[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5346343B2 - Two-stage compression heat pump cycle device - Google Patents

Two-stage compression heat pump cycle device Download PDF

Info

Publication number
JP5346343B2
JP5346343B2 JP2010526459A JP2010526459A JP5346343B2 JP 5346343 B2 JP5346343 B2 JP 5346343B2 JP 2010526459 A JP2010526459 A JP 2010526459A JP 2010526459 A JP2010526459 A JP 2010526459A JP 5346343 B2 JP5346343 B2 JP 5346343B2
Authority
JP
Japan
Prior art keywords
heat
stage compression
medium
heat transfer
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010526459A
Other languages
Japanese (ja)
Other versions
JPWO2010023737A1 (en
Inventor
洋一 香取
祐介 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Publication of JPWO2010023737A1 publication Critical patent/JPWO2010023737A1/en
Application granted granted Critical
Publication of JP5346343B2 publication Critical patent/JP5346343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Description

本発明は、NHを熱媒として使用し、低段圧縮部と高段圧縮部とからなる二段圧縮機を備えたヒートポンプサイクルを構成する装置において、高温(60〜75℃)、中温(40〜60℃)及び低温(−15〜10℃)の3種の伝熱媒体の取り出しを同時に可能とし、さらに従来より冷凍能力とCOPを向上させたものである。The present invention uses NH 3 as a heat medium, and is a device that constitutes a heat pump cycle that includes a two-stage compressor composed of a low-stage compression section and a high-stage compression section. 40 to 60 ° C.) and low temperature (−15 to 10 ° C.) three kinds of heat transfer media can be taken out at the same time, and the refrigeration capacity and COP are improved more than before.

特許文献1(特開2000−249413号公報)には、従来の二段圧縮冷凍装置が開示されている。以下この構成を説明する。図7において、冷凍装置010は、業務用冷蔵庫、家庭用冷蔵庫、製氷装置、ショーケース用冷凍装置等に適用される。冷媒回路020は、主回路02Mに高段圧縮機021Hと低段圧縮機021Lの2つの圧縮機を備えた二段圧縮冷凍サイクルを構成している。また、中間冷却器022を備えて吐出ガス温度の低減を図っている。   Japanese Patent Application Laid-Open No. 2000-249413 discloses a conventional two-stage compression refrigeration apparatus. This configuration will be described below. In FIG. 7, a refrigeration apparatus 010 is applied to a commercial refrigerator, a household refrigerator, an ice making apparatus, a showcase refrigeration apparatus, and the like. The refrigerant circuit 020 constitutes a two-stage compression refrigeration cycle in which the main circuit 02M includes two compressors, a high-stage compressor 021H and a low-stage compressor 021L. In addition, an intermediate cooler 022 is provided to reduce the discharge gas temperature.

即ち、低段圧縮機021Lの吐出側が冷媒配管023を介して中間冷却器022に接続され、中間冷却器022が冷媒配管023を介して高段圧縮機021Hに接続されている。そして、高段圧縮機021Hの吐出側が冷媒配管023を介して熱源側熱交換器024に接続されている。熱源側熱交換器024は、例えば、空冷凝縮器であって、室外空気と冷媒とが熱交換して該冷媒を凝縮する。あるいは、室外空気以外の伝熱媒体を導入して、該伝熱媒体を加熱するようにしてもよい。   That is, the discharge side of the low stage compressor 021L is connected to the intermediate cooler 022 via the refrigerant pipe 023, and the intermediate cooler 022 is connected to the high stage compressor 021H via the refrigerant pipe 023. The discharge side of the high-stage compressor 021H is connected to the heat source side heat exchanger 024 via the refrigerant pipe 023. The heat source side heat exchanger 024 is, for example, an air-cooled condenser, and the outdoor air and the refrigerant exchange heat to condense the refrigerant. Alternatively, a heat transfer medium other than outdoor air may be introduced to heat the heat transfer medium.

熱源側熱交換器024から中間冷却器022の熱交換部022aと膨張弁025と利用側熱交換器026とが順に冷媒配管023によって直列に接続されている。利用側熱交換器026は、例えば、冷凍庫内の庫内空気と冷媒とが熱交換して該冷媒が蒸発し、庫内空気を冷却するように構成されている。そして、利用側熱交換器026は低段圧縮機021Lの吸入側に冷媒配管023によって接続されている。   From the heat source side heat exchanger 024 to the heat exchanger 022a, the expansion valve 025, and the use side heat exchanger 026 of the intermediate cooler 022 are connected in series by a refrigerant pipe 023 in order. The use-side heat exchanger 026 is configured, for example, so that the inside air in the freezer and the refrigerant exchange heat and the refrigerant evaporates to cool the inside air. The use side heat exchanger 026 is connected to the suction side of the low-stage compressor 021L by a refrigerant pipe 023.

熱源側熱交換器024には分岐通路030が分岐され、該分岐通路030は、補助膨張弁031を備えるとともに、一端が中間冷却器022に接続されている。中間冷却器022は、分岐通路030から流入した液冷媒の蒸発によって主回路02Mの液冷媒を過冷却するとともに、低段圧縮機021Lから吐出した吐出ガス冷媒を冷却する。   A branch passage 030 is branched to the heat source side heat exchanger 024. The branch passage 030 includes an auxiliary expansion valve 031 and one end thereof is connected to the intermediate cooler 022. The intermediate cooler 022 supercools the liquid refrigerant in the main circuit 02M by evaporation of the liquid refrigerant flowing from the branch passage 030, and cools the discharged gas refrigerant discharged from the low-stage compressor 021L.

この二段圧縮冷凍装置の冷却動作を図8のモリエル線図に基づいて説明する。図8において、先ず、低圧ガス冷媒は、A点の状態から低段圧縮機021Lに流入し、低段圧縮機021LによってB点まで圧縮される。低段圧縮機021Lから吐出したガス冷媒は、中間冷却器022に流入し、後述する冷媒によってC点まで冷却される。   The cooling operation of this two-stage compression refrigeration apparatus will be described based on the Mollier diagram of FIG. In FIG. 8, first, the low-pressure gas refrigerant flows into the low-stage compressor 021L from the state at the point A, and is compressed to the point B by the low-stage compressor 021L. The gas refrigerant discharged from the low-stage compressor 021L flows into the intermediate cooler 022 and is cooled to point C by the refrigerant described later.

その後、この冷却されたガス冷媒は、C点の状態から高段圧縮機021Hに流入し、高段圧縮機021HによってD点まで圧縮される。高段圧縮機021Hから吐出したガス冷媒は、熱源側熱交換器024に流入し、他の伝熱媒体と熱交換してE点まで冷却されて凝縮する。   Thereafter, the cooled gas refrigerant flows into the high stage compressor 021H from the state of the C point, and is compressed to the D point by the high stage compressor 021H. The gas refrigerant discharged from the high stage compressor 021H flows into the heat source side heat exchanger 024, exchanges heat with another heat transfer medium, is cooled to the point E, and is condensed.

この凝縮した高圧液冷媒は、主回路02Mと分岐通路030との2つに分かれる。この分岐通路030を流れる液冷媒は、補助膨張弁031でF点まで減圧されて中間冷却器022に流れる。一方、主回路02Mを流れる液冷媒は中間冷却器022の熱交換部022aに流れる。この中間冷却器022において、分岐通路030からの液冷媒が蒸発し、低段圧縮機021Lの吐出ガス冷媒を冷却するとともに(B→C)、熱交換部022aの液冷媒を過冷却する(E→G)。   The condensed high-pressure liquid refrigerant is divided into two, a main circuit 02M and a branch passage 030. The liquid refrigerant flowing through the branch passage 030 is decompressed to the point F by the auxiliary expansion valve 031 and flows to the intermediate cooler 022. On the other hand, the liquid refrigerant flowing through the main circuit 02M flows to the heat exchange unit 022a of the intermediate cooler 022. In the intermediate cooler 022, the liquid refrigerant from the branch passage 030 evaporates to cool the discharged gas refrigerant of the low-stage compressor 021 L (B → C), and supercool the liquid refrigerant in the heat exchange unit 022 a (E → G).

一方、中間冷却器022で蒸発した分岐通路030のガス冷媒と低段圧縮機021Lの吐出ガス冷媒とがC点で合流する。その後、このガス冷媒は高段圧縮機021Hに流入する。主回路02Mの液冷媒は、熱交換部022aのG点から膨張弁025でH点まで減圧されて利用側熱交換器026に流入する。利用側熱交換器026で、例えば、冷凍庫の庫内空気と熱交換して蒸発し、該庫内空気を冷却する。その後蒸発冷媒はA点に戻り、低段圧縮機021Lに流入する。   On the other hand, the gas refrigerant in the branch passage 030 evaporated by the intermediate cooler 022 and the discharge gas refrigerant in the low-stage compressor 021L merge at point C. Thereafter, the gas refrigerant flows into the high stage compressor 021H. The liquid refrigerant in the main circuit 02M is depressurized from the point G of the heat exchanging part 022a to the point H by the expansion valve 025 and flows into the use side heat exchanger 026. In the use-side heat exchanger 026, for example, heat is exchanged with the freezer compartment air to evaporate, and the freezer air is cooled. Thereafter, the evaporative refrigerant returns to the point A and flows into the low-stage compressor 021L.

