[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5342912B2 - High strength cold-rolled steel sheet with excellent bending workability - Google Patents

High strength cold-rolled steel sheet with excellent bending workability Download PDF

Info

Publication number
JP5342912B2
JP5342912B2 JP2009087408A JP2009087408A JP5342912B2 JP 5342912 B2 JP5342912 B2 JP 5342912B2 JP 2009087408 A JP2009087408 A JP 2009087408A JP 2009087408 A JP2009087408 A JP 2009087408A JP 5342912 B2 JP5342912 B2 JP 5342912B2
Authority
JP
Japan
Prior art keywords
inclusion
less
steel sheet
group
inclusion group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009087408A
Other languages
Japanese (ja)
Other versions
JP2010236053A (en
Inventor
紗江 濱本
哲志 星加
裕一 二村
幸博 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009087408A priority Critical patent/JP5342912B2/en
Priority to US12/708,109 priority patent/US8460800B2/en
Priority to CN201010143379A priority patent/CN101851732A/en
Priority to KR1020100028644A priority patent/KR101198481B1/en
Priority to GB1108030.6A priority patent/GB2477664B/en
Priority to GB1005355A priority patent/GB2470252B/en
Publication of JP2010236053A publication Critical patent/JP2010236053A/en
Application granted granted Critical
Publication of JP5342912B2 publication Critical patent/JP5342912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、曲げ加工性に優れた高強度冷延鋼板に関するものであり、曲げ加工において加工割れ不良率の小さい、高強度(特には引張強度が880MPa以上)の冷延鋼板に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet excellent in bending workability, and relates to a cold-rolled steel sheet having a high work strength (particularly, a tensile strength of 880 MPa or more) with a low work cracking defect rate in bending work.

自動車の安全性および環境問題に配慮して、自動車用鋼板の高強度化が指向されている。一般に、高強度化に伴い加工性は低下するが、強さと加工性を兼備した鋼板がこれまでに種々考案され、実用化されている。例えばフェライト相と、マルテンサイトやベイナイトなどの低温変態相とを共存させた複合組織鋼板が、加工性に優れた高強度鋼板として用いられている。複合組織鋼板は、軟質なフェライト地に硬質な低温変態相を分散させることによって強度と加工性の向上を同時に図るものである。しかしこのような自動車用鋼板において、介在物を起点とした加工割れが問題となっている。   Considering the safety and environmental issues of automobiles, high strength steel sheets for automobiles are aimed at. In general, the workability decreases with increasing strength, but various steel plates having both strength and workability have been devised and put into practical use. For example, a composite steel sheet in which a ferrite phase and a low-temperature transformation phase such as martensite and bainite coexist is used as a high-strength steel sheet excellent in workability. A composite steel sheet is intended to simultaneously improve strength and workability by dispersing a hard low-temperature transformation phase in soft ferrite ground. However, in such a steel sheet for automobiles, work cracks starting from inclusions are a problem.

この様な事情に鑑みて、介在物を制御して加工性の向上を図った技術がこれまでに提案されている。例えば特許文献1には、円相当換算で直径5μm以上の介在物を25個/mm以下とすることで、曲げ加工性に優れた冷延鋼板が得られる旨示されている。特許文献2には、Si脱酸鋼において、短径が5μm以上の酸化物系介在物を35個/cm以下にすることで延性に富む冷延鋼板が得られる旨示されている。また特許文献2には、展伸、破砕しやすい介在物組成にして微細化することが示されている。 In view of such circumstances, there have been proposed techniques for improving the workability by controlling the inclusions. For example, Patent Document 1 shows that a cold-rolled steel sheet having excellent bending workability can be obtained by setting the number of inclusions having a diameter of 5 μm or more to 25 pieces / mm 2 or less in terms of a circle. Patent Document 2 shows that, in Si deoxidized steel, a cold-rolled steel sheet having a high ductility can be obtained by reducing the number of oxide inclusions having a minor axis of 5 μm or more to 35 pieces / cm 2 or less. Further, Patent Document 2 discloses that the inclusion composition is easy to be expanded and crushed to be refined.

しかし、上記特許文献1や2の様に、個々の介在物が微細かつ低密度であっても、その分布次第では介在物を起点とした割れが生じる場合がある。よって、加工性(特には、自動車用鋼板に要求される曲げ加工性)を確実に高めるには更なる検討が必要であると考えられる。尚、特許文献1では、低硫鋼にする必要もありコストアップにつながる。また特許文献2では、加工性の中でも、特に自動車用鋼板に要求される曲げ加工性について述べられていない。   However, as in Patent Documents 1 and 2, even if the individual inclusions are fine and have a low density, cracks originating from the inclusions may occur depending on the distribution. Therefore, it is considered that further studies are necessary to reliably improve the workability (particularly the bending workability required for automotive steel sheets). In Patent Document 1, it is necessary to use low-sulfur steel, leading to an increase in cost. Further, Patent Document 2 does not describe bending workability particularly required for automobile steel sheets among workability.

また、特許文献3には、缶用冷延鋼板の圧延面に平行な任意断面で観察される、点列状介在物(酸化物系介在物のうち3個以上が圧延方向に平行に、且つ互いに200μm未満の間隔で直線状に並んだもの)の存在割合を、6003個/m〜2×10個/mとすることで、製缶不良を低減できる旨示されている。しかし、特許文献3は缶用に限定されており、その要求特性として、絞り加工が要求されるが、上記自動車用鋼板として用いられる場合に要求される曲げ加工性については検討されていない。 Moreover, in Patent Document 3, observed in an arbitrary cross section parallel to the rolling surface of the cold-rolled steel sheet for cans, the point-like inclusions (three or more of the oxide-based inclusions are parallel to the rolling direction, and It is shown that the can-making failure can be reduced by setting the existence ratio of the ones arranged in a straight line at intervals of less than 200 μm to 6003 / m 2 to 2 × 10 4 / m 2 . However, Patent Document 3 is limited to cans, and as its required characteristics, drawing is required, but bending workability required when used as the steel sheet for automobiles has not been studied.

特許第3845554号公報Japanese Patent No. 3845554 特開2005−272888号公報JP 2005-272888 A 特許第3421943号公報Japanese Patent No. 3421194

上述した通り、従来は、主として個々の介在物サイズ・数量を厳密に制御することで、介在物性欠陥の少ない高強度鋼板を実現している。しかしながら、該鋼板を曲げ加工に供すると、著しく緩やかな加工条件においても割れが散発することがあり、生産性の悪化および検品等によるコストアップが問題視されている。   As described above, conventionally, a high-strength steel sheet with few inclusion property defects is realized mainly by strictly controlling the size and quantity of each inclusion. However, when the steel sheet is subjected to bending, cracks may be scattered even under extremely mild processing conditions, which raises the problem of productivity deterioration and cost increase due to inspection.

本発明は上記の様な事情に着目してなされたものであって、その目的は、曲げ加工において介在物を起点とした曲げ割れ率を十分に小さくすることのできる、曲げ加工性に優れた高強度冷延鋼板を得ることにある。   The present invention has been made paying attention to the above-mentioned circumstances, and the purpose thereof is excellent in bending workability, which can sufficiently reduce the bending crack rate starting from inclusions in bending work. It is to obtain a high-strength cold-rolled steel sheet.

上記課題を解決し得た本発明の高強度冷延鋼板は、
鋼板の成分が、
C:0.12〜0.3%(質量%の意味。成分について以下同じ)、
Si:0.5%以下(0%を含む)、
Mn:1.5〜3.0%、
Al:0.15%以下(0%を含まない)、
N:0.01%以下(0%を含まない)、
P:0.02%以下(0%を含まない)、および
S:0.01%以下(0%を含まない)
を満たし、残部が鉄および不可避不純物からなり、
鋼組織が、マルテンサイト単一組織であり、かつ、
鋼板の表面から(板厚×0.1)深さまでの表層域において、
下記に示すn回目の判定で定まるn次介在物群であって、この介在物群の2つの最外粒子の鋼板圧延方向における最外表面間距離が100μm以上であるものが、圧延面100cm当たり120個以下であるところに特徴を有する。
The high-strength cold-rolled steel sheet of the present invention that has solved the above problems is
The components of the steel plate
C: 0.12-0.3% (meaning mass%. The same applies to the components below),
Si: 0.5% or less (including 0%),
Mn: 1.5-3.0%
Al: 0.15% or less (excluding 0%),
N: 0.01% or less (excluding 0%),
P: 0.02% or less (not including 0%), and S: 0.01% or less (not including 0%)
The balance consists of iron and inevitable impurities,
The steel structure is a single martensite structure, and
In the surface layer region from the surface of the steel plate to the (plate thickness x 0.1) depth,
A n-th inclusions group determined by the n-th determination shown below, those outermost surface distance in the steel sheet rolling direction of the two outermost particles of the inclusion group is 100μm or more, the rolling surface 100 cm 2 It is characterized in that it is 120 or less per hit.

(n回目の判定)
n−1次介在物群(nは1以上の整数、n=1の場合、0次介在物群は介在物粒子をいう)と、近接する1以上のx次介在物群(x=0〜n−1、nは1以上の整数、0次介在物群は介在物粒子をいう)とからなり、このn−1次介在物群とx次介在物群の最近接粒子の最小表面間距離(λ)が、下記(1)式を満たしかつ60μm以下である介在物群を、「n次介在物群」とする。
(Nth judgment)
n-1 primary inclusion group (where n is an integer of 1 or more, and when n = 1, the 0th order inclusion group refers to inclusion particles) and one or more adjacent x order inclusion groups (x = 0 to 0). n-1, n is an integer of 1 or more, and the 0th order inclusion group means inclusion particles), and the minimum inter-surface distance between the nearest particles of the n-1st order inclusion group and the xth order inclusion group An inclusion group that satisfies the following formula (1) and is 60 μm or less is referred to as an “n-th order inclusion group”.

[(1)式において、
λ:n−1次介在物群とx次介在物群の最近接粒子の最小表面間距離(μm)
σ:鋼板の降伏強度(MPa)
:n−1次介在物群の、鋼板圧延方向の粒子径(n=1の場合)または2つの最外粒子の鋼板圧延方向における最外表面間距離(n≧2の場合)(μm)
:x次介在物群の、鋼板圧延方向の粒子径(x=0の場合)または2つの最外粒子の鋼板圧延方向における最外表面間距離(x≧1の場合)(μm)]
[In the formula (1),
λ: Minimum inter-surface distance (μm) between nearest particles of n−1 order inclusion group and x order inclusion group
σ y : yield strength of steel sheet (MPa)
d 1 : particle diameter in the steel sheet rolling direction of the n-1 primary inclusion group (when n = 1) or distance between the outermost surfaces of the two outermost particles in the steel sheet rolling direction (when n ≧ 2) (μm) )
d 2 : Particle size in the steel plate rolling direction of the x-th order inclusion group (when x = 0) or the distance between the outermost surfaces of the two outermost particles in the steel plate rolling direction (when x ≧ 1) (μm)]

本発明の鋼板は、更に他の元素として、
(A)Cr:2.0%以下(0%を含まない)および/またはB:0.01%以下(0%を含まない);や、
(B)Cu:0.5%以下(0%を含まない)、Ni:0.5%以下(0%を含まない)、およびTi:0.2%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素;
(C)V:0.1%以下(0%を含まない)および/またはNb:0.1%以下(0%を含まない);
を含んでいてもよい。
The steel sheet of the present invention is further as another element,
(A) Cr: 2.0% or less (not including 0%) and / or B: 0.01% or less (not including 0%);
(B) Cu: 0.5% or less (not including 0%), Ni: 0.5% or less (not including 0%), and Ti: 0.2% or less (not including 0%) At least one element selected from the group;
(C) V: 0.1% or less (not including 0%) and / or Nb: 0.1% or less (not including 0%);
May be included.

本発明には、上記高強度冷延鋼板に、溶融亜鉛めっきが施された溶融亜鉛めっき鋼板や、合金化溶融亜鉛めっきが施された合金化溶融亜鉛めっき鋼板も含まれる。   The present invention also includes a hot dip galvanized steel sheet that has been subjected to hot dip galvanizing and a galvannealed steel sheet that has been subjected to alloyed hot dip galvanizing.

本発明によれば、曲げ加工性に優れた高強度冷延鋼板が確実に得られ、例えばこれを、自動車用鋼板として用いることができる。具体的には、例えばバンパー、フロントやリア部のサイドメンバ等の衝突部品や、センターピラーレインフォースなどのピラー類等の車体構成部品等の製造に適した鋼板を提供できる。   According to the present invention, a high-strength cold-rolled steel sheet excellent in bending workability can be obtained reliably, and for example, it can be used as a steel sheet for automobiles. Specifically, it is possible to provide a steel plate suitable for manufacturing vehicle components such as bumpers, collision parts such as front and rear side members, and pillars such as center pillar reinforcement.

図1は、真の介在物粒子径(d)とボイド成長範囲(A)との関係を、鋼板の降伏強度(YS)別に示したグラフである。FIG. 1 is a graph showing the relationship between the true inclusion particle diameter (d * ) and the void growth range (A) for each yield strength (YS) of the steel sheet. 図2(a)(b)は、1次介在物群の態様を例示した図である。FIGS. 2A and 2B are diagrams illustrating an embodiment of the primary inclusion group. 図3(a)(b)は、2次介在物群の態様を例示した図である。FIGS. 3A and 3B are diagrams illustrating an example of the secondary inclusion group. 図4は、介在物群の長径と規定の介在物群起因の曲げ割れの累積確率との関係を示したグラフである。FIG. 4 is a graph showing the relationship between the major axis of the inclusion group and the cumulative probability of bending cracks caused by the specified inclusion group. 図5は、表面からの位置(板厚tに対する比)と、規定の介在物群が曲げ割れを引き起こす確率の関係を示したグラフである。FIG. 5 is a graph showing the relationship between the position from the surface (ratio to the plate thickness t) and the probability that a specified inclusion group causes a bending crack. 図6は、規定の介在物群の個数密度と規定の介在物群起因の曲げ割れ率の関係を示したグラフである。FIG. 6 is a graph showing the relationship between the number density of the specified inclusion group and the bending crack rate due to the specified inclusion group.

本発明者らは、上述した様に個々の介在物粒子の成分・組成を制御しても、加工(特に曲げ加工)において割れが生じることに鑑みて、鋭意研究を重ねてきた。その結果、まず、下記のことを見出した。
(1)曲げ割れの起点は、鋼板の圧延方向と平行に点列状に分布した介在物群であること。
(2)そして、上記介在物群を構成する個々の介在物粒子が、従来技術(例えば特許文献1)で規定するように微細であっても、これらが点列状に分布した介在物群となることによって、加工時に個々の介在物粒子の周辺に発生したボイド同士が合体し、単独で存在する介在物粒子周辺に発生するボイドに比べて、粗大で扁平な欠陥(ボイド)が形成されること。そして、この様な粗大で扁平な欠陥(ボイド)には、曲げ加工時に、単独で存在する介在物粒子周辺に発生するボイドと比較して非常に大きな応力が集中し、その結果、材料が容易に破断に至ると考えられること。
As described above, the present inventors have intensively studied in view of the fact that cracking occurs in processing (particularly bending) even if the components and composition of individual inclusion particles are controlled. As a result, first, the following was found.
(1) The starting point of bending cracks is a group of inclusions distributed in a point sequence parallel to the rolling direction of the steel sheet.
(2) Even if the individual inclusion particles constituting the inclusion group are fine as defined in the prior art (for example, Patent Document 1), As a result, the voids generated around the individual inclusion particles at the time of processing coalesce, and a coarse and flat defect (void) is formed as compared with the void generated around the inclusion particles existing alone. about. Such coarse and flat defects (voids) are concentrated with a very large stress compared to the voids generated around the inclusion particles existing alone during bending, resulting in easy material handling. It is thought that it leads to breakage.

これらの知見をもとに、介在物粒子の分布が具体的にどのような状態である場合に、上記粗大で扁平な欠陥(ボイド)が形成されるかについて調べた。その結果、まず2つの介在物粒子の分布が下記(1)式を充足する場合に、一つの長大な欠陥を形成する介在物群としてふるまうことがわかった。(1)式は、「個々の介在物粒子に発生したボイドが、隣接するボイドと合体するためには、ボイド間の材料が塑性変形する必要がある」との考えに基づき、欠陥周辺の応力集中がもたらす塑性変形範囲を考慮して実験的に得たものである。   Based on these findings, investigation was made as to the state in which the inclusion particle distribution was specifically formed to form the above-described coarse and flat defects (voids). As a result, it was found that when the distribution of the two inclusion particles satisfies the following formula (1), it behaves as an inclusion group that forms one long defect. The formula (1) is based on the idea that “the void generated in each inclusion particle needs to be plastically deformed in order for the voids to merge with the adjacent voids”. It was obtained experimentally in consideration of the plastic deformation range brought about by concentration.

[(1)式において、
λ:任意の介在物粒子とこれに近接する介在物粒子の最小表面間距離(μm)
σ:鋼板の降伏強度(MPa)
:任意の介在物粒子の、鋼板圧延方向の粒子径(μm)
:上記任意の介在物に近接する介在物粒子の、鋼板圧延方向の粒子径(μm)]
ここでは、まず基本的な考え方を示すため、上記(1)式のλ、d、dについて上記の通り定義する。
[In the formula (1),
λ: Minimum surface distance (μm) between an arbitrary inclusion particle and an inclusion particle adjacent thereto
σ y : yield strength of steel sheet (MPa)
d 1 : Particle size (μm) of any inclusion particle in the rolling direction of the steel sheet
d 2 : Particle diameter (μm) in the rolling direction of the steel sheet of inclusion particles adjacent to the arbitrary inclusions]
Here, in order to show the basic concept, λ, d 1 and d 2 in the above equation (1) are defined as described above.

(1)式の導出方法は次のとおりである。後述する実施例において破断面で観察される介在物粒子の、真の介在物粒子径(d)とその周辺に形成されるボイド径(D)から、ボイド成長範囲(A=(D−d)/2)とdの関係を得た。この真の介在物粒子径(d)とボイド成長範囲(A)との関係を、鋼板の降伏強度別に示したグラフを図1に示す。この図1で得た結果を、鋼板の降伏強度(YS=σ)で整理すると下記(2)式が得られる。 The method for deriving equation (1) is as follows. From the true inclusion particle diameter (d * ) and void diameter (D) formed around the inclusion particle observed on the fracture surface in the examples described later, the void growth range (A = (D−d) * ) / 2) and d * were obtained. A graph showing the relationship between the true inclusion particle diameter (d * ) and the void growth range (A) according to the yield strength of the steel sheet is shown in FIG. When the results obtained in FIG. 1 are arranged by the yield strength (YS = σ y ) of the steel plate, the following equation (2) is obtained.

また一般に、任意の面で観察される介在物粒子径(d)と真の介在物粒子径(d)との間には下記(3)式の関係がある。
d *=1.27d …(3)
In general, the relationship between the inclusion particle diameter (d) observed on an arbitrary surface and the true inclusion particle diameter (d * ) is expressed by the following equation (3).
d * = 1.27d (3)

上記(2)式および(3)式より、ボイド成長範囲(A)は、下記(4)式のように表すことができる。   From the above formulas (2) and (3), the void growth range (A) can be expressed as the following formula (4).

したがって、近接する介在物粒子の粒子径をそれぞれdおよびdとすると、それぞれのボイド成長範囲の合計(A+A)が、2つの介在物粒子の最小表面間距離(λ)以上である場合にボイドが合体すると考え、上記(1)式を得た。 Therefore, if the particle diameters of adjacent inclusion particles are d 1 and d 2 , respectively, the sum of the respective void growth ranges (A 1 + A 2 ) is not less than the minimum inter-surface distance (λ) between the two inclusion particles. In some cases, the voids were considered to be combined, and the above formula (1) was obtained.

また本発明では、上記λが60μmより大きくなると、後述する規定の介在物群の個数密度と規定の介在物群起因の曲げ割れ率との相関性が低くなるため、λを60μm以下とした。この様にλを60μm以下と規定することで、介在物粒子間が過剰に大きい場合も制御の必要な従来技術と比べ、コストアップを抑えることができる。   Further, in the present invention, when the λ is larger than 60 μm, the correlation between the number density of the specified inclusion group described later and the bending cracking ratio due to the specified inclusion group is lowered, so that the λ is set to 60 μm or less. By defining λ as 60 μm or less in this way, even when the distance between inclusion particles is excessively large, it is possible to suppress an increase in cost as compared with the conventional technique requiring control.

そして本発明では、上記(1)式を満たすと共にλが60μm以下を満たす上記2つの介在物粒子からなるものを、曲げ加工時に粗大で扁平な欠陥(ボイド)を形成する「介在物群」であるとした。この介在物群について図2(a)に模式的に例示する。尚、図2(a)において、右端の介在物粒子3は、介在物粒子2との関係において、図2(a)に示す通り(1)式を満たさないかλが60μmを超えるため、介在物粒子2とは介在物群を構成しないことを示している。   And in this invention, what consists of the said 2 inclusion particle | grains which satisfy | fill said (1) Formula and (lambda) is 60 micrometers or less is an "inclusion group" which forms a coarse and flat defect (void) at the time of a bending process. It was supposed to be. This inclusion group is schematically illustrated in FIG. In FIG. 2 (a), the inclusion particle 3 at the right end does not satisfy the formula (1) as shown in FIG. 2 (a) in relation to the inclusion particle 2, or λ exceeds 60 μm. It is shown that the object particle 2 does not constitute an inclusion group.

上記では、d、dについて、いずれも介在物粒子である場合について述べたが、上記2つの介在物粒子からなる介在物群を、1つの介在物粒子とみなした場合、更にこれと近接する介在物粒子や別の介在物群との間で、(1)式を満たすと共にλが60μm以下を満たし、更に粗大な介在物群を構成する場合がある。よってこの様な場合には、上記2つの介在物粒子からなる介在物群と、これに近接する介在物粒子や別の介在物群との間で、更に、(1)式を満たすと共にλが60μm以下を満たすか否かの判定(2回目以降の判定)を行う必要がある。 In the above, the case where both of d 1 and d 2 are inclusion particles has been described. However, when the inclusion group consisting of the two inclusion particles is regarded as one inclusion particle, it is further closer to this. In some cases, the inclusion particles and other inclusion groups satisfy the formula (1) and λ satisfies 60 μm or less, thereby forming a coarser inclusion group. Therefore, in such a case, between the inclusion group composed of the above two inclusion particles and the inclusion particle or another inclusion group adjacent to the inclusion group, the expression (1) is further satisfied and λ is It is necessary to determine whether or not 60 μm or less is satisfied (the second and subsequent determinations).

この様に、介在物群の判定[2つの介在物粒子または介在物群が、上記関係((1)式を満たすと共にλが60μm以下)を満たし、新たな介在物群を構成するか否かの判定]を、1回目、2回目…と段階的に繰り返し行うことによって、本発明の介在物群を特定することができる。   In this way, the determination of the inclusion group [whether the two inclusion particles or the inclusion group satisfies the above relationship (the expression (1) and λ is 60 μm or less) and constitutes a new inclusion group] The inclusion group of the present invention can be specified by repeatedly performing the determination of step 1 in a stepwise manner such as the first time, the second time, and so on.

尚、上記判定は、介在物群の周囲に、この介在物群との間で(1)式を満たしかつλが60μm以下である、介在物粒子や介在物群が存在しなくなるまで行い、最終的に得られた介在物群を1個の介在物群とカウントする。   In addition, the above determination is performed until the inclusion particles or inclusion groups that satisfy the formula (1) with respect to the inclusion group and λ is 60 μm or less around the inclusion group do not exist. The inclusion group thus obtained is counted as one inclusion group.

よって、例えば後述する図3(a)に例示した3個の介在物粒子(1''、2''および3'')からなる介在物群は、その構成が、1回目の判定で介在物群と判定された2個の介在物粒子1''および2''からなる介在物群と、2回目の判定で該介在物群と上記関係を満たすと判断された介在物粒子3''とからなるが、上記2個の介在物粒子(1''および2'')からなる介在物群と、該介在物群を含む3個の介在物粒子(1''、2''および3'')からなる介在物群とを分けて、介在物群2個とカウントするのではなく、2回目の判定で介在物群と判定された、介在物粒子1''、2''および3''からなる(2次)介在物群1個とカウントする。   Therefore, for example, the inclusion group consisting of three inclusion particles (1 ″, 2 ″ and 3 ″) illustrated in FIG. 3A described later has an inclusion in the first determination. An inclusion group consisting of two inclusion particles 1 ″ and 2 ″ determined to be a group, and an inclusion particle 3 ″ determined to satisfy the above relationship with the inclusion group in the second determination; An inclusion group consisting of the two inclusion particles (1 ″ and 2 ″) and three inclusion particles (1 ″, 2 ″ and 3 ′) including the inclusion group. The inclusion particles 1 '', 2 '' and 3 'which are determined as inclusion groups in the second determination are not divided into the inclusion group consisting of') and counted as two inclusion groups. Count as one (secondary) inclusion group consisting of '.

具体的には例えば、以下の様にして段階的に介在物群を判定することができる(下記では、3回目までの介在物群の判定を具体的に示している)。   Specifically, for example, the inclusion group can be determined step by step as follows (in the following, the determination of the inclusion group up to the third time is specifically shown).

(i)1回目の判定(1次介在物群の判定)
少なくとも2つの介在物粒子の間で、λが、上記(1)式を満たすと共に60μm以下を満たす場合には、これらからなる介在物群を「1次介在物群」とする(図2(a)に模式的に例示する)。
(I) First determination (determination of primary inclusion group)
When λ satisfies the above formula (1) and satisfies 60 μm or less between at least two inclusion particles, the inclusion group consisting of these is referred to as a “primary inclusion group” (FIG. 2A )).

尚、図2(b)に例示する通り、介在物粒子1が介在物粒子2以外に、介在物粒子2’との関係においても、λが上記(1)式を満たすと共に60μm以下を満たす場合には、これら介在物粒子1、2および2’からなる介在物群を「1次介在物群」とする。   In addition, as illustrated in FIG. 2B, in the case where the inclusion particle 1 satisfies the above formula (1) and satisfies 60 μm or less in relation to the inclusion particle 2 ′ in addition to the inclusion particle 2 as well. The inclusion group consisting of these inclusion particles 1, 2, and 2 ′ is referred to as “primary inclusion group”.

(ii)2回目の判定(2次介在物群の判定)
(ii−1)上記1次介在物群と、近接する1以上の介在物粒子との間で、λが、(1)式を満たすと共に60μm以下を満たす場合には、これらからなる介在物群を「2次介在物群」とする。この2次介在物群を図3(a)に模式的に例示する。
(Ii) Second determination (determination of secondary inclusion group)
(Ii-1) When λ satisfies the formula (1) and satisfies 60 μm or less between the primary inclusion group and one or more adjacent inclusion particles, the inclusion group consisting of these Is a “secondary inclusion group”. This secondary inclusion group is schematically illustrated in FIG.

(ii−2)上記1次介在物群と、近接する1以上の別の1次介在物群との間で、λが、(1)式を満たすと共に60μm以下を満たす場合には、これらからなる介在物群を「2次介在物群」とする。この2次介在物群を図3(b)に模式的に例示する。   (Ii-2) When λ satisfies the expression (1) and satisfies 60 μm or less between the primary inclusion group and one or more other adjacent primary inclusion groups, This inclusion group is referred to as a “secondary inclusion group”. This secondary inclusion group is schematically illustrated in FIG.

(iii)3回目の判定(3次介在物群の判定)
(iii−1)上記2次介在物群と、近接する1以上の介在物粒子との間で、λが、(1)式を満たすと共に60μm以下を満たす場合には、これらからなる介在物群を「3次介在物群」とする。
(Iii) Third determination (determination of tertiary inclusion group)
(Iii-1) When λ satisfies the formula (1) and satisfies 60 μm or less between the secondary inclusion group and one or more adjacent inclusion particles, the inclusion group consisting of these Is referred to as “tertiary inclusion group”.

(iii−2)上記2次介在物群と、近接する1以上の1次介在物群との間で、λが、(1)式を満たすと共に60μm以下を満たす場合には、これらからなる介在物群を「3次介在物群」とする。   (Iii-2) In the case where λ satisfies the formula (1) and satisfies 60 μm or less between the secondary inclusion group and one or more adjacent primary inclusion groups, the inclusion consisting of these The object group is referred to as “tertiary inclusion group”.

(iii−3)上記2次介在物群と、近接する1以上の別の2次介在物群との間で、λが、(1)式を満たすと共に60μm以下を満たす場合には、これらからなる介在物群を「3次介在物群」とする。   (Iii-3) When λ satisfies the formula (1) and satisfies 60 μm or less between the secondary inclusion group and one or more adjacent secondary inclusion groups, from these, This inclusion group is referred to as “tertiary inclusion group”.

以降、4回目の判定(4次介在物群の判定)へと続く。   Thereafter, the fourth determination (determination of the quaternary inclusion group) is continued.

上記判定の方法から、n回目(nは1以上の整数)の判定で定まる、任意の介在物群:n次介在物群について、下記の通り表すことができる。   From the above determination method, any inclusion group: n-th inclusion group determined by the nth determination (n is an integer of 1 or more) can be expressed as follows.

即ち、n次介在物群は、n−1次介在物群(nは1以上の整数、n=1の場合、0次介在物群は介在物粒子をいう)と、近接する1以上のx次介在物群(x=0〜n−1、nは1以上の整数、0次介在物群は介在物粒子をいう)とからなり、このn−1次介在物群とx次介在物群の最近接粒子の最小表面間距離(λ)が、下記(1)式を満たしかつ60μm以下である介在物群をいう。   That is, the n-th order inclusion group is an n-1 order inclusion group (where n is an integer of 1 or more, and when n = 1, the 0th-order inclusion group refers to inclusion particles) and one or more adjacent x. A secondary inclusion group (x = 0 to n-1, n is an integer of 1 or more, and a zero-order inclusion group refers to inclusion particles), and this n-1 order inclusion group and x order inclusion group. The inclusion group in which the minimum inter-surface distance (λ) of the closest particle satisfies the following formula (1) and is 60 μm or less.

[(1)式において、
λ:n−1次介在物群とx次介在物群の最近接粒子の最小表面間距離(μm)
σ:鋼板の降伏強度(MPa)
:n−1次介在物群の、鋼板圧延方向の粒子径(n=1の場合)または2つの最外粒子の鋼板圧延方向における最外表面間距離(n≧2の場合)(μm)
:x次介在物群の、鋼板圧延方向の粒子径(x=0の場合)または2つの最外粒子の鋼板圧延方向における最外表面間距離(x≧1の場合)(μm)]
[In the formula (1),
λ: Minimum inter-surface distance (μm) between nearest particles of n−1 order inclusion group and x order inclusion group
σ y : yield strength of steel sheet (MPa)
d 1 : particle diameter in the steel sheet rolling direction of the n-1 primary inclusion group (when n = 1) or distance between the outermost surfaces of the two outermost particles in the steel sheet rolling direction (when n ≧ 2) (μm) )
d 2 : Particle size in the steel plate rolling direction of the x-th order inclusion group (when x = 0) or the distance between the outermost surfaces of the two outermost particles in the steel plate rolling direction (when x ≧ 1) (μm)]

上記「n回目の判定で定まる」とは、上述した通り、介在物群の周囲に、この介在物群との間で(1)式を満たしかつλが60μm以下である、介在物粒子や介在物群が存在しなくなるまで上記判定を繰り返し行って、最終的に得られる1つの介在物群を決定することをいう。   As described above, “determined by the determination at the nth time” means inclusion particles or inclusions that satisfy the formula (1) and have λ of 60 μm or less around the inclusion group. This means that the above determination is repeated until there is no object group, and one inclusion group finally obtained is determined.

尚、判定するにあたり、対象となる介在物粒子の鋼板圧延方向の粒子径の下限は0.5μm程度である。   In the determination, the lower limit of the particle diameter in the steel plate rolling direction of the inclusion particles as a target is about 0.5 μm.

〔介在物群の長径について〕
上記判定により求められる介在物群であっても、その大きさによって、曲げ加工性に与える影響は異なる。よって、上記介在物群のサイズ(介在物群の長径=介在物群の2つの最外粒子の鋼板圧延方向における最外表面間距離)と、曲げ加工性(規定の介在物群起因の曲げ割れ率)との関係を調べた。図4は、後述する実施例において、介在物群を起点に割れた試料の破断面を観察して、破断起点の介在物群の鋼板圧延方向の長径を求め、長径が例えば20以上40未満μm、40以上60未満μm、60以上80未満μm…の範囲内の介在物群を、それぞれ20μm、40μm、60μm…の介在物群として集計し、長径20μmごとの規定の介在物群起因の曲げ割れの累積確率を表したものである。
[About major axis of inclusion group]
Even if it is the inclusion group calculated | required by the said determination, the influence which acts on bending workability changes with the magnitude | sizes. Therefore, the size of the inclusion group (the major axis of the inclusion group = the distance between the outermost surfaces in the rolling direction of the two outermost particles of the inclusion group) and the bending workability (bending cracks caused by the prescribed inclusion group) Rate). FIG. 4 shows an example in which the fracture surface of the sample cracked from the inclusion group is observed in the examples to be described later, and the major axis in the steel sheet rolling direction of the inclusion group at the fracture origin is determined. The major axis is, for example, 20 or more and less than 40 μm. Inclusion groups within the range of 40 to less than 60 μm, 60 to less than 80 μm,..., Are aggregated as inclusion groups of 20 μm, 40 μm, 60 μm, respectively, and bending cracks caused by the prescribed inclusion group for each major axis of 20 μm It represents the cumulative probability of.

この図4より、介在物群の長径:100μm以上で、この介在物群起因の割れ発生(累積確率>0)が認められたため、制御の対象とする介在物群の長径の下限を100μmとした(以下、長径100μm以上の介在物群を「規定の介在物群」ということがある)。   From FIG. 4, since the occurrence of cracks due to the inclusion group (cumulative probability> 0) was observed when the major axis of the inclusion group was 100 μm or more, the lower limit of the major axis of the inclusion group to be controlled was set to 100 μm. (Hereinafter, an inclusion group having a major axis of 100 μm or more may be referred to as a “specified inclusion group”).

〔観察領域について〕
上記規定の介在物群を原因として曲げ割れが顕著になるのは、特に曲げ加工時に多大な歪が導入される鋼板の表層域であることから、次の様な測定を行って本発明における観察領域を特定した。即ち、後述する実施例の鋼板を用い、予め周波数30MHzおよび50MHzの条件で超音波探傷法により、圧延面における欠陥指示位置(介在物位置)を特定した。そして、曲げ稜線が圧延方向と平行になり、且つ当該調査で得た欠陥指示位置(介在物位置)と一致するように、後述する実施例に示す通り曲げ加工を実施した。
[About the observation area]
Bending cracks become prominent due to the inclusion group defined above, particularly in the surface layer region of a steel sheet where a great amount of strain is introduced during bending, so the following measurements are taken and observed in the present invention. Identified the area. That is, the defect indication position (inclusion position) on the rolling surface was specified by the ultrasonic flaw detection method under the conditions of frequencies of 30 MHz and 50 MHz in advance using a steel plate of an example described later. And the bending process was implemented as shown in the Example mentioned later so that a bending ridgeline might become parallel to a rolling direction, and may correspond with the defect instruction | indication position (inclusion position) obtained by the said investigation.

曲げ加工を施して破断した試験片について、割れ起点の破断面を調査した。そして、規定の介在物群の存在有無を確認し、規定の介在物群が存在するものについては、表面からの位置(深さ)を測定した。また、破断しなかった試験片については、圧延面における欠陥指示位置から板厚方向に0.5t(t:板厚)まで研削し、表面から0.5t深さの範囲内における規定の介在物群の存在有無を確認した。   About the test piece which gave the bending process and was fractured, the fracture surface of a crack starting point was investigated. Then, the presence or absence of the specified inclusion group was confirmed, and the position (depth) from the surface was measured for the case where the specified inclusion group was present. In addition, for the test piece that did not break, it was ground from the defect indication position on the rolling surface to 0.5 t (t: plate thickness) in the plate thickness direction, and the specified inclusion within a range of 0.5 t depth from the surface The presence or absence of the group was confirmed.

そして、表面からの各測定位置において、規定の介在物群が曲げ割れを引き起こす確率(%)(後述する「規定の介在物群起因の曲げ割れ率」とは区別される。)を、100×(曲げ加工で破断した試験片であって規定の介在物群が存在した試験片の数)/[(曲げ加工で破断した試験片であって規定の介在物群が存在した試験片の数)+(曲げ加工で破断しなかった試験片であって規定の介在物群が存在した試験片の数)]より求めた。   Then, at each measurement position from the surface, the probability (%) that the specified inclusion group causes bending cracking (distinguishable from “bending cracking ratio caused by the specified inclusion group” described later) is 100 ×. (Number of test pieces that were fractured by bending and had a specified inclusion group) / [(Number of test pieces that were broken by bending and had a specified inclusion group) + (Number of test pieces that did not break by bending and had the specified inclusion group)].

その結果を整理したものを図5に示す。尚、図5における0.02t(板厚tに対する比が0.02)、0.04t、0.06t…の結果は、それぞれ表面(深さ0mm)〜0.02t、0.02t超〜0.04t、0.04t超〜0.06t…における測定結果を集計したものである。この図5から、本発明で規定の介在物群は、鋼板の表面から、板厚×0.1(0.1t)深さまでの範囲に存在する場合に、曲げ割れの原因となっていることがわかる。また、曲げ加工性は表層域の影響を強く受けていることがわかる。そこで本発明では、規定の介在物群の観察領域を、鋼板の表面から(板厚×0.1)深さまでとした。   A summary of the results is shown in FIG. In addition, the results of 0.02t (ratio to the plate thickness t of 0.02), 0.04t, 0.06t ... in FIG. 5 are the surface (depth 0 mm) to 0.02t, more than 0.02t to 0, respectively. .04t, more than 0.04t ~ 0.06t ... From FIG. 5, the inclusion group defined in the present invention causes bending cracks when it exists in the range from the surface of the steel plate to the thickness of the plate × 0.1 (0.1 t) depth. I understand. It can also be seen that the bending workability is strongly influenced by the surface layer region. Therefore, in the present invention, the observation region of the specified inclusion group is set to the depth of (plate thickness × 0.1) from the surface of the steel plate.

〔規定の介在物群の個数密度と曲げ加工性の関係について〕
次いで、本発明者らは、規定の介在物群の個数密度と、曲げ加工性(規定の介在物群起因の曲げ割れ率)との関係を調べた。図6は、後述する実施例に示す方法で求めた、規定の介在物群の個数密度と規定の介在物群起因の曲げ割れ率の関係を表したグラフである。尚、規定の介在物群起因の曲げ割れ率が2.0%以下であれば、実製品において問題ないことを別途確認している。
[Relationship between number density of specified inclusion group and bending workability]
Next, the present inventors investigated the relationship between the number density of the specified inclusion group and the bending workability (bending cracking ratio due to the specified inclusion group). FIG. 6 is a graph showing the relationship between the number density of the specified inclusion group and the bending crack rate caused by the specified inclusion group, which was obtained by the method shown in the examples described later. In addition, if the bending crack rate due to the specified inclusion group is 2.0% or less, it is separately confirmed that there is no problem in the actual product.

この図6より、規定の介在物群起因の曲げ割れ率:2.0%以下を達成するには、規定の介在物群の個数密度を、圧延面100cm当たり120個以下とする必要があることがわかる。好ましい個数密度は圧延面100cm当たり100個以下である。 From FIG. 6, in order to achieve the bending cracking ratio due to the specified inclusion group: 2.0% or less, the number density of the specified inclusion group needs to be 120 or less per 100 cm 2 of the rolling surface. I understand that. A preferred number density is 100 or less per 100 cm 2 of the rolling surface.

上記規定の介在物群の測定は、後述する実施例に示す通り、例えば光学顕微鏡(倍率:100倍)にて目視観察して行うことができる。また、この光学顕微鏡観察結果を2値化した後、予め上記(1)式やλの境界値(60μm)の条件を設定した画像解析処理により自動測定することもできる。   The measurement of the inclusion group defined above can be performed by visual observation with an optical microscope (magnification: 100 times), for example, as shown in Examples described later. In addition, after binarizing the observation result of the optical microscope, it can be automatically measured by an image analysis process in which the condition of the above equation (1) and the boundary value of λ (60 μm) are set in advance.

本発明は、介在物群の形態が上記規定を満たすことを要件としており、介在物群を構成する個々の介在物粒子の成分については特に規定されない。介在物粒子として、例えばAl、Si、Mn、Ca、Mg(Ca、Mgについては、選択元素として添加していない場合にも、製造過程での炉壁からやスラグの巻き込みにより含まれうる)等を含む酸化物系介在物や、Mn、Ti等を含む硫化物系介在物、または、これらの複合介在物が挙げられる。また、選択元素として、CaやMg、希土類元素を含む場合には、これらの元素を含む酸化物系介在物や、硫化物系介在物(例えばCaやMgを含む硫化物系介在物)が存在しうる。   The present invention requires that the form of the inclusion group satisfies the above definition, and the components of the individual inclusion particles constituting the inclusion group are not particularly specified. Inclusion particles such as Al, Si, Mn, Ca, Mg (Ca, Mg may be included from the furnace wall in the production process or by slag entrainment even when not added as a selective element) Oxide-based inclusions containing Mn, sulfide-type inclusions containing Mn, Ti and the like, or composite inclusions thereof. In addition, when Ca, Mg and rare earth elements are included as selective elements, there are oxide inclusions including these elements and sulfide inclusions (for example, sulfide inclusions including Ca and Mg). Yes.

尚、本発明は、上述の通り、介在物群として制御したところにポイントがあるが、鋼板の介在物粒子の総数は、従来の通り低減されていることが好ましく、具体的には、鋼板圧延方向の粒子径が5μm以上の介在物粒子が、25個/mm以下に抑えられていることが好ましい。 In addition, as described above, the present invention has a point where it is controlled as an inclusion group, but the total number of inclusion particles in the steel sheet is preferably reduced as in the prior art. It is preferable that inclusion particles having a particle size in the direction of 5 μm or more are suppressed to 25 particles / mm 2 or less.

〔鋼組織について〕
本発明の冷延鋼板を、例えば自動車用鋼板として用いる場合、特性としてより高い強度(880MPa以上、好ましくは980MPa以上)と加工性の兼備が要求される。フェライト組織が多いと、より高い強度を確保することが難しい。また、複合組織であると、曲げ加工性の十分な向上も難しい。よって本発明では、マルテンサイト組織(好ましくは、焼戻しマルテンサイトを含んだマルテンサイト組織)の単一組織とすることで曲げ加工性の向上を図る。
[About steel structure]
When the cold-rolled steel sheet of the present invention is used as, for example, a steel sheet for automobiles, it is required to have higher strength (880 MPa or more, preferably 980 MPa or more) and workability as characteristics. When there are many ferrite structures, it is difficult to ensure higher strength. In addition, it is difficult to sufficiently improve the bending workability when the composite structure is used. Therefore, in the present invention, the bending workability is improved by adopting a single structure of a martensite structure (preferably, a martensite structure including tempered martensite).

尚、上記マルテンサイト組織の単一組織とは、該マルテンサイト組織を95面積%以上(特には97面積%以上、100面積%でもよい)含む意味である。   The single structure of the martensite structure means that the martensite structure is 95% by area or more (in particular, 97% by area or 100% by area may be used).

本発明の鋼板は、上記マルテンサイト組織以外に、製造工程で不可避的に含まれうる組織(フェライト組織、ベイナイト組織、残留オーステナイト組織等)も含みうる。   In addition to the martensite structure, the steel sheet of the present invention may also contain a structure (ferrite structure, bainite structure, residual austenite structure, etc.) that can be inevitably included in the manufacturing process.

上記介在物形態を含めた組織制御の効果を十分に発揮させて、曲げ加工性を確実に高めると共に、高強度と優れた加工性のバランスを兼備する鋼板を実現するには、下記の成分組成を満たすようにする必要がある。また後述する製造条件で製造することが推奨される。以下では、まず、鋼板の成分組成について詳述する。   In order to realize a steel sheet that fully exhibits the effect of the structure control including the inclusion form and surely increases the bending workability and has a balance between high strength and excellent workability, the following component composition It is necessary to satisfy. Moreover, it is recommended to manufacture on the manufacturing conditions mentioned later. Below, the component composition of a steel plate is first explained in full detail.

〔鋼板の成分組成について〕
〔C:0.12〜0.3%〕
Cは、焼入れ性を高めて高強度を確保するのに必要な元素であるため、0.12%以上(好ましくは0.15%以上)含有させる。しかしC含有量が過剰であると、スポット溶接性や靭性が低下したり、焼入れ部に遅れ破壊が生じやすくなる。よって、C量は0.3%以下、好ましくは0.26%以下とする。
[About the component composition of steel sheet]
[C: 0.12-0.3%]
C is an element necessary for enhancing the hardenability and ensuring high strength, so is contained in an amount of 0.12% or more (preferably 0.15% or more). However, if the C content is excessive, spot weldability and toughness are lowered, and delayed fracture tends to occur in the quenched portion. Therefore, the C content is 0.3% or less, preferably 0.26% or less.

〔Si:0.5%以下(0%を含む)〕
Siは、焼戻し軟化抵抗に有効な元素であり、また固溶強化による強度向上にも有効な元素である。これらの観点から、Siを0.02%以上含有させることが好ましい。しかしSiはフェライト生成元素であり、多く含まれると、焼入れ性を損ない高強度を確保することが難しくなることから、Si量を0.5%以下とする。好ましくは0.4%以下である。
[Si: 0.5% or less (including 0%)]
Si is an element effective for tempering softening resistance, and is also an element effective for strength improvement by solid solution strengthening. From these viewpoints, it is preferable to contain Si by 0.02% or more. However, Si is a ferrite-forming element, and if it is contained in a large amount, the hardenability is impaired and it is difficult to ensure high strength, so the Si amount is set to 0.5% or less. Preferably it is 0.4% or less.

〔Mn:1.5〜3.0%〕
Mnは、焼入れ性を向上させて強度を高めるのに有効な元素である。十分な焼入れ性を確保するため、Mn量は1.5%以上とする。好ましくは1.7%以上である。しかし過剰に含まれると、鋼板の強度を必要以上に増加させ、靭性を劣化させる。よってMn量は3.0%以下とする。好ましくは2.8%以下である。
[Mn: 1.5 to 3.0%]
Mn is an element effective for improving the hardenability and increasing the strength. In order to ensure sufficient hardenability, the amount of Mn is 1.5% or more. Preferably it is 1.7% or more. However, if contained excessively, the strength of the steel sheet is increased more than necessary, and the toughness is deteriorated. Therefore, the Mn content is 3.0% or less. Preferably it is 2.8% or less.

〔Al:0.15%以下(0%を含まない)〕
Alは、脱酸剤として添加される元素であり、また鋼の耐食性を向上させる効果もある。これらの効果を十分発揮させるには、0.05%以上含有させることが好ましい。しかし過剰に含まれると、C系介在物が多量に生成して表面疵の原因となるので、その上限を0.15%とする。好ましくは0.10%以下、より好ましくは0.07%以下である。
[Al: 0.15% or less (excluding 0%)]
Al is an element added as a deoxidizer and also has an effect of improving the corrosion resistance of steel. In order to fully exhibit these effects, it is preferable to make it contain 0.05% or more. However, if it is excessively contained, a large amount of C-based inclusions are generated and cause surface defects, so the upper limit is made 0.15%. Preferably it is 0.10% or less, More preferably, it is 0.07% or less.

〔N:0.01%以下(0%を含まない)〕
N量が過剰であると、窒化物の析出量が増大し、靭性に悪影響を与えるため、N量は0.01%以下、好ましくは0.008%以下とする。尚、製鋼上のコスト等を考慮すること、N量は通常0.001%以上である。
[N: 0.01% or less (excluding 0%)]
If the amount of N is excessive, the amount of precipitation of nitride increases and adversely affects toughness. Therefore, the amount of N is set to 0.01% or less, preferably 0.008% or less. In addition, considering the cost etc. on steelmaking, N amount is 0.001% or more normally.

〔P:0.02%以下(0%を含まない)〕
Pは、鋼を強化する作用を有するものの、脆性により延性を低下させるので、0.02%以下に抑える。好ましくは0.01%以下である。
[P: 0.02% or less (excluding 0%)]
Although P has the effect | action which strengthens steel, since ductility is reduced by brittleness, it is suppressed to 0.02% or less. Preferably it is 0.01% or less.

〔S:0.01%以下(0%を含まない)〕
Sは、硫化物系の介在物を生成し、加工性、溶接性を劣化させるため、少ないほどよく、本発明では0.01%以下に抑える。好ましくは0.005%以下、より好ましくは0.003%以下である。
[S: 0.01% or less (excluding 0%)]
S produces sulfide-based inclusions and degrades workability and weldability. Therefore, the smaller the content, the better. In the present invention, S is suppressed to 0.01% or less. Preferably it is 0.005% or less, More preferably, it is 0.003% or less.

本発明で規定する基本成分は前記の通りであって、残部は鉄および不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。更に、本発明の作用に悪影響を与えない範囲で下記元素を積極的に含有させることも可能である。   The basic components defined in the present invention are as described above, and the balance is iron and unavoidable impurities. As the unavoidable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed. Furthermore, it is also possible to positively contain the following elements as long as the effects of the present invention are not adversely affected.

〔Cr:2.0%以下(0%を含まない)および/またはB:0.01%以下(0%を含まない)〕
CrもBも焼入れ性向上により強度を高めるのに有効な元素である。またCrは、マルテンサイト組織鋼の焼戻し軟化抵抗を高めるのに有用な元素である。これらの効果を十分発揮させるには、Crの場合0.01%以上(より好ましくは0.05%以上)、Bの場合0.0001%以上(より好ましくは0.005%以上)含有させることが好ましい。しかしCrが過剰に含まれると、耐遅れ破壊性を劣化させる。またB量が過剰になると延性の低下を招く。よって、Cr量は2.0%以下(より好ましくは1.7%以下)、Bは0.01%以下(より好ましくは0.008%以下)とすることが好ましい。
[Cr: 2.0% or less (not including 0%) and / or B: 0.01% or less (not including 0%)]
Both Cr and B are effective elements for increasing the strength by improving the hardenability. Cr is an element useful for increasing the temper softening resistance of martensitic steel. In order to fully exhibit these effects, in the case of Cr, 0.01% or more (more preferably 0.05% or more), and in the case of B, 0.0001% or more (more preferably 0.005% or more) is contained. Is preferred. However, when Cr is excessively contained, delayed fracture resistance is deteriorated. Moreover, when the amount of B becomes excessive, ductility will be reduced. Therefore, the Cr content is preferably 2.0% or less (more preferably 1.7% or less), and B is 0.01% or less (more preferably 0.008% or less).

〔Cu:0.5%以下(0%を含まない)、Ni:0.5%以下(0%を含まない)、およびTi:0.2%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素〕
Cu、Ni、Tiは、耐食性向上により耐遅れ破壊性を向上させるのに有効な元素である。この様な効果は、特に引張強度が980MPaを超える鋼板で有効に発揮される。またTiは、焼戻し軟化抵抗を高めるのにも有効な元素である。該効果を十分発揮させるには、Cuの場合0.01%以上(より好ましくは0.05%以上)、Niの場合0.01%以上(より好ましくは0.05%以上)、Tiの場合0.01%以上(より好ましくは0.05%以上)含有させることが好ましい。しかしながら、過剰に含まれると延性や加工性が低下するため、Cu、Niの上限はいずれも0.5%、Tiの上限は0.2%とすることが好ましい。より好ましくはCu、Niはそれぞれ0.4%以下、Tiは0.15%以下である。
[From the group consisting of Cu: 0.5% or less (not including 0%), Ni: 0.5% or less (not including 0%), and Ti: 0.2% or less (not including 0%) At least one element selected]
Cu, Ni, and Ti are effective elements for improving delayed fracture resistance by improving corrosion resistance. Such an effect is exhibited particularly effectively in a steel sheet having a tensile strength exceeding 980 MPa. Ti is also an element effective for increasing the temper softening resistance. In order to fully exhibit the effect, 0.01% or more (more preferably 0.05% or more) in the case of Cu, 0.01% or more (more preferably 0.05% or more) in the case of Ni, or Ti It is preferable to contain 0.01% or more (more preferably 0.05% or more). However, since the ductility and workability are reduced when excessively contained, it is preferable that the upper limits of Cu and Ni are both 0.5% and the upper limit of Ti is 0.2%. More preferably, Cu and Ni are each 0.4% or less, and Ti is 0.15% or less.

〔V:0.1%以下(0%を含まない)および/またはNb:0.1%以下(0%を含まない)〕
V、Nbは、いずれも強度の向上、およびγ粒微細化による焼入れ後の靭性改善に有効な元素である。該効果を十分発揮させるには、V、Nbいずれの場合も0.003%以上(より好ましくは0.02%以上)含有させることが好ましい。しかし、上記元素が過剰に含まれると、炭窒化物などの析出が増大し、加工性および耐遅れ破壊性は低下する。よって、V、Nbいずれの場合も0.1%以下(より好ましくは0.05%以下)とすることが好ましい。
[V: 0.1% or less (not including 0%) and / or Nb: 0.1% or less (not including 0%)]
V and Nb are both effective elements for improving strength and improving toughness after quenching by γ grain refinement. In order to exhibit this effect sufficiently, it is preferable to contain 0.003% or more (more preferably 0.02% or more) in both V and Nb. However, when the above elements are excessively contained, precipitation of carbonitrides and the like increases, and workability and delayed fracture resistance decrease. Therefore, in both cases of V and Nb, the content is preferably 0.1% or less (more preferably 0.05% or less).

更に他の元素として、例えば、Se、As、Sb、Pb、Sn、Bi、Mg、Zn、Zr、W、Cs、Rb、Co、La、Tl、Nd、Y、In、Be、Hf、Tc、Ta、O、Ca等を、耐食性や耐遅れ破壊性を改善する目的で、合計0.01%以下含有させてもよい。   Still other elements include, for example, Se, As, Sb, Pb, Sn, Bi, Mg, Zn, Zr, W, Cs, Rb, Co, La, Tl, Nd, Y, In, Be, Hf, Tc, Ta, O, Ca, or the like may be contained in a total of 0.01% or less for the purpose of improving corrosion resistance and delayed fracture resistance.

鋼板として、特に高強度域(880MPa以上、特には980MPa以上)の鋼板を対象とした場合に、本発明の効果が存分に発揮される。   The effect of the present invention is fully exhibited when the steel sheet is particularly a high-strength region (880 MPa or more, particularly 980 MPa or more).

本発明は、上記鋼板の製造方法まで規定するものではないが、上記規定の介在物形態を実現させるには、特に、熱間圧延時における約950℃以下の温度域で圧延時の圧下率および冷間圧延時の圧下率(冷延率)の合計圧下率を制御することが推奨される。   Although the present invention does not prescribe up to the method for producing the steel sheet, in order to realize the above-mentioned inclusion form, in particular, the rolling reduction during rolling in the temperature range of about 950 ° C. or less during hot rolling and It is recommended to control the total reduction ratio of the reduction ratio (cold rolling ratio) during cold rolling.

本発明は、上述の通り、介在物粒子の成分まで規定するものではないが、本発明の鋼板の成分組成においては、介在物が主として酸化物系介在物より構成されている場合が多く、塑性変形能が小さくなる比較的低温度域での圧延時に、この酸化物系介在物が破砕・分散することで、規定の介在物群が生じうる。微細に破砕され長距離に分散した介在物群には、上述した通り、曲げ加工時に長大で扁平な欠陥(ボイド)が形成され、この欠陥周辺で大きな応力集中が発生することで曲げ割れが生じる。したがって、当該温度域での圧下率を比較的小さくして、破砕の程度を抑制することが推奨される。   As described above, the present invention does not define the components of inclusion particles, but in the component composition of the steel sheet of the present invention, the inclusions are often mainly composed of oxide inclusions, and are plastic. During rolling in a relatively low temperature range where the deformability is reduced, the oxide inclusions can be crushed and dispersed to form a defined inclusion group. As described above, the inclusions that are finely crushed and dispersed over a long distance are formed with long and flat defects (voids) during bending, and bending cracks occur due to large stress concentrations around these defects. . Therefore, it is recommended to reduce the degree of crushing by relatively reducing the rolling reduction in the temperature range.

本発明の成分組成を満たす鋼板において存在しうる酸化物系介在物は、Al、Si、Mn、Ti、Mg、Ca、希土類元素の単独酸化物および/または複合酸化物であり、これらの軟化点および母材の変形能を勘案すると、約950℃から室温領域での圧下率(具体的には、熱間圧延時における約950℃以下の温度域での圧下率、および冷間圧延時の圧下率の合計圧下率)を適正化して、破砕・分散状態を制御することが重要となる。   The oxide inclusions that may be present in the steel sheet satisfying the component composition of the present invention are Al, Si, Mn, Ti, Mg, Ca, rare earth element single oxides and / or composite oxides, and their softening points. Taking into account the deformability of the base metal, the reduction rate from about 950 ° C. to the room temperature region (specifically, the reduction rate in the temperature range of about 950 ° C. or less during hot rolling and the reduction during cold rolling) It is important to control the crushing / dispersing state by optimizing the total rate of reduction).

具体的には、本発明の成分組成を満たす鋼板の場合、熱間圧延時における約950℃以下の温度域での圧下率、および冷間圧延時の圧下率の合計圧下率は、97%未満とすることが好ましい。より好ましくは95%以下である。一方、上記合計圧下率が小さすぎる場合には、粗大介在物が微細化されず、曲げ加工性がかえって劣化する場合がある。また、薄鋼板の製造自体が困難になる。よって上記合計圧下率は、少なくとも90%程度は必要である。   Specifically, in the case of a steel sheet satisfying the component composition of the present invention, the total reduction ratio of the reduction ratio in the temperature range of about 950 ° C. or less during hot rolling and the reduction ratio during cold rolling is less than 97%. It is preferable that More preferably, it is 95% or less. On the other hand, when the total rolling reduction is too small, coarse inclusions are not refined, and bending workability may be deteriorated. Further, it becomes difficult to manufacture the thin steel plate itself. Therefore, the total rolling reduction should be at least about 90%.

また、鋼板中の介在物粒子の総数を抑制するには、Alによって脱酸したキルド鋼を転炉または電気炉で1次精錬後、取鍋にてLF法にて脱硫し、次いで真空脱ガス(例えばRH法)を行うことが推奨される。   In order to suppress the total number of inclusion particles in the steel plate, killed steel deoxidized with Al is first refined in a converter or electric furnace, desulfurized in a ladle by the LF method, and then vacuum degassed. It is recommended to perform (for example, RH method).

上記以外は、特に限定されるものでなく、例えば上記溶製後、常法に従って、連続鋳造によりスラブ等の鋼片を得た後、1100〜1250℃程度に加熱し、次いで熱間圧延を行い(好ましくは、仕上温度:Ar点以上で熱間圧延を終了)、巻き取った後に酸洗し、冷間圧延(冷延率は約30〜70%)して鋼板を得ることができる。次いで、焼鈍処理を施す。この焼鈍処理は、例えば800〜1000℃で5〜300秒間保持した後、600〜1000℃(焼入れ開始温度)から、急冷(例えば20℃/s以上)で室温まで冷却し、更に100〜600℃まで再加熱し、該温度域で0〜1200秒間保持する焼戻しを行って、マルテンサイト単一組織を得るのがよい。 Other than the above, it is not particularly limited. For example, after obtaining the steel slab such as slab by continuous casting after the above-described melting, it is heated to about 1100 to 1250 ° C. and then hot-rolled. (Preferably, finishing temperature: hot rolling is completed at 3 points or more of Ar), pickling, pickling and cold rolling (cold rolling rate is about 30 to 70%) to obtain a steel sheet. Next, an annealing process is performed. In this annealing treatment, for example, after holding at 800 to 1000 ° C. for 5 to 300 seconds, cooling from 600 to 1000 ° C. (quenching start temperature) to room temperature by rapid cooling (for example, 20 ° C./s or more), and further 100 to 600 ° C. It is good to obtain a martensite single structure by re-heating to tempering and holding in the temperature range for 0 to 1200 seconds.

上記焼鈍処理は、下記溶融亜鉛めっき鋼板や合金化溶融亜鉛めっき鋼板を得る場合には、例えば溶融亜鉛めっきラインにおいて行うことができる。   The annealing treatment can be performed, for example, in a hot dip galvanizing line when obtaining the following hot dip galvanized steel sheet or alloyed hot dip galvanized steel sheet.

本発明には、冷延鋼板だけでなく、冷延鋼板に溶融亜鉛めっきを施して得られる溶融亜鉛めっき鋼板(GI鋼板)や、冷延鋼板に上記溶融亜鉛めっきを施した後、これを合金化処理して得られる合金化溶融亜鉛めっき鋼板(GA鋼板)も含まれる。これらのめっき処理を施すことによって耐食性が向上する。尚、これらのめっき処理方法や合金化処理方法については、一般的に行われている条件を採用すればよい。   In the present invention, not only a cold-rolled steel sheet, but also a hot-dip galvanized steel sheet (GI steel sheet) obtained by subjecting a cold-rolled steel sheet to hot dip galvanization, An alloyed hot-dip galvanized steel sheet (GA steel sheet) obtained by the chemical treatment is also included. By applying these plating treatments, corrosion resistance is improved. In addition, what is necessary is just to employ | adopt the conditions currently performed about these plating processing methods and alloying processing methods.

本発明の高強度冷延鋼板は、自動車用強度部品、例えばバンパー、フロントやリア部のサイドメンバやクラッシュボックスなどの衝突部品をはじめ、センターピラーレインフォースなどのピラー類、ルーフレールレインフォース、サイドシル、フロアメンバー、キック部などの車体構成部品等の製造に使用できる。   The high-strength cold-rolled steel sheet of the present invention includes automotive parts, such as bumpers, front and rear side members and crash parts such as crash boxes, pillars such as center pillar reinforcement, roof rail reinforcement, side sill, It can be used for manufacturing body components such as floor members and kick parts.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1に示す化学成分組成からなる鋼を溶製した。詳細には、転炉、または電気炉で1次精錬後、取鍋にて脱硫を実施した。また、必要に応じて取鍋精練後に真空脱ガス(例えばRH法)処理を実施した。その後、常法により連続鋳造を実施してスラブを得た。そして熱間圧延、常法で酸洗、冷間圧延を順次行って、板厚1.6mmの鋼板を得た。次いで、連続焼鈍を施した。連続焼鈍では、表2に示す焼鈍温度で180秒保持後、表2に示す焼入れ開始温度まで冷却速度10℃/sで冷却し、次いで焼入れ開始温度から室温まで急冷(冷却速度20℃/s以上で冷却)し、更に表2に示す焼戻し温度まで再加熱し、該温度で100秒保持してマルテンサイト単一組織を得た。尚、熱間圧延における約950℃以下の温度域での圧下率と冷間圧延時の圧下率の合計圧下率は、表2に示す通りである。また、熱間圧延の条件は以下のとおりである。   Steels having the chemical composition shown in Table 1 were melted. Specifically, desulfurization was performed in a ladle after primary refining in a converter or electric furnace. Moreover, the vacuum degassing (for example, RH method) process was implemented after ladle scouring as needed. Thereafter, continuous casting was performed by a conventional method to obtain a slab. And hot rolling, pickling by the usual method, and cold rolling were performed in order, and the steel plate with a plate thickness of 1.6 mm was obtained. Next, continuous annealing was performed. In continuous annealing, after holding at the annealing temperature shown in Table 2 for 180 seconds, it is cooled to the quenching start temperature shown in Table 2 at a cooling rate of 10 ° C / s, and then rapidly cooled from the quenching start temperature to room temperature (cooling rate of 20 ° C / s or more). The mixture was further reheated to the tempering temperature shown in Table 2, and held at that temperature for 100 seconds to obtain a martensite single structure. In addition, the total reduction ratio of the reduction ratio in the temperature range of about 950 ° C. or less in the hot rolling and the reduction ratio in the cold rolling is as shown in Table 2. Moreover, the conditions of hot rolling are as follows.

(熱間圧延)
加熱温度:1250℃
仕上温度:880℃
巻取り温度:550℃
仕上厚さ:2.6〜3.2mm
(Hot rolling)
Heating temperature: 1250 ° C
Finishing temperature: 880 ° C
Winding temperature: 550 ° C
Finish thickness: 2.6-3.2mm

そして、上記の様にして得られた鋼板(鋼帯)から各種試験片を作製し、下記に示す組織の観察や特性の評価を行った。   And various test pieces were produced from the steel plate (steel strip) obtained as mentioned above, and the structure | tissue observation shown below and evaluation of the characteristic were performed.

(介在物群の測定)
試験片の採取位置は、鋼帯の圧延方向は任意で、板幅方向はw/8、w/4、w/2、3w/4、7w/8(w:板幅)位置の各位置で、圧延面のサイズが30mm角の試験片を各3枚採取し、圧延面(ND面)を表面から0.1t(t:板厚)まで、10μmピッチで研削し、その都度(10μm研削ごとに)、光学顕微鏡(倍率100倍)にて目視観察し、介在物の位置を確認して、規定の介在物群(上述したn次介在物群であって、該介在物群の2つの最外粒子の鋼板圧延方向における最外表面間距離が100μm以上であるもの)の個数を計測し、観察面積当たりの数量を算出して圧延面100cm当たりに換算した。その結果(規定の介在物群の個数密度)を表2に示す。
(Measurement of inclusion group)
As for the sampling position of the test piece, the rolling direction of the steel strip is arbitrary, and the sheet width direction is each position of w / 8, w / 4, w / 2, 3w / 4, 7w / 8 (w: sheet width). Three test pieces each having a rolled surface size of 30 mm square were collected, and the rolled surface (ND surface) was ground from the surface to 0.1 t (t: plate thickness) at a pitch of 10 μm, each time (every 10 μm ground) And) by visually observing with an optical microscope (magnification 100 times), confirming the position of the inclusions, and defining the inclusion group (the n-th inclusion group described above, the two most The number of outer particles having a distance between outermost surfaces in the steel plate rolling direction of 100 μm or more was measured, and the number per observation area was calculated and converted to 100 cm 2 of the rolling surface. The results (number density of specified inclusion groups) are shown in Table 2.

(ミクロ組織の観察)
1.6mm×20mm×20mmの試験片を切り出し、圧延方向と平行な断面を研磨し、レペラー腐食を行った後、t(板厚)/4位置を測定対象とした。そして光学顕微鏡により、約80μm×60μmの測定領域を倍率1000倍で観察して画像解析を行った。尚、測定は任意の5視野について行った。その結果、いずれの例もマルテンサイト組織が95面積%以上のマルテンサイト単一組織であった。
(Observation of microstructure)
A test piece of 1.6 mm × 20 mm × 20 mm was cut out, a cross section parallel to the rolling direction was polished, and repeller corrosion was performed, and then a t (plate thickness) / 4 position was measured. Then, an image analysis was performed by observing a measurement region of about 80 μm × 60 μm at a magnification of 1000 times with an optical microscope. In addition, the measurement was performed about arbitrary 5 visual fields. As a result, all examples had a martensite single structure with a martensite structure of 95 area% or more.

(引張特性の評価)
引張強度(TS)は、鋼板の圧延方向に垂直な方向と試験片の長手方向が平行になるようJIS5号引張試験片を鋼板から採取し、JIS Z 2241に従って測定した。本実施例では、引張強度が880MPa以上のものを高強度であると評価した。その結果を表2に示す。参考のため、鋼板の降伏強度(YP)、伸び(EL)も表2に示している。
(Evaluation of tensile properties)
The tensile strength (TS) was measured according to JIS Z 2241 by taking a JIS No. 5 tensile test piece from the steel plate so that the direction perpendicular to the rolling direction of the steel plate and the longitudinal direction of the test piece were parallel. In this example, a material having a tensile strength of 880 MPa or more was evaluated as having high strength. The results are shown in Table 2. For reference, the yield strength (YP) and elongation (EL) of the steel sheet are also shown in Table 2.

(曲げ加工性の評価(介在物起因の曲げ割れ率の測定))
折りたたみ様式曲げ加工を、合計試験片数:1000枚について下記の条件で実施し、割れが発生した試験片について、割れ起点の断面部(板厚方向)を、SEMおよびEDXで観察して、規定の介在物群の有無を確認した。尚、割れ起点となった規定の介在物群は、いずれも0.1t以内に存在するものであった。
(Evaluation of bending workability (measurement of bending crack rate due to inclusions))
Folding style bending is performed on the total number of test pieces: 1000 under the following conditions, and for the test pieces with cracks, the cross-sectional part (thickness direction) of the crack starting point is observed with SEM and EDX. The presence or absence of inclusion groups was confirmed. In addition, all of the specified inclusion group that became the crack starting point existed within 0.1 t.

そして、規定の介在物群起因の曲げ割れ率(%)を、100×(曲げ加工で破断した試験片であって規定の介在物群が存在した試験片の数)/(合計試験片数=1000枚)より求めた。その結果を表2に示す。   Then, the bending cracking rate (%) due to the specified inclusion group is 100 × (number of test pieces that are fractured by bending and have the specified inclusion group) / (total number of test pieces = 1000). The results are shown in Table 2.

〈折りたたみ様式曲げ加工条件〉
加工機器:アイダエンジニアリング(株)製 NC1−80(2)−B
加工スピード:1分間当たり40回
クリアランス:板厚+0.1mm
金型パンチ半径:材料の限界曲げ半径(R/t)+0.5/t
(R:金型半径(mm)、t:試験片板厚(mm))
パンチ角度:90°
試験片サイズ:t×80mm以上(W)×30mm(L)
(Lと鋼帯の圧延方向が平行)
曲げ方向:試験片圧延方向と曲げ稜線が平行
試験数および試験位置:鋼帯の長手方向:任意位置とし、板幅方向でw/8、w/4、w/2、3w/4、7w/8(w:板幅)の位置において各200枚、合計1000枚
<Folding style bending conditions>
Processing equipment: Aida Engineering Co., Ltd. NC1-80 (2) -B
Processing speed: 40 times per minute Clearance: Plate thickness + 0.1mm
Die punch radius: Limit bending radius of material (R / t) + 0.5 / t
(R: mold radius (mm), t: specimen thickness (mm))
Punch angle: 90 °
Test piece size: t × 80 mm or more (W) × 30 mm (L)
(L and steel strip rolling direction are parallel)
Bending direction: Specimen rolling direction and bending ridge line are parallel Test number and test position: Longitudinal direction of steel strip: Arbitrary position, w / 8, w / 4, w / 2, 3w / 4, 7w / in the plate width direction 200 sheets each at a position of 8 (w: board width), a total of 1000 sheets

〈上記限界曲げ半径の導出〉
例えば2.0mm、1.5mm、1.0mmのように異なる曲げ半径で下記の要領により曲げ加工を実施し、曲げ割れが発生しない最小の曲げ半径を限界曲げ半径とした。
・折りたたみ様式曲げ加工
・測定位置および試験数:w/4位置、各曲げ半径で2枚
・他の条件は上記と同様。
<Derivation of the above limit bending radius>
For example, bending was performed according to the following procedure with different bending radii such as 2.0 mm, 1.5 mm, and 1.0 mm, and the minimum bending radius at which no bending cracking occurred was defined as the critical bending radius.
・ Folding style bending ・ Measurement position and number of tests: w / 4 position, 2 at each bending radius ・ Other conditions are the same as above.

表1、2より次のように考察できる。No.1、3、5〜9、11、13、15、18〜24、26、27は、本発明の要件を満たしているので、介在物起因の曲げ割れ率が小さく、曲げ加工性に優れていることがわかる。これに対し、No.2、4、10、12、14、16、17、25は、介在物群の密度が高く、曲げ加工性に劣っている。これは、製造工程における約950℃から室温までの圧下時の圧下率を推奨される範囲内としなかったためと思われる。   Tables 1 and 2 can be considered as follows. No. 1, 3, 5-9, 11, 13, 15, 18-24, 26, 27 satisfy the requirements of the present invention, so the bending cracking rate due to inclusions is small and the bending workability is excellent. I understand that. In contrast, no. 2, 4, 10, 12, 14, 16, 17, and 25 have a high density of inclusions and are inferior in bending workability. This is presumably because the reduction rate during the reduction from about 950 ° C. to room temperature in the production process was not within the recommended range.

Claims (6)

鋼板の成分が、
C:0.12〜0.3%(質量%の意味。成分について以下同じ)、
Si:0.5%以下(0%を含む)、
Mn:1.5〜3.0%、
Al:0.15%以下(0%を含まない)、
N:0.01%以下(0%を含まない)、
P:0.02%以下(0%を含まない)、および
S:0.01%以下(0%を含まない)
を満たし、残部が鉄および不可避不純物からなり、
鋼組織が、マルテンサイト単一組織であり、かつ、
鋼板の表面から(板厚×0.1)深さまでの表層域において、
下記に示すn回目の判定で定まるn次介在物群であって、この介在物群の2つの最外粒子の鋼板圧延方向における最外表面間距離が100μm以上であるものが、圧延面100cm当たり120個以下であることを特徴とする曲げ加工性に優れた高強度冷延鋼板。
(n回目の判定)
n−1次介在物群(nは1以上の整数、n=1の場合、0次介在物群は介在物粒子をいう)と、近接する1以上のx次介在物群(x=0〜n−1、nは1以上の整数、0次介在物群は介在物粒子をいう)とからなり、このn−1次介在物群とx次介在物群の最近接粒子の最小表面間距離(λ)が、下記(1)式を満たしかつ60μm以下である介在物群を、「n次介在物群」とする。
[(1)式において、
λ:n−1次介在物群とx次介在物群の最近接粒子の最小表面間距離(μm)
σ:鋼板の降伏強度(MPa)
:n−1次介在物群の、鋼板圧延方向の粒子径(n=1の場合)または2つの最外粒子の鋼板圧延方向における最外表面間距離(n≧2の場合)(μm)
:x次介在物群の、鋼板圧延方向の粒子径(x=0の場合)または2つの最外粒子の鋼板圧延方向における最外表面間距離(x≧1の場合)(μm)]
The components of the steel plate
C: 0.12-0.3% (meaning mass%. The same applies to the components below),
Si: 0.5% or less (including 0%),
Mn: 1.5-3.0%
Al: 0.15% or less (excluding 0%),
N: 0.01% or less (excluding 0%),
P: 0.02% or less (not including 0%), and S: 0.01% or less (not including 0%)
The balance consists of iron and inevitable impurities,
The steel structure is a single martensite structure, and
In the surface layer region from the surface of the steel plate to the (plate thickness x 0.1) depth,
A n-th inclusions group determined by the n-th determination shown below, those outermost surface distance in the steel sheet rolling direction of the two outermost particles of the inclusion group is 100μm or more, the rolling surface 100 cm 2 A high-strength cold-rolled steel sheet excellent in bending workability, characterized by being 120 or less per piece.
(Nth judgment)
n-1 primary inclusion group (where n is an integer of 1 or more, and when n = 1, the 0th order inclusion group refers to inclusion particles) and one or more adjacent x order inclusion groups (x = 0 to 0). n-1, n is an integer of 1 or more, and the 0th order inclusion group means inclusion particles), and the minimum inter-surface distance between the nearest particles of the n-1st order inclusion group and the xth order inclusion group An inclusion group that satisfies the following formula (1) and is 60 μm or less is referred to as an “n-th order inclusion group”.
[In the formula (1),
λ: Minimum inter-surface distance (μm) between nearest particles of n−1 order inclusion group and x order inclusion group
σ y : yield strength of steel sheet (MPa)
d 1 : particle diameter in the steel sheet rolling direction of the n-1 primary inclusion group (when n = 1) or distance between the outermost surfaces of the two outermost particles in the steel sheet rolling direction (when n ≧ 2) (μm) )
d 2 : Particle size in the steel plate rolling direction of the x-th order inclusion group (when x = 0) or the distance between the outermost surfaces of the two outermost particles in the steel plate rolling direction (when x ≧ 1) (μm)]
更に他の元素として、Cr:2.0%以下(0%を含まない)および/またはB:0.01%以下(0%を含まない)を含む請求項1に記載の高強度冷延鋼板。   The high-strength cold-rolled steel sheet according to claim 1, further comprising, as other elements, Cr: 2.0% or less (not including 0%) and / or B: 0.01% or less (not including 0%). . 更に他の元素として、
Cu:0.5%以下(0%を含まない)、
Ni:0.5%以下(0%を含まない)、および
Ti:0.2%以下(0%を含まない)
よりなる群から選択される少なくとも1種の元素を含有する請求項1または2に記載の高強度冷延鋼板。
As other elements,
Cu: 0.5% or less (excluding 0%),
Ni: 0.5% or less (not including 0%), and Ti: 0.2% or less (not including 0%)
The high-strength cold-rolled steel sheet according to claim 1 or 2, comprising at least one element selected from the group consisting of:
更に他の元素として、V:0.1%以下(0%を含まない)および/またはNb:0.1%以下(0%を含まない)を含む請求項1〜3のいずれかに記載の高強度冷延鋼板。   The element according to any one of claims 1 to 3, further comprising V: 0.1% or less (not including 0%) and / or Nb: 0.1% or less (not including 0%) as other elements. High strength cold rolled steel sheet. 請求項1〜4のいずれかに記載の高強度冷延鋼板に、溶融亜鉛めっきが施された溶融亜鉛めっき鋼板。   A hot-dip galvanized steel sheet obtained by applying hot-dip galvanizing to the high-strength cold-rolled steel sheet according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の高強度冷延鋼板に、合金化溶融亜鉛めっきが施された合金化溶融亜鉛めっき鋼板。   An alloyed hot-dip galvanized steel sheet obtained by applying alloying hot-dip galvanizing to the high-strength cold-rolled steel sheet according to claim 1.
JP2009087408A 2009-03-31 2009-03-31 High strength cold-rolled steel sheet with excellent bending workability Active JP5342912B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009087408A JP5342912B2 (en) 2009-03-31 2009-03-31 High strength cold-rolled steel sheet with excellent bending workability
US12/708,109 US8460800B2 (en) 2009-03-31 2010-02-18 High-strength cold-rolled steel sheet excellent in bending workability
CN201010143379A CN101851732A (en) 2009-03-31 2010-03-17 The high strength cold rolled steel plate of excellent in bending workability
KR1020100028644A KR101198481B1 (en) 2009-03-31 2010-03-30 High-strength cold-rolled steel sheet excellent in bending workability
GB1108030.6A GB2477664B (en) 2009-03-31 2010-03-30 High-strength cold-rolled steel sheet excellent in bending workability
GB1005355A GB2470252B (en) 2009-03-31 2010-03-30 High-strength cold-rolled steel sheet excellent in bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087408A JP5342912B2 (en) 2009-03-31 2009-03-31 High strength cold-rolled steel sheet with excellent bending workability

Publications (2)

Publication Number Publication Date
JP2010236053A JP2010236053A (en) 2010-10-21
JP5342912B2 true JP5342912B2 (en) 2013-11-13

Family

ID=43090655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087408A Active JP5342912B2 (en) 2009-03-31 2009-03-31 High strength cold-rolled steel sheet with excellent bending workability

Country Status (1)

Country Link
JP (1) JP5342912B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402191B2 (en) * 2009-04-15 2014-01-29 Jfeスチール株式会社 Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP6017341B2 (en) * 2013-02-19 2016-10-26 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent bendability
WO2016177420A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826401B2 (en) * 1990-12-29 1996-03-13 日本鋼管株式会社 Manufacturing method of ultra high strength cold rolled steel sheet with excellent workability and impact characteristics
JPH05195149A (en) * 1992-01-21 1993-08-03 Nkk Corp Ultrahigh strength cold rolled steel sheet excellent in bendability and shock resistance
JP3450985B2 (en) * 1997-04-10 2003-09-29 新日本製鐵株式会社 High-strength cold-rolled steel sheet having good shape and excellent bendability and manufacturing method thereof
JP3845554B2 (en) * 2001-06-07 2006-11-15 株式会社神戸製鋼所 Super high strength cold-rolled steel sheet with excellent bending workability

Also Published As

Publication number Publication date
JP2010236053A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5466576B2 (en) High strength cold-rolled steel sheet with excellent bending workability
KR101198481B1 (en) High-strength cold-rolled steel sheet excellent in bending workability
US10982297B2 (en) Steel sheet and method for producing the same
JP6264507B2 (en) High strength galvanized steel sheet and manufacturing method thereof
KR102092492B1 (en) High-strength steel sheet, high-strength galvanized steel sheet and methods for manufacturing the same
US10745775B2 (en) Galvannealed steel sheet and method for producing the same
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
EP2256224A1 (en) High-strength galvanized steel sheet, high-strength alloyed hot-dip galvanized sheet, and high-strength cold-rolled steel sheet which excel in moldability and weldability, and manufacturing method for the same
US12077831B2 (en) Steel sheet, member, and methods for producing them
CN109321821B (en) High-strength steel sheet and method for producing same
CN112930413A (en) High-strength steel sheet and method for producing same
JP6540245B2 (en) High strength steel plate excellent in shape freezing property and method for manufacturing the same
KR20210127736A (en) Steel and its manufacturing method
KR102245008B1 (en) High-strength steel sheet and its manufacturing method
KR102513331B1 (en) High-strength hot-rolled galvanized steel sheet
US12071682B2 (en) Steel sheet, member, and methods for producing them
JP5342912B2 (en) High strength cold-rolled steel sheet with excellent bending workability
JP4901346B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics
JP5342911B2 (en) High strength cold-rolled steel sheet with excellent bending workability
CN114585759B (en) High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
CN114585758B (en) High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
JP5157235B2 (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
TWI643961B (en) Cold rolled steel sheet and hot-dip galvanized cold-rolled steel sheet
KR20240152341A (en) High-strength steel plate and its manufacturing method
KR20240097894A (en) steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5342912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150