JP5345298B2 - Method for refining hydrocarbon oil - Google Patents
Method for refining hydrocarbon oil Download PDFInfo
- Publication number
- JP5345298B2 JP5345298B2 JP2007126813A JP2007126813A JP5345298B2 JP 5345298 B2 JP5345298 B2 JP 5345298B2 JP 2007126813 A JP2007126813 A JP 2007126813A JP 2007126813 A JP2007126813 A JP 2007126813A JP 5345298 B2 JP5345298 B2 JP 5345298B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- naphtha
- fraction
- light
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229930195733 hydrocarbon Natural products 0.000 title claims description 48
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 48
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 38
- 238000007670 refining Methods 0.000 title description 25
- 239000007789 gas Substances 0.000 claims description 69
- 238000004821 distillation Methods 0.000 claims description 58
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 49
- 229910052717 sulfur Inorganic materials 0.000 claims description 49
- 239000011593 sulfur Substances 0.000 claims description 49
- 239000003350 kerosene Substances 0.000 claims description 37
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 7
- 229910052753 mercury Inorganic materials 0.000 claims description 7
- 239000003498 natural gas condensate Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 238000000746 purification Methods 0.000 claims description 6
- 239000003921 oil Substances 0.000 description 112
- 239000010779 crude oil Substances 0.000 description 29
- 238000009835 boiling Methods 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 14
- 238000006477 desulfuration reaction Methods 0.000 description 12
- 230000023556 desulfurization Effects 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000002994 raw material Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000001833 catalytic reforming Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003502 gasoline Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000002283 diesel fuel Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、炭化水素油の精製方法、特には、炭化水素油を一括して水素化精製処理し、次いで精製軽質ナフサ、精製重質ナフサ、精製灯油、精製軽油及び精製重質軽油の各留分に分離することにより、硫黄分が低く、品質が安定した軽油を製造することが可能な炭化水素油の精製方法に関するものである。 The present invention relates to a method for refining hydrocarbon oil, in particular, hydrorefining treatment of hydrocarbon oils in a lump, followed by refined light naphtha, refined heavy naphtha, refined kerosene, refined light oil and refined heavy gas oil. It is related with the refinement | purification method of the hydrocarbon oil which can manufacture light oil with low sulfur content and stable quality by isolate | separating into minutes.
従来の原油の精製処理においては、図1に示すように、一般に原油を常圧蒸留装置1により常圧蒸留して、軽質ガス、LPガス、ナフサ(軽質ナフサ、重質ナフサ)、灯油、軽油及び残油のそれぞれの留分に分離している。そして、常圧蒸留後、軽質ガスは、アミン精製装置2で酸ガスを分離して燃料ガスとなり、一方、分離された酸ガスは、硫黄回収装置3に送られ、硫黄が回収される。また、分離されたLPガスは、LPガス処理装置4で不純物を除去した後、製品LPガスとされる。
In the conventional refining process of crude oil, as shown in FIG. 1, generally crude oil is distilled at atmospheric pressure by an atmospheric distillation apparatus 1 to obtain light gas, LP gas, naphtha (light naphtha, heavy naphtha), kerosene, light oil. And the remaining oil are separated into their respective fractions. Then, after atmospheric distillation, the light gas is separated into acid gas by the amine purification device 2 to become fuel gas, while the separated acid gas is sent to the
また、軽質ナフサ留分は、軽質ナフサ処理装置5にて簡単な処理を施されて、ガソリンや石化原料となり、重質ナフサ留分は、水素化精製装置6で、触媒存在下で水素化精製処理された後、接触改質装置7で、異性化や芳香族化されてガソリンや芳香族製品となる。なお、常圧蒸留装置1からナフサ留分を一括で留出させた後に、全ナフサ留分をナフサ用の水素化精製装置8で、触媒存在下で水素化精製処理した後、軽質ナフサ及び重質ナフサに分離することもある。
The light naphtha fraction is subjected to a simple treatment in the light
更に、灯油留分は、灯油精製装置9で精製されて灯油となり、軽油留分は、軽油用の水素化精製装置10で触媒存在下で水素化精製処理されて軽油となる。また、常圧蒸留装置1底部に残った残油は、常圧蒸留装置1から取り出され、重油の調合材料とされたり減圧蒸留装置で減圧蒸留され、軽質油の製造原料となる減圧留出油と分離される。このように、従来の原油の精製処理においては、分離された各留分のそれぞれに対して水素化精製(脱硫)などの精製処理が行われている。
Further, the kerosene fraction is refined by the
しかしながら、この方法では設備構成が複雑になり、設備コストが高くなる、エネルギー効率が悪い、それぞれの装置について運転管理やメンテナンスが必要となる、という問題があった。このため、特に原油処理量が小さい場合に、装置構成がより簡素化され、コンパクトで低コストの処理方法が望まれていた。 However, this method has a problem that the equipment configuration is complicated, equipment cost is high, energy efficiency is low, and operation management and maintenance are required for each device. For this reason, especially when the amount of processed crude oil is small, the apparatus configuration is further simplified, and a compact and low-cost processing method has been desired.
上記の観点から、原油、或いは原油からナフサ留分を除いた留分又は原油から残渣油を除いた留分などの留分に対して一括して水素化処理を行い、その後に常圧蒸留によりナフサ留分、灯軽油留分などの留分を分留する方法が提案されている。 From the above viewpoint, hydrotreating is performed on crude oil, a fraction obtained by removing naphtha fraction from crude oil, or a fraction obtained by removing residual oil from crude oil, and then subjected to atmospheric distillation. Methods for fractionating fractions such as naphtha fractions and kerosene fractions have been proposed.
例えば、特開平3−294390号公報(特許文献1)には、原油中のナフサ留分を蒸留分離した後、該ナフサ留分を除いた残りの留分を脱硫触媒と接触させて脱硫し、次いで蒸留して各製品に分離する原油の精製方法が記載されている。 For example, in JP-A-3-294390 (Patent Document 1), after naphtha fraction in crude oil is distilled and separated, the remaining fraction excluding the naphtha fraction is contacted with a desulfurization catalyst to desulfurize, A method for refining crude oil that is then distilled to separate each product is described.
また、特開平7−82573号公報(特許文献2)には、原油を常圧蒸留して残油と留出油に分離し、留出油を一括して同一の水素化処理装置で水素化処理する石油の処理方法が記載されている。 Japanese Patent Laid-Open No. 7-82573 (Patent Document 2) discloses that crude oil is distilled at atmospheric pressure to separate residual oil and distillate oil, and distillate oil is collectively hydrogenated by the same hydrotreating apparatus. A method for treating petroleum to be treated is described.
更に、特開平7−300592号公報(特許文献3)には、原油を軽油及び軽油より低沸点の留分からなる留出油と残油とに分離した後、留出油を一括して水素化処理して得られた精製油を精留塔で所望の留分に分離し、精留塔で得られた軽油を水素化処理触媒と接触させ脱色処理する石油の処理方法が記載されている。 Furthermore, Japanese Patent Laid-Open No. 7-300592 (Patent Document 3) discloses that crude oil is separated into distillate and residual oil consisting of light oil and a fraction having a lower boiling point than light oil, and then distillate is hydrogenated in a lump. A method for treating petroleum is described in which a refined oil obtained by treatment is separated into desired fractions by a rectifying column, and a light oil obtained by the rectifying column is contacted with a hydrotreating catalyst to perform a decolorization treatment.
更にまた、特開2005−187823号公報(特許文献4)には、品質が良好でかつ安定した灯油・軽油を増産することができ、設備の簡素化が図れる方法として、原油又はナフサ留分を除いた原油を、特定の担体に周期律表第6、8、9又は10族に属する金属の少なくとも一種の金属を担持した触媒を用いて、一括して水素化処理する原油の水素化処理方法が記載されている。
Furthermore, Japanese Patent Application Laid-Open No. 2005-187823 (Patent Document 4) describes a method for increasing the production of kerosene / light oil with good quality and stability, and as a method for simplifying the equipment, crude oil or naphtha fraction. A method of hydrotreating crude oil, wherein the removed crude oil is collectively hydrotreated using a catalyst in which at least one kind of metal belonging to
一方、近年、灯油や軽油のさらなる低硫黄化が求められている。これに対して、例えば、脱硫率を向上させてより低硫黄分の軽油を得るためには、脱硫反応温度を上昇させるのが効果的である。しかしながら、脱硫反応温度を上昇させた場合には、好ましくない副反応を起こし易くなり、品質の安定した軽油留分を得ることが難しい。そのため、装置がコンパクトで、低コストの処理が可能で、更に、硫黄分が低く、品質の安定している灯油・軽油を得ることが可能な方法が望まれている。 On the other hand, in recent years, further reduction in sulfur of kerosene and light oil has been demanded. On the other hand, for example, in order to improve the desulfurization rate and obtain a light oil having a lower sulfur content, it is effective to raise the desulfurization reaction temperature. However, when the desulfurization reaction temperature is raised, an undesirable side reaction is likely to occur, and it is difficult to obtain a light oil fraction with stable quality. Therefore, there is a demand for a method capable of obtaining kerosene / light oil having a compact apparatus, capable of low-cost processing, low sulfur content, and stable quality.
このような状況下、本発明の目的は、硫黄分が低く、品質が良好で安定した石油留分、特に軽油留分を、簡素化された精製設備を用いて、経済的に有利に製造できる、炭化水素油の精製方法を提供することにある。 Under such circumstances, the object of the present invention is to produce a petroleum fraction having a low sulfur content, good quality and stability, particularly a light oil fraction, economically advantageously using a simplified refining equipment. An object of the present invention is to provide a method for refining hydrocarbon oil.
本発明者らは、上記目的を達成するために鋭意検討した結果、留分ごとの硫黄分が、灯油及び軽油留分に対してナフサ留分に多く含まれる炭化水素油から、粗蒸留装置により軽質ガス及びLPガス留分を分離し、該軽質ガス及びLPガス留分を分離した残りの留出油を一括して水素化精製処理(脱硫)し、該水素化精製処理された留出油を常圧蒸留装置によって所望の留分に精留することにより、コンパクトな装置で簡素化された精製方法で、硫黄分が低く品質が安定した留分を得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have determined from a hydrocarbon oil in which the sulfur content in each fraction is higher in naphtha fractions than kerosene and light oil fractions, using a crude distillation apparatus. The light gas and the LP gas fraction are separated, and the remaining distillate from which the light gas and the LP gas fraction are separated are collectively hydrorefined (desulfurized), and the hydrorefined distillate is obtained. Was found to be able to obtain a fraction having a low sulfur content and a stable quality by a purification method simplified by a compact device by rectifying the desired fraction with an atmospheric distillation apparatus. I came to let you.
即ち、本発明の炭化水素油の精製方法は、
10容量%留出温度が35〜80℃、95容量%留出温度が230〜350℃且つ97容量%留出温度が250〜420℃の蒸留性状を有し、ナフサ留分に含まれる硫黄分が灯油留分および軽油留分に含まれる硫黄分より多い炭化水素油から、粗蒸留装置にて少なくとも軽質ガスおよびLPガスを分離し、
該軽質ガスおよびLPガスを分離した炭化水素油を一括して水素化精製処理し、
該水素化精製処理された精製油を常圧蒸留装置にて常圧蒸留して、精製軽質ナフサ、精製重質ナフサ、精製灯油、精製軽油及び精製重質軽油に分離する
ことを特徴とし、また、前記炭化水素油は天然ガスコンデンセートであり、前記常圧蒸留装置により分離された精製軽油は、硫黄分10wtppm以下の軽油であることを特徴とする。
That is, the method for refining the hydrocarbon oil of the present invention comprises:
Sulfur content contained in naphtha fraction, having 10 vol% distillation temperature of 35-80 ° C, 95 vol% distillation temperature of 230-350 ° C and 97 vol% distillation temperature of 250-420 ° C. Separates at least light gas and LP gas from a hydrocarbon oil having a sulfur content higher than that contained in the kerosene fraction and the light oil fraction in a crude distillation apparatus,
Hydrotreating the hydrocarbon oil from which the light gas and LP gas have been separated together,
The hydrorefined refined oil is subjected to atmospheric distillation with an atmospheric distillation device, and separated into refined light naphtha, refined heavy naphtha, refined kerosene, refined light oil and refined heavy light oil.
In addition, the hydrocarbon oil is natural gas condensate, and the refined light oil separated by the atmospheric distillation apparatus is light oil having a sulfur content of 10 wtppm or less .
本発明の炭化水素油の精製方法の好適例においては、前記常圧蒸留により精製全ナフサを分離した後、該精製全ナフサ留分をナフサ分離装置により精製軽質ナフサおよび精製重質ナフサに分離する。 In a preferred embodiment of the method for purifying hydrocarbon oil of the present invention, after the purified total naphtha is separated by the atmospheric distillation, the purified total naphtha fraction is separated into purified light naphtha and purified heavy naphtha by a naphtha separator. .
本発明の炭化水素油の精製方法の他の好適例においては、前記精製軽質ナフサおよび精製重質ナフサ留分について、さらに水銀の吸着除去を行う。 In another preferred embodiment of the hydrocarbon oil refining method of the present invention, mercury is further adsorbed and removed from the refined light naphtha and refined heavy naphtha fraction.
本発明によれば、特定の性状をもつ炭化水素油を用いて、一括水素化精製処理(脱硫)した後に常圧蒸留装置により所望の留分に分離するので、コンパクトな装置で簡素化された精製方法により、硫黄分が低く品質が安定した留分、特に軽油留分を得ることができる。 According to the present invention, a hydrocarbon oil having specific properties is used to perform a hydrotreating treatment (desulfurization) in a batch, and then separated into a desired fraction by an atmospheric distillation device. By the refining method, a fraction having a low sulfur content and a stable quality, particularly a light oil fraction, can be obtained.
図2に示す本発明の炭化水素油の精製方法の一例を説明するための構成図を参照しながら、以下に、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the block diagram for explaining an example of the method for refining the hydrocarbon oil of the present invention shown in FIG.
[原料炭化水素油]
本発明の炭化水素油の精製方法においては、原料炭化水素油として、10容量%留出温度が35〜80℃、好ましくは36〜72℃、95容量%留出温度が230〜350℃、好ましくは200〜350℃、97容量%留出温度が250〜420℃、好ましくは250〜400℃の蒸留性状を有し、常圧蒸留して得られるナフサ留分に含まれる硫黄分が灯油留分および軽油留分に含まれる硫黄分より多い炭化水素油を用いる。
なお、本発明において、ナフサ留分に含まれる硫黄分が灯油留分および軽油留分に含まれる硫黄分より多いとは、ナフサ留分として蒸留装置で炭素数が5の常温常圧で液体の炭化水素から沸点150℃にて分留を行い、灯油留分として蒸留装置で沸点150℃から250℃にて分留を行い、軽油留分として蒸留装置で沸点250℃から360℃にて分留を行った各留分に含まれる硫黄分について比較することを意味する。
ここで蒸留装置とは、液体混合物を沸点の差を利用して分離する装置で、常温、常圧で液体または固体の混合物でも温度と圧力の調節により液体混合物として蒸留により分離できる装置をいう。
一般的には、ナフサ留分とは沸点範囲30℃から200℃程度のものであり、灯油留分とは沸点範囲145℃から300℃程度のものであり、軽油留分とは沸点範囲170℃から370℃程度のものであり、本発明において、各留分の使用用途等により沸点範囲を上記の沸点範囲を逸脱しない範囲で適宜調整することができる。
[Raw material hydrocarbon oil]
In the hydrocarbon oil refining method of the present invention, the 10% by volume distillation temperature is 35 to 80 ° C., preferably 36 to 72 ° C., and the 95% by volume distillation temperature is 230 to 350 ° C. Has a distillation property of 200 to 350 ° C. and a 97% by volume distillation temperature of 250 to 420 ° C., preferably 250 to 400 ° C., and the sulfur content contained in the naphtha fraction obtained by atmospheric distillation is the kerosene fraction. And a hydrocarbon oil having a sulfur content higher than that contained in the light oil fraction.
In the present invention, the sulfur content contained in the naphtha fraction is greater than the sulfur content contained in the kerosene fraction and the light oil fraction. Distillation from hydrocarbons at a boiling point of 150 ° C., distillation as a kerosene fraction at a boiling point of 150 ° C. to 250 ° C., distillation as a light oil fraction at a boiling point of 250 ° C. to 360 ° C. It means that the sulfur content contained in each fraction subjected to the above is compared.
Here, the distillation apparatus refers to an apparatus that separates a liquid mixture using a difference in boiling points, and can separate a liquid or solid mixture at room temperature and normal pressure by distillation as a liquid mixture by adjusting temperature and pressure.
In general, the naphtha fraction has a boiling range of about 30 ° C. to 200 ° C., the kerosene fraction has a boiling range of about 145 ° C. to 300 ° C., and the light oil fraction has a boiling range of 170 ° C. To about 370 ° C. In the present invention, the boiling point range can be appropriately adjusted within the range not departing from the above boiling point range depending on the usage of each fraction.
本発明においては、原料炭化水素油中のナフサ留分に含まれる硫黄分は、灯油留分および軽油留分に含まれる硫黄分より多く、好ましくは、灯油留分および軽油留分に含まれる硫黄分の3〜800倍である。なお、原料炭化水素油中のナフサ留分に含まれる硫黄分は200〜8000wtppmの範囲が好ましく、灯油留分および軽油留分に含まれる硫黄分は10〜2500wtppmの範囲が好ましい。
本発明における一括水素化精製処理(脱硫)は、原料の炭化水素油から少なくとも軽質ガス及びLPガスを除いた留分を一括して水素化精製処理することから、各留分に含有される硫黄分の脱硫反応性の違いにより、より軽質留分の脱硫反応性が高くなる。そのため、ナフサ留分よりも灯油留分および軽油留分に硫黄分が少ない炭化水素油を用いた場合、灯油留分や軽油留分の脱硫率に着目して、反応温度を設定することができる。例えば、サルファーフリー軽油(硫黄分10wtppm以下)の精製に反応条件を設定した場合には、軽油留分より軽質な留分はより硫黄分が少なくなり、軽質ナフサ、重質ナフサのように、品質上軽油より硫黄分を少なくする必要が有るものについても、必要とする品質を満足する製品が得られる。
In the present invention, the sulfur content contained in the naphtha fraction in the feed hydrocarbon oil is greater than the sulfur content contained in the kerosene fraction and the light oil fraction, preferably the sulfur content contained in the kerosene fraction and the light oil fraction. 3 to 800 times the minute. In addition, the sulfur content contained in the naphtha fraction in the raw material hydrocarbon oil is preferably in the range of 200 to 8000 wtppm, and the sulfur content contained in the kerosene fraction and the light oil fraction is preferably in the range of 10 to 2500 wtppm.
The batch hydrorefining process (desulfurization) in the present invention is a process of hydrotreating a fraction obtained by removing at least light gas and LP gas from a hydrocarbon oil as a raw material, so sulfur contained in each fraction. Due to the difference in the desulfurization reactivity of the minute, the desulfurization reactivity of the lighter fraction becomes higher. Therefore, when hydrocarbon oil with a lower sulfur content is used in the kerosene fraction and the light oil fraction than the naphtha fraction, the reaction temperature can be set by paying attention to the desulfurization rate of the kerosene fraction and the light oil fraction. . For example, when the reaction conditions are set for refining sulfur-free light oil (sulfur content of 10 wtppm or less), lighter fractions will have less sulfur content than light oil fractions, and quality like light naphtha and heavy naphtha Products that satisfy the required quality can be obtained even for those that require a lower sulfur content than the upper diesel oil.
上記原料炭化水素油は、具体的には、天然ガスコンデンセートである。天然ガスコンデンセートとは、天然ガス田より天然ガスの採取、精製を行う過程で得られる常温、常圧で液体の炭化水素のことであり、油田から得られる一般の原油に比べて極めて軽質でナフサに近い性状である。天然ガスコンデンセートは、石油類の比重として欧米諸国で広く使われているAPI比重で50以上の軽質で、かつ硫黄分が少ないことから、API比重20〜50で硫黄分0〜3%程度である原油よりもガソリンなどの軽質の石油製品を多く精製できる原料である。天然ガスコンデンセートとしては、例えば、中東産のサウスパースコンデンセート、ノースフィールドコンデンセートを例示することができるが、これらに限定されるものではない。 The feedstock hydrocarbon oil, specifically, a natural gas condensate. Natural gas condensate is a liquid hydrocarbon at normal temperature and pressure obtained during the process of collecting and refining natural gas from a natural gas field, and is extremely light and naphtha compared to general crude oil obtained from oil fields. It is close to the property. Natural gas condensate has a light API weight of 50 or more, which is widely used in Western countries as a specific gravity of petroleum, and has a low sulfur content, so it has an API specific gravity of 20 to 50 and a sulfur content of about 0 to 3%. It is a raw material that can refine more light petroleum products such as gasoline than crude oil. Examples of natural gas condensate include, but are not limited to, South Perth condensate and Northfield condensate produced in the Middle East.
[粗蒸留装置での軽質ガス及びLPガスの分離]
本発明の炭化水素油の精製方法では、上記炭化水素油を粗蒸留装置11に送り、常圧蒸留して、軽質ガス(オフガス)及びLPガスと、それよりも高沸点の留分(軽質ナフサ、重質ナフサ、灯油、軽油、重質軽油)からなる留出油とに分離する。なお、本発明の炭化水素油の精製方法では、粗蒸留装置11における常圧蒸留の前に、原料炭化水素油に対し脱水、脱塩、脱酸素などの前処理を行ってもよい。ここで、軽質ガスとは、石油精製プラントにおいて、各精製装置から発生する低沸点炭化水素、水素、硫化水素など製油所副生ガスから炭素数が3以上の炭化水素を除去した排ガス、すなわち液化し難い水素、硫化水素、炭素数が1または2の炭化水素(メタン、エタン等)を主体とする混合ガスであり、LPガスとは、LPGまたは、液化石油ガスとも呼ばれ、炭素数が3および4の炭化水素、すなわちプロパン、プロピレン、ブタン、ブチレン、またはこれらを主成分とする石油製品である。
[Separation of light gas and LP gas in crude distillation equipment]
In the hydrocarbon oil refining method of the present invention, the hydrocarbon oil is sent to the crude distillation apparatus 11 and distilled at atmospheric pressure to obtain a light gas (off-gas) and LP gas, and a fraction having a higher boiling point (light naphtha). , Distillate oil consisting of heavy naphtha, kerosene, light oil, heavy light oil). In the method for purifying hydrocarbon oil according to the present invention, the raw hydrocarbon oil may be subjected to pretreatment such as dehydration, desalting, and deoxygenation before atmospheric distillation in the crude distillation apparatus 11. Here, the light gas is an exhaust gas obtained by removing hydrocarbons having 3 or more carbon atoms from refinery by-product gases such as low-boiling hydrocarbons, hydrogen, hydrogen sulfide, etc. generated from each refiner in an oil refinery plant, that is, liquefaction. It is a mixed gas mainly composed of hydrogen, hydrogen sulfide, and hydrocarbons having 1 or 2 carbon atoms (methane, ethane, etc.). LP gas is also called LPG or liquefied petroleum gas and has 3 carbon atoms. And 4 hydrocarbons, ie propane, propylene, butane, butylene, or petroleum products based on these.