このように、従来の高温や中温の伝熱媒体の取り出しは、主に、ヒートポンプサイクルを構成する圧縮機の吐出ガスの顕熱と凝縮潜熱で熱媒体を加熱することにより行なわれてきた。この方式では、圧縮機吐出ガスのもつ液化までの熱量を高温用と中温用とに案分して行なうことになる。高温取り出しは、主として顕熱利用であることを考慮すると、その取得熱量は吐出ガス温度から凝縮温度域までの約20%以下である。   As described above, the conventional extraction of a high-temperature or medium-temperature heat transfer medium has been performed mainly by heating the heat medium with the sensible heat and latent heat of condensation of the compressor discharge gas constituting the heat pump cycle. In this method, the amount of heat until liquefaction of the compressor discharge gas is divided between high temperature and medium temperature. Considering that high temperature extraction is mainly sensible heat utilization, the amount of heat obtained is about 20% or less from the discharge gas temperature to the condensation temperature range.

さらに、吐出ガスと伝熱媒体とを対向流にして熱交換を行なわせるため、冷凍サイクルの運転条件により吐出温度が低下するような場合には、十分な熱交換ができず、熱量不足が生じる。このため、高温伝熱媒体の取り出しが困難になるという問題が起こる。   Furthermore, since heat is exchanged by making the discharge gas and the heat transfer medium counter flow, when the discharge temperature decreases due to the operating conditions of the refrigeration cycle, sufficient heat exchange cannot be performed, resulting in insufficient heat. . For this reason, the problem that it becomes difficult to take out the high-temperature heat transfer medium occurs.

ヒートポンプサイクル装置において、COを冷媒とし圧縮機吐出圧力を臨界圧力以上の超臨界状態で運転することにより、90℃付近の高温伝熱媒体の取り出しが可能になることは従来公知である。
しかし、COを超臨界状態で運転すると、高圧部が10〜12MPaほどの高圧となるため、運転に注意を要すると共に、高圧部を耐圧構造とする必要がある。さらに、超臨界運転で追い焚きを行なう場合には、COP(成績係数)が低下するため、運転の自由度が制限されるという問題がある。
特開2000−249413号公報
It is conventionally known that in a heat pump cycle apparatus, it is possible to take out a high-temperature heat transfer medium near 90 ° C. by operating CO 2 as a refrigerant and operating in a supercritical state where the compressor discharge pressure is higher than the critical pressure.
However, when CO 2 is operated in a supercritical state, the high pressure portion becomes a high pressure of about 10 to 12 MPa. Therefore, attention is required for operation, and the high pressure portion needs to have a pressure resistant structure. Furthermore, in the case of chasing in supercritical operation, the COP (coefficient of performance) is lowered, and there is a problem that the degree of freedom of operation is limited.
JP 2000-249413 A

本発明は、かかる従来技術の課題に鑑み、二段圧縮ヒートポンプサイクル装置において、高温の伝熱媒体を安定して生成できるようにするとともに、高温、中温及び低温の3種の伝熱媒体の同時取り出しを可能とし、かつCOPを向上でき、運転の自由度が広いヒートポンプサイクル装置を実現することを目的とする。   In view of the problems of the prior art, the present invention enables a high-temperature heat transfer medium to be stably generated in a two-stage compression heat pump cycle device, and simultaneously uses three types of heat transfer media of high temperature, medium temperature, and low temperature. An object of the present invention is to realize a heat pump cycle apparatus that can be taken out, can improve COP, and has a high degree of freedom in operation.

かかる目的を達成するため、本発明の二段圧縮ヒートポンプサイクル装置は、
NHを熱媒とし、圧縮機が中間冷却器を介在させた低段圧縮部と高段圧縮部からなる二段圧縮機で構成され、
高段圧縮部から吐出されて凝縮器を経た液熱媒が中間冷却器で低段圧縮部から吐出されたガス熱媒と熱交換した後蒸発器を経て低段圧縮部に循環する二段圧縮ヒートポンプサイクル装置において、
第1の伝熱媒体流路を凝縮器に導設し該凝縮器で第1の伝熱媒体をガス熱媒と潜熱熱交換させて高温伝熱媒体を生成するとともに、
第2の伝熱媒体流路を蒸発器に導設し該蒸発器で第2の伝熱媒体を液熱媒と潜熱熱交換させて低温伝熱媒体を生成し、
前記凝縮器と前記中間冷却器との間に第1の過冷却器を、前記中間冷却器と前記蒸発器との間に第2の過冷却器を夫々介設し、
第3の伝熱媒体流路を第2の過冷却器を経て第1の過冷却器に直列に導設し該第1及び第2の過冷却器で第3の伝熱媒体を液熱媒と対向流で顕熱熱交換させて中温伝熱媒体を生成するように構成し、
前記第1の過冷却器と前記中間冷却器との間に第1の膨張弁、前記第2の過冷却器と前記蒸発器との間に第2の膨張弁を夫々介設したことを特徴とする
In order to achieve this object, the two-stage compression heat pump cycle device of the present invention,
NH 3 is used as a heat medium, and the compressor is composed of a two-stage compressor composed of a low-stage compression section and a high-stage compression section with an intermediate cooler interposed therebetween,
Two-stage compression, in which the liquid heat medium discharged from the high-stage compression section and passed through the condenser exchanges heat with the gas heat medium discharged from the low-stage compression section in the intermediate cooler and then circulates to the low-stage compression section through the evaporator In heat pump cycle equipment,
The first heat transfer medium flow path is led to the condenser, and the first heat transfer medium is subjected to latent heat exchange with the gas heat medium in the condenser to generate a high-temperature heat transfer medium.
A second heat transfer medium flow path is led to the evaporator, and the second heat transfer medium is subjected to latent heat exchange with the liquid heat medium in the evaporator to generate a low-temperature heat transfer medium;
The first subcooler between the intercooler and the condenser, a second subcooler and respectively interposed between said evaporator and said intercooler,
The third heat transfer medium flow path is connected in series to the first subcooler via the second subcooler, and the third heat transfer medium is transferred to the liquid heat medium by the first and second subcoolers. And sensible heat exchange in the counter flow to produce an intermediate temperature heat transfer medium,
A first expansion valve is interposed between the first subcooler and the intermediate cooler, and a second expansion valve is interposed between the second subcooler and the evaporator, respectively. And

本発明では、地球環境にやさしく、熱伝達率、熱吸収効果が大きくて、COPが高く、価格も安いなどの利点があるNHを熱媒として用いる。これによって、COPを向上できると共に、高圧部の圧力が4MPa程度とCOの場合と比べて小さいため、耐圧構造を必要とせず、運転も容易である。
また、高圧部がCO冷媒のように超臨界圧とならないため、追い焚きを行なう場合でも、COPが低下しない。従って、運転の自由度が広い利点がある。
In the present invention, NH 3 having advantages such as being friendly to the global environment, having a large heat transfer coefficient and heat absorption effect, high COP, and low price is used as a heat medium. As a result, the COP can be improved, and since the pressure in the high pressure portion is about 4 MPa, which is smaller than that of CO 2 , a pressure resistant structure is not required and the operation is easy.
Further, since the high pressure portion does not become a supercritical pressure unlike the CO 2 refrigerant, the COP does not decrease even when the reheating is performed. Therefore, there is an advantage that the degree of freedom of driving is wide.

また、凝縮器での凝縮温度は65〜80℃、中間冷却器での中間温度は20〜40℃、及び蒸発器で蒸発温度を−20〜10℃とすることができる。そして、NH熱媒を用いることによって、高段圧縮部の吐出側で高い熱媒温度が得られ、かつ凝縮器での熱媒と伝熱媒体との潜熱熱交換により高温の伝熱媒体を安定して取り出すことが可能になる。Moreover, the condensation temperature in a condenser can be 65-80 degreeC, the intermediate temperature in an intermediate cooler can be 20-40 degreeC, and evaporation temperature can be -20-10 degreeC with an evaporator. By using the NH 3 heat medium, a high heat medium temperature is obtained on the discharge side of the high-stage compression unit, and a high-temperature heat transfer medium is obtained by latent heat exchange between the heat medium and the heat transfer medium in the condenser. It can be taken out stably.

中温伝熱媒体の取り出しは、第1の過冷却器と第2の過冷却器とで行なう。即ち、中温伝熱媒体取り出し用の第3の伝熱媒体流路を第2の過冷却器を経てから第1の過冷却器に直列に導設して、第1及び第2の過冷却器で液熱媒と対向流で顕熱熱交換させる。これによって、40〜60℃の中温伝熱媒体を生成することができる。   The medium temperature heat transfer medium is taken out by the first subcooler and the second subcooler. That is, the third heat transfer medium flow path for taking out the intermediate temperature heat transfer medium passes through the second subcooler and then is connected in series to the first subcooler, so that the first and second subcoolers are provided. In sensible heat exchange with the liquid heat medium. Thereby, an intermediate temperature heat transfer medium of 40 to 60 ° C. can be generated.

また、第1及び第2の過冷却器で熱媒が過冷却されるので、蒸発器で低温伝熱媒体から奪う熱量を増加でき、これによって、COPが向上する。特に、従来方式と比べて、第2の過冷却器での低温伝熱媒体とNH熱媒との交換熱量がCOP増大分となる。Further, since the heat medium is supercooled by the first and second subcoolers, the amount of heat taken from the low-temperature heat transfer medium by the evaporator can be increased, thereby improving COP. In particular, compared to the conventional method, the amount of heat exchanged between the low-temperature heat transfer medium and the NH 3 heat medium in the second subcooler is an increase in COP.

また、液熱媒の過冷却度が増すことにより、中間温度域での熱媒の乾度が減少する。これによって、熱媒の自己冷却時のフラッシュガスが減り、中間圧力域で発生するガス熱媒量が減少するため、二段圧縮ヒートポンプサイクルの中間圧力が下がる。従って、高段圧縮部と低段圧縮部の消費動力が低減するという利点がある。さらに、蒸発器側での熱吸収能力が増加することにより、本装置のCOPが向上するとともに、高温伝熱媒体の取り出しをさらに安定して行なうことができる。   In addition, when the degree of supercooling of the liquid heat medium increases, the dryness of the heat medium in the intermediate temperature range decreases. As a result, the flash gas during self-cooling of the heat medium is reduced, and the amount of gas heat medium generated in the intermediate pressure region is reduced, so that the intermediate pressure of the two-stage compression heat pump cycle is lowered. Therefore, there is an advantage that the power consumption of the high-stage compression section and the low-stage compression section is reduced. Furthermore, since the heat absorption capacity on the evaporator side is increased, the COP of the present apparatus is improved and the high-temperature heat transfer medium can be taken out more stably.

高温で取り出した熱媒体の用途としては、例えば、60℃の熱媒体を70℃まで昇温して循環する熱供給や暖房、又は吸着式冷凍機の熱源とするか、又はブラインを介して間接に熱交換を行ない給湯用としても用いることができる。生成された中温伝熱媒体の用途として、例えば、15℃程度の供給水を55℃まで昇温して給湯用とするか、あるいはボイラの給水加熱として用いることができる。   As a use of the heat medium taken out at a high temperature, for example, the heat medium at 60 ° C. is heated to 70 ° C. and circulated, or used as a heat source for an adsorption refrigerator, or indirectly through a brine. It can also be used for hot water supply by exchanging heat. As an application of the generated intermediate temperature heat transfer medium, for example, the feed water at about 15 ° C. can be heated to 55 ° C. for hot water supply, or can be used for boiler feed water heating.

低温で取り出した伝熱媒体の用途としては、冷却プロセスとしての活用や、低圧受液器と蒸発器とを組合せてCOブラインなどのブラインを供給するインダイレクトシステムや、蒸発器をカスケードコンデンサとして構成し、該カスケードコンデンサでCO冷媒を液化して、CO冷媒を液ポンプで循環するNH−COブライン液ポンプ冷凍システム等に用いることができる。Applications of the heat transfer medium taken out at low temperatures include the use as a cooling process, an indirect system that supplies a brine such as CO 2 brine by combining a low-pressure receiver and an evaporator, and the evaporator as a cascade capacitor. configured, the cascade condenser liquefies the CO 2 refrigerant, a CO 2 refrigerant can be used for NH 3 -CO 2 brine pump refrigeration system or the like for circulating a liquid pump.

本発明装置においては、第1の過冷却器と中間冷却器との間に第1の膨張弁を介設するとともに、第2の過冷却器と蒸発器との間に第2の膨張弁を介設することによって、低段圧縮部と高段圧縮部との間に中間圧力域を形成する二段圧縮ヒートポンプサイクルを構成することができる。 In the device of the present invention, a first expansion valve is interposed between the first subcooler and the intercooler, and a second expansion valve is disposed between the second subcooler and the evaporator. By interposing, a two-stage compression heat pump cycle that forms an intermediate pressure region between the low-stage compression section and the high-stage compression section can be configured.

高段圧縮部の吐出側は、凝縮温度が80℃程度になると、吐出圧力が4MPa前後となるため、NH熱媒の漏れのない構造が求められる。そのため、本発明装置において、好ましくは、少なくとも高段圧縮部を駆動するために固定子の巻線としてアルミ線材を使用した密閉型モータ又は密閉型IPMモータを備えるようにするとよい。これによって、高段圧縮部の駆動モータをNH熱媒による腐食から守り、かつNH熱媒が装置外に漏洩するのを防止することができる。On the discharge side of the high-stage compression section, when the condensing temperature reaches about 80 ° C., the discharge pressure becomes around 4 MPa, so a structure without leakage of NH 3 heating medium is required. Therefore, in the device of the present invention, it is preferable to provide a sealed motor or a sealed IPM motor that uses an aluminum wire as a stator winding to drive at least the high-stage compression section. As a result, the drive motor of the high-stage compression unit can be protected from corrosion by the NH 3 heat medium, and the NH 3 heat medium can be prevented from leaking outside the apparatus.

また、本発明装置において、二段圧縮機を、高段圧縮部と低段圧縮部とが直列に連結された単機二段圧縮機とすれば、二段圧縮機の構成をコンパクトにまとめることができ、設置スペースを削減できるとともに、圧縮機に要する動力を低減することができる。さらに、前記密閉型モータの構成と単機二段圧縮機の構成を組み合わせれば、夫々の構成の相乗効果を得ることができる。   In the device of the present invention, if the two-stage compressor is a single-unit two-stage compressor in which a high-stage compressor and a low-stage compressor are connected in series, the configuration of the two-stage compressor can be compactly combined. In addition, the installation space can be reduced and the power required for the compressor can be reduced. Furthermore, if the configuration of the hermetic motor and the configuration of a single-stage two-stage compressor are combined, a synergistic effect of each configuration can be obtained.

また、本発明装置において、高段圧縮部の吐出側に油分離器を介設し、高段圧縮部から吐出されたNHを凝縮器で予冷却した後、該油分離器に導入するように構成するとよい。かかる構成とすれば、高段圧縮部から高温で吐出されたガス熱媒を一旦凝縮器で冷却した後で油分離器に導入するので、油分離器を構成するエレメントの耐久性を劣化させないで済み、また、ガス熱媒に混入した油ミストの粘度を低下させることにより、ガス熱媒との分離効果を向上させることができる。また、ガス熱媒を冷却することにより、油分離器を通過するガス熱媒の容積を減少させることができるので、適正な通過流速を確保することができる。In the apparatus of the present invention, an oil separator is provided on the discharge side of the high-stage compression section, and NH 3 discharged from the high-stage compression section is precooled by the condenser and then introduced into the oil separator. It is good to configure. With this configuration, the gas heat medium discharged at a high temperature from the high-stage compression section is once cooled by the condenser and then introduced into the oil separator, so that the durability of the elements constituting the oil separator is not deteriorated. In addition, by reducing the viscosity of the oil mist mixed in the gas heating medium, it is possible to improve the separation effect from the gas heating medium. In addition, by cooling the gas heating medium, the volume of the gas heating medium passing through the oil separator can be reduced, so that an appropriate passage flow rate can be ensured.

また、油分離器を、圧縮ガスと油ミストとからなる混合流体が流入する流入口を囲んで袋状に覆うように配設された油分離エレメントで構成し、該油分離エレメントを、内側から外側に向けて、荒メッシュ径の荒分離用プレフィルタエレメントと、油ミストを捕捉可能な微細メッシュ径のフィルタエレメントと、多数のガス熱媒通過孔を有し該フィルタエレメントで捕捉した油ミストの再飛散を防止する飛散防止用エレメントの三層から構成するとよい。   Further, the oil separator is constituted by an oil separation element disposed so as to surround a flow inlet into which a mixed fluid composed of compressed gas and oil mist flows and is covered in a bag shape, and the oil separation element is formed from the inside. A rough separation prefilter element having a rough mesh diameter, a fine mesh diameter filter element capable of capturing oil mist, and a large number of gas heat medium passage holes, and the oil mist captured by the filter element facing outward. It is good to comprise from the three layers of the element for scattering prevention which prevents re-scattering.

NH熱媒では、高段圧縮部から吐出されるガス熱媒の温度は100℃以上になる。これに対し、微細メッシュ径のフィルタエレメント本体の内側に荒メッシュ径の荒分離用フィルタを設け、該荒分離フィルタエレメントで予めスケールや大きな油ミストを分離することにより、フィルタエレメント本体が150℃までの耐久性を確保することができる。また、該フィルタエレメント本体の外周側に飛散防止用フィルタを設けることにより、一旦ガス熱媒から分離した油ミストの飛散を防止できるので、ガス熱媒からの油ミストの分離効率を向上できる。In the NH 3 heat medium, the temperature of the gas heat medium discharged from the high-stage compression unit is 100 ° C. or higher. On the other hand, a rough separation filter having a coarse mesh diameter is provided inside the filter element main body having a fine mesh diameter, and the filter element main body is up to 150 ° C. by separating scale and large oil mist in advance with the rough separation filter element. It is possible to ensure durability. Further, by providing a filter for preventing scattering on the outer peripheral side of the filter element body, it is possible to prevent the oil mist once separated from the gas heating medium from being scattered, so that the separation efficiency of the oil mist from the gas heating medium can be improved.

また、二段圧縮機の潤滑油としてNH冷媒と非相溶性の油を用いるようにすれば、油分離器での油ミストの分離効果を更に向上することができる。In addition, if an oil incompatible with the NH 3 refrigerant is used as the lubricating oil for the two-stage compressor, the oil mist separation effect in the oil separator can be further improved.

本発明の第1実施形態に係るヒートポンプサイクル装置の系統図である。It is a systematic diagram of the heat pump cycle device concerning a 1st embodiment of the present invention. 前記第1実施形態に係るヒートポンプサイクル装置のモリエル線図である。It is a Mollier diagram of the heat pump cycle device concerning the 1st embodiment. 前記第1実施形態に用いられるハーメチック型モータを一部を断截して示す斜視図である。It is a perspective view which cuts off a part and shows the hermetic motor used for the said 1st Embodiment. 前記第1実施形態で用いられる圧縮機の模式図である。It is a schematic diagram of the compressor used in the said 1st Embodiment. 前記第1実施形態で用いられる油分離器の縦断立面図である。It is a vertical elevation view of the oil separator used in the first embodiment. 本発明の第2実施形態に係るヒートポンプサイクル装置の一部系統図である。It is a partial systematic diagram of the heat pump cycle apparatus which concerns on 2nd Embodiment of this invention. 従来の二段圧縮冷凍機の系統図である。It is a systematic diagram of the conventional two-stage compression refrigerator. 従来の二段圧縮冷凍機のモリエル線図である。It is a Mollier diagram of a conventional two-stage compression refrigerator.

次に本発明装置の第1実施形態を図1〜図5に基づいて説明する。図1は、本実施形態に係る、NHを熱媒とした二段圧縮ヒートポンプサイクル装置の系統図である。図1において、二段圧縮ヒートポンプサイクル装置1の高段圧縮機11の吐出側熱媒配管2に油分離器12が介設され、高段圧縮機11でガス状の熱媒に混じった潤滑油を油分離器12で分離し、分離した潤滑油を戻しライン12aを介して高段圧縮機11又は後述する低段圧縮機19に戻している。なお、本実施形態では、NH熱媒と非相溶性の潤滑油、例えばナフテン系の鉱油、又はアルキルベンゼン(合成油)等を用いている。Next, 1st Embodiment of this invention apparatus is described based on FIGS. FIG. 1 is a system diagram of a two-stage compression heat pump cycle apparatus using NH 3 as a heat medium according to the present embodiment. In FIG. 1, an oil separator 12 is interposed in a discharge-side heat medium pipe 2 of a high-stage compressor 11 of a two-stage compression heat pump cycle apparatus 1, and the lubricating oil mixed with a gaseous heat medium in the high-stage compressor 11. Is separated by the oil separator 12, and the separated lubricating oil is returned to the high stage compressor 11 or the low stage compressor 19 described later via the return line 12a. In the present embodiment, a lubricating oil that is incompatible with the NH 3 heating medium, for example, naphthenic mineral oil, alkylbenzene (synthetic oil), or the like is used.

油分離器12の下流側熱媒配管2には凝縮器13が介設されている。凝縮器13には、ガス状のNH熱媒と熱交換して高温の伝熱媒体を取り出すために、伝熱媒体ライン14が接続され、高温取り出し用伝熱媒体aとガス熱媒とが間接的に潜熱熱交換される。凝縮器13で、該伝熱媒体aが高温のガス熱媒と潜熱熱交換されて、該伝熱媒体aが加熱されるとともに、ガス熱媒は冷却されて液化する。A condenser 13 is interposed in the heat medium pipe 2 on the downstream side of the oil separator 12. A heat transfer medium line 14 is connected to the condenser 13 for exchanging heat with the gaseous NH 3 heat medium to take out a high-temperature heat transfer medium, and a high-temperature take-out heat transfer medium a and a gas heat medium are connected to each other. Indirect latent heat exchange. In the condenser 13, the heat transfer medium a is subjected to latent heat exchange with a high-temperature gas heat medium so that the heat transfer medium a is heated and the gas heat medium is cooled and liquefied.

凝縮器13の下流側熱媒配管2には第1の過冷却器15が介設されている。第1の過冷却器15には中温取り出し用伝熱媒体bを導入する伝熱媒体ライン16が導設され、ここで該伝熱媒体bと液熱媒とが顕熱熱交換され、該伝熱媒体bが加熱されると共に、液熱媒は過冷却される。第1の過冷却器15の下流側には第1の膨張弁17が介設され、液熱媒は第1の膨張弁17を通過して減圧された後、中間冷却器18に到る。   A first subcooler 15 is interposed in the heat medium pipe 2 on the downstream side of the condenser 13. The first subcooler 15 is provided with a heat transfer medium line 16 for introducing the intermediate temperature extraction heat transfer medium b, where the heat transfer medium b and the liquid heat medium are subjected to sensible heat exchange, and the heat transfer medium b. While the heat medium b is heated, the liquid heat medium is supercooled. A first expansion valve 17 is interposed downstream of the first supercooler 15, and the liquid heat medium passes through the first expansion valve 17 and is depressurized, and then reaches the intermediate cooler 18.

中間冷却器18には低段圧縮機19の吐出側熱媒配管5を介して低段圧縮機19から吐出されたNHガス熱媒が供給される。第1の膨張弁17で減圧された液熱媒の一部は、中間冷却器18の内部で、熱媒配管5から供給されたガス熱媒の熱を吸収して蒸発する。そして、中間冷却器18内のガス熱媒nは熱媒配管3を通って高段圧縮機11に導入される。中間冷却器18内の液熱媒nは、熱媒配管4を経て第2の過冷却器21に到る。The NH 3 gas heat medium discharged from the low stage compressor 19 is supplied to the intermediate cooler 18 via the discharge side heat medium pipe 5 of the low stage compressor 19. A part of the liquid heat medium depressurized by the first expansion valve 17 evaporates by absorbing the heat of the gas heat medium supplied from the heat medium pipe 5 inside the intermediate cooler 18. Then, the gas heat medium n 1 in the intermediate cooler 18 is introduced into the high stage compressor 11 through the heat medium pipe 3. The liquid heat medium n 2 in the intermediate cooler 18 reaches the second subcooler 21 through the heat medium pipe 4.

第2の過冷却器21には、中温取り出し用伝熱媒体ライン16の上流側が導設され、中温取り出し用伝熱媒体bは、まず、第2の過冷却器21で液熱媒と熱交換して予熱され、一方、液熱媒はさらに過冷却度を増す。このように、中温取り出し用熱媒体ライン16は、第2の過冷却器21を経て第1の過冷却器15に直列に導設されており、中温取り出し用熱媒体bは、まず第2の過冷却器21で予熱された後、第1の過冷却器15でさらに加熱されるように構成されている。   The second subcooler 21 is provided with an upstream side of the medium temperature extraction heat transfer medium line 16, and the medium temperature extraction heat transfer medium b is first exchanged with the liquid heat medium in the second subcooler 21. The liquid heat medium further increases the degree of supercooling. In this way, the intermediate temperature extraction heat medium line 16 is connected in series to the first subcooler 15 via the second subcooler 21, and the intermediate temperature extraction heat medium b is firstly connected to the second subcooler 21. After being preheated by the subcooler 21, the first supercooler 15 is further heated.

第2の過冷却器21の下流側熱媒配管4には、第2の膨張弁22が介設されており、液熱媒は第2の膨張弁22を通ってさらに減圧される。減圧された熱媒は蒸発器23に到る。蒸発器23には低温取り出し用熱媒体ライン24が導設されている。蒸発器23で低温取り出し用熱媒体cと液熱媒とが潜熱熱交換され、液熱媒は該伝熱媒体cから蒸発潜熱を奪って蒸発し、ガス熱媒となって低段圧縮機19に到り、低段圧縮機19で圧縮される。一方、伝熱媒体cは冷却されて低温伝熱媒体として用途先に供給される。   A second expansion valve 22 is interposed in the downstream heat medium pipe 4 of the second subcooler 21, and the liquid heat medium is further depressurized through the second expansion valve 22. The depressurized heat medium reaches the evaporator 23. The evaporator 23 is provided with a low temperature take-out heat medium line 24. The low-temperature extraction heat medium c and the liquid heat medium are subjected to latent heat exchange in the evaporator 23, and the liquid heat medium takes the evaporative latent heat from the heat transfer medium c and evaporates to become a gas heat medium. And is compressed by the low-stage compressor 19. On the other hand, the heat transfer medium c is cooled and supplied to the application destination as a low-temperature heat transfer medium.

なお、本実施形態では、高段圧縮機11と低段圧縮機19とは両者の回転軸が直列に接続された単機二段圧縮機として構成されている。即ち、高段圧縮機11及び低段圧縮機19は往復動型圧縮機であり、これらのピストンはピストンロッドを介して同一のクランク軸に接続され、同一のクランク軸で駆動される。   In the present embodiment, the high-stage compressor 11 and the low-stage compressor 19 are configured as a single-stage two-stage compressor in which both rotary shafts are connected in series. That is, the high stage compressor 11 and the low stage compressor 19 are reciprocating compressors, and these pistons are connected to the same crankshaft via the piston rod and driven by the same crankshaft.

次に本実施形態のヒートポンプサイクル装置1の作動を図2のモリエル線図により説明する。図2において、ダッシュを付さないAからHまでの符号は、図7に示す従来の二段圧縮冷凍装置010の作動状態を示し、この作動動作はすでに図8のモリエル線図で説明済みである。本実施形態のヒートポンプサイクル装置1の作動動作は、AからB、C、Dを通り、E点に至るまでは、従来の二段圧縮冷凍装置010の作動動作と同一である。   Next, the operation of the heat pump cycle apparatus 1 of the present embodiment will be described with reference to the Mollier diagram of FIG. In FIG. 2, the symbols from A to H without a dash indicate the operating state of the conventional two-stage compression refrigeration apparatus 010 shown in FIG. 7, and this operating operation has already been explained in the Mollier diagram of FIG. is there. The operation operation of the heat pump cycle device 1 of the present embodiment is the same as the operation operation of the conventional two-stage compression refrigeration apparatus 010 from A to B, C, D, and to the point E.

即ち、低圧ガス熱媒は、A点の状態から低段圧縮機19に流入し、低段圧縮機19によってB点まで圧縮される。低段圧縮機19から吐出したガス熱媒は中間冷却器18に流入し、熱媒配管2から中間冷却器18に流入した液熱媒によって冷却されてC点に到る。 That is, the low-pressure gas heating medium flows into the low stage compressor 19 from the state of the point A and is compressed to the point B by the low stage compressor 19. The gas heat medium discharged from the low-stage compressor 19 flows into the intermediate cooler 18 and is cooled by the liquid heat medium flowing into the intermediate cooler 18 from the heat medium pipe 2 and reaches the point C.

中間冷却器18内のガス熱媒nは、高段圧縮機11に到って圧縮され(D点)、高段圧縮機11から吐出したガス熱媒は、凝縮器13で冷却され凝縮する(E点)。凝縮器13から出た液冷媒は、第1の過冷却器15でさらに冷却されて過冷却域に到る(E’点)。第1の過冷却器15から出た液冷媒は、第1の膨張弁17を通って減圧された後、中間冷却器18に到る(F’点)。The gas heat medium n 1 in the intermediate cooler 18 reaches the high stage compressor 11 and is compressed (point D), and the gas heat medium discharged from the high stage compressor 11 is cooled and condensed by the condenser 13. (Point E). The liquid refrigerant discharged from the condenser 13 is further cooled by the first supercooler 15 and reaches the supercooling zone (point E ′). The liquid refrigerant discharged from the first supercooler 15 is depressurized through the first expansion valve 17 and then reaches the intermediate cooler 18 (point F ′).

第1の膨張弁17を経て減圧された液熱媒の一部が、中間冷却器18で低段圧縮機19の吐出側熱媒配管5から流入したガス熱媒の保有熱を吸収して蒸発し(F’→C)、高段圧縮機11に到る。一方、残りの液冷媒nは第2の過冷却器21に到り、第2の過冷却器21で中温取り出し用熱媒体bによって冷却される(F’→G’)。第2の過冷却器21を出た液熱媒は、第2の膨張弁22を通って減圧され(G’→H’)、その後、蒸発器23で低温取り出し用熱媒体cから蒸発潜熱を奪って蒸発する(H’→A)。蒸発したガス熱媒は再び低段圧縮機19で圧縮される(A→B)。A part of the liquid heat medium depressurized through the first expansion valve 17 absorbs the heat held in the gas heat medium flowing from the discharge side heat medium pipe 5 of the low-stage compressor 19 by the intermediate cooler 18 and evaporates. (F ′ → C), and reaches the high stage compressor 11. On the other hand, the remaining liquid refrigerant n 2 reaches the second subcooler 21 and is cooled by the intermediate temperature extraction heat medium b in the second subcooler 21 (F ′ → G ′). The liquid heat medium exiting the second subcooler 21 is depressurized through the second expansion valve 22 (G ′ → H ′), and then the latent heat of vaporization is removed from the low temperature extraction heat medium c by the evaporator 23. Evaporate (H '→ A). The evaporated gas heating medium is compressed again by the low-stage compressor 19 (A → B).

本実施形態においては、熱媒としてNHを用いているが、NHは可燃性及び有毒性であるため、NHが外気に漏洩するのを防止する必要がある。高段圧縮機11は、凝縮温度が80℃程度になると、吐出圧力が4MPa程度になるため、NHの漏洩のない構造が要求される。そこで、高段圧縮機11の駆動装置は、NHによって腐食されないアルミ線材を固定子の巻線として用いたハーメチック型モータを用いている。以下この構造を図3に基づいて説明する。In the present embodiment, NH 3 is used as a heat medium. However, NH 3 is flammable and toxic, so it is necessary to prevent NH 3 from leaking to the outside air. The high stage compressor 11 is required to have a structure with no NH 3 leakage since the discharge pressure becomes about 4 MPa when the condensation temperature becomes about 80 ° C. Therefore, the driving device of the high-stage compressor 11 uses a hermetic motor using an aluminum wire that is not corroded by NH 3 as a winding of the stator. Hereinafter, this structure will be described with reference to FIG.

ハーメチック型モータ30は、高段圧縮機11及び低段圧縮機19のピストンを駆動するクランク軸と結合されて、高段圧縮機11及び低段圧縮機19を駆動する。ハーメチック型モータ30は、例えば、3相誘導モータであり、略円筒形状の耐圧力密封筐体31を備えており、筐体31には密封玉軸受32によって回転軸33が回転可能に支持されている。そして、回転軸33の一端(紙面右側)は、筐体31から突出して高段圧縮機11及び低段圧縮機19のクランク軸に結合される。   The hermetic motor 30 is coupled to a crankshaft that drives the pistons of the high-stage compressor 11 and the low-stage compressor 19, and drives the high-stage compressor 11 and the low-stage compressor 19. The hermetic motor 30 is, for example, a three-phase induction motor, and includes a substantially cylindrical pressure-resistant sealed casing 31, and a rotating shaft 33 is rotatably supported by a sealed ball bearing 32 on the casing 31. Yes. One end (right side of the drawing) of the rotating shaft 33 protrudes from the housing 31 and is coupled to the crankshafts of the high-stage compressor 11 and the low-stage compressor 19.

回転軸33には回転子34が取り付けられ、筐体31の内面側に設けられたフレーム31aの内側に、この回転子34を取り囲むようにして、固定子35が配設されている。固定子35には巻線36が装着されている。そして、筐体31に端子箱37が接続され、巻線36は、端子箱37から配線38により、サーマルリレー39、電磁接触器41、及び遮断器42を介して3相交流電源43に接続されている。この電力供給機構によって、ハーメチック型モータ30が回転駆動される。   A rotor 34 is attached to the rotary shaft 33, and a stator 35 is disposed inside a frame 31 a provided on the inner surface side of the housing 31 so as to surround the rotor 34. A winding 36 is attached to the stator 35. A terminal box 37 is connected to the casing 31, and the winding 36 is connected to the three-phase AC power source 43 from the terminal box 37 by a wiring 38 via a thermal relay 39, an electromagnetic contactor 41, and a circuit breaker 42. ing. The hermetic motor 30 is rotationally driven by this power supply mechanism.

図4に示すように、本実施形態のヒートポンプサイクル装置1に用いられる圧縮機50は、往復動型の高段圧縮機11及び低段圧縮機19が多気筒式に並設されて構成されている。圧縮機50のクランク室51では、高段圧縮機11及び低段圧縮機19のピストン(図示略)がピストンロッドを介して単一のクランク軸52に接続されている。 As shown in FIG. 4, the compressor 50 used in the heat pump cycle apparatus 1 of the present embodiment is configured by a reciprocating high-stage compressor 11 and a low-stage compressor 19 arranged in parallel in a multi-cylinder type. Yes. In the crank chamber 51 of the compressor 50, pistons (not shown) of the high stage compressor 11 and the low stage compressor 19 are connected to a single crankshaft 52 via a piston rod.

ハーメチック型モータ30の回転軸33が、クランク軸52とカップリング53によって結合されており、この結合部分は、クランク室51とハーメチック型モータ30の筐体31との間で、圧縮機50とハーメチック型モータ30とを気密状態で完全に一体化する接続ケーシング54の内部に位置している。   A rotary shaft 33 of the hermetic motor 30 is coupled by a crankshaft 52 and a coupling 53, and this coupled portion is between the compressor 50 and the hermetic between the crank chamber 51 and the housing 31 of the hermetic motor 30. It is located inside a connection casing 54 that completely integrates the mold motor 30 in an airtight state.

ハーメチック型モータ30が回転すると、その回転が圧縮機50のクランク軸52に伝達されて、高段圧縮機11及び低段圧縮機19を駆動する。なお、図示しないが、筐体31にはNH熱媒の導入口及び排出口が設けられており、NH熱媒の一部が該導入口から筐体31内に導入されることによって、ハーメチック型モータ30が冷却される。When the hermetic motor 30 rotates, the rotation is transmitted to the crankshaft 52 of the compressor 50 to drive the high-stage compressor 11 and the low-stage compressor 19. Although not shown, the housing 31 has inlet and outlet of the NH 3 heating medium is provided by a portion of the NH 3 heating medium is introduced from the conductor inlet in the casing 31, The hermetic motor 30 is cooled.

図3において、回転子34はアルミニウムダイキャスト製であり、固定子35は、例えば、磁性鋼板(JISC2522)の表面に絶縁コーティングが施されている。巻線36は高純度のアルミニウム線で構成され、表面にフッ素系樹脂のパーフルオロアルコキシ(Perfluoro alkoxy:PFA)が被覆されている。アルミニウム線は銅線に比べて導電率が低いが、NHによって腐食することはない。また、表面に、絶縁性、アルミニウム線に対する追従性、耐クラック性及び熱劣化耐性の良好なPFAを被覆しているので、NH熱媒に対する耐久性を高くすることができる。In FIG. 3, the rotor 34 is made of aluminum die cast, and the stator 35 has, for example, an insulating coating applied to the surface of a magnetic steel plate (JISC2522). The winding 36 is made of a high-purity aluminum wire, and the surface thereof is coated with a fluororesin perfluoroalkoxy (PFA). Aluminum wire has lower conductivity than copper wire, but it is not corroded by NH 3 . Further, since the surface is coated with PFA having good insulation, followability to aluminum wire, crack resistance and heat deterioration resistance, durability against NH 3 heat medium can be increased.

なお、ハーメチック型モータ30として、三相誘導モータの代わりに、永久磁石埋め込み型の同期モータであるIPMモータ(Interior Permanent Magnet Motor)を用いてもよい。IPMモータは回転子に永久磁石が埋め込まれており、回転子を囲むようにして、固定子が配置される。IPMモータを用いることにより、圧縮機50の駆動モータを高効率化及び小型化することができるばかりでなく、所謂PAM回転数制御等の回転数制御によって、駆動モータを最適制御することができる(なお、NH熱媒を用いたヒートポンプサイクル装置にアルミ線材を巻き線として用いたハーメチック型モータ又はIPMモータを適用する場合の詳細な構成については、本出願人が先に出願した特開2004−56990号公報を参照されたい。)。As the hermetic motor 30, an IPM motor (Interior Permanent Magnet Motor), which is a permanent magnet embedded synchronous motor, may be used instead of the three-phase induction motor. In the IPM motor, a permanent magnet is embedded in the rotor, and the stator is arranged so as to surround the rotor. By using the IPM motor, not only can the drive motor of the compressor 50 be made highly efficient and compact, but also the drive motor can be optimally controlled by rotational speed control such as so-called PAM rotational speed control ( the detailed structure of the case of applying a hermetic type motor or an IPM motor is used in a heat pump cycle device using NH 3 heat medium as winding an aluminum wire lines, the applicant has previously filed JP 2004- No. 56990 publication).

次に、油分離器12の構造を図5に基づいて説明する。図5において、油セパレータの隔壁10にNH熱媒と潤滑油との混合流体dが流入する入口開口10aが設けられ、該入口開口10aの下部に油分離器12が取り付けられている。油分離器12は、中心に開口122aを有する上部カバー122と、円筒状の油分離エレメント構造123と、下部カバー124とからなり、中心に垂設された心棒121の下端部に螺合された円筒状の大径部121aに下部カバー124が支持されることによって、油分離器12の入口開口10aに固定されている。Next, the structure of the oil separator 12 will be described with reference to FIG. In FIG. 5, an inlet opening 10a through which a mixed fluid d of NH 3 heating medium and lubricating oil flows is provided in a partition wall 10 of the oil separator, and an oil separator 12 is attached to the lower part of the inlet opening 10a. The oil separator 12 includes an upper cover 122 having an opening 122a at the center, a cylindrical oil separation element structure 123, and a lower cover 124, and is screwed into a lower end portion of a mandrel 121 suspended from the center. The lower cover 124 is supported by the cylindrical large-diameter portion 121a, and is fixed to the inlet opening 10a of the oil separator 12.

油分離エレメント構造123は上部開口を有し、上部開口から流入した混合流体dは荒分離エレメント125を内側から外側に、即ち、矢印e方向に通過する際に潤滑油とゴミが分離される。油分離エレメント構造123は、内周側から外周側に向かって荒分離エレメント125、正規分離エレメント126及び飛散防止エレメント127の3層構造になっている。そして、正規分離エレメント126の外周側には正規分離エレメント126のサポート部材128が設けられ、飛散防止エレメント127の外周側には飛散防止エレメント127のガード部材129が設けられている。荒分離エレメント125は、金属製の荒いワイヤメッシュで構成され、ここで大きな油ミストやゴミを分離する。   The oil separation element structure 123 has an upper opening. When the mixed fluid d flowing from the upper opening passes through the rough separation element 125 from the inside to the outside, that is, in the direction of the arrow e, the lubricating oil and dust are separated. The oil separation element structure 123 has a three-layer structure of a rough separation element 125, a regular separation element 126, and a scattering prevention element 127 from the inner peripheral side toward the outer peripheral side. A support member 128 for the regular separation element 126 is provided on the outer peripheral side of the regular separation element 126, and a guard member 129 for the scattering prevention element 127 is provided on the outer peripheral side of the scattering prevention element 127. The rough separation element 125 is composed of a metal rough wire mesh, and separates large oil mist and dust here.

正規分離エレメント126は、例えばグラスウールなどで構成され、ポーラスなスポンジ状をなし、微細なメッシュ径を有し、ここで細かな油ミストまで分離される。飛散防止エレメント127は多数のガス熱媒通過孔を有し、ここで正規分離エレメント126に補足された油ミストが再飛散するのを防止する。かかる構成の油分離エレメント123によって、ミクロン単位の油ミストまで分離されるとともに、荒分離エレメント125を設けることで、ゴミによる正規分離エレメント126の破損の可能性を低減することができる。   The regular separation element 126 is made of, for example, glass wool, has a porous sponge shape, has a fine mesh diameter, and fine oil mist is separated here. The scattering prevention element 127 has a large number of gas heat medium passage holes, and prevents the oil mist supplemented by the regular separation element 126 from re-scattering. By separating the oil mist in micron units by the oil separation element 123 having such a configuration, by providing the rough separation element 125, the possibility of damage to the regular separation element 126 due to dust can be reduced.

かかる構成の本実施形態によれば、熱媒特性の優れるNH熱媒を用い、高段圧縮機11の吐出側冷媒温度が100℃以上になり、凝縮器13での凝縮温度が65〜80℃となる。そして、凝縮器13に高温取り出し用伝熱媒体ライン14が導設され、ライン14を流れる伝熱媒体aがNH熱媒と対向流で潜熱熱交換を行ない、図2中の(D→E)分の熱量を吸収するので、60〜75℃の高温伝熱媒体aを取り出すことができる。According to this embodiment having such a configuration, the NH 3 heat medium having excellent heat medium characteristics is used, the discharge-side refrigerant temperature of the high stage compressor 11 is 100 ° C. or higher, and the condensation temperature in the condenser 13 is 65 to 80. It becomes ℃. Then, a high temperature extraction heat transfer medium line 14 is led to the condenser 13, and the heat transfer medium a flowing through the line 14 performs a latent heat exchange with the NH 3 heat medium in a counter flow, and (D → E in FIG. 2). ), The high temperature heat transfer medium a of 60 to 75 ° C. can be taken out.

また、中間冷却器18でNH熱媒の中間温度は20〜40℃となるが、中温取り出し用伝熱媒体ラインbは第2の過冷却器21から第1の過冷却器15に直列に配設され、第2の過冷却器21及び第1の過冷却器15の両方で液熱媒と顕熱して加温され、図2中の(E→G’)分の熱量を吸収するので、40〜60℃の中温伝熱媒体bを取り出すことができる。例えば、凝縮器13吐出側の凝縮熱媒液の温度が60℃の場合には、55℃程度の伝熱媒体bを取り出すことができる。In addition, the intermediate temperature of the NH 3 heat medium is 20 to 40 ° C. in the intermediate cooler 18, but the medium temperature extraction heat transfer medium line b is connected in series from the second subcooler 21 to the first subcooler 15. Since it is disposed and heated by sensible heat with the liquid heat medium in both the second subcooler 21 and the first subcooler 15, the amount of heat (E → G ′) in FIG. 2 is absorbed. The medium-temperature heat transfer medium b at 40 to 60 ° C. can be taken out. For example, when the temperature of the condensed heat medium liquid on the discharge side of the condenser 13 is 60 ° C., the heat transfer medium b at about 55 ° C. can be taken out.

そして、蒸発器23では低温取り出し用伝熱媒体cと液熱媒とが潜熱熱交換することによって、図2中の(H’→A)分の蒸発潜熱量が得られる。これによって、−15〜10℃の低温伝熱媒体を取り出すことができる。   Then, in the evaporator 23, the heat transfer medium c for taking out at low temperature and the liquid heat medium perform latent heat exchange, whereby the amount of latent heat of evaporation for (H ′ → A) in FIG. 2 is obtained. Thereby, a low temperature heat transfer medium of −15 to 10 ° C. can be taken out.

中温取り出し用伝熱媒体ラインbでは、第1の過冷却器15及び第2の過冷却器21の2段階で液熱媒を過冷却するので、図2に示すように、従来の冷凍装置より冷凍効果がΔh分だけ増加し、蒸発器23での蒸発潜熱の吸収量が増加する。   In the medium temperature extraction heat transfer medium line b, since the liquid heat medium is supercooled in two stages of the first subcooler 15 and the second subcooler 21, as shown in FIG. The refrigeration effect increases by Δh, and the amount of latent heat of evaporation in the evaporator 23 increases.

例えば、中間冷却器18の中間温度が40℃の液熱媒のエンタルピーは145.6kcal/kgであり、それを第2の過冷却器21で15℃まで過冷却すると、液冷媒のエンタルピーは117.8kcal/kgとなるので、冷凍効果の増加分はΔh=145.6−117.8=27.8kcal/kgとなる。この増加分は蒸発器23で液熱媒が−20℃から10℃に温度上昇する際に吸収する蒸発潜熱の約10%に相当する。このことから、最大で約10%程度の熱吸収効果の増加が見込まれる。   For example, the enthalpy of the liquid heat medium whose intermediate temperature of the intermediate cooler 18 is 40 ° C. is 145.6 kcal / kg, and when it is subcooled to 15 ° C. by the second subcooler 21, the enthalpy of the liquid refrigerant is 117. Since it is .8 kcal / kg, the increase in the freezing effect is Δh = 145.6-117.8 = 27.8 kcal / kg. This increase corresponds to about 10% of the latent heat of evaporation absorbed when the liquid heat medium rises from −20 ° C. to 10 ° C. in the evaporator 23. From this, an increase in the heat absorption effect of about 10% at the maximum is expected.

さらに、第1の過冷却器15及び第2の過冷却器21で液熱媒の過冷却度を増加させることにより、中間温度域での熱媒の乾度が減少し、これによって、熱媒の自己冷却のフラッシュガスが減少する。従って、中間圧力域でのガス熱媒の循環量が減少するため、中間圧力が減少し、高段圧縮機11及び低段圧縮機19の消費動力が低減する。さらに、蒸発器23での熱吸収能力の向上によって、ヒートポンプサイクル装置1のCOPが向上すると共に、高温伝熱媒体の安定した取り出しが可能になる。   Further, by increasing the degree of supercooling of the liquid heat medium by the first subcooler 15 and the second subcooler 21, the dryness of the heat medium in the intermediate temperature range is decreased, and thereby the heat medium The self-cooled flash gas is reduced. Accordingly, since the circulation amount of the gas heat medium in the intermediate pressure region is reduced, the intermediate pressure is reduced, and the power consumption of the high stage compressor 11 and the low stage compressor 19 is reduced. Furthermore, the COP of the heat pump cycle apparatus 1 is improved by the improvement of the heat absorption capability in the evaporator 23, and the high-temperature heat transfer medium can be taken out stably.

また、NH3熱媒を用いたことにより、高圧部の圧力が4MPa程度とCOの場合と比べて小さいため、耐圧構造を必要とせず、運転も容易である。また、高圧部がCO冷媒のように超臨界圧とならないため、追い焚きを行なう場合でも、COPが低下しない。従って、運転の自由度が広い利点がある。Further, by using the NH3 heat medium, since the pressure of the high pressure section is smaller than in the case of 4MPa about and CO 2, without requiring a pressure-resistant structure, is easy operation. Further, since the high pressure portion does not become a supercritical pressure unlike the CO 2 refrigerant, the COP does not decrease even when the reheating is performed. Therefore, there is an advantage that the degree of freedom of driving is wide.

また、圧縮機50の高段圧縮機11に往復動型圧縮機を用いたことにより、往復動型圧縮機は、吐出側のガス熱媒に多量の潤滑油が介在しないため、熱媒循環量を確保でき、ガス熱媒を高温度にすることができる。ちなみに、スクリュー圧縮機は、吐出側のガス熱媒に多量の潤滑油が介在するため、熱媒循環量が低下し、ガス熱媒の温度が低下してしまう。   In addition, since the reciprocating compressor is used as the high stage compressor 11 of the compressor 50, the reciprocating compressor does not include a large amount of lubricating oil in the gas heat medium on the discharge side. Can be ensured, and the temperature of the gas heating medium can be increased. Incidentally, in the screw compressor, since a large amount of lubricating oil is interposed in the gas heat medium on the discharge side, the circulation amount of the heat medium is decreased, and the temperature of the gas heat medium is decreased.

また、圧縮機50の駆動手段として、固定子35の巻線36にアルミニウム線材を用いたハーメチック型モータ30を設け、かつNH熱媒が外部に漏れない密閉構造としているので、可燃性及び有毒性を有し腐食性が強いNHが外部に漏れる心配がなく、かつ圧縮機50の駆動モータがNHによって腐食される心配がない。Further, as a driving means of the compressor 50, a hermetic motor 30 using an aluminum wire is provided in the winding 36 of the stator 35, and the NH 3 heat medium does not leak to the outside. There is no fear that NH 3 that is toxic and highly corrosive leaks to the outside, and there is no concern that the drive motor of the compressor 50 is corroded by NH 3 .

また、本実施形態では、高段圧縮機11と低段圧縮機19の駆動軸が単一のクランク軸52に連結された単機二段構造となっているので、ヒートポンプサイクル装置1の設置スペースを低減し、高段圧縮機11及び低段圧縮機19の駆動動力を低減することができる。   In this embodiment, since the drive shafts of the high-stage compressor 11 and the low-stage compressor 19 have a single-machine two-stage structure in which the drive shafts are connected to a single crankshaft 52, the installation space for the heat pump cycle device 1 is reduced. The driving power of the high stage compressor 11 and the low stage compressor 19 can be reduced.

また、本実施形態では、高段圧縮機11の吐出側に図5に示す構成を有する油分離器12を設けたことにより、高段圧縮機11から吐出するガス熱媒に混入する潤滑油を高精度に分離でき、かつ潤滑油としてNHと非相溶性の潤滑油を用いているため、NH熱媒に混入する潤滑油をミクロン単位で分離することができる。In the present embodiment, the oil separator 12 having the configuration shown in FIG. 5 is provided on the discharge side of the high stage compressor 11, so that the lubricating oil mixed in the gas heat medium discharged from the high stage compressor 11 can be supplied. Since the lubricating oil that can be separated with high accuracy and is incompatible with NH 3 is used as the lubricating oil, the lubricating oil mixed in the NH 3 heating medium can be separated in micron units.

次に本発明装置の第2実施形態を図6に基づいて説明する。図6において、本実施形態においては、高段圧縮機11の吐出側熱媒配管において、高段圧縮機11から吐出した熱媒を凝縮器13に導入する熱媒配管2aと凝縮器13で顕熱熱交換した後の冷媒を油分離器12に導入する熱媒配管2bを設けている。その他の構成は、熱媒としてNHを用いることも含めて、前記第1実施形態と同一であるので、同一部分については説明を省略する。Next, 2nd Embodiment of this invention apparatus is described based on FIG. In FIG. 6, in the present embodiment, in the discharge side heat medium pipe of the high stage compressor 11, the heat medium pipe 2 a that introduces the heat medium discharged from the high stage compressor 11 into the condenser 13 and the condenser 13 are manifested. A heat medium pipe 2b for introducing the refrigerant after heat heat exchange into the oil separator 12 is provided. Other configurations are the same as those in the first embodiment, including the use of NH 3 as a heat medium, and thus the description of the same parts is omitted.

本実施形態では、高段圧縮機11から吐出された高温のガス熱媒を一旦凝縮器13に導き、凝縮器13で高温取り出し用伝熱媒体aと対向流で顕熱熱交換させて予冷却し、その後、ガス熱媒を油分離器12に導入するようにしている。高段圧縮機11から吐出したNH熱媒は100℃以上の温度を有する。この高温のガス熱媒を直接油分離器12に導入させずに、一旦凝縮器13で顕熱熱交換して100℃以下の温度に予冷却して油分離器12に導入することにより、油分離器12の分離エレメントの耐久性をガス熱媒の高熱で劣化させないようにすることができる。In the present embodiment, the high-temperature gas heat medium discharged from the high-stage compressor 11 is once guided to the condenser 13 and precooled by causing the condenser 13 to exchange sensible heat with the high-temperature extraction heat transfer medium a in a counterflow. Thereafter, a gas heating medium is introduced into the oil separator 12. The NH 3 heating medium discharged from the high stage compressor 11 has a temperature of 100 ° C. or higher. Without introducing this high-temperature gas heating medium directly into the oil separator 12, the sensible heat is once exchanged in the condenser 13, precooled to a temperature of 100 ° C. or lower, and introduced into the oil separator 12. The durability of the separation element of the separator 12 can be prevented from being deteriorated by the high heat of the gas heating medium.

また、高段圧縮機11から吐出したガス熱媒を予冷却してから油分離器12に導入することにより、油分離器12の分離エレメントを通過するガス熱媒の容積を減少させることができるので、適正な通過流速を確保することができる。その他前記第1実施形態と同一の作用効果を奏することができる。   In addition, by precooling the gas heat medium discharged from the high-stage compressor 11 and introducing it into the oil separator 12, the volume of the gas heat medium passing through the separation element of the oil separator 12 can be reduced. Therefore, an appropriate passage flow rate can be ensured. In addition, the same operational effects as those of the first embodiment can be obtained.

本発明によれば、NH熱媒を用いた二段圧縮ヒートポンプサイクル装置において、高温、中温及び低温の3種の温度域の伝熱媒体を同時に取り出すことができるとともに、COPを向上させ、かつ高段圧縮機の吐出側でガス熱媒に混入した潤滑油を高精度で分離できるヒートポンプサイクル装置を実現することができる。According to the present invention, in a two-stage compression heat pump cycle device using NH 3 heat medium, heat transfer media in three temperature ranges of high temperature, medium temperature and low temperature can be taken out simultaneously, COP can be improved, and It is possible to realize a heat pump cycle device capable of separating the lubricating oil mixed in the gas heat medium with high accuracy on the discharge side of the high stage compressor.

Claims (6)

NHを熱媒とし、圧縮機が中間冷却器を介在させた低段圧縮部と高段圧縮部からなる二段圧縮機で構成され、
高段圧縮部から吐出されて凝縮器を経た液熱媒が中間冷却器で低段圧縮部から吐出されたガス熱媒と熱交換した後蒸発器を経て低段圧縮部に循環する二段圧縮ヒートポンプサイクル装置において、
第1の伝熱媒体流路を凝縮器に導設し該凝縮器で第1の伝熱媒体をガス熱媒と潜熱熱交換させて高温伝熱媒体を生成するとともに、
第2の伝熱媒体流路を蒸発器に導設し該蒸発器で第2の伝熱媒体を液熱媒と潜熱熱交換させて低温伝熱媒体を生成し、
前記凝縮器と前記中間冷却器との間に第1の過冷却器を、前記中間冷却器と前記蒸発器との間に第2の過冷却器を夫々介設し、
第3の伝熱媒体流路を第2の過冷却器を経て第1の過冷却器に直列に導設し該第1及び第2の過冷却器で第3の伝熱媒体を液熱媒と対向流で顕熱熱交換させて中温伝熱媒体を生成するように構成し、
前記第1の過冷却器と前記中間冷却器との間に第1の膨張弁、前記第2の過冷却器と前記蒸発器との間に第2の膨張弁を夫々介設したことを特徴とする二段圧縮ヒートポンプサイクル装置。
NH 3 is used as a heat medium, and the compressor is composed of a two-stage compressor composed of a low-stage compression section and a high-stage compression section with an intermediate cooler interposed therebetween,
Two-stage compression, in which the liquid heat medium discharged from the high-stage compression section and passed through the condenser exchanges heat with the gas heat medium discharged from the low-stage compression section in the intermediate cooler and then circulates to the low-stage compression section through the evaporator In heat pump cycle equipment,
The first heat transfer medium flow path is led to the condenser, and the first heat transfer medium is subjected to latent heat exchange with the gas heat medium in the condenser to generate a high-temperature heat transfer medium.
A second heat transfer medium flow path is led to the evaporator, and the second heat transfer medium is subjected to latent heat exchange with the liquid heat medium in the evaporator to generate a low-temperature heat transfer medium;
The first subcooler between the intercooler and the condenser, a second subcooler and respectively interposed between said evaporator and said intercooler,
The third heat transfer medium flow path is connected in series to the first subcooler via the second subcooler, and the third heat transfer medium is transferred to the liquid heat medium by the first and second subcoolers. And sensible heat exchange in the counter flow to produce an intermediate temperature heat transfer medium,
A first expansion valve is interposed between the first subcooler and the intermediate cooler, and a second expansion valve is interposed between the second subcooler and the evaporator, respectively. A two-stage compression heat pump cycle device.
少なくとも高段圧縮部を駆動するために固定子の巻線としてアルミ線材を使用した密閉型モータ又は密閉型IPMモータを備えたことを特徴とする請求項1に記載の二段圧縮ヒートポンプサイクル装置。 2. The two-stage compression heat pump cycle apparatus according to claim 1, further comprising a hermetically sealed motor or a hermetically sealed IPM motor using an aluminum wire as a stator winding for driving at least the high-stage compression unit. 前記二段圧縮機は、高段圧縮部と低段圧縮部とが直列に連結した単機二段圧縮機であることを特徴とする請求項1に記載の二段圧縮ヒートポンプサイクル装置。 2. The two-stage compression heat pump cycle apparatus according to claim 1, wherein the two-stage compressor is a single-stage two-stage compressor in which a high-stage compression section and a low-stage compression section are connected in series. 高段圧縮部の吐出側に油分離器を設け、高段圧縮部から吐出されたNH熱媒を前記凝縮器で予冷却した後、該油分離器に導入するように構成したことを特徴とする請求項1に記載の二段圧縮ヒートポンプサイクル装置。 An oil separator is provided on the discharge side of the high-stage compression section, and the NH 3 heat medium discharged from the high-stage compression section is precooled by the condenser and then introduced into the oil separator. The two-stage compression heat pump cycle device according to claim 1 . 前記油分離器は、圧縮ガスと油ミストとからなる混合流体が流入する流入口を囲んで袋状に覆うように配設された油分離エレメントからなり、
該油分離エレメントは、内側から外側に向けて、荒メッシュ径の荒分離用プレフィルタエレメントと、油ミストを捕捉可能な微細メッシュ径のフィルタエレメントと、多数のガス熱媒通過孔を有し該フィルタエレメントで捕捉した油ミストの再飛散を防止する飛散防止用エレメントの三層から構成されていることを特徴とする請求項に記載の二段圧縮ヒートポンプサイクル装置。
The oil separator is composed of an oil separation element disposed so as to surround a flow inlet into which a mixed fluid composed of compressed gas and oil mist flows and covers the bag.
The oil separation element has, from the inside toward the outside, a rough separation pre-filter element having a coarse mesh diameter, a fine mesh diameter filter element capable of capturing oil mist, and a large number of gas heat medium passage holes. 5. The two-stage compression heat pump cycle device according to claim 4 , wherein the two-stage compression heat pump cycle device comprises three layers of anti-scattering elements that prevent re-entrainment of oil mist captured by the filter element.
二段圧縮機の潤滑油としてNH冷媒と非相溶性の油を用いることを特徴とする請求項4又は5に記載の二段圧縮ヒートポンプサイクル装置。 The two-stage compression heat pump cycle device according to claim 4 or 5 , wherein oil that is incompatible with NH 3 refrigerant is used as lubricating oil for the two-stage compressor.
JP2010526459A 2008-08-27 2008-08-27 Two-stage compression heat pump cycle device Expired - Fee Related JP5346343B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065308 WO2010023737A1 (en) 2008-08-27 2008-08-27 Two-stage compressor heat pump cycling apparatus

Publications (2)

Publication Number Publication Date
JPWO2010023737A1 JPWO2010023737A1 (en) 2012-01-26
JP5346343B2 true JP5346343B2 (en) 2013-11-20

Family

ID=41720926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010526459A Expired - Fee Related JP5346343B2 (en) 2008-08-27 2008-08-27 Two-stage compression heat pump cycle device

Country Status (3)

Country Link
EP (1) EP2317251A1 (en)
JP (1) JP5346343B2 (en)
WO (1) WO2010023737A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012174105A2 (en) 2011-06-13 2012-12-20 Lingelbach Fred Refrigeration system and methods for refrigeration
JP5330471B2 (en) * 2011-09-01 2013-10-30 八洋エンジニアリング株式会社 Air conditioner
DE102011120176B4 (en) * 2011-12-06 2013-06-20 Robert Bosch Gmbh Reversible heat pump device and method for its operation
US9964339B2 (en) * 2016-01-19 2018-05-08 Heatcraft Refrigeration Products Llc Cooling system with low temperature load
CN107036319B (en) * 2016-02-04 2020-10-02 松下知识产权经营株式会社 Refrigeration cycle device
WO2017157924A2 (en) 2016-03-15 2017-09-21 Hsl Energy Holding Aps Heat pump apparatus
US10767911B2 (en) * 2017-11-21 2020-09-08 Heatcraft Refrigeration Products Llc Cooling system
CN109708337B (en) * 2019-03-04 2021-10-01 北京热科能源技术研究有限公司 Multistage series compression heat pump unit
CN113251698A (en) * 2021-04-29 2021-08-13 太原理工大学 Large-temperature-difference multistage compression mixed working medium heat pump system suitable for recovering waste heat of power plant
DE102022118369A1 (en) * 2022-07-22 2024-01-25 Man Energy Solutions Se Compression refrigeration machine, system of compression refrigeration machines and method for operating a compression refrigeration machine
DE102022127011A1 (en) 2022-10-14 2024-04-25 Lübbers FTS GmbH Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731767A (en) * 1980-08-01 1982-02-20 Hitachi Ltd Double stage screw refrigerating plant
JPS58145859A (en) * 1982-02-24 1983-08-31 株式会社日立製作所 Two-stage screw refrigerator
JPH05245321A (en) * 1992-03-06 1993-09-24 Nippon Muki Co Ltd Mist filter and mist collector
JP2004056990A (en) * 2002-05-29 2004-02-19 Mayekawa Mfg Co Ltd Rotary electric machine coupled to the same for ammonia
JP2006220351A (en) * 2005-02-10 2006-08-24 Hitachi Ltd Freezer
JP2007127411A (en) * 2007-02-19 2007-05-24 Mitsubishi Electric Corp Refrigerating cycle device using non-azeotropic mixture refrigerant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249413A (en) 1999-03-01 2000-09-14 Daikin Ind Ltd Refrigeration unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731767A (en) * 1980-08-01 1982-02-20 Hitachi Ltd Double stage screw refrigerating plant
JPS58145859A (en) * 1982-02-24 1983-08-31 株式会社日立製作所 Two-stage screw refrigerator
JPH05245321A (en) * 1992-03-06 1993-09-24 Nippon Muki Co Ltd Mist filter and mist collector
JP2004056990A (en) * 2002-05-29 2004-02-19 Mayekawa Mfg Co Ltd Rotary electric machine coupled to the same for ammonia
JP2006220351A (en) * 2005-02-10 2006-08-24 Hitachi Ltd Freezer
JP2007127411A (en) * 2007-02-19 2007-05-24 Mitsubishi Electric Corp Refrigerating cycle device using non-azeotropic mixture refrigerant

Also Published As

Publication number Publication date
EP2317251A1 (en) 2011-05-04
JPWO2010023737A1 (en) 2012-01-26
WO2010023737A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5346343B2 (en) Two-stage compression heat pump cycle device
EP2019272B1 (en) Combined receiver and heat exchanger for a secondary refrigerant
WO2001022008A1 (en) Multi-stage compression refrigerating device
US20110185765A1 (en) Heat pump apparatus
KR100356627B1 (en) Ammonia refrigerator
US20100011791A1 (en) R422d heat transfer systems and r22 systems retrofitted with r422d
US6385995B1 (en) Apparatus having a refrigeration circuit
JP6884507B2 (en) Turbo compressor, turbo refrigerator equipped with this
CN107532826B (en) Turbine refrigerating device
JP5272941B2 (en) Turbo compressor and refrigerator
JP6004004B2 (en) Turbo refrigerator
JP2018066308A (en) Turbomachine
JP4651452B2 (en) Refrigeration air conditioner
WO2015104822A1 (en) Refrigeration cycle device
JP4454323B2 (en) Refrigeration system
JP4722963B2 (en) refrigerator
JP2007051788A (en) Refrigerating device
WO2021117254A1 (en) Spot cooler device
JP2009204258A (en) Turbo refrigerating machine
KR20190117265A (en) Gas engine-driven heat pump type air conditioning and hot water suppling apparatus
JPH11223397A (en) Freezer refrigerator
JP2010210133A (en) Refrigerating cycle device
JP5419365B2 (en) Turbo refrigerator
JP4341492B2 (en) Refrigerant cooling circuit
JP2009204259A (en) Turbo refrigerating machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees