以下、図面を参照しながら、本発明に係る液晶装置及び電子機器の各実施形態を説明する。本実施形態に係る液晶装置は、タッチパネル機能を有し、且つアクティブマトリクス駆動方式を採用した液晶装置である。
<1:液晶装置>
<1−1:液晶装置の全体構成>
先ず、図1及び図2を参照しながら、本実施形態に係る液晶装置1の全体構成を説明する。図1は、TFTアレイ基板をその上に形成された各構成要素と共に対向基板の側から見た液晶装置1の平面図であり、図2は、図1のII−II´断面図である。
図1及び図2において、液晶装置1では、本発明の「第1基板」の一例であるTFTアレイ基板10と、本発明の「第2基板」の一例である対向基板20とが対向配置されている。TFTアレイ基板10と対向基板20との間に液晶層50が封入されており、TFTアレイ基板10と対向基板20とは、複数の画素部が設けられた表示領域である画像表示領域10aの周囲に位置するシール領域に設けられたシール材52により相互に接着されている。
シール材52は、両基板を貼り合わせるための、例えば紫外線硬化樹脂、熱硬化樹脂等からなり、製造プロセスにおいてTFTアレイ基板10上に塗布された後、紫外線照射、加熱等により硬化させられたものである。シール材52中には、TFTアレイ基板10と対向基板20との間隔(基板間ギャップ)を所定値とするためのグラスファイバ或いはガラスビーズ等のギャップ材が散布されている。
シール材52が配置されたシール領域の内側に並行して、画像表示領域10aの額縁領域を規定する遮光性の額縁遮光膜53が、対向基板20側に設けられている。但し、このような額縁遮光膜53の一部又は全部は、TFTアレイ基板10側に内蔵遮光膜として設けられてもよい。尚、本実施形態においては、TFTアレイ基板10の中心から見て、この額縁遮光膜53より以遠が周辺領域として規定されている。
液晶装置1は、表示信号供給回路部101、走査線駆動回路104、及びセンサ用走査回路204を備えている。周辺領域のうち、シール材52が配置されたシール領域の外側に位置する領域において、表示信号供給回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられている。走査線駆動回路104は、この一辺に隣接する2辺の一方に沿い、且つ、額縁遮光膜53に覆われるようにして設けられている。センサ用走査回路204は、画像表示領域10aを介して走査線駆動回路104に向かい合うように設けられている。走査線駆動回路104及びセンサ用走査回路204は、額縁遮光膜53に覆われるように形成された複数の配線105によって相互に電気的に接続されている。
TFTアレイ基板10上の周辺領域には、後述する光センサ部から出力された出力信号を処理するとともに、光量調整部による光量の絞り量を制御する回路部を含む制御回路部201が形成されている。制御回路部201または後述するその機能の一部である受光信号処理回路部215は画像表示領域10aとの接続を簡単にするために表示信号供給回路101と一体に形成することが好ましい。
外部回路接続端子102は、外部回路及び液晶装置1を電気的に接続する接続手段の一例であるフレキシブル(FPC)基板200に設けられた接続端子に接続されている。液晶装置1が有するバックライトは、FPC200に搭載されたIC回路等から構成される、本発明の「光源光設定手段」の一例であるバックライト制御回路202によって制御される。
対向基板20の4つのコーナー部には、TFTアレイ基板10及び対向基板20間の上下導通端子として機能する上下導通材106が配置されている。他方、TFTアレイ基板10にはこれらのコーナー部に対向する領域において上下導通端子が設けられている。これらにより、TFTアレイ基板10及び対向基板20間で電気的な導通をとることができる。
図2において、TFTアレイ基板10上には、画素スイッチング用のTFTや走査線、データ線等の配線が形成された後の画素電極9a上に、配向膜が形成されている。他方、対向基板20上には、対向電極21の他、格子状又はストライプ状の遮光膜23、更には最上層部分に配向膜が形成されている。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなり、これら一対の配向膜間で、所定の配向状態をとる。
液晶装置1は、第1偏光板301、第2偏光板302、及び、本発明の「光源手段」の典型例であるバックライト206を備えている。第1偏光板301は、対向基板20上に配置されている。第2偏光板302は、TFTアレイ基板10の図中下側においてバックライト206及びTFTアレイ基板10間に配置されている。液晶装置1は、その動作時に、第1偏光板301の両面のうち対向基板20に臨まない側に位置する表示面301sに画像を表示する。
尚、図1及び図2に示したTFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等の回路部に加えて、後述する外光センサ222、メモリ223、センサ感度調整回路205、受光信号処理回路部215、及び画像信号処理回路部216が設けられている。加えて、TFTアレイ基板10上には、画像信号線上の画像信号をサンプリングしてデータ線に供給するサンプリング回路、複数のデータ線に所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路等が形成されていてもよい。
<1−2:液晶装置の回路構成>
次に、図3を参照しながら、液晶装置1の回路構成を説明する。図3は、液晶装置1の主要な回路構成を示したブロック図である。
図3において、液晶装置1は、表示信号供給回路部101、走査線駆動回路部104、センサ感度調整回路部205、センサ用走査回路204、受光信号処理回路215、本発明の「補償手段」の一例である画像処理回路部216、本発明の「外光検出手段」の一例である外光センサ222、本発明の「記憶手段」の一例であるメモリ223、バックライト206、及び表示部110を備えている。図1に示した制御回路部201は、センサ感度調整回路部205、受光信号処理回路部215、画像処理回路部216、バックライト制御回路202、及びメモリ223を備えて構成されている。
表示部110は、後述するようにマトリクス状に配列された複数の画素部72から構成されている。表示信号供給回路部101及び走査線駆動回路部104は、走査信号及び画像信号を所定のタイミングで表示部110に供給し、各画素部を駆動する。
センサ用走査回路部204は、液晶装置1の動作時に、後述する光検出回路部を動作させるための信号を各光センサ部に供給する。受光信号処理回路部215は、TFTアレイ基板10上の画像表示領域10aに設けられた光検出回路部から出力された受光信号を処理する。
画像処理回路部216は、受光信号処理回路部215から供給された処理済信号に基づいて構成される画像データを処理する。画像処理回路部216は、表示部110が有する複数の光検出回路部の夫々の受光信号に基づいて特定された画像から、表示面301sを指示する指等の指示手段を識別できた場合に、画像表示領域10aにおいて表示面301sを指示する指示手段の位置を特定し、特定された指示手段の位置をタッチ位置情報として外部回路部に出力する。他方、画像処理回路部216は、後に詳細に説明するように、光検出回路部が有する2つの光検出素子の夫々から出力される信号に基づいて、指示手段に正確に検知することが可能である。尚、指示手段の位置が特定できない場合には、光センサ部の感度を補正するための補正信号が表示信号供給回路101に供給され、この補正信号に基づいて、後述する光量調節部が入射光の光量を絞る絞り量を光量調節部毎に調節することも可能である。
<1−3:液晶装置の具体的な構成及び動作>
次に、図4乃至図11を参照しながら、液晶装置1の具体的な構成及び動作を詳細に説明する。図4は、液晶装置1の画像表示領域10aにおける各種素子、配線等の等価回路である。図5は、図4に示した光検出回路部の電気的な構成を詳細に示した回路図である。図6は、画素部の図式的平面図である。図7は、図6のVII−VII´断面図である。図8は、図6のVIII−VIII´断面図である。図9は、図6のIX−IX´断面図である。図10は、図8に示した断面を詳細に示した断面図である。図11は、光検出素子の周辺の主要部の平面形状を示した平面図である。尚、図4では、TFTアレイ基板10上にマトリクス状に配置された複数の画素部のうち実質的に画像の表示に寄与する部分の回路構成と共に光検出回路部を示している。図7乃至図10では、各層・各部材を図面上で認識可能な程度の大きさとするため、該各層・各部材ごとに縮尺を異ならしめてある。
図4を参照しながら、画素部72の回路構成を説明する。図4において、液晶装置1の画像表示領域10aを構成するマトリクス状に形成された複数の画素部72の夫々は、赤色を表示するサブ画素部72R、緑色を表示するサブ画素部72G、及び青色を表示するサブ画素部72Bを含んで構成されており、画像表示領域10aに形成された複数の光検出回路部250の夫々に電気的に接続されている。したがって、液晶装置1は、カラー画像を表示可能な表示装置である。
サブ画素部72R、72G及び72Bの夫々は、画素電極9a、本発明の「画素スイッチング用素子」の一例であるTFT30、及び液晶素子50aを備えている。
TFT30は、画素電極9aに電気的に接続されており、液晶装置1の動作時に画素電極9aをスイッチング制御する。画像信号が供給されるデータ線6aは、TFT30のソースに電気的に接続されている。データ線6aに書き込む画像信号S1、S2、・・・、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしてもよい。
TFT30のゲートに走査線3aが電気的に接続されており、液晶装置1は、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、・・・、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、・・・、Snが所定のタイミングで書き込まれる。画素電極9aを介して液晶に書き込まれた所定レベルの画像信号S1、S2、・・・、Snは、対向基板に形成された対向電極との間で一定期間保持される。
液晶層50に含まれる液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能とする。ノーマリーホワイトモードであれば、各サブ画素部の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各サブ画素部の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として液晶装置1からは画像信号に応じたコントラストをもつ光が出射される。蓄積容量70は、画像信号がリークすることを防ぐために、画素電極9aと対向電極との間に形成される液晶素子50aと並列に付加されている。容量電極線300は、蓄積容量70が有する一対の電極のうち固定電位側の電極である。
次に図5を参照しながら、光検出回路部250の詳細な回路構成を説明する。
図5において、光検出回路部250は、光量調節部82及び光センサ部150を備えている。
光量調節部82は、液晶素子50b、調節制御TFT130、及び蓄積容量170を備えて構成されている。光量調節部82は、複数の光検出回路部250の夫々に含まれており、制御回路部201の制御下において、画像表示領域10aにおいて互いに独立してその動作が制御される。
液晶素子50bは、調節制御TFT130及び蓄積容量170の夫々に電気的に接続されており、液晶素子50bが有する液晶部分の配向状態が調節制御TFT130によって制御され、光センサ部150に入射する入射光の光量を調節する。蓄積容量170が有する一対の容量電極の一方は、固定電位線300に電気的に接続されている。
調節制御TFT130のゲート及びソースの夫々は、走査線3a及び信号線6a1の夫々に電気的に接続されている。調節制御TFT130は、走査線3aを介して供給された選択信号が供給されることによってそのオンオフが切り換え可能に構成されている。調節制御TFT130は、そのオンオフに応じて信号線6a1を介して供給された調節信号を液晶素子50bに供給する。液晶素子50bは、調節信号に応じて液晶部分の配向状態が制御されることによって光センサ部150に入射する入射光の光量を調節する。
光センサ部150は、本発明の「第1光検出素子」及び「第2光検出素子」の夫々一例である光検出素子191及び192、これら素子の動作を制御する素子制御用TFT161及び162、蓄積容量152、リセットTFT163、信号増幅用TFT154、並びに出力制御用TFT155を備えて構成されている。
光検出素子191は、画像表示領域10aにおいて液晶装置1の表示面301sから入射する入射光L2のうち光調節部82によって光量が調節された入射光L2´(図7乃至図9参照。)を受光する。光検出素子192は、TFTアレイ基板10の裏面側に配置されたバックライト206から液晶層50に向かって照射される表示用光L1を受光する。
素子制御用TFT161及び162の夫々は、光検出素子191及び192の夫々の出力側に電気的に接続されており、画像処理回路部216の制御下でこれら光検出素子から出力された出力信号のノードaへの出力を制御する。より具体的には、素子制御用TFT161及び162は、これらTFTの夫々に電気的に接続された制御線171及び172を介して制御信号供給線361及び362の夫々から供給された制御信号によってそのオンオフ動作が切り換えられ、ノードaに対する各光検出素子からの出力信号の供給が制御される。尚、このような制御信号の供給は、画像処理回路部216の制御下で制御される。
リセット用TFT163のソース、ゲート及びドレインの夫々は、光検出素子191及び192、リセット用信号線350、及び信号増幅用TFT154の夫々に電気的に接続されている。信号増幅用TFT154のソース、ゲート及びドレインの夫々は、電源線351、光検出素子191及び192、並びに出力制御用TFT155の夫々に電気的に接続されている。出力制御用TFT155のソース、ゲート及びドレインの夫々は、信号増幅用TFT154、選択信号線353、及び読み出し信号線6a2の夫々に電気的に接続されている。
光検出素子191が入射光L2又はL2´を受光した際には、受光素子191に光電流が生じ、リセット用TFT163、電圧増幅用TFT154、及び出力制御用TFT155の夫々の動作に応じて、光検出素子191に電気的に接続された電源線352及びノードa間の電圧Vに対応した信号が読み出し信号線6a2に読み出される。尚、読み出し線6a2に読み出される信号、即ち、入射光L2又はL2´に基づいて指示手段を特定する信号は、画像処理回路216の制御下でその動作が制御される光検出素子192から出力された補償信号によって補償される。また、後述するように、画像処理回路216において信号を処理する際に、メモリ223から読み出されたデータに基づいて補償される場合もある。
次に、図6乃至図10を参照しながら、液晶装置1の具体的な構成を説明する。
図6において、画素部72は、X方向に沿って配列された3つのサブ画素部72R、72G及び72B、並びに、光検出回路部250を有している。
サブ画素部72R、72G及び72Bサブ画素部の夫々は、開口部73R、73G及び73Bの夫々を有している。液晶装置1の動作時において、開口部73R、73G及び73Bの夫々から赤色光、緑色光、及び青色光の夫々が出射されることによって液晶装置1によるカラー画像の表示が可能になる。加えて、サブ画素部72R、72G及び72Bの夫々は、各サブ画素部をスイッチングするTFT30を有している。
光検出回路部250は、調節制御TFT130、開口部83、及びTFT回路部80を有している。TFT回路部80は、リセット用TFT163、電圧増幅用TFT154、及び出力制御用TFT155を含んで構成されており、開口部83に臨む光検出素子191及び192の動作を画像処理回路の制御下で制御すると共に、光検出素子191に発生した光電流、或いは光電流を光検出素子192で発生した光電流を増幅し、読み出し線6a2に出力する。
図7乃至図9において、液晶装置1は、遮光膜153、平坦化膜20aに埋め込まれた3種類のカラーフィルタ154R、154G及び154B、液晶素子50b、光検出素子191及び192、バックライト206、並びに、第1偏光板301、及び第2偏光板302、本発明の「遮光膜」の一例である遮光膜199を備えている。
バックライト206は、導光板206a、及び表示用光源206bを備えて構成されており、図中TFTアレイ基板10の下側に配置されている。
表示用光源206bは、画像表示領域10aに画像を表示するための、本発明の「光源光」の典型例である表示用光L1を生成する。表示用光L1は、可視光であり、各サブ画素部の駆動に応じて液晶層50によって変調される。
導光板206aは、例えば、表示用光L1を透過可能なアクリル樹脂で構成されており、表示用光L1を画像表示領域10aに導く。液晶装置1は、画像を表示するために表示用光L1を利用すると共に、表示面301sに接する、或いは指示する指等の指示手段を検知するために表示用光L1及び外光を利用する。
第1偏光層301と、液晶素子50bの他方の側に配置された不図示の偏光層とは、夫々の光軸が互いに交差するようにクロスニコル配置されている。液晶素子50bは、液晶層50のうち受光素子191及び192に重なる液晶部分と、当該液晶部分を挟持する第1電極159a及び第2電極21aを有している。
光量調節部82は、表示面301sから開口部83に入射する入射光L2の光量を調節する絞り機構として機能する。本実施形態では、図5を参照しながら説明したように、液晶素子50bが有する液晶部分の配向状態を制御可能であるため、入射光L2の光量を光量調節部82毎に独立して調節できる。したがって、各画素部において液晶層の配向状態を制御することによって表示用光の光強度を制御する場合と同様に、各光センサ部150の光検出素子191に入射する入射光L2´の光量を独立して調節できる。
よって、複数の光量調節部82によれば、画像表示領域10aを構成する複数の領域の夫々において表示面301sから入射する入射光L2の光量の夫々が、各光センサ部150が検出可能な光量の検出可能範囲から外れている場合であっても、光センサ部150毎に、或いは任意の個数の光センサ部150を一群とする群毎に、各光センサ部150に入射する入射光L2´の光量が検出可能範囲に入るように光量が調節される。
特に、画像表示領域10aを構成する複数の領域の夫々において、指等の指示手段に遮光される外光等の環境の変化に起因して指示手段をその周囲と識別できない場合、より具体的には、例えば外光の光量が強すぎることによって、表示面301sにおいて指示手段の影が投影される領域と、その領域の周囲の領域との夫々に入射する入射光L2の光量が受光素子191及び192による光量の検出可能範囲から外れている場合には、指示手段の影が投影される領域とその領域の周囲の領域との夫々に入射する入射光L2の光量が検出可能範囲にシフトされるように各光量調節部82が入射光L2の光量を調節する。つまり、複数の光量調節部82の夫々は、各光センサ部150に入射する入射光L2の光量を互いに独立して調節可能な絞り機構として機能する。
このように、液晶装置1によれば、光センサ部150に入射する入射光L2の光量が光センサ部による検出可能範囲から外れている場合でも、当該検出可能範囲に光量が含まれるように入射光L2の光量が調節され、検出可能範囲に光量が調節された入射光L2´が光センサ部150に照射されることになる。したがって、液晶装置1によれば、光量調節部82によって光量が調節されることなく、入射光L2が光センサ部150にそのまま入射する場合には識別できなかった指示手段を識別でき、表示面301s上の画像表示領域10aにおける指示手段の位置を特定できる。
加えて、複数の光量調節部82の夫々が互いに独立して光量を調節できるため、外光を含む入射光L2の光強度が画像表示領域10a内の各領域で相互に異なる場合であっても、光センサ部150による検出可能範囲から光量が外れている領域について選択的に光量を調節可能であり、指示手段を検出する検出精度を高めることが可能である。
このように、液晶装置1は、光学系の途中にメカニカルな絞り機構が設けられたカメラ等の撮像装置と異なり、本来画像を表示するために用いられる液晶層の一部を利用して入射光L2の光量を調節できることから、液晶装置1内に絞り機構を設けるためのスペースを確保しなくても入射光L2の光量を調節でき、指示手段を検知する精度を高めることが可能である。
第1電極159aは、TFTアレイ基板10上において画像表示領域10aを構成する複数の画素部72の夫々に設けられた複数の画素電極9aと同層に形成されている。したがって、ITO等の透明導電材料によって構成される画素電極9aを形成する工程と共通の工程によって第1電極159aを形成でき、液晶装置1の製造プロセスを簡便にできる。第2電極21aは、対向電極21が光検出素子191及び192に重なる電極部分である。
液晶装置1は、画素電極9aに重なるように延びる第2偏光層302を備えている。第2偏光層302は、上述した不図示の偏光層の光軸が延びる方向に沿って延びる光軸を有している。したがって、第2偏光層302によれば、各画素に入射する表示用光L1を直線偏光させることが可能である。
尚、第1偏光層301及び第2偏光層302は、延伸されたPVA(ポリビニルアルコール)膜をTAC(トリアセチルセルロース)で構成された保護フィルムによって挟み込んで構成されている。
図7乃至図9において、サブ画素部73Rは、表示用光L1が液晶層50によって変調された変調光のうち赤色光を透過可能なカラーフィルタ154Rを介して赤色光L1Rを表示する。サブ画素部73G及び73Bの夫々は、サブ画素部73Rと同様に、カラーフィルタ154G及び154Bの夫々を介して緑色光L1G及び青色光L1Bの夫々を表示する。
図7及び図8に示すように、遮光膜153は、開口領域の縁の少なくとも一部を規定する、所謂ブラックマトリクスである。したがって、遮光膜153によれば、非開口領域に形成された画素スイッチング用TFT30等の半導体素子、及びTFT回路部80に表示面301s側から入射光L2が照射されることを低減でき、TFT30及びTFT回路部80に含まれる半導体素子に発生する光リーク電流を低減できる。
図6乃至図9に示すように、光センサ部82は、TFTアレイ基板10上において、画素部72の開口領域を互いに隔てる非開口領域に形成されている。また、液晶装置1では、開口部73R、73G及び73Bから表示用光L1R、L1G及びL1Bの夫々が出射される。したがって、液晶装置1によれば、光センサ部82によって表示用光L1R、L1G及びL1Bが遮られることがない。
次に、図10及び図11を参照しながら、光検出素子191及び192、並びに遮光膜199の詳細な構成を説明し、その後、図3及び図10を参照しながら、液晶装置1の動作を詳細に説明する。
図10において、光検出素子191は、受光層191a´と、受光層191a´の両面の夫々において受光層191a´に重なり、且つ受光層191a´に電気的に接続されたP型導電領域191b´及びN型導電領域191c´とを有する縦型PINダイオードである。したがって、液晶装置1の製造時に、順次P型導電領域191b´、受光層192a´、及びN形導電領域192c´を形成することによって、光検出素子192上に光検出素子191を容易に形成できる。
光検出素子192は、受光層192a´を有している。光検出素子192は、半導体層192aの一部を各々構成し、且つ受光層192a´に電気的に接続されたP型導電領域192b´及びN型導電領域192c´が受光層192a´の受光面に重ならない横型PINダイオードである。
絶縁膜41の表面の層が、本発明の「一の層」の一例であり、TFT30及び光検出素子192は、絶縁膜41の表面の層に、即ち同層に形成されている。したがって、TFT30及び光検出素子192をTFTアレイ基板10上の互いに異なる層に形成する場合に比べて、液晶装置1の構成を簡便にすることができることに加え、互いに共通の工程によってTFT30及び光検出素子192を形成できる。
より具体的には、半導体層1a及び192aは、例えば、絶縁膜41上にポリシリコン層等の半導体層を形成した後、当該半導体層をTFT30及び受光層192a´の夫々のレイアウトに応じた平面パターンとなるように、同時に、或いは並行してパターニングされることによって、同時に、或いは並行して形成される。よって、半導体層1aを形成する工程とは別に半導体層192aを形成する工程を設ける場合に比べて、液晶装置1の製造プロセスを簡便化することが可能である。尚、光検出素子191は、絶縁膜43bに形成された受光層191a´を有しており、光検出素子192が絶縁膜41上に形成された後に形成される。
TFT30が有する半導体層1aは、例えば低温ポリシリコン層であり、ゲート電極3a1に重なるチャネル領域1a´、ソース領域1b´、及びドレイン領域1c´を含んでいる。チャネル領域1a´には、液晶装置1の動作時に、走査線3aに電気的に接続されたゲート電極3a1からの電界によりチャネルが形成される。絶縁膜42の一部を構成する絶縁膜42aのうちゲート電極3a1及び半導体層1a間に延びる部分は、TFT30のゲート絶縁膜を構成している。ソース領域1b´及びドレイン領域1c´の夫々は、チャネル領域1a´の両側の夫々にミラー対称に形成されている。
ゲート電極3a1は、ポリシリコン膜等の導電膜や、例えば、Ti、Cr、W、Ta、Mo、Pd、Al等の金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの等によって形成されており、ソース領域1b´及びドレイン領域1c´に重ならないように絶縁膜42aを介してチャネル領域1a´上に設けられている。尚、TFT30は、ソース領域1b´及びドレイン領域1c´の夫々に低濃度ソース領域及び低濃度ドレイン領域の夫々が形成されたLDD(Lightly Doped Drain)構造を有していてもよい。
光検出素子191は、P型導電領域191b´及びN型導電領域191c´のうち受光層191a´上に形成されたN型導電領域191c´に重なり、且つN型導電領域191c´上においてN型導電領域191c´に電気的に接続された透明な上電極159aを有している。
素子制御用TFT161は、絶縁膜41上に形成された半導体層161aを有している。半導体層161aは、ソース領域161b´、チャネル領域161a´、及びドレイン領域161c´から構成されている。ゲート電極163aは、ゲート絶縁膜42aを介してチャネル領域161a´に重なっている。ソース領域161b´及びドレイン領域161c´の夫々は、コンタクトホール166及び162の夫々を介して端子部164及び165の夫々に電気的に接続されている。端子部164は、コンタクトホールを介して上電極159aに電気的に接続されている。
上電極159aは、ITO等の透明導電材料から構成されており、画素電極9aと同時に、或いは並行して絶縁膜43c上に形成されている。上電極159aによれば、光検出素子191の上層側から入射光L2´が光検出素子191に入射した場合に、上電極159aによって入射光L2´が遮られることがなく、入射光L2´を検出できる。
光検出素子191は、P型導電領域191b´及びN型導電領域191c´のうち受光層191a´下に形成されたP型導電領域191b´に重なり、且つP型導電領域191b´下において遮光膜199に電気的に接続されている。遮光膜199は、導電性を有しており、光検出素子191の電極を構成している。したがって、バックライト206から光検出素子191に向かって照射される表示用光L1が直接光検出素子191に照射されることを低減できる。
遮光膜199は、TFT30に電気的に接続された端子部91及び92と共に、本発明の「他の層」の一例である絶縁膜42bの表面の層に形成されている。したがって、遮光膜199は、端子部91及び92と同層に形成されている。よって、遮光膜199によれば、端子部91及び92、並びに遮光膜199を互いに異なる層に別々に形成する場合に比べて、液晶装置1の構成を簡便にすることができると共に、液晶装置1の製造プロセスも簡便化することが可能である。
光検出素子191及び192は、これら素子の入力側において遮光膜199を介して相互に電気的に並列に接続されている。したがって、端子部93及び上電極159aの夫々から出力された各光検出素子の出力信号が読み出し信号線6a2に読み出し可能となっている。
次に、図11を参照しながら、光検出素子191及び192、並びに遮光膜199の平面的形状を説明する。
図11において、遮光膜199と、光検出素子191及び192とは、相互に重なっており、遮光膜199のサイズは、光検出素子191より平面的に見て大きい。したがって、バックライト206から出射された表示用光L1と、表示用光L1が液晶装置1の内部で反射等されたことにより生じた迷光とが光検出素子191に照射されることが低減される。
加えて、遮光膜199のサイズは、光検出素子192より平面的に見て大きい。したがって、入射光L2又はL2´が光検出素子192に照射されないように、光検出素子192の上層側で入射光L2又はL2´を遮光できる。よって、光検出素子192が表示用光L1を検出する際に、光検出素子192が同時に入射光L2又はL2´を検出することを低減でき、光検出素子191及び192の夫々で入射光L2又はL2´、及び表示用光L1を別々に検出することが可能である。
次に、図3及び図10を参照しながら、液晶装置1の動作を詳細に説明する。
図3及び図10において、バックライト206は、液晶装置1の動作時にTFTアレイ基板10の裏面側から液晶層50に向かって表示用光L1を照射する。表示用光L1は、画素電極9a及び対向電極21間に介在する液晶層50によって変調され、所望の画像が表示面301sに表示される。
光検出素子191は、対向基板20の両面のうち液晶層50に臨まない面である表示面301sに入射する入射光L2をそのまま、或いは入射光L2の光量が調節された入射光L2´を検出する。遮光膜199は、光検出素子191の下層側において光検出素子191に重なっており、バックライト206から液晶層50に向かって出射された表示用光L1が光検出素子191に直接照射されないように表示用光L1を遮光する。光検出素子192は、遮光膜199の下層側において遮光膜199に重なり、且つ、液晶装置1の動作時に表示用光L1を検出する。
このような光検出素子191及び192の夫々は、これら素子間に遮光膜199が形成されているため、入射光L2´及び表示用光L1を別々に検出できる。
ここで、表示用光L1のうち光検出素子191に照射される光を完全に遮光可能なように遮光膜199に形成すれば、光検出素子191は、入射光L2´のみを検出でき、表示用光L1の影響を受けることなく、指示手段を特定できるとも思われる。
しかしながら、バックライト206から直接光検出素子191に照射される光だけでなく、液晶装置1内部で表示用光L1が屈折及び反射され、3次元的に見て遮光膜199及び光検出素子191間の隙間に斜めに入射する迷光も存在し、当該迷光が入射光L2´とは別に光検出素子191に照射されてしまう。加えて、このような迷光が遮光膜199及び光検出素子191間で繰り返し反射された後、光検出素子191の受光層に照射されてしまう可能性もある。
したがって、光検出素子191の下層側、即ち、光検出素子から見てバックライト206が配置された側に遮光膜199を形成したとしても、遮光膜199によって遮光可能な光は、表示用光L1のうちバックライト206から直接光検出素子191に向かって照射される光のみであり、上述した迷光を確実に遮光することは技術的に困難である。このような状況下では、光検出素子191が、表示面301sから入射した入射光L2或いはL2´、即ち、表示面301sを指示する指示手段が外光或いは表示面301sから出射された光を反射することによって生じた光と、上述した迷光等とを同時に検出した場合には、当該迷光等がノイズとなり、光検出素子191によって検出された入射光L2又はL2´の光強度に基づいて指示手段を正確に検知することが困難になる。
そこで、次に、上述したノイズの影響を排除でき、指示手段の正確な検知が可能となる液晶装置1の具体的な動作を説明する。
図3及び図10において、画像処理回路部216は、光検出素子192が検出した表示用光L1の光強度に基づいて、光検出素子191が検出した入射光L2又はL2´の光強度を補償する。より具体的には、画像処理回路部216は、例えば、光検出素子191及び192を光センサ部150に電気的に接続されており、光検出素子191が検出した入射光L2又はL2´の光強度を補償するように、即ち、入射光L2又はL2´と共に光検出素子191によって検出された表示用光L1の光強度等のノイズを除去するように、光検出素子191及び192の夫々の動作を制御する制御信号を制御線171及び172を介して制御用TFT161及び162に供給する。これにより、光検出素子191及び192の夫々のオンオフ動作が切り換えられ、光検出素子191によって検出された入射光L2又はL2´の光強度が補償される。
したがって、液晶装置1によれば、光検出素子191が検出した入射光L2又はL2´の光強度のうち表示用光L1に起因して検出されたノイズ部分を除去することが可能であり、表示面301sを指示する指等の指示手段を正確に特定できる。これにより、表示面301sに画像を表示する表示用光L1に用いられるバックライト206の影響を低減し、液晶装置1が画像を表示する表示性能を損なうことなく、タッチパネル機能の性能を高めることが可能である。
また、画像処理回路部216は、液晶装置1の動作時に、メモリ223に記憶された補償係数を読み出し、光検出素子191によって検出された入射光L2又はL2´の光強度を補償することも可能である。このような補償係数は、表示用光L1の光強度に応じて光検出素子191によって検出される入射光L2又はL2´の光強度を補正する補正量を規定する係数であり、液晶装置1の動作前に予めメモリ223に記憶されていてもよいし、液晶装置1の動作時に逐次記憶されてもよい。このような補償係数に基づく入射光L2又はL2´の光強度の補償によれば、光検出素子191及び192のオンオフ動作による補償だけでなく、光検出素子191から出力される、入射光L2又はL2´に対応した出力信号自体を補償することも可能であり、指示手段を確実に検知できる。
また、画像処理回路部216は、画像の表示品位を低下させることなく、且つ液晶装置1の消費電力を低減する目的でバックライト206から出射される表示用光L1が互いに異なる値に設定された場合でも、指示手段を確実に検知できるように光検出素子191及び192の動作を制御することが可能である。
バックライト制御回路202は、外光センサ222によって検出された外光の光強度に応じて、表示用光L1の光強度を互いに異なる値に設定することが可能である。より具体的には、外光センサ222は、液晶装置1の動作時に液晶装置1の周辺における明るさ、即ち外光の光強度を検出する。バックライト制御回路202は、バックライト206の駆動を制御可能なようにバックライト206に電気的に接続されており、例えば、外光の光強度が低い場合、即ち液晶装置1の周辺が暗い場合には、表示用光L1の光強度を低く設定することによって画像を表示する表示性能を低下させることなく、液晶装置1が消費する消費電力を低減する。
また、バックライト制御回路202は、外光の光強度が高い場合、即ち、液晶装置1の周辺が明るい場合には、表示用光L1の光強度を高めることによって表示面301sに表示される画像の輝度を高めることができ、画像の表示品位を高めることが可能である。特に、液晶装置1が携帯型電子機器の表示部として用いられた場合には、当該機器の連続使用時間を延ばす観点からみれば、画像の表示品位を低下させることなく、消費電力を低減できることは大きな利点になる。
メモリ223は、バックライト制御回路202の制御下で表示用光L1の相互に異なる光強度の値毎に、光検出素子192によって検出された表示用光L1の複数の光強度を記憶する。メモリ223は、表示用光L1の光強度の互いに異なる値を、液晶装置1の駆動に先んじて予め記憶していてもよし、液晶装置1の動作時に表示用光L1の光強度を変更する毎に記憶することもできる。
メモリ223に記憶された補償係数は、表示用光L1の互いに異なる光強度の値の夫々と、入射光L2又はL2´の光強度とに基づいて算出された複数の差分値である。このような差分値に基づいて、画像処理回路216は、指示手段を検知可能なように、入射光L2又はL2´の光強度を補償することも可能である。
したがって、液晶装置1によれば、外光の光強度に応じて、表示用光L1の光強度が互いに異なる複数の光強度の夫々に設定された場合であっても、入射光L2又はL2´の光強度のうち表示用光L1の光強度が占めるノイズ部分を相殺することができ、外光の光強度に応じて消費電力を低減しつつ、高品位の画像の表示が可能であり、且つ指示手段を確実に検知できる。
<2:電子機器>
次に、図12及び図13を参照しながら、上述した液晶装置を具備してなる電子機器の実施形態を説明する。
図12は、上述した液晶装置が適用されたモバイル型のパーソナルコンピュータの斜視図である。図12において、コンピュータ1200は、キーボード1202を備えた本体部1204と、上述した液晶装置を含んでなる液晶表示ユニット1206とから構成されている。液晶表示ユニット1206は、液晶パネル1005の背面にバックライトを付加することにより構成されており、正確に各種情報を入力できるタッチパネル機能を有している。
次に、上述した液晶装置を携帯電話に適用した例について説明する。図13は、本実施形態の電子機器の一例である携帯電話の斜視図である。図13において、携帯電話1300は、複数の操作ボタン1302とともに、上述した液晶装置と同様の構成を有する液晶装置1005を備えている。携帯電話1300によれば、高品位の画像表示が可能であると共に、指等の指示手段によって表示面を介して正確に情報を入力可能である。加えて、消費電力を低減でき、長時間に亘って当該携帯電話の使用が可能になる。
1・・・液晶装置、10・・・TFTアレイ基板、20・・・対向基板、50・・・液晶層、50a,50b・・・液晶素子、72・・・画素部、82・・・光量調節部、150・・・光センサ部、191,192・・・光検出素子、216・・・画像処理回路部、202・・・バックライト制御回路、206・・・バックライト、222・・・外光センサ、223・・・メモリ