各相の直並列接続される複数個のコイル400を、それぞれ1つのコイル400で代表して示し、各相の複数のコイル400の接続構成は省略している。 The SR motor 100 having the above configuration is driven by a motor driving device including the three-phase inverter unit 500 having the configuration shown in FIG. In FIG. 10, reference numeral 600 denotes, for example, a vehicle battery, and reference numeral 501 denotes an energy storage capacitor connected in parallel to the battery 600. Reference numerals 502ap and 502an denote FETs (switching elements) on the positive and negative sides of the A-phase bridge side a, in which the output side is connected in series with the A-phase coil 400 interposed therebetween. 502 bp and 502 bn are positive side and negative side FETs (switching elements) of the B-phase bridge side b in which the output side is connected in series with the B-phase coil 400 sandwiched between the positive and negative ends of the DC power supply. Reference numerals 502 cp and 502 cn denote FETs (switching elements) on the positive and negative sides of the C-phase bridge side c in which the output side is connected in series with the C-phase coil 400 interposed between the positive and negative ends of the DC power supply. 503ap, 503bp, and 503cp are feedback diodes whose anodes are connected to the connection points between the FETs 502an, 502bn, and 502cn of the respective phases and the coil 400, and the cathodes are connected to the positive side (+) of the DC power supply. Reference numerals 503an, 503bn, and 503cn are feedback diodes whose cathodes are connected to the connection points of the FETs 502ap, 502bp, and 502cp of each phase and the coil 400, and their anodes are connected to the negative side (−) of the DC power supply. In FIG. 10, a plurality of coils 400 connected in series and parallel in each phase are represented by one coil 400, and the connection configuration of the plurality of coils 400 in each phase is omitted.

そして、特許文献1にも記載されているように、FET502ap、502anのオンによるA相のコイル400の通電励磁、FET502bp、502bnのオンによるB相のコイル400の通電励磁、FET502cp、502cnのオンによるC相のコイル400の通電励磁が相順に切り替えて行なわれ、その結果、SRモータ100のロータ300が磁気吸引されて図9の矢印線の方向に回転する。
特開平11−113229号公報
As described in Patent Document 1, energization excitation of the A-phase coil 400 by turning on the FETs 502ap and 502an, energization excitation of the B-phase coil 400 by turning on the FETs 502bp and 502bn, and turning on the FETs 502cp and 502cn. The energization excitation of the C-phase coil 400 is performed while switching in phase order. As a result, the rotor 300 of the SR motor 100 is magnetically attracted and rotates in the direction of the arrow line in FIG.
Japanese Patent Laid-Open No. 11-113229

SRモータ100に代表されるこの種のモータは、従来、ステータの各相の集中巻きのコイルを相順に通電励磁するため、図10の三相インバータ部500を有するモータ駆動装置により駆動されるが、この場合、三相インバータ部500は、近年の普及により安価になったインテリジェントパワーモジュール(IPM)である汎用の三相インバータモジュールとは帰還ダイオード503ap〜503cnの接続が異なり、専用モジュールとしてあらたに形成する必要がある。 Conventionally, this type of motor represented by the SR motor 100 is driven by a motor driving apparatus having the three-phase inverter unit 500 of FIG. 10 in order to energize and energize the concentrated winding coils of each phase of the stator in order of phase. In this case, the three-phase inverter unit 500 is different from the general-purpose three-phase inverter module, which is an intelligent power module (IPM), which has become inexpensive due to the recent popularization, and the connection of the feedback diodes 503ap to 503cn is different. Need to form.

すなわち、IPMである汎用の三相インバータモジュールは、例えばFET構成の場合、図11に示すように、三相インバータ700の各相のブリッジ辺に、図10の2個のFET502ap、502an、FET502bp、502bn、FET502cp、502cnに相当する2個のFETQ1p、Q1n、FETQ2p、Q2n、FETQ3p、Q3nを設け、各FETQ1p〜Q3nの出力側の両端間に帰還ダイオードD1p、D1n、D2p、D2n、D3p、D3nを設けて形成される。この場合、帰還ダイオードD1p〜D3nの接続は、図10の三相インバータ500の帰還ダイオード503ap〜503wnの接続と大きく異なる。そのため、安価な汎用の三相インバータモジュールによっては三相インバータ部500を形成することができず、従来のこの種のモータ駆動装置は高価になる。   That is, in the case of a general-purpose three-phase inverter module that is an IPM, for example, in the case of an FET configuration, as shown in FIG. 11, two FETs 502 ap, 502 an, and FET 502 bp in FIG. Two FETs Q1p, Q1n, FETQ2p, Q2n, FETQ3p, Q3n corresponding to 502bn, FET502cp, 502cn are provided. Provided. In this case, the connection of the feedback diodes D1p to D3n is greatly different from the connection of the feedback diodes 503ap to 503wn of the three-phase inverter 500 of FIG. Therefore, the three-phase inverter unit 500 cannot be formed by an inexpensive general-purpose three-phase inverter module, and this type of conventional motor driving device is expensive.

また、図10からも明らかなように、各相のコイル400の両端を三相インバータ部500の各相のFET502ap、502an、FET502bp、502bn、FET502cp、502cnの出力側に接続するため、例えばSRモータ100と三相インバータ部500とが合計6本の電力用の配線(ケーブル)を介して繋がり、配線の本数が多く、従来のこの種のモータ駆動装置は、高価になるだけでなく大型化する。   As apparent from FIG. 10, both ends of each phase coil 400 are connected to the output side of each phase FET 502ap, 502an, FET 502bp, 502bn, FET 502cp, 502cn of the three-phase inverter unit 500. 100 and the three-phase inverter unit 500 are connected via a total of six power wirings (cables), and the number of wirings is large, and this conventional motor driving device is not only expensive but also large. .

ところで、本出願人は、円周方向に相順に複数の集中巻きのコイルが励磁方向が互いに異なるように隣りのコイルと逆向きに巻かれて配置された軟磁性体のステータと、このステータの内側の円周方向に複数の突極が形成された軟磁性体のロータとを備えた新規な構成のモータを、既に発明して出願している(特願2008−323428号)。そして、この既出願のモータも三相インバータ部500を備えたモータ駆動装置によって駆動すると、高価になるとともにSRモータ100の場合と同様の問題が生じる。 By the way, the applicant of the present invention has disclosed a soft magnetic stator in which a plurality of concentrated winding coils are wound in the opposite direction to the adjacent coils so that the excitation directions are different from each other in the circumferential direction, and the stator A novel motor having a soft magnetic rotor having a plurality of salient poles formed in the inner circumferential direction has already been invented and applied (Japanese Patent Application No. 2008-323428). When the motor of the already-filed application is also driven by the motor driving device including the three-phase inverter unit 500, the motor becomes expensive and the same problem as that of the SR motor 100 occurs.

本発明は、とくに前記既出願のモータの駆動に好適で、IPMである汎用の三相インバータモジュールを使用した安価な構成であって、モータと三相インバータ部との電力用の配線本数が少ない新規な構成のモータ駆動装置を提供ることを目的とする。   The present invention is particularly suitable for driving the motor of the already-filed application, and has an inexpensive configuration using a general-purpose three-phase inverter module that is an IPM, and has a small number of wires for power between the motor and the three-phase inverter unit. An object of the present invention is to provide a motor drive device having a novel configuration.

上記した目的を達成するために、本発明のモータ駆動装置は、円周方向に相順に複数のトロイダル巻きのコイルが励磁方向が互いに異なるように隣りのコイルと逆向きに巻かれて配置された軟磁性体のステータと、該ステータの内側の円周方向に複数の突極が形成された軟磁性体のロータとを備えたスイッチドリラクタンスモータを駆動するモータ駆動装置であって、直流電源の正負端子間に各相のブリッジ辺が接続され、該各ブリッジ辺に2個のスイッチング素子の出力側が直列に接続され、前記両スイッチング素子の出力端子間に帰還ダイオードが接続されたフルブリッジ構成の三相インバータ部と、前記三相インバータ部の前記各スイッチング素子をオンオフする制御部とを備え、前記各相のブリッジ辺の前記両スイッチング素子の接続点それぞれと星型結線の中性点との間に前記各相のコイルそれぞれを設け、前記制御部の前記各スイッチング素子のオンオフにより、前記各相のコイルに電気角240度ずつ二相通電し、そのときの前記各相のコイルの通電の組み合わせを、電気角120度毎に当該相のコイルおよび一方隣の相のコイルの組み合わせから、当該相のコイルおよび他方隣の相のコイルの組み合わせに変えることを特徴としている(請求項1)。 In order to achieve the above-described object, the motor drive device of the present invention is arranged in such a manner that a plurality of toroidal coils are wound in opposite directions to neighboring coils so that the excitation directions are different from each other in the circumferential direction. A motor drive device for driving a switched reluctance motor comprising a soft magnetic stator and a soft magnetic rotor having a plurality of salient poles formed in a circumferential direction inside the stator, Full bridge configuration in which the bridge side of each phase is connected between the positive and negative terminals of the two, the output side of two switching elements is connected in series to each bridge side, and a feedback diode is connected between the output terminals of both switching elements A three-phase inverter section, and a control section for turning on and off each switching element of the three-phase inverter section, Each said each phase coil provided between the neutral point of the respective attachment point and star-connected, by the on-off of each switching element of the control unit, an electrical angle of 240 degrees by the two-phase energizing the coils of each phase Then, the combination of energization of the coils of each phase at that time is changed from the combination of the coil of the phase and the coil of one adjacent phase every 120 degrees of electrical angle , and the combination of the coil of the phase and the coil of the other adjacent phase It is characterized in that changing to (claim 1).

請求項1に係る本発明のモータ駆動装置の場合、三相インバータ部はIPMである安価な汎用の三相インバータモジュールを用いて形成することができる。また、ステータの各相のコイルの一端側は三相インバータ部に接続されるが、他端側は中性点に接続されるため、モータと三相インバータ部とは合計3本の電力用の配線を介して繋がり、配線の本数が半減し、構造が簡単で小型になる。   In the case of the motor drive device according to the first aspect of the present invention, the three-phase inverter portion can be formed using an inexpensive general-purpose three-phase inverter module that is an IPM. In addition, one end side of each phase coil of the stator is connected to the three-phase inverter unit, but the other end side is connected to the neutral point, so the motor and the three-phase inverter unit are for a total of three power They are connected via wires, the number of wires is halved, and the structure is simple and small.

そして、ステータの円周方向の相順の各コイルは隣りのコイルと逆向きに巻かれ、相順の各コイルは前記各相のコイルを電気角120度毎に通電する組み合わせを両隣のコイルそれぞれに変えて電気角240ずつ二相通電され、電気角120度毎に1相ずつずらして隣接する二相のコイルのみが同時に通電されるので、ステータの通電励磁された二相の磁極の磁束がロータの突極を同じ向き(極性)で通り、強め合うことはあっても打ち消し合うことはなく、それによってロータが磁気吸引されて回転する。この場合、モータのトルク/電流比が少なくなってモータおよび三相インバータの効率が向上する。   And each coil of the phase sequence in the circumferential direction of the stator is wound in the opposite direction to the adjacent coil, and each coil in the phase sequence has a combination of energizing the coils of each phase at every 120 electrical angles. Instead, two-phase energization is performed by 240 electrical angles, and only the adjacent two-phase coils are energized simultaneously by shifting by one phase every 120 degrees of electrical angle, so that the magnetic flux of the two-phase magnetic poles energized and excited by the stator is The salient poles of the rotor are passed in the same direction (polarity), and even if they strengthen each other, they do not cancel each other out, so that the rotor is magnetically attracted and rotated. In this case, the torque / current ratio of the motor is reduced, and the efficiency of the motor and the three-phase inverter is improved.

したがって、安価な汎用の三相インバータモジュールを用いることができるとともに、モータと三相インバータ部とを繋ぐ電力用の配線が少ない構成により、円周方向に相順に複数のトロイダル巻きのコイルが励磁方向が互いに異なるように隣りのコイルと逆向きに巻かれて配置された軟磁性体のステータと、該ステータの内側の円周方向に複数の突極が形成された軟磁性体のロータとを備えた新規なモータを駆動することができ、安価かつ小型の構成で効率よく安定に前記新規なスイッチドリラクタンスモータを駆動することができる。 Therefore, it is possible to use an inexpensive general-purpose three-phase inverter module, the wiring is small configuration for power connecting the motor and the three-phase inverter unit, a plurality of toroidal-wound coils in phase order in the circumferential direction, the excitation A soft magnetic stator that is wound in the opposite direction to the adjacent coil so that the directions are different from each other, and a soft magnetic rotor in which a plurality of salient poles are formed in the circumferential direction inside the stator. The new motor provided can be driven, and the new switched reluctance motor can be driven efficiently and stably with an inexpensive and small configuration.

つぎに、本発明をより詳細に説明するため、一実施形態について、図1〜図8を参照して詳述する。   Next, in order to describe the present invention in more detail, one embodiment will be described in detail with reference to FIGS.

図1は本実施形態のモータ1の概略の構成を示す断面図、図2は短絡磁路の説明図、図3はモータ駆動装置10のブロック図、図4は図3の三相インバータ部11の結線図、図5、図6はモータ1のステータ2のコイル4の二相励磁の説明図、図7、図8はステータ2のコイル4の二相励磁状態の変化の説明図である。   FIG. 1 is a cross-sectional view showing a schematic configuration of a motor 1 of the present embodiment, FIG. 2 is an explanatory diagram of a short-circuit magnetic path, FIG. 3 is a block diagram of a motor drive device 10, and FIG. 4 is a three-phase inverter section 11 of FIG. FIGS. 5 and 6 are explanatory diagrams of two-phase excitation of the coil 4 of the stator 2 of the motor 1, and FIGS. 7 and 8 are explanatory diagrams of changes in the two-phase excitation state of the coil 4 of the stator 2.

(モータ1)
図1に示す本実施形態のモータ1において、2はモータ軸方向の円筒形状の軟磁性体ののステータであり、ステータ2の内周側の円周方向の等間隔の位置(磁極位置)に磁極を形成する12個の突極21が半径方向内向きに形成されている。突極21は従来のSRモータ100の突極201の長さの略半分であり、ステータ2から内周側への磁極の突き出しが短いので、その分、ステータ2の内径は大きくなっている。
(Motor 1)
In the motor 1 of the present embodiment shown in FIG. 1, reference numeral 2 denotes a cylindrical soft magnetic stator in the motor axial direction, which is located at equally spaced positions (magnetic pole positions) in the circumferential direction on the inner peripheral side of the stator 2. Twelve salient poles 21 forming magnetic poles are formed inward in the radial direction. The salient pole 21 is approximately half the length of the salient pole 201 of the conventional SR motor 100, and the magnetic pole protrudes from the stator 2 to the inner peripheral side, so the inner diameter of the stator 2 is increased accordingly.

3はステータ2の内側に同軸状に設けられた円筒形状の軟磁性体のロータであり、外周面の周方向の等間隔の位置(磁極位置)に8個の突極31が突極21に対向するように半径方向外向きに形成されている。そして、ステータ2の内径が大きい分、ロータ3は径大に形成されてトルクアップが図られている。   Reference numeral 3 denotes a cylindrical soft magnetic rotor provided coaxially inside the stator 2, and eight salient poles 31 at salient poles 21 at circumferentially spaced positions (magnetic pole positions) on the outer peripheral surface. It is formed radially outward so as to face each other. Since the stator 2 has a large inner diameter, the rotor 3 is formed with a larger diameter to increase the torque.

ステータ2およびロータ3は、具体的には例えばロータ3の中心を貫通するモータ軸の軸方向に珪素鋼板等を重ねた積層鋼板や、圧粉鉄心により形成される。   Specifically, the stator 2 and the rotor 3 are formed of, for example, a laminated steel plate in which silicon steel plates or the like are stacked in the axial direction of a motor shaft that passes through the center of the rotor 3 or a dust core.

つぎに、ステータ2は各突極21の反対側(外側)に凹状(凹溝状)の外周スロット部22が形成されている。また、各外周スロット22から突極間隔の1/2ピッチずれたステータ2の内周側の位置には凹状(凹溝状)の内周スロット部23形成されている。そして、3相励磁の場合、ステータ2の円周方向に3相(A、B、CまたはU、V、Wで表記され、本実施例ではU、V、Wで表記する)の磁極を順に形成するためコイル4がステータ2のヨークを半径方向に跨いで各磁極の外周スロット22と内周スロット23にトロイダル巻きで巻回される(巻回方向は後述する)。そのため、ステータ1の各磁極のコイル4は片側が外周スロット部22に収容されて配置され、残りの片側が内周スロット部23に収容されて配置される。 Next, the stator 2 the outer peripheral slots 22 are formed on the opposite side of each salient pole 21 concave (outer peripheral side) (concave groove). In addition, a concave (concave groove-shaped) inner peripheral slot portion 23 is formed at a position on the inner peripheral side of the stator 2 that is shifted from each outer peripheral slot 22 by 1/2 pitch of the salient pole interval. In the case of three-phase excitation, the magnetic poles of three phases (indicated by A, B, C or U, V, W, and in this embodiment, U, V, W) are sequentially arranged in the circumferential direction of the stator 2. In order to form, the coil 4 straddles the yoke of the stator 2 in the radial direction and is wound by the toroidal winding on the outer peripheral slot 22 and the inner peripheral slot 23 of each magnetic pole (the winding direction will be described later). Therefore, one side of the coil 4 of each magnetic pole of the stator 1 is accommodated in the outer peripheral slot portion 22 and the remaining one side is accommodated in the inner peripheral slot portion 23.

つぎに、各磁極のコイル4のコイル巻回方向について説明すると、コイル巻回方向はステータ2の円周方向の隣り合うコイル4間で逆向きである。換言すれば、各磁極のコイル4は隣り合う磁極間で逆向きである。この場合、磁極はステータ2の周方向にU、V、Wの順であり、かつ、その磁極の極性はN極(+符号)とS極(−符号)とに交互に変化するので、各磁極はステータ2の円周方向に反時計回りに例えばU+、V−、W+、U−、V+、W−、…に変化する。この場合、各磁極の磁束は図1の矢印線c、dのループに示すように、ステータ2の通電励磁されるN磁極とS磁極とに基づき、ステータ2からロータ3を通ってステータ2に戻り、図2の破線矢印cに示すようステータ2内を循環することがなく、ステータ2のヨークで短絡磁束を生じさせることはない。 Next, the coil winding direction of the coil 4 of each magnetic pole will be described. The coil winding direction is opposite between adjacent coils 4 in the circumferential direction of the stator 2. In other words, the coil 4 of each magnetic pole is reverse between adjacent magnetic poles. In this case, the magnetic poles are arranged in the order of U, V, W in the circumferential direction of the stator 2 and the polarity of the magnetic poles alternately changes between the N pole (+ sign) and the S pole (-sign). The magnetic poles change counterclockwise in the circumferential direction of the stator 2, for example, U +, V−, W +, U−, V +, W−,. In this case, the magnetic flux of each magnetic pole passes from the stator 2 to the stator 2 through the rotor 3 based on the N magnetic pole and the S magnetic pole that are energized and excited in the stator 2 as shown by the loops of arrows c and d in FIG. return, without circulating in the stator 2 as indicated by the broken line arrow c in FIG. 2, it does not cause a short circuit flux in the yoke of the stator 2.

このようにして形成された本実施形態のモータ1は、(1)ステータ2の各磁極のコイル4の片側がステータ2の外周側の外周スロット部22に配置され、残りの片側がステータ2の内周側の内周スロット部23に配置されるため、ステータ2の内周側のコイル4の高さを低く(略半減)し、その分、突極21を従来のSRモータ1等の場合の長さの略半分にして磁極のステータ2から内周側への突き出しを短くできる。そして、ステータ2の磁極のロータ3側への突き出しが短くなるので、その分、ロータ3を径大にしてトルクをアップすることができる。   In the motor 1 of this embodiment formed as described above, (1) one side of the coil 4 of each magnetic pole of the stator 2 is disposed in the outer peripheral slot portion 22 on the outer peripheral side of the stator 2, and the remaining one side is the stator 2. In the case of the conventional SR motor 1 or the like, the height of the coil 4 on the inner peripheral side of the stator 2 is reduced (substantially halved) and the salient pole 21 is correspondingly disposed in the inner peripheral slot portion 23 on the inner peripheral side. The protrusion of the magnetic poles from the stator 2 to the inner peripheral side can be shortened to approximately half of the length. Since the protrusion of the magnetic poles of the stator 2 to the rotor 3 side is shortened, the torque can be increased by increasing the diameter of the rotor 3 accordingly.

(2)外周スロット部22、ステータ2の各磁極の位置の反対側のヨークの外周面側に各内周スロット部23から円周方向に1/2ピッチずらして凹状に形成されるため、コイル4の片側が外周スロット部22の凹部に配置(収容)されてステータ2の外部にほとんど膨れず、ステータ2を小型化してモータ1を飛躍的に小型に形成することができる。さらに、コイル4が外周スロット部22の凹部に配置されてステータ2の周方向の広がりは小さくなるが、各外周スロット部22と各内周スロット部23が円周方向にずれているため、ステータ2のヨークの円周方向の磁路断面積は広く、十分な磁路を確保できる。   (2) Since the outer peripheral slot portion 22 and the outer peripheral surface of the yoke opposite to the position of each magnetic pole of the stator 2 are formed in a concave shape with a 1/2 pitch shift from the inner peripheral slot portion 23 in the circumferential direction, the coil One side of 4 is disposed (accommodated) in the recess of the outer peripheral slot portion 22 and hardly swells outside the stator 2, and the stator 1 can be miniaturized and the motor 1 can be greatly reduced in size. Further, although the coil 4 is disposed in the concave portion of the outer peripheral slot portion 22 and the spread in the circumferential direction of the stator 2 is reduced, each outer peripheral slot portion 22 and each inner peripheral slot portion 23 are displaced in the circumferential direction. The magnetic cross-sectional area of the yoke 2 in the circumferential direction is wide, and a sufficient magnetic path can be secured.

したがって、モータ1はトルクアップを図りつつ、コイル4のステータ外周側への出っ張り(膨らみ)をなくして小型・軽量化が図られた両突極型の新規な交流モータであり、電気自動車の駆動モータ等に好適な本出願人の既出願のモータである。   Accordingly, the motor 1 is a new double salient pole type AC motor that is reduced in size and weight by eliminating the bulge (swelling) of the coil 4 toward the outer periphery of the stator while increasing the torque. This is a motor of the present applicant's application that is suitable for a motor or the like.

(モータ駆動装置10)
モータ1を駆動するモータ駆動装置10は概略図3に示すように構成され、モータ1を駆動する三相インバータ部11と、三相インバータ部11の後述する各スイッチング素子(FET)をオンオフする制御部12を備える。
(Motor drive device 10)
A motor driving apparatus 10 for driving the motor 1 is configured as schematically shown in FIG. 3, and controls to turn on and off a three-phase inverter unit 11 that drives the motor 1 and each switching element (FET) to be described later of the three-phase inverter unit 11. The unit 12 is provided.

そして、三相インバータ部11は図4に示すように構成される。図4において、13は例えば車両のバッテリ、111はバッテリ17に並列に接続されたエネルギ蓄積コンデンサであり、バッテリ13と共に三相インバータ部11の直流電源を形成する。112up、112unはU相のブリッジ辺uの正側、負側のFET(スイッチング素子)であり、モータ1のU相のコイル4を挟んで出力側が直列に接続されている。112vp、112vnはV相のブリッジ辺vの正側、負側のFET(スイッチング素子)であり、前記直流電源の正負両端間にV相のコイル4を挟んで出力側が直列に接続されている。112wp、112wnはW相のブリッジ辺wの正側、負側のFET(スイッチング素子)であり、前記直流電源の正負両端間にW相のコイル4を挟んで出力側が直列に接続されている。なお、図4では各相の直並列接続される複数個のコイル4を、それぞれ1つのコイル4で代表して示し、各相の複数のコイル4の接続構成は省略している。   And the three-phase inverter part 11 is comprised as shown in FIG. In FIG. 4, reference numeral 13 denotes a vehicle battery, for example, 111 denotes an energy storage capacitor connected in parallel to the battery 17, and forms a DC power source for the three-phase inverter unit 11 together with the battery 13. 112up and 112un are positive side and negative side FETs (switching elements) of the U-phase bridge side u, and the output side is connected in series with the U-phase coil 4 of the motor 1 interposed therebetween. 112vp and 112vn are positive and negative FETs (switching elements) of the V-phase bridge side v, and the output side is connected in series with the V-phase coil 4 sandwiched between the positive and negative ends of the DC power supply. 112wp and 112wn are FETs (switching elements) on the positive and negative sides of the W-phase bridge side w, and the output side is connected in series with the W-phase coil 4 sandwiched between the positive and negative ends of the DC power supply. In FIG. 4, a plurality of coils 4 connected in series and parallel in each phase are represented by one coil 4, and the connection configuration of the plurality of coils 4 in each phase is omitted.

113up、113vp、113wpは各相のFET112up、112vp、112wpの出力端子間に設けられた帰還路用のダイオード、113un、113vn、113wnは各相のFET112un、112vn、112wnの出力端子間に設けられた帰還路用のダイオードである。   113up, 113vp, and 113wp are feedback path diodes provided between the output terminals of the FETs 112up, 112vp, and 112wp of each phase, and 113un, 113vn, and 113wn are provided between the output terminals of the FETs 112un, 112vn, and 112wn of each phase. This is a diode for the feedback path.

すなわち、三相インバータ部11は、図11のIPMである汎用の三相インバータモジュール700と同じ構成であり、安価な汎用の三相インバータモジュールにより形成することができ、モータ駆動装置10を安価に形成できる。   That is, the three-phase inverter unit 11 has the same configuration as the general-purpose three-phase inverter module 700, which is the IPM in FIG. 11, and can be formed by an inexpensive general-purpose three-phase inverter module. Can be formed.

つぎに、モータ1の各相のコイル4は、一端側がブリッジ辺uのFET112up、112unの接続点pu、ブリッジ辺vのFET112vp、112vnの接続点pv、ブリッジ辺wのFET112wp、112wnの接続点pwに接続され、他端側が星型結の中性点oに接続されている。この場合、三相インバータ部11とモータ1とは3本の電力用の配線(ケーブル)lu、lv、lwで繋がり、配線の本数が少なく、モータ駆動装置10の小型化を図ることができる。 Next, the coil 4 of each phase of the motor 1 has a connection point pu of FETs 112up and 112un having a bridge side u on one end side, a connection point pv of FETs 112vp and 112vn on the bridge side v, and a connection point pw of FETs 112wp and 112wn on the bridge side w. And the other end is connected to the neutral point o of the star connection. In this case, the three-phase inverter unit 11 and the motor 1 for the three power lines (cables) lu, lv, connected with lw, the number of wiring is small, it is possible to reduce the size of the motor drive device 10.

つぎに、図3の制御部12について説明する。制御部12は略一般的なモータサーボ制御の構成であり、要求されるトルク指令値Trに基づき、電流指令値演算部14によりモータ1の電流指令値Irが演算され、電流指令値Irは三相インバータ部11の出力電圧(インバータ電圧)Vinvに基づき補正部15により電圧フィードバックの補正が施される。また、補正部15の補正された電流指令値Ir*は、モータ1に取付けられたレゾルバ等の回転検出器16の回転検出のフィードバックに基づき、各相電流指令値演算部17により、各相の電流指令値Irrに変換される。さらに、各相の電流指令値Irrと三相インバータ部11に設けられた各相の電流検出器18の検出電流Idとの誤差ΔIが演算器19で演算され、誤差ΔIに基づき、ゲートパルス発生部20により、U、V、Wの各相の正側のゲートパルスUp、Vp、Wpおよび負側のゲートパルスUn、Vn、Wnが形成される。そして、ゲートパルスUp、Vp、WpおよびゲートパルスUn、Vn、Wnが三相インバータ部11の正側のFET112up、112vp、112wpおよび負側のFET112un、112vn、112wnそれぞれのゲートに駆動パルスとして供給され、各FET112up〜112wnが駆動パルスの有無によってオンオフする。   Next, the control unit 12 in FIG. 3 will be described. The control unit 12 has a substantially general configuration of motor servo control. Based on a required torque command value Tr, the current command value calculation unit 14 calculates the current command value Ir of the motor 1, and the current command value Ir is three. Based on the output voltage (inverter voltage) Vinv of the phase inverter unit 11, the correction unit 15 corrects the voltage feedback. The corrected current command value Ir * of the correction unit 15 is obtained by the phase current command value calculation unit 17 based on the rotation detection feedback of the rotation detector 16 such as a resolver attached to the motor 1. It is converted into a current command value Irr. Further, an error ΔI between the current command value Irr of each phase and the detected current Id of the current detector 18 of each phase provided in the three-phase inverter unit 11 is calculated by the calculator 19, and a gate pulse is generated based on the error ΔI. By the unit 20, positive side gate pulses Up, Vp, Wp and negative side gate pulses Un, Vn, Wn of U, V, W phases are formed. The gate pulses Up, Vp, Wp and the gate pulses Un, Vn, Wn are supplied as drive pulses to the gates of the positive-side FETs 112up, 112vp, 112wp and the negative-side FETs 112un, 112vn, 112wn of the three-phase inverter unit 11, respectively. The FETs 112up to 112wn are turned on / off depending on the presence / absence of a drive pulse.

そして、各FET112up〜112wnのオンオフの組み合わせにより、モータ1の各相のコイル4を、図5、図6に示すようにU、V、Wの各相のコイル4を電気角120度毎に通電する組み合わせを両隣のコイル4それぞれに変えて電気角240度ずつ二相通電し、モータ1の通電を制御する。なお、各コイル4の電流の向きは、電気角0〜180度の間は正(+)であり、電気角180〜360度の間は負(−)である。そして、図5は電気角0〜720度の各相のコイル4の通電を矢印線で示し、図6は電気角0〜720度における各相のコイル4の電流iu、iv、iwおよび各相のインダクタンスの変化を示し、実線が電流、破線がステータ磁極とロータ磁極の対向状態により変化するインダクタンスの概形である。   Then, by turning on and off the FETs 112up to 112wn, the coil 4 of each phase of the motor 1 is energized, and the coils 4 of each phase of U, V, and W are energized every 120 degrees as shown in FIGS. The combination to be performed is changed to each of the coils 4 on both sides, and two-phase energization is performed by 240 degrees in electrical angle to control the energization of the motor 1. The direction of the current of each coil 4 is positive (+) between electrical angles 0 to 180 degrees and negative (-) between electrical angles 180 to 360 degrees. FIG. 5 shows the energization of the coil 4 of each phase with an electrical angle of 0 to 720 degrees by an arrow line, and FIG. 6 shows the currents iu, iv, iw and the phases of the coil 4 of each phase at an electrical angle of 0 to 720 degrees. The solid line represents the current, and the broken line represents the outline of the inductance that varies depending on the facing state of the stator magnetic pole and the rotor magnetic pole.

このように通電制御すると、モータ1は各相のコイル4が円周方向の両隣のコイル4と逆向きに巻かれて励磁方向が互いに異なるため、モータ1は、各相のコイル4の通電の組み合わせが、電気角120度毎に、U相(+)とV相(−)、U相(+)とW相(−)、V相(+)とW相(−)、V相(+)とU相(−)、W相(+)とU相(−)、W相(+)とV相(−)に変化し、これらの変化を電気角720度の周期でくり返すことにより、図7、図8の矢印線に示すように界磁磁束が変化してロータ3が回転する。そして、U相を基準にした電気角で説明すると、図7の(a)、(b)、(c)はU、Vの二相が電流+I、−Iで通電励磁される電気角0〜120度、W、Uの二相が電流−I、+Iで通電励磁される120〜240度、V、Wの二相が電流+I、−Iで通電励磁される240〜360度の変化を示し、図8の(a)、(b)、(c)はU、Vの二相が電流−I、+Iで通電励磁される電気角360〜480度、W、Uの二相が電流+I、−Iで通電励磁される480〜600度、V、Wの二相が電流−I、+Iで通電励磁される600〜720度の変化を示す。   When the energization control is performed in this manner, the motor 1 is energized by the coils 4 of each phase because the coils 4 of each phase are wound in opposite directions to the coils 4 adjacent to each other in the circumferential direction and the excitation directions are different from each other. For every 120 degrees of electrical angle, the combination is U phase (+) and V phase (-), U phase (+) and W phase (-), V phase (+) and W phase (-), V phase (+ ) And U phase (-), W phase (+) and U phase (-), W phase (+) and V phase (-), and by repeating these changes at a cycle of 720 degrees electrical angle 7 and FIG. 8, the field magnetic flux changes and the rotor 3 rotates. In terms of electrical angles based on the U phase, (a), (b), and (c) in FIGS. 7A and 7B are electrical angles in which the two phases U and V are energized and excited with currents + I and −I. 120 degree, W and U two phases are 120-240 degrees energized and excited with currents -I and + I, and V and W two phases are energized and excited with currents + I and -I, showing changes of 240 to 360 degrees. 8, (a), (b), and (c) are the electric angles 360 to 480 degrees, in which the two phases U and V are energized and excited by current -I and + I, and the two phases W and U are current + I, A change of 480 to 600 degrees energized and excited at −I, and two phases V and W of 600 to 720 degrees energized and excited at −I and + I are shown.

そして、前記実施形態の場合、三相インバータ部11をIPMである安価な汎用の三相インバータモジュールを用いて形成することができ、また、モータ1と三相インバータ部11とが合計3本の電力用の配線を介して繋がり、配線の本数が半減し、構造が簡単で小型になる。さらに、ステータ2の円周方向の相順の各コイル4は隣りのコイルと逆向きに巻かれ、相順の各コイル4は電気角120度毎に1相ずつずらして隣接する二相のコイルのみが同時に通電されるので、ステータ4の通電励磁された二相の磁極の磁束がロータ3の突極を同じ向き(極性)で通り、強め合うことはあっても打ち消し合うことはなく、それによってロータ3が磁気吸引されて回転する。この場合、モータ1のトルク/電流比が少なくなってモータ1および三相インバータ部11の効率が向上する。   And in the case of the said embodiment, the three-phase inverter part 11 can be formed using the inexpensive general-purpose three-phase inverter module which is IPM, and the motor 1 and the three-phase inverter part 11 are three in total. They are connected via power wiring, the number of wiring is halved, and the structure is simple and small. Further, each coil 4 in the phase sequence in the circumferential direction of the stator 2 is wound in the opposite direction to the adjacent coil, and each coil 4 in the phase sequence is shifted by one phase every 120 degrees of electrical angle and is adjacent to each other in two phases. Since only the two-phase magnetic poles energized and excited by the stator 4 pass through the salient poles of the rotor 3 in the same direction (polarity), they can be reinforced but not cancelled. Thus, the rotor 3 is magnetically attracted and rotates. In this case, the torque / current ratio of the motor 1 is reduced, and the efficiency of the motor 1 and the three-phase inverter unit 11 is improved.

したがって、安価な汎用の三相インバータモジュールを用いることができるとともに、モータ1と三相インバータ部11とを繋ぐ電力用の配線が少ない構成により、モータ1を駆動することができ、安価かつ小型の構成で効率よく安定に新規な構造のモータ1を駆動することができる。   Therefore, an inexpensive general-purpose three-phase inverter module can be used, and the motor 1 can be driven with a configuration with a small number of power wirings connecting the motor 1 and the three-phase inverter unit 11. With the configuration, the motor 1 having a novel structure can be driven efficiently and stably.

そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば、モータ1の各相のコイル4を配置するための構造やステータ2の形状等はどのようであってもよい。また、コイル4の個数、すなわち、ステータ2の磁極の個数やロータ3の個数も前記実施形態の個数(12個、8個)に限るものではない。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit thereof. For example, the coils 4 of each phase of the motor 1 can be made. The structure for arranging the stator, the shape of the stator 2 and the like may be arbitrary. Further, the number of coils 4, that is, the number of magnetic poles of the stator 2 and the number of rotors 3 are not limited to the number of the embodiments (12 pieces, 8 pieces).

つぎに、三相インバータ部11の各スイッチング素子は、FETに限るものではなく、IGBT等の他の電力用スイッチング素子によって形成してもよい。また。制御部12の構成はどのようであってもよい。   Next, each switching element of the three-phase inverter unit 11 is not limited to the FET, and may be formed by another power switching element such as an IGBT. Also. The configuration of the control unit 12 may be any.

そして、本発明は、円周方向に相順に複数のトロイダル巻きのコイルが隣りのコイルと励磁方向が互いに異なるように逆向きに巻かれて配置されたステータと、該ステータの内側の円周方向に複数の突極が形成されたロータとを備えた種々のモータを3相駆動するモータ駆動装置に適用することができる。 The present invention also provides a stator in which a plurality of toroidal coils are wound in opposite directions so as to have different excitation directions from adjacent coils, and a circumferential direction inside the stator. The present invention can be applied to a motor driving device that drives a variety of motors including a rotor having a plurality of salient poles in three phases.

本発明の一実施形態のモータの構造を示す断面図である。It is sectional drawing which shows the structure of the motor of one Embodiment of this invention. 短絡磁路の説明図である。It is explanatory drawing of a short circuit magnetic circuit. 本発明の一実施形態のモータ駆動装置のブロック図である。It is a block diagram of the motor drive device of one embodiment of the present invention. 図3の三相インバータ部の結線図である。It is a connection diagram of the three-phase inverter part of FIG. 図3のモータ駆動装置によるモータの通電制御の説明図である。It is explanatory drawing of the electricity supply control of the motor by the motor drive device of FIG. 図5の通電制御によるステータの各相のコイルの電流変化の説明図である。It is explanatory drawing of the electric current change of the coil of each phase of the stator by the electricity supply control of FIG. 図3のモータ駆動装置による図1のモータの励磁状態の変化の一例の説明図である。It is explanatory drawing of an example of the change of the excitation state of the motor of FIG. 1 by the motor drive device of FIG. 図3のモータ駆動装置による図1のモータの励磁状態の変化の他の例の説明図である。It is explanatory drawing of the other example of the change of the excitation state of the motor of FIG. 1 by the motor drive device of FIG. 従来のスイッチドリラクタンスモータの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional switched reluctance motor. 図9のスイッチドリラクタンスモータを駆動する従来のモータ駆動装置の三相インバータ部の結線図である。FIG. 10 is a connection diagram of a three-phase inverter unit of a conventional motor driving apparatus that drives the switched reluctance motor of FIG. 9. 汎用の三相インバータモジュールの結線図である。It is a connection diagram of a general-purpose three-phase inverter module.

符号の説明Explanation of symbols

1 モータ
2 ステータ
3 ロータ
4 コイル
11 三相インバータ部
12 制御部
112up〜112wn FET
113up〜113wn 帰還ダイオード
DESCRIPTION OF SYMBOLS 1 Motor 2 Stator 3 Rotor 4 Coil 11 Three-phase inverter part 12 Control part 112up-112wn FET
113up to 113wn Feedback diode

Claims (1)

円周方向に相順に複数のトロイダル巻きのコイルが励磁方向が互いに異なるように隣りのコイルと逆向きに巻かれて配置された軟磁性体のステータと、該ステータの内側の円周方向に複数の突極が形成された軟磁性体のロータとを備えたスイッチドリラクタンスモータを駆動するモータ駆動装置であって、
直流電源の正負端子間に各相のブリッジ辺が接続され、該各ブリッジ辺に2個のスイッチング素子の出力側が直列に接続され、前記両スイッチング素子の出力端子間に帰還ダイオードが接続されたフルブリッジ構成の三相インバータ部と、
前記三相インバータ部の前記各スイッチング素子をオンオフする制御部とを備え、
前記各相のブリッジ辺の前記両スイッチング素子の接続点それぞれと星型結線の中性点との間に前記各相のコイルそれぞれを設け、
前記制御部の前記各スイッチング素子のオンオフにより、前記各相のコイルに電気角240度ずつ二相通電し、そのときの前記各相のコイルの通電の組み合わせを、電気角120度毎に当該相のコイルおよび一方隣の相のコイルの組み合わせから、当該相のコイルおよび他方隣の相のコイルの組み合わせに変えることを特徴とするモータ駆動装置。
A plurality of toroidal coils in phase sequence in the circumferential direction are wound in a direction opposite to the adjacent coil so that the excitation directions are different from each other, and a stator of a soft magnetic material is disposed in the circumferential direction inside the stator. A motor drive device for driving a switched reluctance motor comprising a soft magnetic rotor formed with a plurality of salient poles,
A bridge side of each phase is connected between the positive and negative terminals of a DC power source, the output sides of two switching elements are connected in series to each bridge side, and a feedback diode is connected between the output terminals of both switching elements. A three-phase inverter with a bridge configuration;
A control unit for turning on and off each switching element of the three-phase inverter unit,
Each of the coils of each phase is provided between each of the connection points of the switching elements on the bridge side of each phase and the neutral point of the star connection,
By the on-off of each switching element of the control unit, the coils of each phase to be biphasic energized by an electrical angle of 240 degrees, a combination of energization of the coils of each phase at that time, the phase for each electrical angle of 120 degrees The motor drive device is characterized in that the combination of the coil of one phase and the coil of the adjacent phase is changed to the combination of the coil of the phase and the coil of the other adjacent phase .
JP2008332688A 2008-12-26 2008-12-26 Motor drive device Expired - Fee Related JP5349040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332688A JP5349040B2 (en) 2008-12-26 2008-12-26 Motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332688A JP5349040B2 (en) 2008-12-26 2008-12-26 Motor drive device

Publications (2)

Publication Number Publication Date
JP2010154717A JP2010154717A (en) 2010-07-08
JP5349040B2 true JP5349040B2 (en) 2013-11-20

Family

ID=42573130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332688A Expired - Fee Related JP5349040B2 (en) 2008-12-26 2008-12-26 Motor drive device

Country Status (1)

Country Link
JP (1) JP5349040B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287602B2 (en) * 2014-06-06 2018-03-07 株式会社デンソー Switched reluctance motor control system
JP7074983B2 (en) * 2020-05-26 2022-05-25 株式会社Ccuリニアモータ研究所 Motor or generator and also linear motor [3]

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332387A (en) * 1989-06-27 1991-02-12 Secoh Giken Inc Plural phase reluctance type motor
JPH05292716A (en) * 1992-04-10 1993-11-05 Nissan Motor Co Ltd Reluctance motor
JPH08116651A (en) * 1994-10-13 1996-05-07 Fujii Seimitsu Kaitenki Seisakusho:Kk Variable reluctance motor and control method therefor
JPH11113229A (en) * 1997-10-02 1999-04-23 Nissan Motor Co Ltd Switched reluctance motor and its driving circuit
JP3983423B2 (en) * 1999-07-23 2007-09-26 松下電器産業株式会社 Electric motor
JP4655084B2 (en) * 2007-11-21 2011-03-23 ダイキン工業株式会社 Reluctance motor control method

Also Published As

Publication number Publication date
JP2010154717A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
US7755241B2 (en) Electrical machine
US8299674B2 (en) Electric rotating machine drivable with a single three-phase inverter
JP5587693B2 (en) Rotating electric machine and vehicle equipped with the rotating electric machine
US8471428B2 (en) Rotating electrical machine
JP6477256B2 (en) Rotating electric machine
US20120187893A1 (en) Electric motor system
JP5792363B2 (en) Stator winding of rotating electric machine and stator of rotating electric machine
JP2003009486A (en) Variable speed motor
JP6579379B2 (en) Field winding type synchronous machine drive system
US7843102B1 (en) Electrical machine
EP2634894A1 (en) Rotating electric machine
US10651711B2 (en) Magnetless rotary electric machine
JP2019022299A (en) Drive system of rotary electric machine
JP2011045181A (en) Switched reluctance motor, and circuit and method for driving the same
EP3453109B1 (en) Switched reluctance machine and power converter
JP5349040B2 (en) Motor drive device
JP5301905B2 (en) Multi-phase rotating electrical machine drive device, multi-phase generator converter, multi-phase rotating electrical machine, and rotating electrical machine drive system
CN104604103A (en) Permanent-magnet ac power generator
US8143830B2 (en) Brushless motor apparatus
JP2009089515A (en) Permanent magnet type synchronous machine
JP7226809B2 (en) Motor and motor drive system
JP6114786B2 (en) Stator winding of rotating electric machine, stator of rotating electric machine, rotating electric machine and vehicle
JP6451990B2 (en) Rotating electric machine
JP2002369580A (en) Drive circuit of switched reluctance motor
JP5696438B2 (en) Permanent magnet type motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees