[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5239058B2 - High speed rotating body - Google Patents

High speed rotating body Download PDF

Info

Publication number
JP5239058B2
JP5239058B2 JP2009000609A JP2009000609A JP5239058B2 JP 5239058 B2 JP5239058 B2 JP 5239058B2 JP 2009000609 A JP2009000609 A JP 2009000609A JP 2009000609 A JP2009000609 A JP 2009000609A JP 5239058 B2 JP5239058 B2 JP 5239058B2
Authority
JP
Japan
Prior art keywords
disk
fiber
rotating body
outer diameter
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009000609A
Other languages
Japanese (ja)
Other versions
JP2010159773A (en
Inventor
登 廣嶋
健 後藤
博志 八田
豊 岩堀
樹明 橋本
聡 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2009000609A priority Critical patent/JP5239058B2/en
Publication of JP2010159773A publication Critical patent/JP2010159773A/en
Application granted granted Critical
Publication of JP5239058B2 publication Critical patent/JP5239058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Rolls And Other Rotary Bodies (AREA)

Description

本発明は、電力貯蔵システム用のフライホールや遠心分離機のローターなどに使用される高速回転体に関する。   The present invention relates to a high-speed rotating body used for a flyhole for a power storage system, a rotor of a centrifuge, and the like.

回転体がより高速に回転しうるようになることは、多様な分野における技術革新に関係する。例えば、電気エネルギーを回転の運動エネルギーに蓄えることのできるフライホール、高速で回転することでより効率的に分析などを行うことができる遠心分離機などが考えられる。   Being able to rotate the rotating body at a higher speed relates to technological innovation in various fields. For example, a flyhole that can store electrical energy in rotational kinetic energy, a centrifuge that can perform analysis more efficiently by rotating at high speed, and the like can be considered.

円盤の外縁での速度(周速と称す)は、軸回りの角速度と円盤の半径との積で与えられる。これまでに産業向けに使用されている回転体は、その周速が1000m/s以下である。これは、回転体として、材料強度と構造の限界から制約を受けてきためである。ここで、ある材料の円盤がある周速で破壊するとき、これを破壊周速とする。   The speed at the outer edge of the disk (referred to as peripheral speed) is given by the product of the angular speed around the axis and the radius of the disk. The rotating body used so far for industrial use has a peripheral speed of 1000 m / s or less. This is because the rotating body has been restricted by the limitations of material strength and structure. Here, when a disk made of a certain material breaks at a certain peripheral speed, this is defined as a fracture peripheral speed.

一般に金属のような等方性材料であれば、厚みが一様な円盤の破壊周速は、その比強度によって決定されることが知られている。たとえば、超々ジュラルミンのA70705T6はその降伏応力(460MPa)と密度(2800kg/m3)から、破壊周速は631m/sと求められる。 In general, it is known that the fracture peripheral speed of a disk having a uniform thickness is determined by the specific strength of an isotropic material such as a metal. For example, A70705T6 of ultra-duralumin is required to have a fracture peripheral speed of 631 m / s from its yield stress (460 MPa) and density (2800 kg / m 3 ).

繊維強化プラスチックは、その高比強度から破壊周速は1000m/s以上と算出される。特に炭素繊維は、高い強度を有するので従来の繊維強化プラスチックス製円盤(CFRP製円盤と称す)として広く用いられてきた。これまでにCFRP製円盤は、回転体の周方向に繊維を巻きつけた均一厚みの孔あき円盤(周巻き円盤と称す)が主として研究されてきた。   The fiber reinforced plastic is calculated to have a breaking peripheral speed of 1000 m / s or more from its high specific strength. In particular, since carbon fiber has high strength, it has been widely used as a conventional fiber-reinforced plastic disk (referred to as a CFRP disk). So far, CFRP discs have mainly been researched with perforated discs of uniform thickness (referred to as “circular winding discs”) in which fibers are wound in the circumferential direction of a rotating body.

直交異方性又は等方性の孔あき円盤では、回転時の応力としては周方向に沿う応力が圧倒的に高くなるため、周方向に炭素繊維を巻きつけた周巻き円盤は高い破壊回転速度を示すことが期待された。しかし、径方向には繊維で強化されていないため、径方向の強度は樹脂にほぼ等しく、繊維に沿った破壊が最大回転速度を制限していた。   In an orthotropic or isotropic perforated disk, the stress along the circumferential direction is overwhelmingly high as the rotational stress, so the circumferentially wound disk wrapped with carbon fibers in the circumferential direction has a high fracture rotation speed. Was expected to show. However, since it is not reinforced with fibers in the radial direction, the strength in the radial direction is almost equal to that of the resin, and breakage along the fibers limits the maximum rotation speed.

一般的に回転円盤では、内外径比が小さくなると径方向の応力は大きくなる。ここで内外径比とは、外径に対する内径の比であり、小さな内外径比の円盤とは外径に比べて比較的小さな内径の穴が開いている円盤を意味する。周巻き円盤では相対的に内外径比が小さくなると径方向の応力が樹脂の強度を越え、周方向の繊維束間に剥離(破壊)が生じる。   Generally, in a rotating disk, the radial stress increases as the inner / outer diameter ratio decreases. Here, the inner / outer diameter ratio is the ratio of the inner diameter to the outer diameter, and the disk having a smaller inner / outer diameter ratio means a disk having a hole having a relatively smaller inner diameter than the outer diameter. In the circumferentially wound disk, when the inner / outer diameter ratio becomes relatively small, the radial stress exceeds the strength of the resin, and separation (breakage) occurs between the circumferential fiber bundles.

繊維間の剥離を抑える手法として、いくつかの周巻き円盤を圧入によって同心円状に組み立てる手法が検討されてきた。この方法は、圧入によって圧縮の径方向応力を予め与えるものであり、繊維間の剥離を抑える効果はある程度あった。しかし圧入では双方のリングの端部で応力集中が生じるので成形プロセス上の限界がある。このためこの方法による円盤の内外径比は0.6以上に制限されていた。   As a technique for suppressing separation between fibers, a technique for concentrically assembling several circular disks by press fitting has been studied. This method preliminarily applies a compressive radial stress by press-fitting, and has an effect of suppressing peeling between fibers to some extent. However, in press fitting, stress concentration occurs at the ends of both rings, so there is a limit in the molding process. For this reason, the inner / outer diameter ratio of the disk by this method is limited to 0.6 or more.

CFRP製の円盤を回転体として実際に使用するためには、図6に示すように円盤30を回転軸に保持するためにCFRP製円盤の内周側にハブを接合32し、ハブに回転軸34を組み付ける必要があった。例えば、アルミ(A7075)製のハブを取り付けることを考える。前述のようにアルミの破壊周速は631m/であり、ここで内外径比0.6のCFRP円盤の内側に、アルミ製ハブを接合させるとする。このときアルミ製ハブが破壊しない最外周の速度の限界は、631を0.6で除して約1051m/sとなる。言い換えると、CFRP円盤の外周が1051m/sであるとき、アルミハブは破壊周速の631m/sに達しており、これ以上の外周速に耐えることはできない。CFRP製円盤は1051m/sを超えるようにすることは十分可能であるが、上述のようにアルミ固有の材料強度の制約から、内外径比0.6のCFRP製円盤ではその周速は1000m/s程度が限界となる。これ以上の内外径比においては、常にアルミ製ハブの破壊が先に生じ、円盤全体の破壊周速は1000m/sを超えることはない。   In order to actually use a CFRP disk as a rotating body, as shown in FIG. 6, in order to hold the disk 30 on the rotating shaft, a hub is joined 32 to the inner peripheral side of the CFRP disk, and the rotating shaft is connected to the hub. 34 had to be assembled. For example, consider attaching an aluminum (A7075) hub. As described above, the fracture peripheral speed of aluminum is 631 m /, and it is assumed here that an aluminum hub is joined to the inside of a CFRP disk having an inner / outer diameter ratio of 0.6. At this time, the limit of the outermost peripheral speed at which the aluminum hub does not break is approximately 1051 m / s obtained by dividing 631 by 0.6. In other words, when the outer periphery of the CFRP disk is 1051 m / s, the aluminum hub has reached the breaking peripheral speed of 631 m / s and cannot withstand an outer peripheral speed higher than this. Although it is sufficiently possible for the CFRP disk to exceed 1051 m / s, the peripheral speed of the CFRP disk having an inner / outer diameter ratio of 0.6 is 1000 m / s due to the limitation of the material strength inherent to aluminum as described above. The limit is about s. When the inner / outer diameter ratio is higher than this, the destruction of the aluminum hub always occurs first, and the destruction peripheral speed of the entire disk does not exceed 1000 m / s.

鋼(SCM435)の比強度はアルミのそれにほぼ等しく、状況は同様である。このため特開平9−42380号広報では、ガラス繊維強化プラスチック製のハブをフライホイール円盤に取り付けた複合フライホイールが提案されている。このハブは、繊維強化プラスチックであるため、破壊周速は大きくできる。しかし、回転軸にハブを介して、円盤を保持する構造になっており、高い破壊周速を有するCFRP製円盤の特長を活かしきれているとは言えない。   The specific strength of steel (SCM435) is almost equal to that of aluminum and the situation is similar. For this reason, Japanese Patent Application Laid-Open No. 9-42380 has proposed a composite flywheel in which a hub made of glass fiber reinforced plastic is attached to a flywheel disk. Since this hub is a fiber reinforced plastic, the peripheral breaking speed can be increased. However, the structure is such that the disk is held via a hub on the rotating shaft, and it cannot be said that the features of the CFRP disk having a high breaking peripheral speed can be fully utilized.

これまでのCFRP製円盤は、厚みがほぼ均一であった。これは、厚さ方向は径方向同様に繊維で強化されていないため、均一な厚さとすることによって厚さ方向の応力の発生を抑えるためであると考えられる。しかし、高速化のために厚さを変化させるという設計自由度が与えられているとは言えない。   Previous CFRP discs were almost uniform in thickness. This is presumably because the thickness direction is not reinforced with fibers in the same way as the radial direction, so that the generation of stress in the thickness direction is suppressed by setting the thickness to a uniform thickness. However, it cannot be said that the design flexibility of changing the thickness for speeding up is given.

特開平9−42380号公報JP-A-9-42380

本発明は、このような状況のもとでなされたものであり、回転速度をこれまで以上に高速にすることができる高速回転体を提供することを目的とする。   The present invention has been made under such circumstances, and an object of the present invention is to provide a high-speed rotating body capable of making the rotational speed higher than ever.

上記の目的を達成するために、本発明の高速回転体は、以下のような特徴を有する。まず、内径及び外径を有する円盤状であって、前記円盤は繊維強化プラスチックからなり、該強化繊維が、円筒座標系のR方向(径方向)、θ方向(周方向)、Z方向(厚さ方向)のそれぞれに配向されていることを特徴とする。   In order to achieve the above object, the high-speed rotating body of the present invention has the following characteristics. First, it has a disk shape having an inner diameter and an outer diameter, and the disk is made of fiber reinforced plastic, and the reinforcing fibers are in the R direction (radial direction), θ direction (circumferential direction), Z direction (thickness) of the cylindrical coordinate system. It is characterized by being oriented in each direction.

前記高速回転体の強化繊維は、R方向の繊維体積率が一定となるように、中心から外周に向かうに従って円盤を薄くする。   The reinforcing fiber of the high-speed rotating body has a thinner disk from the center toward the outer periphery so that the fiber volume ratio in the R direction is constant.

前記円盤の外径に対する内径の比が、0.5以下であることが望ましい。   The ratio of the inner diameter to the outer diameter of the disk is preferably 0.5 or less.

また、前記円盤の内径部に厚みの大きい円筒部を設け、その円筒部の外周面において金属製回転軸もしくはハブを接合させる。   A cylindrical portion having a large thickness is provided on the inner diameter portion of the disk, and a metal rotating shaft or hub is joined to the outer peripheral surface of the cylindrical portion.

前記内径部に接続する金属部品が直接的に動力伝達を行う軸受け部品とする。   A metal part connected to the inner diameter part is a bearing part that directly transmits power.

前記強化繊維は、炭素繊維、ガラス繊維、セラミックス繊維、又はこれらの複合繊維とすることができる。   The reinforcing fibers can be carbon fibers, glass fibers, ceramic fibers, or composite fibers thereof.

本発明の高速回転体は、円筒座標系の3軸方向(R方向、θ方向、Z方向)に強化された強化基材を用いることで、繊維強化プラスチック円盤の内外径比を小さくすることができる。特に、内外径比を小さくすることができる効果は、径方向を強化することによる。また、内外径比が小さくなることで、接合される金属回転軸の材料に固有の破壊周速を超えることがないようにすることが可能となる。また、円筒座標系のZ方向を強化することで、内径側のボス部が金属回転軸を接合させたときに発生するZ方向応力やRZ面内のせん断応力に対する補強効果を与えることが可能となる。   The high-speed rotating body of the present invention can reduce the inner / outer diameter ratio of the fiber-reinforced plastic disk by using a reinforced base material reinforced in three axial directions (R direction, θ direction, Z direction) of the cylindrical coordinate system. it can. In particular, the effect of reducing the inner / outer diameter ratio is by strengthening the radial direction. In addition, since the inner / outer diameter ratio is reduced, it is possible to prevent the fracture peripheral speed inherent to the material of the metal rotating shaft to be joined from being exceeded. In addition, by strengthening the Z direction of the cylindrical coordinate system, it is possible to give a reinforcing effect against the Z direction stress generated when the inner diameter side boss part joins the metal rotation shaft and the shear stress in the RZ plane. Become.

以下に、図面を参照して、本発明の実施の形態について説明する。従来の回転体の破壊は、CFRP製円盤が径方向において強化繊維が存在していないことにより、周方向の繊維束間に剥離(破壊)によってもたらされる。このため、径方向の強化が必要であった。   Embodiments of the present invention will be described below with reference to the drawings. The conventional rotator breakage is caused by peeling (breaking) between fiber bundles in the circumferential direction due to the absence of reinforcing fibers in the radial direction of the CFRP disk. For this reason, strengthening in the radial direction was necessary.

また、CFRP製円盤の破壊周速に比べて金属製ハブのそれが小さいことが、高速回転を困難にしている。このため、内外径比の小さいCFRP製円盤に金属ハブを組み付けることが必要である。たとえば、内外径比0.2のCFRP製円盤にアルミ製ハブを接合させるときその破壊周速は、アルミの破壊周速である631m/sを0.2で除して、3155m/sとなる。これは、CFRP製円盤の高い破壊周速を有効に活用していると言える。   In addition, the fact that the metal hub is smaller than the fracture peripheral speed of the CFRP disk makes high-speed rotation difficult. For this reason, it is necessary to assemble a metal hub on a CFRP disk having a small inner / outer diameter ratio. For example, when an aluminum hub is joined to a CFRP disk having an inner / outer diameter ratio of 0.2, the fracture peripheral speed is 3155 m / s, which is obtained by dividing the fracture peripheral speed of aluminum by 631 m / s by 0.2. . This can be said to be effectively utilizing the high fracture peripheral speed of the CFRP disk.

繊維強化プラスチック円盤、金属ハブ、回転軸というように、3つ以上の部品から1つのアセンブリとしての構造物を組み上げることは、製造工程を複雑にする。このため、部品点数を3つから2つにする必要がある。より高速で回転させるために厚さ方向を繊維で強化することにより、円盤の厚さも最適設計することができ円盤設計の自由度を与える。   Assembling a structure as an assembly from three or more parts, such as a fiber reinforced plastic disk, a metal hub, and a rotating shaft, complicates the manufacturing process. For this reason, it is necessary to reduce the number of parts from three to two. By reinforcing the thickness direction with fibers in order to rotate at higher speeds, the thickness of the disk can also be optimally designed, giving freedom in disk design.

そこで、本実施形態では、強化繊維を径方向に配置することで、このような問題を克服する。径方向の強化により、繊維束のクラックを抑えるとともに円盤の内外径比を小さくすることができる。また、円盤の内外経比が小さいので、ハブを介在させることなく円盤を回転軸に直接接合させる(ハブレス接合と称す)。さらに、Z方向を繊維で強化することにより、厚み変化に伴う応力への強化を行う。   Therefore, in this embodiment, such a problem is overcome by arranging the reinforcing fibers in the radial direction. By reinforcing in the radial direction, cracks in the fiber bundle can be suppressed and the inner / outer diameter ratio of the disk can be reduced. Further, since the inner / outer diameter ratio of the disk is small, the disk is directly joined to the rotating shaft without interposing a hub (referred to as hubless joining). Furthermore, the Z direction is reinforced with fibers to reinforce the stress associated with the thickness change.

上述のように、本実施形態においては、強化繊維は、3次元強化円筒座標系のR、θ、Zに配向された円盤であり、その内外径比は小さいものである。円盤の内径側には円筒状のボス部を有する形状とし、このボス部の外周側に回転軸を接合させる。   As described above, in the present embodiment, the reinforcing fiber is a disk oriented in R, θ, and Z in the three-dimensional reinforced cylindrical coordinate system, and the inner / outer diameter ratio is small. A shape having a cylindrical boss portion is formed on the inner diameter side of the disk, and a rotating shaft is joined to the outer peripheral side of the boss portion.

図1は、本実施形態で使用する強化繊維の配向状態を示した斜視図である。同図に示すように、強化繊維は、径方向(R方向)、周方向(θ方向)、厚さ方向(Z方向)すべてに配向している。なお、図1は、本実施形態のCFRP円盤のある一点における配向状態を示しているが、CFRP円盤のすべての点において、図1と同じような方向に配向している。   FIG. 1 is a perspective view showing an orientation state of reinforcing fibers used in the present embodiment. As shown in the figure, the reinforcing fibers are oriented in all of the radial direction (R direction), the circumferential direction (θ direction), and the thickness direction (Z direction). FIG. 1 shows the orientation state at a certain point of the CFRP disk of the present embodiment, but all the points of the CFRP disk are oriented in the same direction as in FIG.

図2は、本発明の実施例1に係る高速回転体10の断面図、図3は、図2に示した高速回転体1のうちCFRP製円盤1のぶぶんのみを示した縦断面図である。本実施例のCFRP製円盤1は、外径φ300、内径φ20で、内径側に外径φ40で高さ10mmの円筒部2を有している。また、外径での厚みは10mmであり、内径側の円盤の厚み30mmからほぼ直線的に厚みは薄くなっている。3次元織物の円筒座標系における各方向の繊維体積含有率は、それぞれ、0.183、0.252、0.024であった。   2 is a cross-sectional view of the high-speed rotating body 10 according to the first embodiment of the present invention, and FIG. 3 is a vertical cross-sectional view showing only the portion of the CFRP disk 1 in the high-speed rotating body 1 shown in FIG. . The CFRP disk 1 of this embodiment has an outer diameter φ300, an inner diameter φ20, and a cylindrical portion 2 having an outer diameter φ40 and a height of 10 mm on the inner diameter side. Further, the thickness at the outer diameter is 10 mm, and the thickness is reduced almost linearly from the thickness of the inner diameter side disk of 30 mm. The fiber volume contents in each direction in the cylindrical coordinate system of the three-dimensional fabric were 0.183, 0.252, and 0.024, respectively.

図4は、図2に示した高速回転体10の金属製回転軸4を示した図である。SNCM435製回転軸は、外径φ60である。CFRP製円盤1と回転軸4は、CFRP製円盤の円筒部2の外周面3において、回転軸4の内周面5と締め代0.03mmで圧入により接合させた。   FIG. 4 is a view showing the metal rotating shaft 4 of the high-speed rotating body 10 shown in FIG. The rotation shaft made of SNCM435 has an outer diameter of φ60. The CFRP disc 1 and the rotating shaft 4 were joined to the inner peripheral surface 5 of the rotating shaft 4 by press-fitting with an inner margin of 0.03 mm on the outer peripheral surface 3 of the cylindrical portion 2 of the CFRP disc.

実施例1では、繊維強化プラスチックの設計破壊周速は、安全率を見込んで1500m/sとした。回転軸の外周則は、その回転軸と円盤の外径との比(φ60/φ300)に設計破壊周速を掛けることで、300m/sと求められる。SNCM435の材料強度は1373MPa、密度は7850kg/m3であるため、破壊周速は、652m/sとなる。300m/sという値は、SNCM435の破壊周速範囲内であるため、許容できる設計となっている。 In Example 1, the design breaking peripheral speed of the fiber reinforced plastic was set to 1500 m / s in consideration of the safety factor. The outer circumference rule of the rotating shaft is calculated as 300 m / s by multiplying the ratio (φ60 / φ300) between the rotating shaft and the outer diameter of the disk by the design breaking peripheral speed. Since the material strength of SNCM435 is 1373 MPa and the density is 7850 kg / m 3 , the fracture peripheral speed is 652 m / s. Since the value of 300 m / s is within the fracture peripheral speed range of SNCM435, the design is acceptable.

図5は、本発明の実施例2に係る高速回転体20の縦断面図である。CFRP製円盤22は、外径φ300であって、実施例1の場合と異なり、中央部に穴のない円盤である。内径側に外径φ20で高さ10mmの円筒部24を有している。また、外径での厚みは10mmであり、内径側の円盤の厚み30mmからほぼ直線的に厚みは薄くなっている。3次元織物の円筒座標系における各方向の繊維体積含有率は、それぞれ、0.153、0.272、0.035であった。   FIG. 5 is a longitudinal sectional view of the high-speed rotating body 20 according to the second embodiment of the present invention. The CFRP disc 22 has an outer diameter of φ300, and is a disc having no hole in the center, unlike the case of the first embodiment. A cylindrical portion 24 having an outer diameter φ20 and a height of 10 mm is provided on the inner diameter side. Further, the thickness at the outer diameter is 10 mm, and the thickness is reduced almost linearly from the thickness of the inner diameter side disk of 30 mm. The fiber volume contents in each direction in the cylindrical coordinate system of the three-dimensional fabric were 0.153, 0.272, and 0.035, respectively.

実施例2では、繊維強化プラスチックの設計破壊周速は、安全率を見込んで1700m/sとした。回転軸の外周速は、その回転軸と円盤の外径との比(φ40/φ300)に白系破壊周速に掛けることで、226m/sと求められる。SNCM435の材料強度は、1373MPa、密度は7850kg/m3であるため、破壊周速は、652m/sとなる。226m/sという値は、SNCM435の破壊周速範囲内であるため、許容できる設計となっている。 In Example 2, the design breaking peripheral speed of the fiber reinforced plastic was set to 1700 m / s in consideration of the safety factor. The outer peripheral speed of the rotating shaft is obtained as 226 m / s by multiplying the ratio of the rotating shaft and the outer diameter of the disk (φ40 / φ300) to the white system breaking peripheral speed. Since the material strength of SNCM435 is 1373 MPa and the density is 7850 kg / m 3 , the fracture peripheral speed is 652 m / s. Since the value of 226 m / s is within the fracture peripheral speed range of SNCM435, the design is acceptable.

本発明の高速回転体によれば、高速化が図られるので、電力貯蔵用フライホイール、ガスタービン、圧縮機、遠心分離機などの分野で使用される。   According to the high-speed rotating body of the present invention, since the speed is increased, it is used in the fields of a power storage flywheel, a gas turbine, a compressor, a centrifuge, and the like.

本実施形態で使用する強化繊維の配向状態を示した斜視図である。It is the perspective view which showed the orientation state of the reinforced fiber used by this embodiment. 本発明の実施例1に係る高速回転体の縦断面図であり、CFRP製円盤に回転軸を接合させた状態を示す。It is a longitudinal cross-sectional view of the high-speed rotary body which concerns on Example 1 of this invention, and shows the state which joined the rotating shaft to the CFRP disk. 本発明の実施例2に係る高速回転体のCFRP製円盤の縦断面図である。It is a longitudinal cross-sectional view of the CFRP disk of the high-speed rotary body which concerns on Example 2 of this invention. 本発明の実施例1に係る高速回転体の回転軸を示す図である。It is a figure which shows the rotating shaft of the high-speed rotary body which concerns on Example 1 of this invention. 本発明の実施例2に係る高速回転体の縦断面図であり、CFRP製円盤に回転軸を接合させた状態を示す。It is a longitudinal cross-sectional view of the high-speed rotary body which concerns on Example 2 of this invention, and shows the state which joined the rotating shaft to the CFRP disk. 従来の回転体の斜視図である。It is a perspective view of the conventional rotary body.

10、20 高速回転体
1,22 CFRP製円盤
2、24 円筒部
4、26 回転軸
10, 20 High-speed rotating body 1, 22 CFRP disk 2, 24 Cylindrical portion 4, 26 Rotating shaft

Claims (5)

内径及び外径を有する円盤状であって、前記円盤は繊維強化プラスチックからなり、該強化繊維が、円筒座標系のR方向(径方向)、θ方向(周方向)、Z方向(厚さ方向)のそれぞれに配向されており、かつ、前記強化繊維は、R方向の繊維体積率が一定となるように中心から外周に向かうに従って円盤を薄くされていることを特徴とする高速回転体。 A disk shape having an inner diameter and an outer diameter, wherein the disk is made of fiber reinforced plastic, and the reinforcing fibers are in the R direction (radial direction), θ direction (circumferential direction), Z direction (thickness direction) of the cylindrical coordinate system. ) And the reinforcing fibers are thinned from the center toward the outer periphery so that the fiber volume fraction in the R direction is constant . 前記円盤の外径に対する内径の比が、0.5以下であることを特徴とする請求項1に記載の高速回転体。   The high-speed rotating body according to claim 1, wherein a ratio of an inner diameter to an outer diameter of the disk is 0.5 or less. 前記円盤の内径部に厚みの大きい円筒部を設け、その円筒部の外周面において金属製回転軸もしくはハブを接合させたことを特徴とする請求項1又は2に記載の高速回転体。   The high-speed rotating body according to claim 1 or 2, wherein a cylindrical portion having a large thickness is provided on an inner diameter portion of the disk, and a metal rotating shaft or hub is joined to the outer peripheral surface of the cylindrical portion. 前記内径部に接続する金属部品が直接的に動力伝達を行う軸受け部品となることを特徴とする請求項1乃至3のうちいずれか一項に記載の高速回転体。   The high-speed rotating body according to any one of claims 1 to 3, wherein the metal part connected to the inner diameter part is a bearing part that directly transmits power. 前記強化繊維は、炭素繊維、ガラス繊維、セラミックス繊維、又はこれらの複合繊維であることを特徴とする請求項1乃至4のうちいずれか一項に記載の高速回転体。   The high-speed rotating body according to any one of claims 1 to 4, wherein the reinforcing fiber is carbon fiber, glass fiber, ceramic fiber, or a composite fiber thereof.
JP2009000609A 2009-01-06 2009-01-06 High speed rotating body Expired - Fee Related JP5239058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000609A JP5239058B2 (en) 2009-01-06 2009-01-06 High speed rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000609A JP5239058B2 (en) 2009-01-06 2009-01-06 High speed rotating body

Publications (2)

Publication Number Publication Date
JP2010159773A JP2010159773A (en) 2010-07-22
JP5239058B2 true JP5239058B2 (en) 2013-07-17

Family

ID=42577085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000609A Expired - Fee Related JP5239058B2 (en) 2009-01-06 2009-01-06 High speed rotating body

Country Status (1)

Country Link
JP (1) JP5239058B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729025B2 (en) 2012-04-03 2017-08-08 The Boeing Company Open-core flywheel architecture
GB201223001D0 (en) * 2012-12-20 2013-01-30 Williams Hybrid Power Ltd Magnetically loaded composite rotor and methods of making the same
JP2014190503A (en) * 2013-03-28 2014-10-06 Railway Technical Research Institute Flywheel structure in power storage device
JP6341420B2 (en) * 2014-08-29 2018-06-13 株式会社ジェイテクト Flywheel
JP2024017167A (en) * 2022-07-27 2024-02-08 三菱重工業株式会社 Disc for rotary machine and rotary machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199917A (en) * 1985-03-01 1986-09-04 Sumitomo Electric Ind Ltd Molding tool of fiber reinforced plastic rotating disc
JPS61199918A (en) * 1985-03-01 1986-09-04 Sumitomo Electric Ind Ltd Molding tool of fiber reinforced plastic rotating disc
JPS6335142A (en) * 1986-07-29 1988-02-15 三菱電機株式会社 Flywheel electric source
JPH089828B2 (en) * 1991-08-14 1996-01-31 株式会社スリーデイコンポリサーチ Method for producing three-dimensional fibrous structure and its apparatus
JP3124984B2 (en) * 1993-01-14 2001-01-15 四国電力株式会社 Rotating body made of fiber-reinforced composite material and manufacturing method thereof
JP3356363B2 (en) * 1995-06-13 2002-12-16 東レ株式会社 High-speed rotating body
JPH11344079A (en) * 1998-06-01 1999-12-14 Shikoku Res Inst Inc Flywheel
JP4200554B2 (en) * 1998-09-11 2008-12-24 株式会社Ihi Disc or blisk made of ceramic composite material
JP2001286007A (en) * 2000-03-30 2001-10-12 Mitsubishi Rayon Co Ltd Drive for hybrid electric vehicle
JP2002095208A (en) * 2000-09-18 2002-03-29 Mitsubishi Rayon Co Ltd Fiber-reinforced plastic rotor and flywheel battery apparatus
JP3119542U (en) * 2005-12-12 2006-03-02 泰豊工程有限公司 Flywheel boost generator

Also Published As

Publication number Publication date
JP2010159773A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP5239058B2 (en) High speed rotating body
EP2232098B1 (en) A flywheel
US5816114A (en) High speed flywheel
EP2399039B1 (en) A flywheel
EP3022461B1 (en) Flywheels for energy storage and methods of manufacture thereof
JP6407275B2 (en) Energy storage flywheel and method of manufacturing the same
JP6800323B2 (en) SPM motor rotor and its manufacturing method
JP6639761B1 (en) Rotor and motor
JPS6241070B2 (en)
CN110071599B (en) Double-hub energy storage flywheel rotor
CN110319152B (en) Energy storage flywheel rotor with hub nested with mandrel
US20150128757A1 (en) Flywheel
JPH0942380A (en) Flywheel complex
JP6824995B2 (en) Cylindrical rotating body
US20230118484A1 (en) Rotor, electric motor, and rotor production method
CN111435804A (en) Flywheel energy storage device and flywheel rotor
KR20120140471A (en) Composite rotor for high-speed rotation and assembling method of the same
EP2201220A1 (en) A method of producing a rotor component or a stator component
JP6727110B2 (en) Torque converter
GB2449117A (en) High speed flywheel
JP6119251B2 (en) Turbo molecular pump
JP2022045889A (en) Rotor assembly for vacuum pump, vacuum pump, and method for manufacturing rotor assembly
WO2020236037A1 (en) Band super flywheel
JPS5849744B2 (en) Combined flywheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees