[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5345417B2 - Lightweight and warm knitted fabric - Google Patents

Lightweight and warm knitted fabric Download PDF

Info

Publication number
JP5345417B2
JP5345417B2 JP2009050346A JP2009050346A JP5345417B2 JP 5345417 B2 JP5345417 B2 JP 5345417B2 JP 2009050346 A JP2009050346 A JP 2009050346A JP 2009050346 A JP2009050346 A JP 2009050346A JP 5345417 B2 JP5345417 B2 JP 5345417B2
Authority
JP
Japan
Prior art keywords
knitted fabric
yarn
dtex
weight
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009050346A
Other languages
Japanese (ja)
Other versions
JP2010203000A (en
Inventor
雄二 浜口
光生 宮島
秀樹 河端
正彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Toyobo Specialties Trading Co Ltd
Original Assignee
Toyobo Co Ltd
Toyobo Specialties Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd, Toyobo Specialties Trading Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009050346A priority Critical patent/JP5345417B2/en
Publication of JP2010203000A publication Critical patent/JP2010203000A/en
Application granted granted Critical
Publication of JP5345417B2 publication Critical patent/JP5345417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a knitted fabric for clothing, excellent in thermal insulation performance despite being thin and lightweight. <P>SOLUTION: The knitted fabric for clothing has a basis weight of 60-120 g/m<SP>2</SP>and a thickness of 0.2-0.6 mm. In the knitted fabric, spun fibers produced by blending together staple fibers A with a single fiber fineness of 0.3-0.7 dtex and staple fibers B &ge;0.4 dtex in single fiber fineness difference from the staple fibers A in the weight ratio of (3:7) to (8:2) are blended at &ge;50 wt.%; wherein the coefficient of thermal conductivity in each the fiber axial direction of both the staple fibers A and B is 1.2 W/m k or less. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、薄くて軽量でありながら保温性に優れた衣料用編地に関するものである。   The present invention relates to a knitted fabric for clothing that is thin and lightweight and has excellent heat retention.

従来、秋冬に着用する衣料用生地においては、保温性を高める検討が数多くなされている。生地の厚みや編組織を検討したもの、中空繊維を用いたもの、染色加工後の糸収縮を応用したもの等があるが、いずれも編地に空気層を持たせて保温性を得ようとするものである。   In the past, many studies have been made to increase heat retention in clothing fabrics worn in autumn and winter. There are things that examined the thickness and knitting structure of the fabric, those that used hollow fibers, and those that applied yarn shrinkage after dyeing, etc., all of which tried to obtain heat retention by giving an air layer to the knitted fabric To do.

例えば、特許文献1では、外層が単糸繊度0.2〜3.0dtexの繊維から構成され、編地の少なくとも一層が45コース以上/inch、かつ45ウエール以上/inchの編目密度を有し、編地の通気度が5〜50cc/cm・secであって、吸水加工が施された保温編地が提案されている。この編地は、高捲縮糸や高収縮糸を用いて高密度にすることによって保温性を得ているので、編地が重くなる問題があった。 For example, in Patent Document 1, the outer layer is composed of fibers having a single yarn fineness of 0.2 to 3.0 dtex, at least one layer of the knitted fabric has a stitch density of 45 courses / inch and 45 wales / inch or more, There has been proposed a heat-insulating knitted fabric having a knitted fabric air permeability of 5 to 50 cc / cm 2 · sec and subjected to water absorption processing. This knitted fabric has a problem that the knitted fabric becomes heavy because heat retention is obtained by increasing the density using high crimped yarns or high shrinkage yarns.

また、特許文献2では、表面層と裏面層とを結接糸でタックしてなり、該結接糸が中空糸で構成されている保温編地が提案されている。この編地は、保温性αが18%以上であるようにある程度保温性が向上しているが、編地の厚さ及び目付けに関して十分満足できる値ではない。   Patent Document 2 proposes a heat insulating knitted fabric in which a front surface layer and a back surface layer are tucked with a binding yarn, and the binding yarn is composed of a hollow fiber. This knitted fabric is improved in heat retention to some extent so that the heat retention α is 18% or more, but it is not a sufficiently satisfactory value with respect to the thickness and basis weight of the knitted fabric.

一方、吸湿発熱素材などを用いて発汗に伴なう発熱を利用したものもある。例えば、特許文献3では、表組織と裏組織及び表裏の組織を連結する連結糸とからなる多層構造編物であって、表組織と連結糸を構成する糸条は、ポリエステルマルチフィラメント糸であり、裏組織は、ポリエステルマルチフィラメント糸と34℃×90%RHにおける水分率が7%以上である吸湿性合成繊維糸とで構成されていて、添糸編によりポリエステルマルチフィラメント糸の外側に吸湿性合成繊維が位置して編目を形成している吸湿性多層構造編物が提案されている。この編物は、着用時のムレを防ぎ、長時間の着用において不快感の少ない衣料素材として好適ではあるが、編物の厚みや目付けが全く考慮されていない。   On the other hand, there is also one that uses heat generated by sweating using a hygroscopic heat generating material. For example, in Patent Document 3, a multi-layer structure knitted fabric composed of a front structure, a back structure, and a connecting yarn that connects the front and back structures, and the yarn constituting the front structure and the connecting thread is a polyester multifilament yarn, The back structure is composed of polyester multifilament yarn and hygroscopic synthetic fiber yarn having a moisture content of 7% or more at 34 ° C. × 90% RH. Hygroscopic multilayer knitted fabrics have been proposed in which the fibers are located to form stitches. This knitted fabric is suitable as a garment material that prevents stuffiness at the time of wearing and has less discomfort when worn for a long time, but the thickness and basis weight of the knitted fabric are not considered at all.

上記で説明したもの以外にも肌表面から出る熱を利用し、輻射熱効果によって保温性を得ようとするものが提案されている。例えば、特許文献4では、30℃における遠赤外線放射率が波長4.5〜30μの領域で平均65%以上である遠赤外線放射特性を有する粒子を含有するポリマーからなる遠赤外線放射層を芯部に、厚み10μ以下のポリマーからなる被覆層を鞘部に配置してなり、芯部及び鞘部のポリマーがポリエチレン及び/又はポリアミドである複合繊維の仮撚加工糸を用いた遠赤外線放射肌着が提案されている。この肌着は、遠赤外線放射により人体に熱分子運動が起こるため暖かく感じるが、この複合繊維の加工糸を用いただけでは保温性が高い編物にはならない。   In addition to what has been described above, there has been proposed an apparatus that uses heat generated from the skin surface to obtain heat retention by a radiant heat effect. For example, in Patent Document 4, a far-infrared radiation layer made of a polymer containing particles having far-infrared radiation characteristics with an average of 65% or more of far-infrared emissivity at 30 ° C. in a wavelength range of 4.5 to 30 μm is a core part. In addition, a far-infrared radiant underwear using a false twisted yarn of a composite fiber in which a coating layer made of a polymer having a thickness of 10 μm or less is disposed in a sheath, and a polymer of the core and the sheath is polyethylene and / or polyamide is used. Proposed. This underwear feels warm due to thermal molecular motion occurring in the human body due to far-infrared radiation, but it cannot be a knitted fabric with high heat retention just by using the processed yarn of this composite fiber.

一般的にインナー用に使用できる生地において、保温性の高いものは肉厚であり、生地の薄いものは保温性が良くないとされている。このように編地の厚みや組織の検討、中空繊維などの特性により空気層を多く取ることで保温を得る従来の技術では、一般的なインナー用生地に比べ厚みが大きくなる傾向にあり、薄地・軽量の点から見て満足が得られるものではなかった。また、吸湿発熱素材などを利用したものは発汗の起こらない状態では効果が弱く、効果の持続性に不十分な場合もあった。糸の番手についても素材特性上細いものの製造が困難であり、このため生地厚さが薄いものはできず、目標とする編地は製造できないのが現状であった。   In general, a fabric that can be used for an inner layer has a high heat retention, and a thin fabric has a poor heat retention. As described above, in the conventional technology for obtaining heat retention by taking a large air layer by examining the thickness and structure of the knitted fabric and the characteristics of hollow fibers, the thickness tends to be larger than that of a general inner fabric. -Satisfaction was not obtained from the point of light weight. In addition, a material using a hygroscopic exothermic material has a weak effect in a state where sweating does not occur, and is sometimes insufficient in sustaining the effect. As for the yarn count, it is difficult to manufacture a thin one due to the material characteristics. For this reason, it is difficult to manufacture a thin fabric, and the target knitted fabric cannot be manufactured.

特開2002−363843号公報JP 2002-363443 A 特開2002−235264号公報JP 2002-235264 A 特開2002−227063号公報JP 2002-227063 A 特開平3−51301号公報Japanese Patent Laid-Open No. 3-51301

本発明は、上記従来技術の現状に鑑み創案されたものであり、その目的は、保温性と薄地・軽量という相反する性能を高度に満足するインナー用編物に適した衣料用編地を提供することにある。特に、本発明の編地は、近年の秋冬向けの衣料に必要とされる保温性の基本機能に加え、風合や着心地といった快適性能も併せ持ち、特にインナー用素材では、暖かいけど嵩張らず、アウターに目立ちにくいものを求める潜在ニーズに十分に対応できるものである。   The present invention was devised in view of the current state of the prior art described above, and an object thereof is to provide a knitted fabric for clothing suitable for an inner knitted fabric that highly satisfies the conflicting performance of heat retention, thin fabric and light weight. There is. In particular, the knitted fabric of the present invention has a comfortable function such as texture and comfort in addition to the basic functions of heat retention required for clothing for autumn and winter in recent years, especially the inner material, it is warm but not bulky, It can adequately meet the potential needs for items that are less noticeable on the outer.

即ち、本発明は、60〜120g/mの目付け及び0.2〜0.6mmの厚みを有する編地であって、単繊維繊度が0.3〜0.7dtexである短繊維Aと、単繊維繊度が0.8〜1.3dtexでありかつ短繊維Aとの単繊維繊度差が0.4dtex以上である短繊維Bとを3:7〜8:2の重量比で混紡した混紡糸が50重量%以上混用されており、かつ短繊維A及び短繊維Bの繊維軸方向の熱伝導率が1.2W/m・k以下であること、及び短繊維A及び短繊維Bがアクリル繊維であり、混紡糸が綿番手60〜100番手の細繊度紡績糸であることを特徴とする衣料用編地である。 That is, the present invention is a knitted fabric having a basis weight of 60 to 120 g / m 2 and a thickness of 0.2 to 0.6 mm, and a short fiber A having a single fiber fineness of 0.3 to 0.7 dtex, A blended yarn obtained by blending a short fiber B having a single fiber fineness of 0.8 to 1.3 dtex and a single fiber fineness difference of 0.4 dtex or more from the short fiber A at a weight ratio of 3: 7 to 8: 2. Is mixed with 50% by weight or more, and the thermal conductivity in the fiber axis direction of the short fiber A and the short fiber B is 1.2 W / m · k or less , and the short fiber A and the short fiber B are acrylic fibers. The knitted fabric for clothing is characterized in that the blended yarn is a cotton yarn having a fineness of 60 to 100 .

本発明の衣料用編地の好ましい態様は以下の通りである。
)40dtex以下のナイロン被覆弾性糸を10〜40重量%の割合で交編している。
ii)20dtex以下のポリウレタン弾性糸とナイロンフィラメントを用いて40dtex以下のナイロン被覆弾性糸とし、これを交編して片袋とした破裂強度が250〜500kPaである。
iii)混紡糸の撚係数(K)が2.8〜4.5である。
iv)混紡糸の糸断面を見たときに繊維間の空隙率が55〜70%であり、編地の比容積が3〜6cm/gである。
)編地の保温率が20%以上である。
Preferred embodiments of the knitted fabric for clothing of the present invention are as follows.
( I ) A nylon-coated elastic yarn of 40 dtex or less is knitted at a rate of 10 to 40% by weight.
( Ii ) A burst strength of 250 to 500 kPa is obtained by using a polyurethane elastic yarn of 20 dtex or less and a nylon filament to form a nylon-coated elastic yarn of 40 dtex or less and knitting this into a single bag.
( Iii ) The twist coefficient (K) of the blended yarn is 2.8 to 4.5.
( Iv ) When the cross section of the blended yarn is viewed, the void ratio between the fibers is 55 to 70%, and the specific volume of the knitted fabric is 3 to 6 cm 3 / g.
( V ) The heat retention rate of the knitted fabric is 20% or more.

本発明によれば、着用したときに暖かくて、着用感(風合)が良く、薄くて軽量で嵩張らず、アウター衣料の外からインナー生地が目立たないといった、特に秋冬のインナー素材に求められる性能を有する衣料用編地を提供することができる。   According to the present invention, it is warm when worn, has a good feeling (feel), is thin, lightweight and not bulky, and the inner fabric is not conspicuous from the outside of the outer garment. It is possible to provide a knitted fabric for clothing having

繊維軸方向の熱伝導率を測定するために使用される銅製チャックを示す。2 shows a copper chuck used to measure the thermal conductivity in the fiber axis direction. 実施例1の編組織を示す。The knitting structure of Example 1 is shown. 実施例2の編組織を示す。The knitting structure of Example 2 is shown. 実施例1の紡績糸の断面写真を示す。The cross-sectional photograph of the spun yarn of Example 1 is shown. 比較例2の紡績糸の断面写真を示す。The cross-sectional photograph of the spun yarn of the comparative example 2 is shown.

本発明の衣料用編地は、単繊維繊度が0.3〜0.7dtexである短繊維Aと、単繊維繊度が0.8〜1.3dtexでありかつ短繊維Aとの単繊維繊度差が0.4dtex以上である短繊維Bとを一定の重量比で混紡した混紡糸が50重量%以上混用されることを特徴とする。このように極細繊維の短繊維Aと通常繊度繊維の短繊維Bを一定の重量比で混紡することにより、繊維間の細かな空隙が増加し、繊維に対して垂直方向の熱伝導を抑制することができる。また、本発明の衣料用編地で使用される短繊維A及び短繊維Bは、繊維軸方向の熱伝導率が1.2W/m・k以下であることを特徴とする。このように繊維軸方向の熱伝導率が低い繊維を使用することにより繊維軸方向、垂直方向ともに優れた保温性を得ることができる。極細繊維の短繊維Aを一定以上混用することによって、60番手以上、さらには80番手以上の細番手糸を紡出することが可能となり、細くて暖かい紡績糸が実現する。   The knitted fabric for clothing of the present invention has a single fiber fineness difference between the short fiber A having a single fiber fineness of 0.3 to 0.7 dtex and the single fiber fineness of 0.8 to 1.3 dtex and the short fiber A. 50% by weight or more of a blended yarn obtained by blending a short fiber B having a weight ratio of 0.4 dtex or more at a constant weight ratio is used. Thus, by blending the short fibers A of ultrafine fibers and the short fibers B of normal fine fibers at a constant weight ratio, fine voids between the fibers are increased, and heat conduction in the direction perpendicular to the fibers is suppressed. be able to. Moreover, the short fiber A and the short fiber B used in the knitted fabric for clothing of the present invention are characterized in that the thermal conductivity in the fiber axis direction is 1.2 W / m · k or less. Thus, by using a fiber having a low thermal conductivity in the fiber axis direction, excellent heat retention can be obtained in both the fiber axis direction and the vertical direction. By mixing a certain amount or more of the short fibers A of ultrafine fibers, it is possible to spin fine count yarns of 60 counts or more, and even 80 counts or more, and a thin and warm spun yarn is realized.

本発明の短繊維A及び短繊維Bは、上記の要件を満たす限りいずれの繊維も使用することができる。かかる繊維としては、細繊度繊維の生産性、衣料品に必要な染色性の点からアクリル繊維が好適である。アクリル繊維を用いた場合、アクリル繊維は、アクリロニトリルを50重量%以上含有するアクリロニトリル系ポリマーからなることが好ましい。アクリロニトリル系ポリマーがアクリロニトリルを50重量%以上含有する場合、アクリロニトリル単独ポリマーであってもよいが、経済性の点でアクリロニトリルとアクリロニトリルに共重合可能な不飽和モノマーとのコポリマーであり、アクリロニトリルを50〜95重量%含有するコポリマーであることが望ましい。アクリロニトリルの含有量が50重量%未満では、染色鮮明性、発色性等のアクリル繊維としての特徴が発揮されず、また熱特性をはじめとする他の物性も低下する傾向となる。 As the short fiber A and the short fiber B of the present invention, any fiber can be used as long as the above requirements are satisfied. As such a fiber, an acrylic fiber is preferable from the viewpoint of productivity of fine fibers and dyeability necessary for clothing. When acrylic fibers are used, the acrylic fibers are preferably made of an acrylonitrile-based polymer containing acrylonitrile at 50% by weight or more. When the acrylonitrile-based polymer contains 50% by weight or more of acrylonitrile, it may be an acrylonitrile homopolymer, but in terms of economy, it is a copolymer of acrylonitrile and an unsaturated monomer copolymerizable with acrylonitrile. A copolymer containing 95% by weight is desirable. When the content of acrylonitrile is less than 50% by weight, characteristics as acrylic fibers such as dyeing vividness and color developability are not exhibited, and other physical properties such as thermal characteristics tend to be lowered.

アクリロニトリルに共重合可能な不飽和モノマーとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2ーエチルヘキシル、アクリル酸2ーヒドロキシエチル、アクリル酸ヒドロキシプロピル等のアクリル酸エステル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2ーヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデン等の不飽和モノマー等が挙げられる。   Examples of unsaturated monomers copolymerizable with acrylonitrile include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydroxypropyl acrylate. Acrylic acid ester, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, methacryl Methacrylic acid ester such as hydroxypropyl acid, diethylaminoethyl methacrylate, acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, N-methylolacrylamido , Diacetone acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, include unsaturated monomers such as vinylidene fluoride.

さらに、染色性等改良の目的で共重合されるモノマーとしては、p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2ーアクリルアミドー2ーメチルプロパンスルホン酸、及びこれらのアルカリ金属塩等が挙げられる。   Furthermore, monomers copolymerized for the purpose of improving dyeability and the like include p-sulfophenyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamide-2-methylpropane sulfonic acid, and these Alkali metal salts and the like.

アクリロニトリル系ポリマーの分子量は、アクリル繊維の製造に通常用いられる範囲のものであれば特に限定されないが、分子量が低すぎると、紡糸性が低下すると同時に原糸の糸質も悪化する傾向にあり、分子量が高すぎると、紡糸原液に最適粘度を与えるポリマー濃度が低くなり、生産性が低下する傾向にあるので、紡糸条件に従って適宜選択される。   The molecular weight of the acrylonitrile-based polymer is not particularly limited as long as it is within the range usually used for the production of acrylic fibers, but if the molecular weight is too low, the spinnability tends to deteriorate and the yarn quality of the raw yarn tends to deteriorate, If the molecular weight is too high, the polymer concentration that gives the optimum viscosity to the spinning dope tends to be low, and the productivity tends to decrease, so it is appropriately selected according to the spinning conditions.

アクリル繊維の製造方法は特に限定されないが、例えばアクリロニトリルを50重量%以上含有するアクリロニトリル系ポリマーを、溶剤に溶解して紡糸原液とし、紡糸するという湿式紡糸法により製造することができる。紡糸の際に用いられる溶剤としては、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、エチレンカーボネート、プロピレンカーボネート、γーブチロラクトン、アセトン等の有機溶剤、硝酸、ロダン酸ソーダ、塩化亜鉛等の無機溶剤が挙げられる。   The method for producing the acrylic fiber is not particularly limited. For example, the acrylic fiber can be produced by a wet spinning method in which an acrylonitrile-based polymer containing 50% by weight or more of acrylonitrile is dissolved in a solvent to form a spinning dope and is spun. Examples of the solvent used for spinning include dimethylacetamide, dimethylformamide, dimethylsulfoxide, organic solvents such as ethylene carbonate, propylene carbonate, γ-butyrolactone, and acetone, and inorganic solvents such as nitric acid, sodium rhodanate, and zinc chloride. .

短繊維Aの単繊維繊度は0.3〜0.7dtexであり、好ましくは0.4〜0.6dtexである。0.3dtex未満では、染色したときの色濃度が極端に低下して、混紡糸の均一な染色性が得られにくくなる。また、0.7dtexを越えると、繊度差が低くなり、繊維間空隙が低下して保温性が上がらないとともに、均一な細番手紡績糸を紡出するのが難しくなる。一方、短繊維Bの単繊維繊度は0.8〜1.3dtexであり、好ましくは0.9〜1.2dtexである。0.8dtex未満では、短繊維Aとの繊度差が少なくなり保温性が低下する。また、1.3dtexを越えると、細番手糸を紡出するのが難しくなるとともに風合いが硬くなる傾向がある。短繊維Aと短繊維Bの単繊維繊度差は0.4dtex以上であることが必要である。   The single fiber fineness of the short fiber A is 0.3 to 0.7 dtex, preferably 0.4 to 0.6 dtex. If it is less than 0.3 dtex, the color density at the time of dyeing is extremely reduced, and it becomes difficult to obtain uniform dyeability of the blended yarn. On the other hand, if it exceeds 0.7 dtex, the difference in fineness is lowered, the inter-fiber gap is lowered and the heat retention is not increased, and it becomes difficult to spin a uniform fine yarn. On the other hand, the single fiber fineness of the short fiber B is 0.8 to 1.3 dtex, preferably 0.9 to 1.2 dtex. If it is less than 0.8 dtex, the difference in fineness from the short fiber A is reduced, and the heat retaining property is lowered. On the other hand, if it exceeds 1.3 dtex, it is difficult to spin fine yarn and the texture tends to be hard. The single fiber fineness difference between the short fiber A and the short fiber B needs to be 0.4 dtex or more.

短繊維Aと短繊維Bの混率は重量比で3:7から8:2であり、好ましくは4:6〜8:2である。短繊維Aの混率が上記の範囲からはずれると、繊維間空隙が少なくなり保温性が上がらない。また、短繊維Aが少なすぎると細番手糸の生産が難しくなる。混紡糸の状態で混率を測定する方法としては、例えばメタルセクション法により光学顕微鏡にて糸の断面写真を撮影して、その断面写真より構成する繊維本数を測定し、各繊維の構成本数と単糸繊度を掛け合わせて総繊度を求めて、各繊維の総繊度の比率から求めることができる。   The mixing ratio of the short fibers A and the short fibers B is 3: 7 to 8: 2 by weight ratio, preferably 4: 6 to 8: 2. When the mixing ratio of the short fibers A deviates from the above range, the inter-fiber voids are reduced and the heat retention is not improved. Moreover, when there are too few short fibers A, production of a fine count yarn will become difficult. As a method for measuring the blend ratio in the state of the blended yarn, for example, a cross section photograph of the yarn is taken with an optical microscope by the metal section method, and the number of fibers constituting the cross section photograph is measured. The total fineness can be obtained by multiplying the yarn fineness and can be obtained from the ratio of the total fineness of each fiber.

本発明の混紡糸の繊度は60〜100番手、好ましくは80〜100番手である。60番手より太い場合、本発明の目的とする薄くて、軽くて、暖かい編地を得ることが難しくなる。また、100番手より細い場合、編地が薄くなりすぎて保温性が低下する。この混紡糸の撚係数(K)は2.8〜4.5が好ましい。より好ましくは3.0〜4.1である。撚係数が2.8未満の場合、繊維間空隙率が高くなるが、糸強度が低下し紡績性、製編性が悪くなり生産が困難になる。撚係数が4.5を超えると、紡績性、製編性が良くなるが、繊維間空隙率が低く目標とする保温性が得られ難い。本発明の混紡糸の糸断面を見たとき、繊維間の空隙率は55〜70%であり、より好ましいものは58〜65%となっている。ここで空隙率とは、糸断面を構成する繊維と空間の比率を言う。空隙率が55%未満であると、目標とする保温率が得られず、70%を超えると、保温率は得られるものの、糸強力が低下し、衣料品にしたときにピリング等の消費性能が低下する。   The fineness of the blended yarn of the present invention is 60 to 100, preferably 80 to 100. If it is thicker than 60, it becomes difficult to obtain a thin, light and warm knitted fabric which is the object of the present invention. On the other hand, if it is thinner than 100, the knitted fabric becomes too thin and the heat retention is lowered. The twist coefficient (K) of the blended yarn is preferably 2.8 to 4.5. More preferably, it is 3.0-4.1. When the twist coefficient is less than 2.8, the inter-fiber void ratio is increased, but the yarn strength is lowered, the spinnability and the knitting property are deteriorated, and the production becomes difficult. When the twisting coefficient exceeds 4.5, the spinnability and knitting property are improved, but the inter-fiber porosity is low and the target heat retaining property is difficult to be obtained. When the cross section of the blended yarn of the present invention is viewed, the void ratio between the fibers is 55 to 70%, and more preferably 58 to 65%. Here, the porosity means the ratio of fibers and spaces constituting the yarn cross section. If the porosity is less than 55%, the target heat retention cannot be obtained, and if it exceeds 70%, the heat retention can be obtained, but the yarn strength is reduced, and the consumption performance such as pilling when the clothing is made. Decreases.

本発明の編地は、保温性に優れながら、薄くて軽いことを追求していることを特徴とする。従って、本発明の編地は、薄くて軽い特徴を示す指標として、目付けが60〜120g/m、より好適には80〜100g/mであり、厚みが0.2〜0.6mm、より好適には0.3〜0.5mmである。目付けが60g/m未満では温かさが得られないし、120g/mを越えると本発明が意図する軽い生地の範疇を超えてしまう。また、厚みが0.2mm未満では薄くなりすぎて温かさが実感できないし、0.6mmを越えると本発明が意図する薄い生地の範疇から外れてしまう。 The knitted fabric of the present invention is characterized by pursuing thinness and lightness while being excellent in heat retention. Therefore, the knitted fabric of the present invention has a basis weight of 60 to 120 g / m 2 , more preferably 80 to 100 g / m 2 , and a thickness of 0.2 to 0.6 mm, as an indicator of thin and light features. More preferably, it is 0.3 to 0.5 mm. If the basis weight is less than 60 g / m 2 , warmness cannot be obtained, and if it exceeds 120 g / m 2 , it exceeds the category of light fabrics intended by the present invention. On the other hand, if the thickness is less than 0.2 mm, it becomes too thin to feel the warmth, and if it exceeds 0.6 mm, it falls outside the category of the thin fabric intended by the present invention.

本発明の編地は、編組織を特に限定しないが、厚みが薄くなるように考慮すべきである。例えば、本発明の編地としては、丸編のシングルニット、ダブルニット又は経編でも良い。編地の厚みが大きくなり難い組織で好適なものとしては、フライス、片袋、天竺、ミラノリブ、リバーシブル、ベア天竺、ベアフライス等がある。薄くて軽い素材とするにはこれらの編組織を適正な密度に設定することが好ましい。適正密度は編み組織により変動するが、ウエール数20〜50/inch、コース数30〜100/inchの範囲で適宜設定すればよい。このようにして作られた本発明の編地の比容積は3〜6cm/gとなり、より好適な編地の比容積は3.5〜5.5cm/gになる。この比容積の数値は保温編地としてはさほど高くない値である。この理由は薄くて軽い編地にしたことに原因があると推定するが、微細な空隙がある暖かい紡績糸の効果により見かけの比容積に比べて高い保温性を実現しているものと考えられている。また、このようにして作られた本発明の編地の保温率は20%以上であり、実際には20〜30%である。20%未満では着用したときの暖かみが感じ難くなり、30%より高くなると薄地・軽量化が難しくなってくる。 The knitted fabric of the present invention is not particularly limited in the knitted structure, but should be considered so that the thickness is reduced. For example, the knitted fabric of the present invention may be a circular knit single knit, double knit, or warp knitting. As a structure suitable for a structure in which the thickness of the knitted fabric is not easily increased, there are a milling cutter, a single bag, a tengu, a Milan rib, a reversible, a bear tengu, a bear milling, and the like. In order to obtain a thin and light material, it is preferable to set these knitting structures to an appropriate density. The appropriate density varies depending on the knitting structure, but may be set as appropriate within the range of 20 to 50 / inch wales and 30 to 100 / courses. The specific volume of the knitted fabric of the present invention thus produced is 3 to 6 cm 3 / g, and the more preferable specific volume of the knitted fabric is 3.5 to 5.5 cm 3 / g. The numerical value of this specific volume is not so high as a heat insulating knitted fabric. The reason for this is presumed to be due to the fact that the knitted fabric is thin and light, but it is considered that the warm spun yarn with fine voids achieves higher heat retention than the apparent specific volume. ing. Moreover, the heat retention of the knitted fabric of the present invention thus made is 20% or more, and actually 20 to 30%. If it is less than 20%, it is difficult to feel the warmth when worn, and if it is higher than 30%, it becomes difficult to reduce the thickness and weight.

本発明の編地は、上記混紡糸の混率が50重量%を下回らない範囲で、他の糸を交編することができる。しかし、この場合、薄くて軽い特性を維持するために用いる糸は80番手以上の細い糸条であることが好ましい。80番手以上の細い糸であれば特に限定しないが、例えば50dtex以下のフィラメントや、紡績糸または複合糸が好適に用いられる。交編される他の糸としては、具体的にはナイロンやポリエステルのフィラメントまたはその仮撚加工糸であったり、短繊維や長繊維と弾性繊維を複合した被覆弾性糸がある。被覆弾性糸としては、フィラメントと弾性糸を合撚したFTY(フィラメント ツイスティッド ヤーン)、シングル(ダブル)カバーリング糸、エアーカバード糸、仮撚加工と同時混繊する仮撚複合糸等が用いられる。短繊維と弾性糸との複合糸として、コアスパンヤーン、プライヤーン等が用いられる。弾性糸はポリウレタン系スパンデックス、ポリオレフィン系弾性糸、ポリエステル系弾性糸、ポリエステル系潜在捲縮糸等を用いることができる。弾性糸の繊度は22dtex以下のものを用いることが好適である。繊度が22dtexを超えると混繊糸繊度が大きくなってしまったり、混繊する非弾性糸とのバランスが悪くなる。混繊時の弾性糸ドラフト率は1.5〜2.5倍の低倍率にする方が良い。更に好適には1.8〜2.2程度である。弾性糸ドラフト率が2.5倍を越えると、伸縮のパワーが強すぎて編地の収縮が大きくなり、薄くて軽い編地を得難くなる。   In the knitted fabric of the present invention, other yarns can be knitted in a range where the blend ratio of the blended yarn does not fall below 50% by weight. However, in this case, it is preferable that the yarn used for maintaining the thin and light characteristics is a thin yarn of 80 or more. Although it will not specifically limit if it is a thin thread | yarn of 80th count or more, For example, a filament of 50 dtex or less, a spun yarn, or a composite yarn is used suitably. As other yarns to be knitted, there are specifically nylon or polyester filaments or false twisted yarns, and short elastic fibers or covered elastic yarns composed of long fibers and elastic fibers. As the coated elastic yarn, FTY (filament twisted yarn) in which a filament and an elastic yarn are twisted, a single (double) covering yarn, an air covered yarn, a false twist composite yarn that is mixed simultaneously with false twist processing, and the like are used. . Core composite yarns, pliers, etc. are used as composite yarns of short fibers and elastic yarns. As the elastic yarn, polyurethane-based spandex, polyolefin-based elastic yarn, polyester-based elastic yarn, polyester-based latent crimped yarn, or the like can be used. The fineness of the elastic yarn is preferably 22 dtex or less. When the fineness exceeds 22 dtex, the fineness of the mixed yarn becomes large or the balance with the inelastic yarn to be mixed becomes worse. The elastic yarn draft rate at the time of blending is preferably set to a low magnification of 1.5 to 2.5 times. More preferably, it is about 1.8 to 2.2. When the elastic yarn draft ratio exceeds 2.5 times, the expansion / contraction power is too strong, the shrinkage of the knitted fabric increases, and it becomes difficult to obtain a thin and light knitted fabric.

例えば、薄くて軽量でありながら保温性に優れるという本発明の編地の特性を損なわない交編態様としては、40dtex以下のナイロン被覆弾性糸を10〜40重量%の割合で交編する態様を挙げることができる。好ましくは、40dtex以下のナイロン被覆弾性糸として20dtex以下のポリウレタン弾性糸とナイロンフィラメントを用い、これを交編して片袋とすることにより、本発明の編地の特性を損なわずに250〜500kPaという高い破裂強度の編地を得ることができる。   For example, as a knitting mode that does not impair the characteristics of the knitted fabric of the present invention that is thin and light but excellent in heat retention, a mode in which a nylon-coated elastic yarn of 40 dtex or less is knitted at a ratio of 10 to 40% by weight Can be mentioned. Preferably, a polyurethane elastic yarn of 20 dtex or less and a nylon filament are used as a nylon-coated elastic yarn of 40 dtex or less, and this is knitted to form a single bag so that it does not impair the characteristics of the knitted fabric of the present invention. A high rupture strength knitted fabric can be obtained.

本発明の編地の染色加工は、通常のアクリル繊維や、他の繊維との混用編地の加工方法であれば良いが、本発明の紡績糸の繊維間空隙構造を潰さないよう注意して加工することが必要である。例えば、乾燥や熱処理時に必要以上に編地にテンションや厚み方向の圧縮等をかけて加工しないこと等が求められる。また、精練や染色等の後に液温を下げるときに、急速に行うとアクリル繊維がへたるため、降温はゆっくり行なうようにする。   The dyeing process of the knitted fabric of the present invention may be an ordinary acrylic fiber or a method of processing a mixed knitted fabric with other fibers, but care should be taken not to crush the inter-fiber void structure of the spun yarn of the present invention. It is necessary to process. For example, it is required not to process the knitted fabric with tension or compression in the thickness direction more than necessary during drying or heat treatment. In addition, when the liquid temperature is lowered after scouring or dyeing, the acrylic fiber will drip if done rapidly, so the temperature should be lowered slowly.

本発明の編地には柔軟剤や帯電防止剤のような一般的な仕上加工剤を付与することが好ましく、その他の各種機能加工が単独または併用して施されていても良い。機能加工の例としては、親水加工などの防汚加工、UVカット加工、静電加工、スキンケア加工などがあるが、これに限定されるものではない。   It is preferable to apply a general finishing agent such as a softening agent or an antistatic agent to the knitted fabric of the present invention, and other various functional processings may be applied alone or in combination. Examples of functional processing include, but are not limited to, antifouling processing such as hydrophilic processing, UV cut processing, electrostatic processing, skin care processing, and the like.

次に実施例、比較例を用いて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。これらの実施例における変更は、本発明の趣旨を逸脱しない限り、本発明の技術的範囲に含まれる。なお、本発明で用いた特性値の測定法は以下の通りである。   Next, the present invention will be specifically described using examples and comparative examples, but the present invention is not limited to these examples. Changes in these embodiments are included in the technical scope of the present invention without departing from the spirit of the present invention. In addition, the measuring method of the characteristic value used by this invention is as follows.

<繊維軸方向の熱伝導率K
日本繊維機械学会誌39,T−184(1986)に記載されている「単繊維の異方性熱伝導率の測定」に準じて繊維軸方向の熱伝導率を求めた。カトーテック(株)製サーモラボIIを用いて下記のように測定を行った。
図1の銅製チャックを用いて繊維を平行に並べて把持する。下部のチャック温度Tbを定温水で一定に保つ。上部チャックの温度THは内蔵ヒーターと、同じくチャック内に内蔵の50Ω白金温度センサーによってΔT=TH−Tbが10℃に保たれるよう制御されている。チャック間隔はL=3〜7mm、試料クランプ幅は30mm、繊維の総断面積は3〜5×10−6程度である。繊維束はできる限り単層状に配列し、クランプで把持される部分をアルミホイルで包んでプレス処理した。試料の実測値から試料を取付けないで測るリーク値を差引いて温度差ΔTを求めるが、毎回試料を取替えながら実測値とリーク値を交互に各10回測定して、平均値を採用した。下記式にて繊維軸方向の熱伝導率Kを求めた。
繊維軸方向の熱伝導率K=qL/ΔTA(Jm−1−1−1
式中、L:厚さm、A:面積m、ΔT:温度差K、q:熱流量JS−1(=W)
<Thermal conductivity of the fiber axis K L>
The thermal conductivity in the fiber axis direction was determined according to “Measurement of anisotropic thermal conductivity of single fiber” described in Journal of the Japan Textile Machinery Society 39, T-184 (1986). Measurement was carried out as follows using Thermolab II manufactured by Kato Tech Co., Ltd.
Fibers are aligned and gripped in parallel using the copper chuck of FIG. The lower chuck temperature Tb is kept constant with constant temperature water. The temperature TH of the upper chuck is controlled so that ΔT = TH−Tb is maintained at 10 ° C. by a built-in heater and a 50Ω platinum temperature sensor built in the chuck. The chuck interval is L = 3-7 mm, the sample clamp width is 30 mm, and the total cross-sectional area of the fiber is about 3-5 × 10 −6 m 2 . The fiber bundles were arranged in a single layer as much as possible, and the portion gripped by the clamp was wrapped with aluminum foil and pressed. The temperature difference ΔT was obtained by subtracting the leak value measured without attaching the sample from the measured value of the sample. The measured value and the leak value were alternately measured 10 times each time while changing the sample, and the average value was adopted. It was determined thermal conductivity K L of the fiber axis direction by the following equation.
Thermal conductivity in the fiber axis direction K L = qL / ΔTA (Jm −1 K −1 S −1 )
In the formula, L: thickness m, A: area m 2 , ΔT: temperature difference K, q: heat flow rate JS −1 (= W)

<繊維間空隙率>
混紡糸を編地より静かに取出し、SEMの試料台に粘着テープで固定した。液体窒素で試料台ごと糸条を凍らした状態でカミソリで繊維軸方向に垂直にカットして横断面を切出して、走査型電子顕微鏡(SEM)により繊維横断面の写真を撮った。この横断面写真から混紡糸が占める全体面積より、実際に単糸が占める面積を除いた空間の面積との比率を測定した。
混紡糸の糸空隙率(%)=
(混紡糸が占める全体面積−実際に単糸が占める面積)*100
/紡績糸が占める全体面積
実際に単糸が占める面積は、断面写真における、単糸それぞれの断面積を合計した値とした。
<Porosity between fibers>
The blended yarn was gently taken out from the knitted fabric and fixed to the SEM sample stage with adhesive tape. In a state where the yarn was frozen together with the sample stage with liquid nitrogen, the cross section was cut with a razor perpendicular to the fiber axis direction, and a photograph of the fiber cross section was taken with a scanning electron microscope (SEM). From this cross-sectional photograph, the ratio of the total area occupied by the blended yarn to the area of the space excluding the area actually occupied by the single yarn was measured.
Yarn porosity of blended yarn (%) =
(Total area occupied by blended yarn-Actual area occupied by single yarn) * 100
/ Total area occupied by spun yarn The area actually occupied by a single yarn was the sum of the cross-sectional areas of the single yarns in the cross-sectional photograph.

コンピュータソフトを使って、画像解析からこれらの面積を導く方法を以下に示す。
画像データとして断面写真を取り込み、画像処理ソフトである、Adbe PhotoShop ver.6.0を用いて、混紡糸が占める全体面積の範囲、および単糸それぞれの横断面積をそれぞれ範囲指定して、さらに2値化処理を行い、解析用の画像とした。このとき、紡績糸が占める全体面積は、最外層に位置する繊維の横断面輪郭の外側を全て結んだ範囲とした。これらの作業により作られた解析用の画像をさらに、画像解析ソフトである、Lia32 ver.0.376β1を用いて、紡績糸が占める全体面積および、単糸それぞれの断面積の総計の面積を算出し、これらの値を用いて、混紡糸の空隙率を求めた。これらの算出手段として、上記以外の画像処理ソフト、画像解析ソフトを使っても良い。また、実際の写真より、測定が必要な範囲を切り抜き、重量比から算出しても良い。
A method for deriving these areas from image analysis using computer software is shown below.
A cross-sectional photograph is taken in as image data, and image processing software, Adobe PhotoShop ver. Using 6.0, the range of the total area occupied by the blended yarn and the cross-sectional area of each single yarn were specified, and binarization processing was further performed to obtain an image for analysis. At this time, the total area occupied by the spun yarn was in a range where all the outsides of the cross-sectional contours of the fibers located in the outermost layer were connected. An image for analysis created by these operations is further converted into image analysis software, Lia32 ver. Using 0.376β1, the total area occupied by the spun yarn and the total area of the cross-sectional areas of each single yarn were calculated, and the porosity of the blended yarn was determined using these values. As these calculation means, image processing software and image analysis software other than those described above may be used. Further, a range that requires measurement may be cut out from an actual photograph and calculated from the weight ratio.

<保温率>
カトーテック社製のサーモラボIIを用い、20℃、65%RHの環境下で、BT−BOXのBT板(熱板)を人の皮膚温度を想定して35℃に設定し、その上に試料を置き、熱移動量が平衡になったときの消費電力量Wを測定する。また、試料を置かない条件での消費電力量W0を計測する。以下の式で保温率を計算する。
保温率(%)={(W0−W)/W0}×100
BT板は10cm×10cmのサイズであるが、試料は20cm×20cmのサイズとする。通常は試料を熱板に接触させて測定するが、本発明の保温率は熱板の上に断熱性のある発砲スチロール等のスペーサーを設置して試料との空隙を5mm設けて計測を行なう。
<Heat retention rate>
Using a thermolab II manufactured by Kato Tech, set the BT-BOX BT plate (hot plate) to 35 ° C, assuming a human skin temperature, in an environment of 20 ° C and 65% RH. And measure the power consumption W when the amount of heat transfer is balanced. Further, the power consumption amount W0 under the condition where no sample is placed is measured. The heat retention rate is calculated by the following formula.
Thermal insulation rate (%) = {(W0−W) / W0} × 100
The BT plate has a size of 10 cm × 10 cm, but the sample has a size of 20 cm × 20 cm. Usually, the sample is contacted with a hot plate, and the heat retention rate of the present invention is measured by providing a spacer such as a fired polystyrene having a heat insulating property on the hot plate and providing a gap of 5 mm from the sample.

<編地の厚み>
JIS−L−1018−6.5 メリヤス生地試験方法の(5)厚さにより測定した。
<Thickness of knitted fabric>
It measured by (5) thickness of JIS-L-1018-6.5 knitted fabric test method.

<編地の目付>
JIS−L−1018−6.4.2 メリヤス生地の試験方法の備考の目付けにより測定した。
<Weight of knitted fabric>
JIS-L-1018-6.4.2 It measured by the basis weight of the remarks of the test method of knitted fabric.

<編地の比容積>
編地の厚み(JIS−L−1018−6.5)と目付け(JIS−L−1018−6.4.2)の測定値を用いて下記式により算出した。
比容積=編地の厚み(mm)/編地の目付け(g/m)×1000
<Specific volume of knitted fabric>
Using the measured values of the thickness of the knitted fabric (JIS-L-1018-6.5) and the basis weight (JIS-L-1018-6.4.2), the calculation was performed according to the following formula.
Specific volume = knitted fabric thickness (mm) / knitted fabric basis weight (g / m 2 ) × 1000

<糸の撚数及び撚係数>
シキボー製TC50オートツイストカウンターにより測定した。測定長10inchとして、50回測定した平均値とした。撚数(T/インチ)/√番手(Ne)を撚係数(K)として計算した。
<Number of yarn twist and twist coefficient>
Measured with a TC50 auto twist counter manufactured by Shikibo. A measurement length of 10 inches was used as an average value measured 50 times. The number of twists (T / inch) / √ number (Ne) was calculated as the twist coefficient (K).

<破裂強度>
破裂強さA法(JIS−L−1018)により測定した。
<Burst strength>
The burst strength was measured by the method A (JIS-L-1018).

<可紡性>
精紡機の糸切れ本数(本/400SP・1h)で判断した。
評価基準は0〜5本(良好)、6〜10本(やや悪い)、10本以上(悪い)とした。
<Spinnability>
Judgment was made based on the number of yarn breaks in the spinning machine (pieces / 400 SP · 1 h).
The evaluation criteria were 0 to 5 (good), 6 to 10 (somewhat bad), and 10 or more (bad).

実施例1
極細タイプのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)を70重量%と、制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製822タイプ、1.0dtex、繊維長38mm)30重量%を、OHARA製混綿機を用いて混綿混紡した後に石川製作所製カード機を用いてカードスライバーとし、原織機製練条機に2回通して250ゲレン/6ydのスライバーとした。更に、このスライバーを豊田自動織機製粗紡機に通して50ゲレン/15ydの粗糸を作成した。そして、豊田自動織機製リング精紡機を用いてドラフト39倍、トラベラ回転数10000rpmで紡出して英式番手80′sの紡績糸を得た。そのときの撚係数(K)は3.8(撚数40T/inch)であった。交編するSCY(Single Covered Yarn)はポリウレタン17dtex(東洋紡製エスパ(登録商標))をドラフト倍率1.8倍として28dtexフィラメント数34のナイロンフィラメント(東洋紡製シルファイン(登録商標))と複合してSCYを得た。次いで前記紡績糸と該ナイロンSCYを交編した片袋編地を18′′−18Gのフライス編機(永田精機製)により編成した。編成時の条件は、編成糸長でアクリル短繊維80′sを430mm/100ウエール、ナイロンSCYを240mm/100ウエールとして図2に示す編組織にて編成した。
Example 1
70% by weight of ultra-fine type cationic dyeable acrylic short fiber (UF type manufactured by Japan Exlan Industry, 0.5dtex, fiber length 32mm), antistatic / anti-pill type cationic dyeable acrylic fiber (822 type manufactured by Japan Exlan Industry) , 1.0 dtex, fiber length: 38 mm) 30% by weight was blended using an OHARA blender and then made into a card sliver using a card machine manufactured by Ishikawa Seisakusho. / 6 yd sliver. Further, this sliver was passed through a Toyoda Automatic Loom Co., Ltd. roving machine to produce 50 gelen / 15 yd roving. Then, using a ring spinning machine manufactured by Toyota Industries Corporation, spinning was performed at a draft of 39 times and a traveler rotation speed of 10,000 rpm to obtain a spun yarn of English count 80's. The twist coefficient (K) at that time was 3.8 (twist number 40 T / inch). SCY (Single Covered Yarn) to be knitted is combined with nylon filament (Toyobo Sylfine (registered trademark)) with 28 dtex filament number with polyurethane 17 dtex (Toyobo Espa (registered trademark)) draft ratio 1.8 times. SCY was obtained. Next, a single bag knitted fabric obtained by knitting the spun yarn and the nylon SCY was knitted by an 18 ″ -18G milling machine (manufactured by Nagata Seiki). The knitting conditions were knitted with the knitting structure shown in FIG. 2 in which the knitting yarn length was 80 s of acrylic short fibers 430 mm / 100 wale and nylon SCY was 240 mm / 100 wale.

得られた生機を以下の条件で精練した。
日阪製作所製液流染色機NSタイプを用いて、編地を開反せず後述の処理条件及び精練処方で精練した。湯洗3回・水洗1回を行った後、染色機から編地を取り出して遠心脱水した後、ヒラノテクシード製シュリンクサーファードライヤーを用いて乾燥(120℃×3分)を行なった。
処理条件:浴比1:15、95℃×30分
精練処方:精練剤(第一工業製薬(株)製ノイゲンHC)1g/l、金属イオン封鎖剤(日華化学(株)製ネオクリスタルGC1000)g/l、ソーダ灰0.5g/l
乾燥時に経方向に編地が伸びないようにテンションに注意した。
The obtained raw machine was refined under the following conditions.
Using a liquid dyeing machine NS type manufactured by Nisaka Seisakusho, the knitted fabric was not opened but scoured under the processing conditions and scouring recipe described below. After three times of hot water washing and one time of water washing, the knitted fabric was taken out from the dyeing machine, centrifuged and dehydrated, and then dried (120 ° C. × 3 minutes) using a shrink surfer dryer made by Hirano Techseed.
Treatment conditions: bath ratio 1:15, 95 ° C. × 30 minutes Scouring prescription: Scouring agent (Neugen HC manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 1 g / l, sequestering agent (Neocrystal GC1000 manufactured by Nikka Chemical Co., Ltd.) ) G / l, soda ash 0.5g / l
Attention was paid to the tension so that the knitted fabric would not stretch in the warp direction during drying.

次に、日阪製作所製液流染色機NSタイプを用いて酸性染料及び分散型カチオン染料を同浴一段染色を行った。染色条件及び処方を下記に示す。
染色条件:浴比1:15 95℃×45分 湯洗3回・水洗1回を行った後、柔軟処理をして取り出した。
染色処方:pH調整剤(酢酸0.2g/l pH=4)、均染剤(明成化学工業(株)製ディスパーTL)1g/l、分散型カチオン染料(日本化薬(株)製Kayacryl light Blue 4GSL−ED)1.0%owf、酸性染料(日本化薬(株)製Kayanol Blue NR)1.0%owf
柔軟処理:クラリアント社製サンドパームMEJ―50リキッド 1.0%owf
Next, the acid bath and the dispersive cationic dye were dyed in the same bath using the liquid dyeing machine NS type manufactured by Hisaka Seisakusho. The dyeing conditions and prescription are shown below.
Dyeing conditions: bath ratio 1:15 95 ° C. × 45 minutes After 3 times of hot water washing and 1 time of water washing, the material was softened and taken out.
Dyeing prescription: pH adjuster (acetic acid 0.2 g / l pH = 4), leveling agent (Disper TL manufactured by Meisei Chemical Industry Co., Ltd.) 1 g / l, dispersive cationic dye (Kayaacryl light manufactured by Nippon Kayaku Co., Ltd.) Blue 4GSL-ED) 1.0% owf, acid dye (Nippon Kayaku Kayanol Blue NR) 1.0% owf
Flexible treatment: Clariant Sand Palm MEJ-50 Liquid 1.0% owf

染色後、遠心脱水後、巾出し乾燥を行って性量調整し、最終的に目付け100g/mの編地を得た。密度の粗い面を表としたときの表面の編地密度が36ウエール(W)/inch、45コース(C)/inchの編地を得た。この編地を評価に供した。評価結果を表1に示す。また、編地に用いた紡績糸の断面写真を図4に示す。 After dyeing, centrifugal dehydration, and draw-drying were performed to adjust the amount of properties, and finally a knitted fabric with a basis weight of 100 g / m 2 was obtained. A knitted fabric having a surface knitted fabric density of 36 wales (W) / inch and 45 courses (C) / inch when the surface having a rough density was used as a table was obtained. This knitted fabric was used for evaluation. The evaluation results are shown in Table 1. Moreover, the cross-sectional photograph of the spun yarn used for the knitted fabric is shown in FIG.

実施例2
実施例1で紡績した糸を100%用いて18′′−18Gのフライス編機により編成糸長330mm/100W(ウエール)として図3に示すフライス編地を編成し、実施例1と同様の操作で染色加工した。但し染色は分散型カチオン染料のみで行った。仕上後に編地密度38W/inch、60C/inch、目付90g/mの編地を得た。評価結果を表1に示す。
Example 2
The milled knitted fabric shown in FIG. 3 was knitted with a knitting yarn length of 330 mm / 100 W (Wale) using an 18 ″ -18G milling machine using 100% of the yarn spun in Example 1, and the same operation as in Example 1 was performed. And dyed and processed. However, dyeing was carried out only with a dispersive cationic dye. After finishing, a knitted fabric with a knitted fabric density of 38 W / inch, 60 C / inch, and a basis weight of 90 g / m 2 was obtained. The evaluation results are shown in Table 1.

実施例3
実施例1で紡績した糸と綿糸80′sとを1:1で交編して18′′−18Gのフライス編機により実施例2と同条件で編成した。その後、実施例1の精練の代わりに、綿の精練・漂白条件とし、また染色ではカチオン染色に加えて反応染色を2段染色法にて行った。各処方は下記に示す。それ以外は実施例1と同様に染色加工を行い、仕上げ後に編地密度38W/inch、60C/inch、目付90g/mの編地を得た。評価結果を表1に示す。
Example 3
The yarn spun in Example 1 and cotton yarn 80's were knitted 1: 1, and knitted under the same conditions as in Example 2 using a 18 "-18G milling machine. Thereafter, cotton scouring and bleaching conditions were used instead of the scouring in Example 1, and reactive dyeing was performed by a two-stage dyeing method in addition to cationic dyeing. Each prescription is shown below. Otherwise, dyeing was performed in the same manner as in Example 1, and after finishing, a knitted fabric having a knitted fabric density of 38 W / inch, 60 C / inch, and a basis weight of 90 g / m 2 was obtained. The evaluation results are shown in Table 1.

染色処方
染色条件:浴比1:15、カチオン染色(一段目)95℃×45分⇒反応染色(2段目)60℃×60分⇒ソーピング2回・湯先・中和・水洗して取り出した。
一段目染色処方:pH調整剤(酢酸0.2g/l pH=4)、均染剤(明成化学工業(株)製ディスパーTL)1g/l、分散型カチオン染料(日本化薬(株)製Kayacryl light Blue 4GSL−ED)1.0%owf
二段目染色処方:反応染料(住友化学工業(株)製Sumifix supra Blue BRF150)0.5%owf、無水芒硝30g/L、アルカリ剤(一方社油脂工業(株)エスポロンA171)4g/l
ソーピング処方:ソーピング剤(一方社油脂工業(株)製ビスノールSLK)2g/L
中和処方:酢酸(68%)1g/l
Dyeing conditions Dyeing conditions: Bath ratio 1:15, Cationic dyeing (first stage) 95 ° C x 45 minutes ⇒ Reactive dyeing (second stage) 60 ° C x 60 minutes ⇒ Soap twice, hot water, neutralized, washed with water and taken out It was.
First stage dyeing prescription: pH adjusting agent (acetic acid 0.2 g / l pH = 4), leveling agent (disper TL manufactured by Meisei Chemical Industry Co., Ltd.) 1 g / l, dispersed cationic dye (manufactured by Nippon Kayaku Co., Ltd.) Kayacryl light Blue 4GSL-ED) 1.0% owf
Second stage dyeing prescription: reactive dye (Sumitix Supra Blue BRF150 manufactured by Sumitomo Chemical Co., Ltd.) 0.5% owf, anhydrous sodium sulfate 30 g / L, alkaline agent (one company: Yushi Co., Ltd. Espolon A171) 4 g / l
Soaping formulation: Soaping agent (Bisnol SLK, manufactured by Yushi Co., Ltd.) 2g / L
Neutralization formula: Acetic acid (68%) 1g / l

実施例4
アクリル短繊維0.5dtex70重量%とアクリル短繊維1.0dtex抗ピルタイプ30重量%を均一に混紡し、撚係数(K)で4.0の英式番手で80′sの紡績糸を得た。次いで、この紡績糸と実施例1のナイロンSCYを用いて18′′−18Gのフライス編機により編成糸長330mm/100W(ウエール)の片袋編地を編成し染色加工した。仕上後に編地密度36W/inch、45C/inch、目付100g/mの編地を得た。評価結果を表1に示す。
Example 4
An acrylic short fiber of 0.5 dtex of 70% by weight and an acrylic short fiber of 1.0 dtex anti-pill type of 30% by weight were uniformly blended to obtain an 80's spun yarn with an English count with a twist coefficient (K) of 4.0. Next, using this spun yarn and the nylon SCY of Example 1, a single bag knitted fabric having a knitting yarn length of 330 mm / 100 W (Wale) was knitted and dyed by an 18 ″ -18G milling machine. After finishing, a knitted fabric with a knitted fabric density of 36 W / inch, 45 C / inch, and a basis weight of 100 g / m 2 was obtained. The evaluation results are shown in Table 1.

実施例5
アクリル短繊維0.5dtex70重量%とアクリル短繊維1.0dtex抗ピルタイプ30重量%を均一に混紡し、撚係数(K)で3.0の英式番手で80′sの紡績糸を得た。次いで、この紡績糸と実施例1のナイロンSCYを用いて18′′−18Gのフライス編機により編成糸長330mm/100W(ウエール)の片袋編地を編成し染色加工した。仕上後に編地密度36W/inch、45C/inch、目付100g/mの編地を得た。評価結果を表1に示す。
Example 5
An acrylic short fiber of 0.5 dtex (70% by weight) and an acrylic short fiber (1.0 dtex) of an anti-pill type (30% by weight) were uniformly blended to obtain an 80's spun yarn with an English count of 3.0 in terms of twist coefficient (K). Next, using this spun yarn and the nylon SCY of Example 1, a single bag knitted fabric having a knitting yarn length of 330 mm / 100 W (Wale) was knitted and dyed by an 18 ″ -18G milling machine. After finishing, a knitted fabric with a knitted fabric density of 36 W / inch, 45 C / inch, and a basis weight of 100 g / m 2 was obtained. The evaluation results are shown in Table 1.

実施例6
アクリル短繊維0.5dtex70重量%とアクリル短繊維1.0dtex抗ピルタイプ30重量%を均一に混紡し、撚係数(K)で3.8の英式番手で100′sの紡績糸を得た。次いで、この紡績糸と実施例1のナイロンSCYを用いて18′′−18Gのフライス編機により編成糸長300mm/100W(ウエール)の片袋を編成し染色加工した。仕上後に編地密度39W/inch、50C/inch、目付85g/mの編地を得た。評価結果を表1に示す。
Example 6
An acrylic short fiber of 0.5 dtex of 70% by weight and an acrylic short fiber of 1.0 dtex anti-pill type of 30% by weight were uniformly blended to obtain a spun yarn of 100's with an English count of 3.8 in twist coefficient (K). Next, using this spun yarn and the nylon SCY of Example 1, a single bag with a knitting yarn length of 300 mm / 100 W (Wale) was knitted and dyed with a 18 ″ -18G milling machine. After finishing, a knitted fabric with a knitted fabric density of 39 W / inch, 50 C / inch, and a basis weight of 85 g / m 2 was obtained. The evaluation results are shown in Table 1.

実施例7
アクリル短繊維0.5dtex40重量%とアクリル短繊維1.0dtex抗ピルタイプ60重量%を均一に混紡し、撚係数(K)で3.8の英式番手で80′sの紡績糸を得た。次いで、この紡績糸と実施例1のナイロンSCYを用いて18′′−18Gのフライス編機により編成糸長330mm/100W(ウエール)ナイロンSCYを240mm/100ウエールとして図3に示す編組織にて編成した片袋編地を編成し染色加工した。仕上後に編地密度36W/inch、45C/inch、目付100g/mの編地を得た。評価結果を表1に示す。
Example 7
An acrylic short fiber 0.5dtex 40% by weight and an acrylic short fiber 1.0dtex anti-pill type 60% by weight were uniformly blended to obtain an 80's spun yarn with an English count of 3.8 twist coefficient (K). Next, using this spun yarn and the nylon SCY of Example 1 with a 18 ″ -18G milling machine, the knitting yarn length 330 mm / 100 W (Wale) nylon SCY was 240 mm / 100 Wale with the knitting structure shown in FIG. The knitted single bag knitted fabric was knitted and dyed. After finishing, a knitted fabric with a knitted fabric density of 36 W / inch, 45 C / inch, and a basis weight of 100 g / m 2 was obtained. The evaluation results are shown in Table 1.

実施例8
アクリル短繊維0.5dtex70重量%とアクリル短繊維1.0dtex抗ピルタイプ30重量%を均一に混紡し、撚係数(K)で3.8の英式番手で60′sの紡績糸を得た。次いで、この紡績糸と実施例1のナイロンSCYを用いて18′′−18Gのフライス編機により編成糸長360mm/100W(ウエール)の片袋編地を編成し染色加工した。仕上後に編地密度32W/inch、42C/inch、目付120g/mの編地を得た。評価結果を表1に示す。
Example 8
An acrylic short fiber of 0.5 dtex of 70% by weight and an acrylic short fiber of 1.0 dtex anti-pill type of 30% by weight were uniformly blended to obtain a spun yarn of 60's with an English count of 3.8 in twist coefficient (K). Next, using this spun yarn and the nylon SCY of Example 1, a single bag knitted fabric having a knitting yarn length of 360 mm / 100 W (Wale) was knitted and dyed with a 18 ″ -18G milling machine. After finishing, a knitted fabric with a knitted fabric density of 32 W / inch, 42 C / inch, and a basis weight of 120 g / m 2 was obtained. The evaluation results are shown in Table 1.

比較例1
アクリル短繊維0.5dtexを100%用いて、撚係数(K)で3.8の英式番手で80′sの紡績糸を得た。次いで、前記紡績糸を用いて18′′−18Gのフライス編機により編成糸長330mm/100W(ウエール)のフライス編地を編成し染色加工した。仕上後に編地密度38W/inch、60C/inch、目付90g/mの編地を得た。評価結果を表1に示す。
Comparative Example 1
Using 100% acrylic short fiber 0.5dtex, an 80's spun yarn was obtained with an English count of 3.8 twist coefficient (K). Next, using the spun yarn, a milled knitted fabric having a knitting yarn length of 330 mm / 100 W (Wale) was knitted and dyed by an 18 ″ -18G milling machine. After finishing, a knitted fabric with a knitted fabric density of 38 W / inch, 60 C / inch, and a basis weight of 90 g / m 2 was obtained. The evaluation results are shown in Table 1.

比較例2
アクリル短繊維1.0dtexを100%用いて撚係数(K)3.8の英式番手で80′sの紡績糸を得た。次いで、18′′−18Gのフライスにより実施例2で編成したのと同様の条件で編成し染色加工した。仕上後に編地密度38W/inch、60C/inch、目付90g/mの編地を得た。評価結果を表1に示す。また、編地に用いた紡績糸の断面写真を図5に示す。
Comparative Example 2
An 80's spun yarn was obtained with an English count with a twist coefficient (K) of 3.8 using 100% acrylic short fiber 1.0dtex. Subsequently, it was knitted and dyed under the same conditions as in Example 2 with a 18 ″ -18G milling cutter. After finishing, a knitted fabric with a knitted fabric density of 38 W / inch, 60 C / inch, and a basis weight of 90 g / m 2 was obtained. The evaluation results are shown in Table 1. Moreover, the cross-sectional photograph of the spun yarn used for the knitted fabric is shown in FIG.

比較例3
アクリル短繊維0.5dtex90重量%とアクリル短繊維1.0dtex抗ピルタイプ10重量%を均一に混紡し、撚係数(K)で3.8の英式番手で80′sの紡績糸を得た。次いで、この紡績糸と実施例1のナイロンSCYを用いて18′′−18Gのフライス編機によりアクリル短繊維80′sを330mm/100ウエール、ナイロンSCYを240mm/100ウエールの片袋を編成し染色加工した。仕上後に編地密度36W/inch、45C/inch、目付100g/mの編地を得た。評価結果を表1に示す。
Comparative Example 3
An acrylic short fiber of 0.5 dtex 90% by weight and an acrylic short fiber 1.0 dtex of anti-pill type 10% by weight were uniformly blended to obtain an 80's spun yarn with an English count of 3.8 twist coefficient (K). Next, using this spun yarn and the nylon SCY of Example 1, a single bag of acrylic short fiber 80's of 330 mm / 100 wale and nylon SCY of 240 mm / 100 wale was knitted by a 18 "-18G milling machine. It was dyed. After finishing, a knitted fabric with a knitted fabric density of 36 W / inch, 45 C / inch, and a basis weight of 100 g / m 2 was obtained. The evaluation results are shown in Table 1.

比較例4
アクリル短繊維0.5dtex10重量%とアクリル短繊維1.0dtex抗ピルタイプ90重量%を均一に混紡し、撚係数(K)で3.8の英式番手で80′sの紡績糸を得た。次いで、この紡績糸と実施例1のナイロンSCYを用いて18′′−18Gのフライス編機により430mm/100ウエール、ナイロンSCYを240mm/100ウェールの片袋を編成し染色加工した。仕上後に編地密度36W/inch、45C/inch、目付100g/mの編地を得た。評価結果を表1に示す。
Comparative Example 4
An acrylic short fiber 0.5 dtex 10% by weight and an acrylic short fiber 1.0 dtex anti-pill type 90% by weight were uniformly blended to obtain an 80's spun yarn with an English count of 3.8 twist coefficient (K). Next, using this spun yarn and the nylon SCY of Example 1, a sack of 430 mm / 100 wale and nylon SCY of 240 mm / 100 wales were knitted and dyed by an 18 ″ -18G milling machine. After finishing, a knitted fabric with a knitted fabric density of 36 W / inch, 45 C / inch, and a basis weight of 100 g / m 2 was obtained. The evaluation results are shown in Table 1.

比較例5
アクリル短繊維0.5dtex70重量%とアクリル短繊維1.0dtex抗ピルタイプ30重量%を均一に混紡し、撚係数(K)で3.8の英式番手で50′sの紡績糸を得た。次いで、前記紡績糸を用いて18′′−18Gのフライス編機により編成糸長430mm/100W(ウエール)のフライス編地を編成し染色加工した。仕上後に編地密度32W/inch、50C/inch、目付130g/mの編地を得た。評価結果を表1に示す。
Comparative Example 5
An acrylic short fiber of 0.5 dtex (70% by weight) and an acrylic short fiber (1.0 dtex) of an anti-pill type (30% by weight) were uniformly mixed to obtain a spun yarn of 50's with an English count of 3.8 in terms of twist coefficient (K). Next, a milled knitted fabric having a knitting yarn length of 430 mm / 100 W (Wale) was knitted and dyed using the above-mentioned spun yarn by an 18 ″ -18G milling machine. After finishing, a knitted fabric with a knitted fabric density of 32 W / inch, 50 C / inch, and a basis weight of 130 g / m 2 was obtained. The evaluation results are shown in Table 1.

比較例6
超長綿(スーピマ)を用いて、常法により英式番手80′sのリング紡績糸を得た。この紡績糸を実施例1のアクリル紡績糸の代わりにこの紡績糸と実施例1のナイロンSCYを用いて18′′−18Gのフライス編機により430mm/100ウエール、ナイロンSCYを240mm/100ウエールの片袋を編成し染色加工した。染色はナイロンSCYを酸性染料で、綿を反応染料で2段染色した。仕上後に編地密度36W/inch、45C/inch、目付100g/mの編地を得た。評価結果を表1に示す。
Comparative Example 6
A ring spun yarn having an English count of 80's was obtained by a conventional method using super long cotton (Supima). Using this spun yarn in place of the acrylic spun yarn of Example 1 and the nylon SCY of Example 1, using a 18 ″ -18G milling machine, 430 mm / 100 wale and nylon SCY of 240 mm / 100 wale One bag was knitted and dyed. For dyeing, nylon SCY was dyed in two steps with an acid dye and cotton with a reactive dye. After finishing, a knitted fabric with a knitted fabric density of 36 W / inch, 45 C / inch, and a basis weight of 100 g / m 2 was obtained. The evaluation results are shown in Table 1.

本発明の衣料用編地は、薄くて軽量でありながら保温性に優れるので、近年の秋冬向けの衣料に求められるニーズに適切に対応することができる。   Since the knitted fabric for clothing of the present invention is thin and lightweight and has excellent heat retention, it can appropriately meet the needs for clothing for autumn and winter in recent years.

Claims (6)

60〜120g/mの目付け及び0.2〜0.6mmの厚みを有する編地であって、単繊維繊度が0.3〜0.7dtexである短繊維Aと、単繊維繊度が0.8〜1.3dtexでありかつ短繊維Aとの単繊維繊度差が0.4dtex以上である短繊維Bとを3:7〜8:2の重量比で混紡した混紡糸が50重量%以上混用されており、かつ短繊維A及び短繊維Bの繊維軸方向の熱伝導率が1.2W/m・k以下であること、及び短繊維A及び短繊維Bがアクリル繊維であり、混紡糸が綿番手60〜100番手の細繊度紡績糸であることを特徴とする衣料用編地。 A knitted fabric having a basis weight of 60 to 120 g / m 2 and a thickness of 0.2 to 0.6 mm, the short fiber A having a single fiber fineness of 0.3 to 0.7 dtex, and the single fiber fineness of 0.1. 50% by weight or more of blended yarn obtained by blending short fibers B having a single fiber fineness difference of 0.4 to dtex of 8 to 1.3 dtex and 0.4 dtex or more in a weight ratio of 3: 7 to 8: 2. And the thermal conductivity in the fiber axis direction of the short fibers A and B is 1.2 W / m · k or less , and the short fibers A and B are acrylic fibers, A knitted fabric for clothing, characterized in that it is a fine yarn spun from cotton 60 to 100 . 40dtex以下のナイロン被覆弾性糸を10〜40重量%の割合で交編していることを特徴とする請求項1に記載の衣料用編地。 The knitted fabric for clothing according to claim 1, wherein nylon-coated elastic yarn of 40 dtex or less is knitted at a rate of 10 to 40% by weight. 20dtex以下のポリウレタン弾性糸とナイロンフィラメントを用いて40dtex以下のナイロン被覆弾性糸とし、これを交編して片袋とした破裂強度が250〜500kPaであることを特徴とする請求項に記載の衣料用編地。 20dtex using the following polyurethane elastic yarn and nylon filament with the following nylon-coated elastic yarn 40 dtex, according to claim 2, bursting strength which was mixed knitting to pieces bag characterized in that it is a 250~500kPa Knitted fabric for clothing. 混紡糸の撚係数(K)が2.8〜4.5であることを特徴とする請求項1〜のいずれかに記載の衣料用編地。 The knitted fabric for clothing according to any one of claims 1 to 3 , wherein the twist coefficient (K) of the blended yarn is 2.8 to 4.5. 混紡糸の糸断面を見たときに繊維間の空隙率が55〜70%であり、編地の比容積が3〜6cm/gであることを特徴とする請求項に記載の衣料用編地。 5. The garment according to claim 4 , wherein when the yarn cross section of the blended yarn is viewed, the porosity between the fibers is 55 to 70%, and the specific volume of the knitted fabric is 3 to 6 cm 3 / g. Knitted fabric. 編地の保温率が20%以上であることを特徴とする請求項1〜のいずれかに記載の衣料用編地。 The knitted fabric for clothing according to any one of claims 1 to 5 , wherein the heat retention rate of the knitted fabric is 20% or more.
JP2009050346A 2009-03-04 2009-03-04 Lightweight and warm knitted fabric Active JP5345417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050346A JP5345417B2 (en) 2009-03-04 2009-03-04 Lightweight and warm knitted fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050346A JP5345417B2 (en) 2009-03-04 2009-03-04 Lightweight and warm knitted fabric

Publications (2)

Publication Number Publication Date
JP2010203000A JP2010203000A (en) 2010-09-16
JP5345417B2 true JP5345417B2 (en) 2013-11-20

Family

ID=42964759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050346A Active JP5345417B2 (en) 2009-03-04 2009-03-04 Lightweight and warm knitted fabric

Country Status (1)

Country Link
JP (1) JP5345417B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699503B2 (en) * 2010-09-21 2015-04-15 三菱レイヨン株式会社 Knitted fabric and manufacturing method thereof
JP5832923B2 (en) * 2012-02-14 2015-12-16 東洋紡Stc株式会社 Cotton knitted fabric with excellent heat retention
CN107988640B (en) * 2017-12-14 2021-03-19 江苏恒力化纤股份有限公司 Lightweight thermal fiber and preparation method thereof
JP6954847B2 (en) * 2018-01-16 2021-10-27 東洋紡株式会社 clothing
KR102672967B1 (en) * 2021-01-12 2024-06-12 주식회사 한올 Double knitted fabric containing wool with excellent elasticity and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819607B2 (en) * 1989-10-09 1996-02-28 東レ株式会社 Lightweight thin fabric excellent in heat retention, its manufacturing method, and innerwear products
JP4122582B2 (en) * 1998-07-21 2008-07-23 東レ株式会社 Spun yarn and fabric using the same
JP4428097B2 (en) * 2004-03-11 2010-03-10 東レ株式会社 underwear

Also Published As

Publication number Publication date
JP2010203000A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5403598B2 (en) Hygroscopic heat insulation fabric
TWI790346B (en) Textile thread, its manufacturing method, and fabric containing same
WO2004015182A1 (en) Woven or knit fabric and process for producing the same
WO2018012318A1 (en) Sea-islands type composite fiber having excellent moisture absorbability, textured yarn, and fiber structure
JP5345417B2 (en) Lightweight and warm knitted fabric
JP5074590B2 (en) Water-absorbing quick-drying woven / knitted fabric
JP5759761B2 (en) Knitted fabric and textile products using the same
JP5424958B2 (en) Double-layer spun yarn, woven and knitted fabric, and method for producing woven and knitted fabric
JP6155623B2 (en) Denim
JP5403624B2 (en) Knitted fabric for clothing with excellent comfort, heat retention and moisture absorption
JP4122582B2 (en) Spun yarn and fabric using the same
JP5329468B2 (en) Long and short composite yarn suitable for lightweight heat-insulated knitted fabric
JP5620325B2 (en) Anti-pilling knitted fabric using extra fine acrylic spun yarn
JP2015120988A (en) Composite spun yarn and woven or knitted fabric with heat insulation properties including the same
JP2013167029A (en) Cotton knitted fabric excellent in heat-retaining property
JP2012077406A (en) Polyester latent crimp textured yarn and method for producing the same
JP2002339199A (en) Method for manufacturing multilayer-structured knitted fabric having antipilling property
CN104131400A (en) Fabric feeling cold and application of fabric
JP4669546B2 (en) Grain-tone polyester woven / knitted fabric
JP5357859B2 (en) Long / short composite spun yarn
JP4859763B2 (en) Cloth for clothing and clothing using the same
TW202043563A (en) Composite yarn, knitted fabric containing composite yarn, and method for manufacturing composite yarn
JP4427708B2 (en) Polyester fiber knitted fabric and method for producing the same
JP2001214335A (en) Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof
WO2022004710A1 (en) Spun yarn, method for producing same, and fabric comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R150 Certificate of patent or registration of utility model

Ref document number: 5345417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250