[水素化精製処理]
次に、本発明の炭化水素油の精製方法では、粗蒸留装置11で分離された留出油(少なくとも軽質ガス及びLPガスが分離除去された炭化水素油)を一括して水素化精製装置12に送り、例えば、触媒の存在下、水素(H2)と接触させて、脱硫などの水素化精製処理を行う。ここで、上記水素化精製装置12としては、気液下向並流型反応器を用いることが好ましい。
[Hydro-refining treatment]
Next, in the hydrocarbon oil refining method of the present invention, the distillate oil separated by the crude distillation apparatus 11 (hydrocarbon oil from which at least light gas and LP gas have been separated and removed) are collectively treated by
なお、本発明の炭化水素油の精製方法では、粗蒸留装置11でLPガスと共に留出したナフサ留分を粗ナフサ分離装置13で分離後、水素化精製装置12に送り、上記留出油と共に水素化精製処理を行ってもよい。
In the hydrocarbon oil refining method of the present invention, the naphtha fraction distilled together with the LP gas in the crude distillation apparatus 11 is separated by the crude
水素化精製処理に用いる水素源としては、水素含有ガスである限り特に制限されるものではないが、純度75%以上のものが好ましく、80%以上のものが更に好ましい。該水素源として、具体的には、後述する精製重質ナフサの接触改質処理を行う接触改質装置14から副生する水素等を使用することができる。
The hydrogen source used in the hydrorefining treatment is not particularly limited as long as it is a hydrogen-containing gas, but preferably has a purity of 75% or more, more preferably 80% or more. Specifically, hydrogen generated as a by-product from the catalytic reforming
水素化精製処理用の触媒としては、水素化精製処理に使用できるものであればよく、例えば、Co−Mo系、Ni−Mo系、Ni−Co−Mo系の触媒などを用いることができる。 As a catalyst for hydrorefining treatment, any catalyst that can be used in hydrotreating treatment may be used. For example, a Co—Mo based catalyst, a Ni—Mo based catalyst, a Ni—Co—Mo based catalyst, or the like may be used.
また、水素化精製処理の条件としては、圧力が2〜8MPa、特には5〜8MPaの範囲であることが好ましく、温度が280〜380℃、特には310〜360℃の範囲であることが好ましく、H2/油比が50〜200Nm3/kL、特には100〜200Nm3/kLの範囲であることが好ましく、LHSVが0.1〜5h-1、特には1〜3h-1の範囲であることが好ましい。
また、図示しないが、必要に応じて、水素化精製処理された精製油の一部を再度水素化精製装置12に返送して水素化処理しても良い。
As conditions for the hydrorefining treatment, the pressure is preferably in the range of 2 to 8 MPa, particularly 5 to 8 MPa, and the temperature is preferably in the range of 280 to 380 ° C., particularly 310 to 360 ° C. , preferably H 2 / oil ratio of 50 to 200 nm 3 / kL, particularly in the range of 100 to 200 nm 3 / kL, LHSV is 0.1~5H -1, especially in the range of 1~3H -1 Preferably there is.
Although not shown, if necessary, a part of the hydrorefined refined oil may be returned to the
[常圧蒸留装置での常圧蒸留]
次に、本発明の炭化水素油の精製方法では、水素化精製装置12で水素化精製処理された精製油を常圧蒸留装置15に送り、常圧蒸留して、精製LPガス、精製軽質ナフサ、精製重質ナフサ、精製灯油、精製軽油及び精製重質軽油の各留分に分離する。ここで、精製軽質ナフサは、沸点が30℃以上100℃未満であり、精製重質ナフサは、沸点が75℃以上200℃未満であり、精製灯油は、沸点が145℃以上300℃未満であり、精製軽油は、沸点が170℃以上370℃未満であり、精製重質軽油は、沸点が345℃以上である。
[Atmospheric distillation with atmospheric distillation equipment]
Next, in the hydrocarbon oil refining method of the present invention, the refined oil hydrotreated by the
この工程で、常圧蒸留装置15からナフサ留分を一括で留出させた後に、全ナフサ留分をナフサ分離装置16に送り、軽質ナフサ及び重質ナフサに分離してもよい。
In this step, after the naphtha fraction is distilled at once from the atmospheric distillation apparatus 15, the entire naphtha fraction may be sent to the
また、図示しないが、必要に応じて、分離した精製軽油及び精製重質軽油を再度水素化精製装置12に返送して水素化精製処理してもよい。
Moreover, although not shown in figure, the refined refined light oil and refined heavy gas oil which were isolate | separated may be returned to the
上述したような水素化精製並びに分留処理によって、図2に示すように、軽質ガス、LPガス、精製軽質ナフサ、精製重質ナフサ、精製灯油、精製軽油、精製重質軽油の各留分が得られる。 By the hydrorefining and fractionation treatment as described above, as shown in FIG. 2, each fraction of light gas, LP gas, refined light naphtha, refined heavy naphtha, refined kerosene, refined gas oil, and refined heavy gas oil is obtained. can get.
軽質ガスは、アミン精製装置17で酸ガスを分離し、燃料ガスとする一方、酸ガスを硫黄回収装置18に送り硫黄を回収してもよい。また、上述の粗ナフサ分離装置13にて分離されたLPガスは、LPガス処理装置19で不純物を除去した後、ブタン及びプロパンに分離後、それぞれ製品ガスとして使用することができる。
The light gas may be separated from the acid gas by the amine purifier 17 and used as a fuel gas, while the acid gas may be sent to the
精製軽質ナフサは、そのままガソリンに調合することができる他、エチレン分解装置原料(石化原料)としたり、必要に応じ改質処理やスイートニング処理を行っても良い。精製重質ナフサは、接触改質装置14に送られ、接触改質装置14で異性化や芳香族化した後、ガソリンに調合したり、芳香族製品とすることができる。この接触改質装置14で副生する水素を、上述のように水素化精製装置12に送り水素化精製用水素源として利用でき、また副生するLPガス分をLPガス処理装置19から得られる精製LPガスに混合することもできる。
Refined light naphtha can be blended into gasoline as it is, or it can be used as a raw material for an ethylene decomposition apparatus (petrotized raw material), or can be subjected to reforming treatment or sweetening treatment as necessary. The refined heavy naphtha is sent to the catalytic reforming
更に、精製灯油は、そのまま製品灯油とすることができ、また、精製軽油も、そのまま製品軽油とすることができる。なお、常圧蒸留装置15により分離された精製軽油は、硫黄分10wtppm以下の軽油(サルファーフリー軽油)である。また、精製重質軽油は、接触分解装置(図示せず)に送り、そこで接触分解によりガソリンに転換することができる。 Furthermore, refined kerosene can be used as product kerosene as it is, and refined light oil can also be used as product light oil as it is. Incidentally, gas oil separated by the atmospheric distillation unit 15, the sulfur content 10wtppm following diesel fuel (sulfur-free diesel fuel) Ru der. The refined heavy gas oil can be sent to a catalytic cracking device (not shown) where it can be converted to gasoline by catalytic cracking.
上述した本発明の炭化水素油の精製方法は、原油を粗蒸留装置で常圧蒸留して軽質ガス及びLPガスと留出油とに分離し、留出油を一括して同一の水素化精製装置12で水素化精製処理することにより、原油を蒸留により細かく分留し、その後各留分毎に水素化精製処理する場合と比べ、製油所の装置構成が簡略化され、建設コストや、設置スペースを削減できる。また、原油処理量が少ない場合であっても装置構成のよりコンパクト化が可能となる。
In the above-described method for refining the hydrocarbon oil of the present invention, crude oil is subjected to atmospheric distillation in a crude distillation apparatus to separate light gas, LP gas, and distillate, and the distillate is collectively hydrorefined. Compared with hydrorefining with
[重金属の吸着除去]
上記原料炭化水素油は、一般的な原油に比べて水銀等の重金属分を多く含有することがある。そのため、水素化精製処理した精製油の分留後の留分である精製軽質ナフサ、精製重質ナフサ、場合によっては精製灯油留分について、吸着剤による重金属の吸着除去装置を設置して、重金属、特には水銀の吸着除去を行い、各精製留分の品質を更に高めることができる。なお、吸着除去装置(図示せず)は、常圧蒸留装置15の直後に設置することが好ましい。また、重金属の吸着除去には、活性炭などの吸着剤を使用することができる。
[Adsorption removal of heavy metals]
The raw material hydrocarbon oil may contain a larger amount of heavy metals such as mercury than general crude oil. Therefore, a heavy metal adsorption / removal device using an adsorbent is installed for refined light naphtha, refined heavy naphtha, and in some cases refined kerosene fraction, which are fractions of hydrorefined refined oil. In particular, the adsorption and removal of mercury can be performed to further improve the quality of each purified fraction. In addition, it is preferable to install an adsorption removal apparatus (not shown) immediately after the atmospheric distillation apparatus 15. Further, an adsorbent such as activated carbon can be used to remove heavy metals by adsorption.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
なお、実施例及び比較例において、蒸留性状、密度、硫黄分、窒素分、動粘度、水銀濃度は、以下の方法に従って行った。
・蒸留性状:JIS K2254およびJIS K2601
・密度:JIS K2249
・硫黄分:JIS K2541
・窒素分:JIS K2609
・動粘度:JIS K2283
・水銀:自動水銀分析装置(日本インスツルメンツ社製、SP−3D)を用いて測定した。
In Examples and Comparative Examples, distillation properties, density, sulfur content, nitrogen content, kinematic viscosity, and mercury concentration were performed according to the following methods.
Distillation properties: JIS K2254 and JIS K2601
・ Density: JIS K2249
・ Sulfur content: JIS K2541
・ Nitrogen content: JIS K2609
・ Kinematic viscosity: JIS K2283
Mercury: Measured using an automatic mercury analyzer (SP-3D, manufactured by Japan Instruments).
(原料油の性状)
一般的な天然ガスコンデンセートとして、イランのサウスパースガス田から得られたコンデンセート(サウスパースコンデンセート)の性状を表1に、各留分の収率および性状を表2に示す。なお、他の例も含めて、収率の合計が100%にならないのは、蒸留ロスのためである。
(Properties of raw oil)
Table 1 shows the properties of condensate (South Perth Condensate) obtained from the South Perth gas field in Iran as general natural gas condensate, and Table 2 shows the yield and properties of each fraction. In addition, including other examples, the total yield does not reach 100% because of distillation loss.
また、一般的な原油として、中東産のマーバン原油(MU)、クウェート原油(KU)の性状を表3に、各留分の収率および硫黄分を表4に示す。 In addition, as general crude oil, properties of Middle Eastern Marban crude oil (MU) and Kuwait crude oil (KU) are shown in Table 3, and yield and sulfur content of each fraction are shown in Table 4.
表1〜4から、サウスパースコンデンセートは、ナフサ留分に含まれる硫黄分が灯油及び軽油留分に含まれる硫黄分より多いのに対し、一般的な原油は、ナフサ留分に含まれる硫黄分が灯油及び軽油留分に含まれる硫黄分より少ないことが分かる。 From Tables 1 to 4, South Perth Condensate has more sulfur in the naphtha fraction than the sulfur in the kerosene and light oil fractions, while general crude oil has the sulfur content in the naphtha fraction. Is found to be less than the sulfur content in the kerosene and light oil fractions.
(比較例1)
原料油として、API比重が33.5の混合原油(マーバン原油(MU):クウェート原油(KU):アラビアンライト:アラビアンヘビー:その他=20:14:12:12:42(vol%))を用いた。使用した混合原油の性状を表5に、各留分の収率を表6に示す。
(Comparative Example 1)
Uses mixed crude oil (Murban crude oil (MU): Kuwait crude oil (KU): Arabian light: Arabian heavy: Others = 20: 14: 12: 12: 42 (vol%)) as raw material oil It was. Table 5 shows the properties of the mixed crude oil used, and Table 6 shows the yield of each fraction.
上記混合原油を用いて、常圧蒸留装置によって各留分に蒸留分離した後、それぞれの留分ごとに水素化精製装置に供給して水素化精製した。各留分の水素化処理の条件と得られた各精製留分の性状を表7にまとめて示す。 Using the above mixed crude oil, each fraction was distilled and separated by an atmospheric distillation apparatus, and then each fraction was supplied to a hydrorefining apparatus and hydrorefined. Table 7 summarizes the conditions for hydrotreating each fraction and the properties of each purified fraction obtained.
表7から、低硫黄分の軽油を得るためには、脱硫反応温度を上昇させざるを得ないことが分かる。なお、この場合、好ましくない副反応が起こり易く、品質の安定した軽油留分を得ることが難しいという問題がある。 From Table 7, it can be seen that the desulfurization reaction temperature must be increased in order to obtain low sulfur gas oil. In this case, undesirable side reactions are likely to occur, and there is a problem that it is difficult to obtain a light oil fraction with stable quality.
(実施例1)
上記のサウスパースコンデンセートから常圧蒸留により軽質ガス及びLPガスを除いた軽質ナフサからの連続留分(炭素数がC5の常温常圧で液体の炭化水素からの全留分)を原料油とした。内径10mm×長さ300mmの反応器に、市販のCo−Mo系触媒を10cc充填した下向並流式の反応器を用い、水素純度:100%、圧力:5MPa、温度:310℃、H2/油比:200Nm3/kL、LHSV:3.0h-1の反応条件で、軽質ナフサからの連続留分を一括して水素化精製処理した。
Example 1
The above-mentioned South Perth condensate was used as a feedstock from continuous distillate (all distillate from liquid hydrocarbons at normal temperature and normal pressure with C5 carbon number) from which light gas and LP gas were removed by atmospheric distillation. . A downward cocurrent reactor filled with 10 cc of a commercially available Co—Mo catalyst in a reactor having an inner diameter of 10 mm and a length of 300 mm was used. Hydrogen purity: 100%, pressure: 5 MPa, temperature: 310 ° C., H 2 / Oil ratio: 200 Nm 3 / kL, LHSV: 3.0 h −1 The continuous fractions from light naphtha were collectively hydrorefined under the reaction conditions.
水素化精製処理後の精製油を分留器に移して常圧蒸留し、軽質ナフサ、重質ナフサ、灯油及び軽油の各留分に分離し、これら各留分の残留硫黄濃度を測定した。その結果、各留分の残留硫黄濃度は、軽質ナフサ:0.1wtppm、重質ナフサ:0.1wtppm、灯油:4wtppm、軽油:9wtppmであり、各留分を個別に水素化精製処理した比較例1のものと遜色なかった。 The refined oil after the hydrorefining treatment was transferred to a fractionator and distilled at atmospheric pressure, and separated into light naphtha, heavy naphtha, kerosene and light oil fractions, and the residual sulfur concentration of each fraction was measured. As a result, the residual sulfur concentration of each fraction was light naphtha: 0.1 wtppm, heavy naphtha: 0.1 wtppm, kerosene: 4 wtppm, diesel oil: 9 wtppm, and comparative examples in which each fraction was individually hydrotreated. Nothing inferior to one.
(実施例2)
上記のサウスパースコンデンセートから常圧蒸留により軽質ガス及びLPガスを除いた軽質ナフサからの連続留分(炭素数がC5の常温常圧で液体の炭化水素からの全留分)を原料油とした。内径10mm×長さ500mmの反応器に、市販のNi−Co−Mo系触媒を15cc充填した下向並流式反応器を用い、水素純度:100%、圧力:5MPa、温度:320℃、H2/油比:160Nm3/kL、LHSV:2.0h-1の反応条件で、軽質ナフサからの連続留分を一括して水素化精製処理した。
(Example 2)
The above-mentioned South Perth condensate was used as a feedstock from continuous distillate (all distillate from liquid hydrocarbons at normal temperature and normal pressure with C5 carbon number) from which light gas and LP gas were removed by atmospheric distillation. . A downward co-current reactor filled with 15 cc of a commercially available Ni—Co—Mo catalyst in a reactor having an inner diameter of 10 mm and a length of 500 mm was used. Hydrogen purity: 100%, pressure: 5 MPa, temperature: 320 ° C., H 2 / Oil ratio: 160 Nm 3 / kL, LHSV: 2.0 h −1 The continuous fractions from light naphtha were subjected to hydrorefining treatment in a lump.
水素化精製処理後の精製油を分留器に移して常圧蒸留し、軽質ナフサ、重質ナフサ、灯油及び軽油の各留分に分離し、これら各留分の残留硫黄濃度を測定した。その結果、各留分の残留硫黄濃度は、軽質ナフサ:0.1wtppm以下、重質ナフサ:0.1wtppm以下、灯油:3wtppm、軽油:8wtppmであり、各留分を個別に水素化精製処理した比較例1のものと遜色なかった。 The refined oil after the hydrorefining treatment was transferred to a fractionator and distilled at atmospheric pressure, and separated into light naphtha, heavy naphtha, kerosene and light oil fractions, and the residual sulfur concentration of each fraction was measured. As a result, the residual sulfur concentration of each fraction was light naphtha: 0.1 wtppm or less, heavy naphtha: 0.1 wtppm or less, kerosene: 3 wtppm, diesel oil: 8 wtppm, and each fraction was individually hydrotreated. It was not inferior to that of Comparative Example 1.
これらの結果から、本発明によれば、石油精製の装置構成を大幅に簡略化し、従来と同程度の水素化処理効果が得られることが分かる。 From these results, it can be seen that according to the present invention, the apparatus configuration for oil refining is greatly simplified, and the hydrotreating effect comparable to the conventional one can be obtained.
1,15 常圧蒸留装置
2,17 アミン精製装置
3,18 硫黄回収装置
4,19 LPガス処理装置
5 軽質ナフサ処理装置
6,8,10,12 水素化精製装置
7,14 接触改質装置
9 灯油精製装置
11 粗蒸留装置
13 粗ナフサ分離装置
16 ナフサ分離装置
DESCRIPTION OF SYMBOLS 1,15 Atmospheric distillation apparatus 2,17
Claims (3)
該軽質ガスおよびLPガスを分離した炭化水素油を一括して水素化精製処理し、
該水素化精製処理された精製油を常圧蒸留装置にて常圧蒸留して、精製軽質ナフサ、精製重質ナフサ、精製灯油、精製軽油及び精製重質軽油に分離する炭化水素油の精製方法であって、
前記炭化水素油は天然ガスコンデンセートであり、前記常圧蒸留装置により分離された精製軽油は、硫黄分10wtppm以下の軽油であることを特徴とする炭化水素油の精製方法。 Sulfur content contained in naphtha fraction, having 10 vol% distillation temperature of 35-80 ° C, 95 vol% distillation temperature of 230-350 ° C and 97 vol% distillation temperature of 250-420 ° C. Separates at least light gas and LP gas from a hydrocarbon oil having a sulfur content higher than that contained in the kerosene fraction and the light oil fraction in a crude distillation apparatus,
Hydrotreating the hydrocarbon oil from which the light gas and LP gas have been separated together,
A method for purifying a hydrocarbon oil, wherein the hydrorefined refined oil is subjected to atmospheric distillation with an atmospheric distillation apparatus, and separated into refined light naphtha, refined heavy naphtha, refined kerosene, refined gas oil, and refined heavy gas oil. Because
The hydrocarbon oil is a natural gas condensate, and the refined light oil separated by the atmospheric distillation apparatus is a light oil having a sulfur content of 10 wtppm or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007126813A JP5345298B2 (en) | 2007-05-11 | 2007-05-11 | Method for refining hydrocarbon oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007126813A JP5345298B2 (en) | 2007-05-11 | 2007-05-11 | Method for refining hydrocarbon oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008280451A JP2008280451A (en) | 2008-11-20 |
JP5345298B2 true JP5345298B2 (en) | 2013-11-20 |
Family
ID=40141537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007126813A Active JP5345298B2 (en) | 2007-05-11 | 2007-05-11 | Method for refining hydrocarbon oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5345298B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102071037A (en) * | 2011-01-04 | 2011-05-25 | 何巨堂 | Dehydration method of low-grade oil |
EP3201295B1 (en) * | 2014-10-03 | 2019-06-26 | Saudi Arabian Oil Company | Two-step process for aromatics production from natural gas/shale gas condensates |
JP6481027B2 (en) * | 2014-10-03 | 2019-03-13 | サウジ アラビアン オイル カンパニー | Process for producing aromatics from a wide boiling temperature hydrocarbon feedstock. |
MY163237A (en) * | 2016-03-02 | 2017-08-30 | Jgc Corp | System of treating condensate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3669377B2 (en) * | 1994-03-29 | 2005-07-06 | 出光興産株式会社 | Crude oil hydrotreating method |
JP3624671B2 (en) * | 1997-01-13 | 2005-03-02 | 太陽テクノサービス株式会社 | Method for adsorption and removal of trace metals in hydrocarbon fractions |
US6103773A (en) * | 1998-01-27 | 2000-08-15 | Exxon Research And Engineering Co | Gas conversion using hydrogen produced from syngas for removing sulfur from gas well hydrocarbon liquids |
US6841062B2 (en) * | 2001-06-28 | 2005-01-11 | Chevron U.S.A. Inc. | Crude oil desulfurization |
-
2007
- 2007-05-11 JP JP2007126813A patent/JP5345298B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008280451A (en) | 2008-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8932451B2 (en) | Integrated crude refining with reduced coke formation | |
US20080149534A1 (en) | Method of conversion of residues comprising 2 deasphaltings in series | |
JP2009179795A (en) | Crude oil desulfurization | |
US6454934B2 (en) | Petroleum processing method | |
JP2018530636A (en) | Integrated process for producing anode grade coke | |
JP2004513214A (en) | Low sulfur fuel | |
WO2012027554A9 (en) | Producing olefins by pyrolytic cracking of refinery off-gas | |
RU2666735C2 (en) | Process for reining crude oil | |
JP6481027B2 (en) | Process for producing aromatics from a wide boiling temperature hydrocarbon feedstock. | |
JP2022504390A (en) | Heavy oil upgrading for steam decomposition process | |
JP5345298B2 (en) | Method for refining hydrocarbon oil | |
EP0635555A2 (en) | Refining method and its configuration | |
KR20170070098A (en) | Two-step process for aromatics production from natural gas/shale gas condensates | |
KR20080066068A (en) | Processing of fcc naphtha | |
JP5191865B2 (en) | Manufacturing method of atmospheric distillation fraction | |
JP5425373B2 (en) | Decomposition method of hydrocarbon oil | |
JP5483861B2 (en) | Production method of purified fraction | |
CA2853924A1 (en) | Pretreatment of fcc naphthas and selective hydrotreating | |
WO2000069992A1 (en) | Process for treating crude oil | |
WO2022154819A1 (en) | Apparatus and process for the enhanced production of aromatic compounds | |
JP2010111770A (en) | Method for producing purified hydrocarbon oil, and purified hydrocarbon oil | |
JP5371327B2 (en) | Method for producing hydrocarbon oil | |
JP2010111771A (en) | Method for producing purified hydrocarbon oil, and purified hydrocarbon oil | |
JP5207923B2 (en) | Process for producing refined hydrocarbon oil | |
RU2815696C2 (en) | Configuration for olefins production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100224 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120412 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130814 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5345298 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |