[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5237923B2 - Adhesion evaluation apparatus and method - Google Patents

Adhesion evaluation apparatus and method Download PDF

Info

Publication number
JP5237923B2
JP5237923B2 JP2009276874A JP2009276874A JP5237923B2 JP 5237923 B2 JP5237923 B2 JP 5237923B2 JP 2009276874 A JP2009276874 A JP 2009276874A JP 2009276874 A JP2009276874 A JP 2009276874A JP 5237923 B2 JP5237923 B2 JP 5237923B2
Authority
JP
Japan
Prior art keywords
ultrasonic probe
angle
adhesion
reception
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009276874A
Other languages
Japanese (ja)
Other versions
JP2011117878A (en
Inventor
高弘 恩田
綱次 北山
幸宏 林
英行 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyota Auto Body Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyota Auto Body Co Ltd
Priority to JP2009276874A priority Critical patent/JP5237923B2/en
Publication of JP2011117878A publication Critical patent/JP2011117878A/en
Application granted granted Critical
Publication of JP5237923B2 publication Critical patent/JP5237923B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、多層構造体の界面の密着性を評価する技術に関し、特に超音波を用いた評価技術に関する。   The present invention relates to a technique for evaluating the adhesion at the interface of a multilayer structure, and more particularly to an evaluation technique using ultrasonic waves.

従来から、多層構造中の界面の密着性を評価する方法として、超音波を用いた非破壊検査手法が知られている。例えば、超音波を構造体に垂直に入射させてそのパルスエコーを検出する方法や、超音波を構造体に斜めに入射させて板波を検出する方法等である。   Conventionally, a nondestructive inspection method using ultrasonic waves has been known as a method for evaluating the adhesion of an interface in a multilayer structure. For example, there are a method in which an ultrasonic wave is vertically incident on a structure and its pulse echo is detected, and a method in which an ultrasonic wave is obliquely incident on the structure and a plate wave is detected.

下記の特許文献1には、超音波の入射側に位置し超音波が透過可能な第一部材と、板波が伝播可能な第二部材を含む2層以上の多層構造体に対し、第一部材より超音波を入射させて第二部材に板波を生じさせ、第二部材を伝播した板波から生じる漏洩波を受信し、受信信号の振幅により多層構造体の欠陥を検出する技術が開示されている。   In the following Patent Document 1, a first structure is provided for a multilayer structure having two or more layers including a first member that is located on the ultrasonic incident side and can transmit ultrasonic waves, and a second member that can propagate plate waves. Disclosed is a technique for detecting a defect in a multilayer structure by receiving a leakage wave generated from a plate wave propagating through a second member by causing an ultrasonic wave to enter from the member to generate a plate wave in the second member. Has been.

また、特許文献2には、超音波が空中を伝播したときの評価箇所での漏洩を測定することが開示されている。   Patent Document 2 discloses measuring leakage at an evaluation point when an ultrasonic wave propagates through the air.

特開2008−164394号公報JP 2008-164394 A 実開平2−97645号公報Japanese Utility Model Publication No. 2-97645

しかしながら、車両においてはガラスと鋼板を接合する部位があり、ガラスと鋼板の間には水漏れを防止する等のためにシール材が充填されているが、このような部位の密着性評価は困難である。すなわち、シール材として用いられる樹脂系材料は、超音波の減衰が非常に大きい上、ガラスや鋼板との音響インピーダンス差が非常に大きく、垂直入射によるパルスエコー法では表材より入射された超音波エネルギは表材とシール材との音響インピーダンス差のためにシール材内部にほとんど透過せず、さらにシール材内部で大きな減衰を生じてしまう。また、シール材と裏材との音響インピーダンス差によって裏材への超音波の透過は非常に少なく、得られるエコー波形は表材での多重反射波となる。このため、界面の密着性の評価は困難である。また、特許文献1の方法でも、シール材側への超音波のエネルギ漏洩がほとんどないため、剥離の有無による波形の変化がほとんど見られない。さらに、表材と裏材とがその端部においてシール材により接合されているような状況では、検査領域が表材の末端に存在しているので、受信するための斜角探触子を設置するための十分なスペースが表材表面にない。さらに、特許文献2の方法では、空中のみを伝わって超音波が漏洩することが前提であり、途中に遮蔽が複数あり、超音波の漏洩が確認できない場合や隙間がごく小さい場合には、評価できない。   However, in a vehicle, there is a portion where glass and a steel plate are joined, and a sealing material is filled between the glass and the steel plate to prevent water leakage. However, it is difficult to evaluate the adhesion of such a portion. It is. In other words, the resin-based material used as the sealing material has a very large attenuation of ultrasonic waves and a very large difference in acoustic impedance with glass or steel plate. Due to the difference in acoustic impedance between the surface material and the sealing material, the energy hardly penetrates into the sealing material, and further, a large attenuation occurs inside the sealing material. Further, the transmission of ultrasonic waves to the backing material is very small due to the difference in acoustic impedance between the sealing material and the backing material, and the obtained echo waveform is a multiple reflected wave on the surface material. For this reason, it is difficult to evaluate the adhesion at the interface. Further, even in the method of Patent Document 1, since there is almost no leakage of ultrasonic energy to the sealing material side, the change in waveform due to the presence or absence of peeling is hardly seen. Furthermore, in the situation where the front material and the back material are joined by the sealing material at the end, the inspection area exists at the end of the front material, so install a bevel probe to receive There is not enough space on the surface. Furthermore, the method of Patent Document 2 is based on the premise that ultrasonic waves leak only through the air, and there are a plurality of shields on the way, and when ultrasonic leakage cannot be confirmed or the gap is very small, evaluation is performed. Can not.

本発明の目的は、例えばガラス−シール材−鋼板等のように中間に超音波減衰が大きく、音響インピーダンス差が大きな材料が含まれる多層構造体における界面の密着性を評価することができる装置及び方法を提供することにある。   An object of the present invention is to provide an apparatus capable of evaluating the adhesion of an interface in a multilayer structure including a material having a large ultrasonic attenuation in the middle and a large acoustic impedance difference, such as a glass-seal material-steel plate. It is to provide a method.

本発明は、少なくとも第一部材と中間部材と第二部材からなる多層構造体の各部材間の界面における密着性を評価する評価装置であって、前記第一部材と前記第二部材は、端部において互いに重なるように前記中間部材により接合されており、前記第一部材の対向する2つの面のうちの一方の面側に入射角度をもって配置された送信側超音波探触子と、前記第二部材の対向する2つの面のうち前記第一部材の前記一方の面と同一方向あるいは反対方向の面側に受信角度をもって配置された受信側超音波探触子と、前記受信側探触子で受信された、前記送信側探触子から送信された超音波であって、前記第一部材、前記中間部材、前記第二部材を板波として伝播した超音波の振幅を閾値と大小比較することで前記密着性を判定する判定手段とを備え、前記入射角度及び前記受信角度は、板波モードの位相速度c、前記第一部材と前記送信側超音波探触子間の媒質での音速、及び前記第二部材と前記受信側超音波探触子間の媒質での音速をcaとすると、
θ=arcsin(ca/c)
で決定される角度θに基づき設定されることを特徴とする。
The present invention is an evaluation apparatus for evaluating adhesion at an interface between members of a multilayer structure including at least a first member, an intermediate member, and a second member, wherein the first member and the second member are end A transmitting-side ultrasonic probe that is joined by the intermediate member so as to overlap each other at one part, and is disposed at one surface side of the two opposing surfaces of the first member with an incident angle; A receiving-side ultrasonic probe disposed at a receiving angle on a surface in the same direction as or opposite to the one surface of the first member of two opposing surfaces of the two members; and the receiving-side probe Compared with the threshold value, the amplitude of the ultrasonic wave transmitted from the transmitting probe received in step 1 and propagated as a plate wave in the first member, the intermediate member, and the second member is compared with a threshold value. Determination means for determining the adhesion by The incident angle and the reception angle are the phase velocity c in the plate wave mode, the speed of sound in the medium between the first member and the transmission side ultrasonic probe, and the second member and the reception side ultrasonic wave. If the velocity of sound in the medium between the probes is ca,
θ = arcsin (ca / c)
It is set based on the angle θ determined in (1).

本発明の1つの実施形態では、前記送信側超音波探触子と前記受信側超音波探触子との間に、前記送信側超音波探触子から送信された超音波が前記受信側超音波探触子に直接伝播することを防止する音響遮蔽部材が設けられる。   In one embodiment of the present invention, an ultrasonic wave transmitted from the transmission-side ultrasonic probe is interposed between the transmission-side ultrasonic probe and the reception-side ultrasonic probe. An acoustic shielding member that prevents direct propagation to the acoustic probe is provided.

また、本発明の1つの実施形態では、前記送信側超音波探触子及び前記受信側超音波探触子は、それぞれ前記第一部材及び前記第二部材から離間して設けられ、前記多層構造体に対して非接触で密着性を評価する。   In one embodiment of the present invention, the transmission-side ultrasonic probe and the reception-side ultrasonic probe are provided apart from the first member and the second member, respectively, and the multilayer structure Evaluate adhesion without contact with the body.

また、本発明は、少なくとも第一部材と中間部材と第二部材からなる多層構造体の各部材間の界面における密着性を評価する評価方法であって、前記第一部材と前記第二部材は、端部において互いに重なるように前記中間部材により接合されており、前記第一部材の対向する2つの面のうちの一方の面側に入射角度をもって配置された送信側超音波探触子から前記第一部材に超音波を送信し、前記第二部材の対向する2つの面のうち前記第一部材の前記一方の面と同一方向あるいは反対方向の面側に受信角度をもって配置された受信側超音波探触子により、前記送信側探触子から送信された超音波であって前記第一部材、前記中間部材、前記第二部材を板波として伝播した超音波を受信し、受信した信号の振幅を閾値と大小比較することで前記密着性を判定するものであり、前記入射角度及び前記受信角度は、板波モードの位相速度c、前記第一部材と前記送信側超音波探触子間の媒質での音速、及び前記第二部材と前記受信側超音波探触子間の媒質での音速をcaとすると、
θ=arcsin(ca/c)
で決定される角度θに基づき設定されることを特徴とする。
Further, the present invention is an evaluation method for evaluating adhesion at an interface between each member of a multilayer structure including at least a first member, an intermediate member, and a second member, wherein the first member and the second member are From the transmitting-side ultrasonic probe, which is joined by the intermediate member so as to overlap each other at the end portion, and is arranged at an incident angle on one of the two opposing surfaces of the first member. An ultrasonic wave is transmitted to the first member, and the receiving side superposition arranged at a receiving angle on the same or opposite surface side of the one surface of the first member among the two opposing surfaces of the second member The ultrasonic probe receives ultrasonic waves transmitted from the transmitting probe and propagated as plate waves through the first member, the intermediate member, and the second member. Before comparing amplitude with threshold The incident angle and the reception angle are determined by the plate wave mode phase velocity c, the sound velocity in the medium between the first member and the transmitting ultrasonic probe, and the second angle. If the velocity of sound in the medium between the member and the receiving-side ultrasonic probe is ca,
θ = arcsin (ca / c)
It is set based on the angle θ determined in (1).

本発明では、材料を伝って伝搬するような超音波(板波)を評価対象の多層構造体に向けて斜めに送信し、多層構造体の界面における密着性の良否により板波の伝播状態が変化することに着目して密着性を評価する。すなわち、受信側超音波探触子で受信した超音波の振幅を閾値と大小比較し、振幅が閾値以上であれば密着性は良好であり、振幅が閾値未満であれば密着性は不十分であると評価する。   In the present invention, an ultrasonic wave (plate wave) that propagates through the material is transmitted obliquely toward the multilayer structure to be evaluated, and the propagation state of the plate wave is determined by the quality of the adhesion at the interface of the multilayer structure. Focus on the change and evaluate the adhesion. That is, the amplitude of the ultrasonic wave received by the receiving-side ultrasonic probe is compared with a threshold value. If the amplitude is equal to or greater than the threshold value, the adhesion is good, and if the amplitude is less than the threshold value, the adhesion is insufficient. Evaluate that there is.

本発明によれば、多層構造体の界面における密着性を容易に評価することができる。また、超音波探触子を多層構造体から離間させた状態での非接触な評価を行うことができる。さらに、多層構造体の一方の側のみに評価装置を設置して密着性を評価することもできる。   According to the present invention, it is possible to easily evaluate the adhesion at the interface of the multilayer structure. In addition, non-contact evaluation can be performed in a state where the ultrasonic probe is separated from the multilayer structure. Furthermore, it is also possible to evaluate the adhesion by installing an evaluation device only on one side of the multilayer structure.

実施形態の評価装置の構成図である。It is a block diagram of the evaluation apparatus of embodiment. 実施形態の受信波形説明図である。It is a received waveform explanatory view of an embodiment. 実施形態の受信波形説明図である。It is a received waveform explanatory view of an embodiment. 位相速度分散曲線を示すグラフ図である。It is a graph which shows a phase velocity dispersion | distribution curve. 他の実施形態の振動子の配置説明図である。It is arrangement | positioning explanatory drawing of the vibrator | oscillator of other embodiment. 実施形態のフローチャートである。It is a flowchart of an embodiment.

以下、図面に基づき本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本実施形態における密着性評価装置の構成を示す。密着性を評価する対象は、多層構造体であり、少なくとも第一部材と中間部材と第二部材を有する。第一部材と第二部材は端部で接合されており、中間部材をシール材として密着されている。第一部材は例えばガラス板、第二部材は例えば鋼板であり、中間部材は例えば樹脂系材料である。第一部材を表材、第二部材を裏材とする。   In FIG. 1, the structure of the adhesive evaluation apparatus in this embodiment is shown. The object whose adhesion is evaluated is a multilayer structure, and has at least a first member, an intermediate member, and a second member. The first member and the second member are joined at the end, and are in close contact with the intermediate member as a sealing material. The first member is, for example, a glass plate, the second member is, for example, a steel plate, and the intermediate member is, for example, a resin material. The first member is the front material and the second member is the back material.

図1において、第一部材としてガラス板1と第二部材として鋼板2は、それぞれの端部において接合されており、接合部位は中間部材としてシール材により密着されている。ガラス板1と鋼板2及びシール材3からなる多層構造体の一方の側、すなわち表側に、送信側超音波探触子4及び受信側超音波探触子5が配置される。送信側超音波探触子4はガラス板1の表側面の上方L1の距離に配置され、受信側超音波探触子5は鋼板2の表側面の上方L3の距離に配置される。送信側超音波探触子4の超音波送信方向とガラス板1の法線とのなす角度θ1、及び受信側超音波探触子5の超音波受信方向と鋼板2の法線とのなす角度θ2は、それぞれ最適角度に調整される。角度の調整についてはさらに後述する。   In FIG. 1, a glass plate 1 as a first member and a steel plate 2 as a second member are joined at respective end portions, and the joining portion is in close contact with a sealing material as an intermediate member. A transmission-side ultrasonic probe 4 and a reception-side ultrasonic probe 5 are arranged on one side, that is, the front side of the multilayer structure including the glass plate 1, the steel plate 2, and the sealing material 3. The transmission-side ultrasonic probe 4 is arranged at a distance L1 above the front side surface of the glass plate 1, and the reception-side ultrasonic probe 5 is arranged at a distance L3 above the front side surface of the steel plate 2. The angle θ1 formed between the ultrasonic transmission direction of the transmission-side ultrasonic probe 4 and the normal line of the glass plate 1, and the angle formed between the ultrasonic reception direction of the reception-side ultrasonic probe 5 and the normal line of the steel plate 2. Each θ2 is adjusted to an optimum angle. The adjustment of the angle will be further described later.

送信側超音波探触子4と受信側超音波探触子5との距離L4に応じ、必要な場合に送信側超音波探触子4と受信側超音波探触子5との間に音響遮蔽板6が配置される。音響遮蔽板6は、送信側超音波探触子4から送信された超音波が直接、受信側超音波探触子5に入射しないようにするためのバリアとして機能する。   Depending on the distance L4 between the transmission-side ultrasonic probe 4 and the reception-side ultrasonic probe 5, an acoustic wave is transmitted between the transmission-side ultrasonic probe 4 and the reception-side ultrasonic probe 5 when necessary. A shielding plate 6 is arranged. The acoustic shielding plate 6 functions as a barrier for preventing ultrasonic waves transmitted from the transmission-side ultrasonic probe 4 from directly entering the reception-side ultrasonic probe 5.

送信側超音波探触子4,受信側超音波探触子5及び音響遮蔽板6は、センサージグ7として一体化される。   The transmission side ultrasonic probe 4, the reception side ultrasonic probe 5 and the acoustic shielding plate 6 are integrated as a sensor jig 7.

送信側超音波探触子4から送信された超音波は、空中を伝播してガラス1板の表面に角度θ1で入射する。入射した超音波は、ガラス1を板波、あるいはラム波として伝播する。この板波は、シール材3の密着状態が良好であれば、シール材3を透過して鋼板2に伝わり、鋼板2を板波として伝播する。受信側超音波探触子5は、鋼板2を伝播する板波から空中へ漏洩する超音波を受信する。   The ultrasonic wave transmitted from the transmission-side ultrasonic probe 4 propagates in the air and enters the surface of the glass 1 plate at an angle θ1. The incident ultrasonic wave propagates through the glass 1 as a plate wave or a Lamb wave. If the close contact state of the sealing material 3 is good, the plate wave is transmitted through the sealing material 3 to the steel plate 2 and propagates through the steel plate 2 as a plate wave. The reception-side ultrasonic probe 5 receives ultrasonic waves that leak from the plate wave propagating through the steel plate 2 into the air.

一方、シール材の密着性が不十分な場合には、ガラス板1、シール材3、鋼板2と伝播する板波が存在しない。もしくは伝播したとしても非常に小さい。したがって、受信側超音波探触子5で受信して得られる波形の振幅を適当な閾値で大小比較することで、シール材3の上下界面の密着性、すなわちガラス板1とシール材3の界面の密着性、及び鋼板2とシール材3の界面の密着性の良否を判定することができる。本実施形態における超音波の周波数は、50kHz以上2MHz以下であり、例えば400kHzを用いることができる。   On the other hand, when the adhesiveness of the sealing material is insufficient, there is no plate wave propagating with the glass plate 1, the sealing material 3, and the steel plate 2. Or even if it propagates, it is very small. Therefore, by comparing the amplitude of the waveform obtained by receiving with the reception-side ultrasonic probe 5 with an appropriate threshold value, the adhesion between the upper and lower interfaces of the sealing material 3, that is, the interface between the glass plate 1 and the sealing material 3. And the quality of the adhesion between the steel plate 2 and the sealing material 3 can be determined. The frequency of the ultrasonic wave in this embodiment is 50 kHz or more and 2 MHz or less, and for example, 400 kHz can be used.

図2に、ガラス板1とシール材3の界面に剥離がある場合に、剥離のある箇所と剥離のない箇所にそれぞれ超音波を伝播させた場合に、受信側超音波探触子5で受信する波形を示す。図において、aは剥離のある箇所に超音波を伝播させた場合の波形、bは隔離のない箇所に超音波を伝播させた場合の波形である。受信波形の初期には、入射波のパルス信号が電気ノイズとして混入する場合がある。その後、100μsあたりで検出される波形が、部材中を伝播して漏洩した波である。この波形の経路は、図1において空中を距離L1だけ伝播し、部材中を部材に沿った距離L2だけ伝播し、空中に漏洩して距離L3だけ伝播した経路である。通常、空中の音速が約340m/sであるのに対し、材料中を伝播する波は1000m/s〜6000m/s程度と非常に大きな値を有する。このため、空中の約340m/sで距離L1+L3だけ伝播した時間と、材料中を距離L2だけ伝播した時間の概算値の和から、材料中を伝播した板波が受信側超音波探触子5で受信される時刻を推測することができる。図において、波線で示した波形が部材を伝播して空中に漏洩した波形である。aでは振幅が相対的に小さく、bでは振幅が相対的に大きい。   In FIG. 2, when there is peeling at the interface between the glass plate 1 and the sealing material 3, the ultrasonic wave is propagated to a place where there is no peeling and a place where there is no peeling. Waveform to be shown. In the figure, a is a waveform when an ultrasonic wave is propagated to a part with peeling, and b is a waveform when an ultrasonic wave is propagated to a part without isolation. In the initial stage of the received waveform, the pulse signal of the incident wave may be mixed as electrical noise. Thereafter, the waveform detected around 100 μs is a wave that propagates through the member and leaks. The path of this waveform is a path that propagates in the air by a distance L1 in FIG. 1, propagates in the member by a distance L2 along the member, leaks into the air, and propagates by a distance L3. Usually, the speed of sound in the air is about 340 m / s, whereas the wave propagating in the material has a very large value of about 1000 m / s to 6000 m / s. For this reason, the plate wave propagated in the material is received on the receiving side ultrasonic probe 5 from the sum of the approximate value of the time propagated by the distance L1 + L3 at about 340 m / s in the air and the time propagated by the distance L2 in the material. The time received at can be estimated. In the figure, the waveform indicated by the wavy line is a waveform that propagates through the member and leaks into the air. In a, the amplitude is relatively small, and in b, the amplitude is relatively large.

また、図3に、鋼板3とシール材3の界面に剥離がある場合に、剥離のある箇所と剥離のない箇所にそれぞれ超音波を伝播させた場合に、受信側超音波探触子5で受信する波形を示す。図において、aは剥離のある箇所に超音波を伝播させた場合の波形、bは隔離のない箇所に超音波を伝播させた場合の波形である。図において、波線で示した波形が部材を伝播して空中に漏洩した波形である。aでは振幅が小さく、bでは振幅が大きい。   Further, in FIG. 3, when there is separation at the interface between the steel plate 3 and the sealing material 3, when the ultrasonic wave is propagated to a portion where there is separation and a portion where there is no separation, the receiving-side ultrasonic probe 5 The received waveform is shown. In the figure, a is a waveform when an ultrasonic wave is propagated to a part with peeling, and b is a waveform when an ultrasonic wave is propagated to a part without isolation. In the figure, the waveform indicated by the wavy line is a waveform that propagates through the member and leaks into the air. In a, the amplitude is small, and in b, the amplitude is large.

したがって、受信波形から波線部分の波形を抽出し、振幅を閾値と大小比較し、振幅が閾値よりも小さい場合には界面の密着性が不十分である、逆にいえば、振幅が閾値以上であれば界面の密着性が十分であると判定できる。具体的には、受信側超音波探触子5で受信した波形をコンピュータのプロセッサに供給する。コンピュータのメモリには予め設定された閾値が記憶されており、プロセッサは受信波形のうち材料を伝播して漏洩したと推測される部分の波形の振幅を検出して閾値と大小比較する。そして、振幅が閾値以上であれば密着性は良好(OK)であると判定し、振幅が閾値より小さければ密着性は不十分(NG)であると判定する。プロセッサは、判定結果をコンピュータのディスプレイに表示する。   Therefore, the waveform of the wavy line is extracted from the received waveform, the amplitude is compared with the threshold value, and if the amplitude is smaller than the threshold value, the adhesion of the interface is insufficient. If there is, it can be determined that the adhesion at the interface is sufficient. Specifically, the waveform received by the reception-side ultrasonic probe 5 is supplied to a computer processor. A preset threshold value is stored in the memory of the computer, and the processor detects the amplitude of the waveform of the received waveform that is assumed to have leaked by propagating the material, and compares the amplitude with the threshold value. If the amplitude is equal to or greater than the threshold, it is determined that the adhesion is good (OK), and if the amplitude is smaller than the threshold, it is determined that the adhesion is insufficient (NG). The processor displays the determination result on the computer display.

一方、空中を伝播する超音波が非常に大きなエネルギで存在しており、音響遮蔽板6が存在しない場合には距離L4の経路で伝播する直接伝播波形が受信側超音波探触子5で受信される。このとき、距離L4と音速340m/sによってこの直接伝播波形の到達時刻も推測できるから、両者を区別することができる。音響遮蔽板6が存在しない場合、材料中を伝播する波形と直接伝播波形とが重ならないように、距離L1、L3、L4を予め決めておくことが望ましい。   On the other hand, when the ultrasonic wave propagating in the air exists with very large energy and the acoustic shielding plate 6 is not present, the direct propagation waveform propagating along the path of the distance L4 is received by the reception-side ultrasonic probe 5. Is done. At this time, since the arrival time of the direct propagation waveform can be estimated from the distance L4 and the sound speed of 340 m / s, both can be distinguished. When the acoustic shielding plate 6 is not present, it is desirable to determine the distances L1, L3, and L4 in advance so that the waveform propagating in the material and the direct propagation waveform do not overlap.

次に、超音波探触子と部材のなす角度について説明する。   Next, the angle formed between the ultrasonic probe and the member will be described.

一般に、超音波探触子の最適入射角θ1及び最適受信角θ2は、第一部材及び第二部材に発生する板波の位相速度分散曲線を計算することにより求めることができる。ある板波モードの位相速度をcとし、空中での音速をcaとすると、
θ=arcsin(ca/c)
で示される式に従って最適角度が求められる。
In general, the optimum incident angle θ1 and the optimum reception angle θ2 of the ultrasonic probe can be obtained by calculating the phase velocity dispersion curves of the plate waves generated in the first member and the second member. If the phase velocity of a certain plate wave mode is c and the sound velocity in the air is ca,
θ = arcsin (ca / c)
The optimum angle is obtained according to the formula shown in FIG.

図4に、位相速度分散曲線を示す。図において、横軸は周波数、縦軸は角度θである。角度θは周波数や板厚、材質により変化する。図において、実線はガラス板3mmの曲線、波線は鋼板2mmの曲線である。このグラフより、超音波探触子の周波数特性に合う周波数領域を選択して角度θの概算値を決定する。図4では、A0モードとS0モードと呼ばれる2つのモードが超音波探触子の周波数領域(本実施形態では既述したように400kHz)に存在しているが、波形が検出できればどのモードを用いてもよい。図において、例えばA0モードを利用する場合、周波数が400kHzの場合には角度θ1=θ2=9度に設定される。   FIG. 4 shows a phase velocity dispersion curve. In the figure, the horizontal axis represents frequency, and the vertical axis represents angle θ. The angle θ varies depending on the frequency, plate thickness, and material. In the figure, the solid line is the curve of the glass plate 3 mm, and the wavy line is the curve of the steel plate 2 mm. From this graph, a frequency region suitable for the frequency characteristics of the ultrasonic probe is selected to determine an approximate value of the angle θ. In FIG. 4, two modes called A0 mode and S0 mode are present in the frequency region of the ultrasonic probe (400 kHz as already described in the present embodiment), but any mode can be used as long as a waveform can be detected. May be. In the figure, for example, when the A0 mode is used, the angle θ1 = θ2 = 9 degrees is set when the frequency is 400 kHz.

なお、角度θ1、θ2は、これらの計算値を参考にして、最終的にはシール材3の密着性が十分良好であると予め分かっている箇所において材料中を伝播して検出された波形を見ながら微調整して決定することが望ましい。   Note that the angles θ1 and θ2 are waveforms detected by propagating through the material at locations where it is known in advance that the adhesion of the sealing material 3 is sufficiently good with reference to these calculated values. It is desirable to make fine adjustments while watching.

上記の実施形態では、空中超音波による斜角入射によって密着性を評価するが、送信側超音波探触子4あるいは受信側超音波探触子5のいずれか、あるいは両方を水浸式の斜角入射法または接触式の斜角探触子とすることも可能である。一般に、これらの方法は、空中超音波による斜角入射法に比べ効率良く超音波を材料内へ入射し、材料からの超音波を効率良く受信することができるので、受信信号強度を大きくすることができる。   In the above-described embodiment, the adhesion is evaluated by oblique angle incidence by airborne ultrasonic waves. However, either or both of the transmission-side ultrasonic probe 4 and the reception-side ultrasonic probe 5 are immersed in a water-immersion-type oblique wave. It is also possible to use an angle incidence method or a contact type oblique angle probe. In general, these methods can efficiently receive ultrasonic waves from a material and receive ultrasonic waves from the material more efficiently than the oblique angle incidence method using airborne ultrasonic waves. Can do.

図5に、斜角探触子の一例を示す。ガラス板1上に音響伝達媒質9が配置され、音響伝達媒質9の端部は斜めに形成され、この斜めの端部に超音波振動子8が配置される。振動子8の送信方向とガラス板1の法線とのなす角度θは、上記の式から算出される。このときの音響伝達媒質9の音速caは、振動子8から材料表面間に超音波が伝播する音響伝達媒質9の縦波音速とする。音響伝達媒質9は、例えば水やウェッジである。   FIG. 5 shows an example of a bevel probe. An acoustic transmission medium 9 is disposed on the glass plate 1, and an end portion of the acoustic transmission medium 9 is formed obliquely, and the ultrasonic transducer 8 is disposed at the oblique end portion. The angle θ formed between the transmission direction of the vibrator 8 and the normal line of the glass plate 1 is calculated from the above formula. The sound velocity ca of the acoustic transmission medium 9 at this time is the longitudinal sound velocity of the acoustic transmission medium 9 in which ultrasonic waves propagate from the vibrator 8 to the material surface. The acoustic transmission medium 9 is, for example, water or a wedge.

図6に、本実施形態の処理フローチャートを示す。まず、表材(第一部材)、裏材(第二部材)に対して位相速度分散曲線を計算し、最適な入射角度θ1及び最適な受信角度θ2を決定する(S101)。次に、S101で求めた角度を基本として、界面のうち剥離がないことが予め分かっている領域において材料中を透過する波形が確認できるように入射角度θ1及び受信角度θ2を調整する(S102)。また、このとき、音響遮蔽板6が無い場合には、材料中を伝播する波形と直接伝播する波形が時間的に重ならないように、超音波探触子間の距離L4を調整しておく。次に、密着性評価を行うための閾値を設定する(S103)。そして、送信側超音波探触子4及び受信側超音波探触子5を多層構造体の幅方向に走査しながら受信波形を取得し、受信波形の振幅を閾値と大小比較して測定領域の密着性の良否を判定する(S104)。   FIG. 6 shows a processing flowchart of the present embodiment. First, phase velocity dispersion curves are calculated for the front material (first member) and the back material (second member), and the optimum incident angle θ1 and the optimum reception angle θ2 are determined (S101). Next, on the basis of the angle obtained in S101, the incident angle θ1 and the reception angle θ2 are adjusted so that a waveform transmitted through the material can be confirmed in a region where it is known in advance that there is no separation (S102). . At this time, if there is no acoustic shielding plate 6, the distance L4 between the ultrasonic probes is adjusted so that the waveform propagating in the material and the waveform propagating directly do not overlap in time. Next, a threshold value for performing adhesion evaluation is set (S103). Then, a reception waveform is acquired while scanning the transmission-side ultrasonic probe 4 and the reception-side ultrasonic probe 5 in the width direction of the multilayer structure, and the amplitude of the reception waveform is compared with a threshold value in the measurement region. Whether the adhesion is good or bad is determined (S104).

このように、本実施形態では、調整した角度θ1及びθ2で送信側超音波探触子4及び受信側超音波探触子5を配置して超音波を送受信するので、材料中に効率よく超音波を伝播させて受信することができる。   As described above, in the present embodiment, the transmitting-side ultrasonic probe 4 and the receiving-side ultrasonic probe 5 are arranged at the adjusted angles θ1 and θ2, and the ultrasonic waves are transmitted and received. Sound waves can be propagated and received.

また、送信側超音波探触子4及び受信側超音波探触子5のいずれも、多層構造体の一方の側に配置することができるので、評価すべき多層構造体に応じた計測系の構築が容易となる。   In addition, since both the transmission-side ultrasonic probe 4 and the reception-side ultrasonic probe 5 can be disposed on one side of the multilayer structure, the measurement system corresponding to the multilayer structure to be evaluated Easy to build.

以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various change is possible.

例えば、本実施形態では、ガラス板1の上方(表側)に表材としての送信側超音波探触子4、裏材としての鋼板2の上方(表側)に受信側超音波探触子5を配置しているが、ガラス板1の上方に受信側超音波探触子5を配置し、鋼板2の上方に送信側超音波探触子4を配置してもよい。また、ガラス板1の下方(裏側)に送信側超音波探触子4あるいは受信側超音波探触子5を配置し、鋼板2の下方(裏側)に受信側超音波探触子5あるいは送信側超音波探触子4を配置してもよい。さらに、評価装置のスペースを確保できるのであれば、ガラス板1の上方に送信側超音波探触子4あるいは受信側超音波探触子5を配置し、鋼板2の下方に受信側超音波探触子5あるいは送信側超音波探触子4を配置してもよい。   For example, in the present embodiment, the transmission-side ultrasonic probe 4 as the front material is disposed above (front side) the glass plate 1 and the reception-side ultrasonic probe 5 is disposed above (front side) the steel plate 2 as the backing material. Although it is arranged, the receiving-side ultrasonic probe 5 may be arranged above the glass plate 1 and the transmitting-side ultrasonic probe 4 may be arranged above the steel plate 2. In addition, a transmission-side ultrasonic probe 4 or a reception-side ultrasonic probe 5 is arranged below (back side) of the glass plate 1, and the reception-side ultrasonic probe 5 or transmission is below the steel plate 2 (back side). A side ultrasonic probe 4 may be arranged. Furthermore, if the space for the evaluation device can be secured, the transmission-side ultrasonic probe 4 or the reception-side ultrasonic probe 5 is disposed above the glass plate 1, and the reception-side ultrasonic probe is disposed below the steel plate 2. A contactor 5 or a transmission-side ultrasonic probe 4 may be arranged.

また、本実施形態では、第一部材としてガラス板、第二部材として鋼板を用いてシール材による密着性の評価を行っているが、この評価結果を例えば車両の水漏れ検査に適用することも可能である。車両の水漏れを評価する方法としては、車両全体に蛍光水をかけ、ブラックライトを当てて光らせることで室内に漏れ出る蛍光水を発見するというシャワーテストが知られているが、このテストには多くの検査時間と労力を要する。本実施形態の評価方法を用いることで、より短時間で、かつ少ない労力で水漏れの検査を行うことが可能である。   Moreover, in this embodiment, although the adhesiveness evaluation by a sealing material is performed using a glass plate as a 1st member and a steel plate as a 2nd member, this evaluation result can also be applied, for example to the water leak test | inspection of a vehicle. Is possible. As a method for evaluating vehicle water leakage, a shower test is known in which fluorescent water is applied to the entire vehicle, and the fluorescent water leaking into the room is detected by shining it with black light. It takes a lot of inspection time and labor. By using the evaluation method of this embodiment, it is possible to inspect for water leakage in a shorter time and with less effort.

本実施形態では、第一部材としてガラス板、第二部材として鋼板、中間部材としてシール材あるいは接着剤を用いているが、本発明は必ずしもこれに限定されるものではなく、第一部材及び第二部材が高音響インピーダンス材であり、中間部材が低音響インピーダンス材であれば任意の材料に適用することができる。第一部材がガラス板、第二部材が樹脂板であってもよい。   In this embodiment, a glass plate is used as the first member, a steel plate is used as the second member, and a sealing material or an adhesive is used as the intermediate member. However, the present invention is not necessarily limited to this, and the first member and the first member If the two members are high acoustic impedance materials and the intermediate member is a low acoustic impedance material, it can be applied to any material. The first member may be a glass plate and the second member may be a resin plate.

また、本実施形態では、第1部材、中間部材、第2部材からなる多層構造体を例示したが、第一部材、第一中間部材、第二部材、第二中間部材、第三部材からなる多層構造体のように、3層以上の層構造を有する多層構造体にも適用することができる。   Moreover, in this embodiment, although the multilayer structure which consists of a 1st member, an intermediate member, and a 2nd member was illustrated, it consists of a 1st member, a 1st intermediate member, a 2nd member, a 2nd intermediate member, and a 3rd member. The present invention can also be applied to a multilayer structure having a layer structure of three or more layers, such as a multilayer structure.

1 ガラス板(第一部材)、2 鋼板(第二部材)、3 シール材(中間部材)、4 送信側超音波探触子、5 受信側超音波探触子、6 音響遮蔽板、7 センサージグ、8 振動子、9 音響伝達媒質。   1 glass plate (first member), 2 steel plate (second member), 3 sealing material (intermediate member), 4 transmission side ultrasonic probe, 5 reception side ultrasonic probe, 6 acoustic shielding plate, 7 sensor Jig, 8 vibrators, 9 acoustic transmission medium.

Claims (6)

少なくとも第一部材と中間部材と第二部材からなる多層構造体の各部材間の界面における密着性を評価する評価装置であって、
前記第一部材と前記第二部材は、端部において互いに重なるように前記中間部材により接合されており、
前記第一部材の対向する2つの面のうちの一方の面側に入射角度をもって配置された送信側超音波探触子と、
前記第二部材の対向する2つの面のうち前記第一部材の前記一方の面と同一方向あるいは反対方向の面側に受信角度をもって配置された受信側超音波探触子と、
前記受信側探触子で受信された、前記送信側探触子から送信された超音波であって、前記第一部材、前記中間部材、前記第二部材を板波として伝播した超音波の振幅を閾値と大小比較することで前記密着性を判定する判定手段と、
を備え、
前記入射角度及び前記受信角度は、板波モードの位相速度c、前記第一部材と前記送信側超音波探触子間の媒質での音速、及び前記第二部材と前記受信側超音波探触子間の媒質での音速をcaとすると、
θ=arcsin(ca/c)
で決定される角度θに基づき設定されることを特徴とする密着性評価装置。
An evaluation apparatus for evaluating adhesion at an interface between each member of a multilayer structure composed of at least a first member, an intermediate member, and a second member,
The first member and the second member are joined by the intermediate member so as to overlap each other at an end portion,
A transmitting-side ultrasonic probe arranged at an incident angle on one of the two opposing surfaces of the first member;
A reception-side ultrasonic probe disposed at a reception angle on the same or opposite side of the first member of the two surfaces of the second member;
Amplitude of ultrasonic waves transmitted from the transmission side probe received by the reception side probe and propagated as plate waves through the first member, the intermediate member, and the second member Determining means for determining the adhesion by comparing the size with a threshold value;
With
The incident angle and the reception angle are the plate wave mode phase velocity c, the speed of sound in the medium between the first member and the transmitting ultrasonic probe, and the second member and the receiving ultrasonic probe. If the speed of sound in the medium between the children is ca,
θ = arcsin (ca / c)
It is set based on angle (theta) determined by (2), The adhesive evaluation apparatus characterized by the above-mentioned.
請求項1記載の装置において、
前記送信側超音波探触子と前記受信側超音波探触子との間に、前記送信側超音波探触子から送信された超音波が前記受信側超音波探触子に直接伝播することを防止する音響遮蔽部材が設けられることを特徴とする密着性評価装置。
The apparatus of claim 1.
Between the transmitting ultrasonic probe and the receiving ultrasonic probe, the ultrasonic wave transmitted from the transmitting ultrasonic probe directly propagates to the receiving ultrasonic probe. An adhesion evaluation apparatus characterized in that an acoustic shielding member is provided to prevent the above.
請求項1記載の装置において、
前記送信側超音波探触子及び前記受信側超音波探触子は、それぞれ前記第一部材及び前記第二部材から離間して設けられ、前記多層構造体に対して非接触で密着性を評価することを特徴とする密着性評価装置。
The apparatus of claim 1.
The transmission-side ultrasonic probe and the reception-side ultrasonic probe are provided apart from the first member and the second member, respectively, and the adhesion is evaluated without contact with the multilayer structure. An adhesion evaluation apparatus characterized by:
請求項1〜3のいずれかに記載の装置において、
前記第一部材はガラス板であり、前記第二部材は鋼板であり、前記中間部材はシール材であることを特徴とする密着性評価装置。
In the apparatus in any one of Claims 1-3,
The first member is a glass plate, the second member is a steel plate, and the intermediate member is a sealing material.
請求項1〜3のいずれかに記載の装置において、
前記第一部材は鋼板であり、前記第二部材はガラス板であり、前記中間部材はシール材であることを特徴とする密着性評価装置。
In the apparatus in any one of Claims 1-3,
The first member is a steel plate, the second member is a glass plate, and the intermediate member is a sealing material.
少なくとも第一部材と中間部材と第二部材からなる多層構造体の各部材間の界面における密着性を評価する評価方法であって、
前記第一部材と前記第二部材は、端部において互いに重なるように前記中間部材により接合されており、
前記第一部材の対向する2つの面のうちの一方の面側に入射角度をもって配置された送信側超音波探触子から前記第一部材に超音波を送信し、
前記第二部材の対向する2つの面のうち前記第一部材の前記一方の面と同一方向あるいは反対方向の面側に受信角度をもって配置された受信側超音波探触子により、前記送信側探触子から送信された超音波であって前記第一部材、前記中間部材、前記第二部材を板波として伝播した超音波を受信し、
受信した信号の振幅を閾値と大小比較することで前記密着性を判定するものであり、
前記入射角度及び前記受信角度は、板波モードの位相速度c、前記第一部材と前記送信側超音波探触子間の媒質での音速、及び前記第二部材と前記受信側超音波探触子間の媒質での音速をcaとすると、
θ=arcsin(ca/c)
で決定される角度θに基づき設定されることを特徴とする密着性評価方法。
An evaluation method for evaluating adhesion at an interface between members of a multilayer structure comprising at least a first member, an intermediate member, and a second member,
The first member and the second member are joined by the intermediate member so as to overlap each other at an end portion,
Transmitting ultrasonic waves to the first member from a transmission-side ultrasonic probe arranged at an incident angle on one of the two opposing surfaces of the first member;
Of the two opposing surfaces of the second member, the transmitting-side probe is detected by a receiving-side ultrasonic probe disposed at a receiving angle on the same or opposite side of the one surface of the first member. The ultrasonic wave transmitted from the tentacle and receiving the ultrasonic wave propagated through the first member, the intermediate member, and the second member as a plate wave,
The adhesion is determined by comparing the amplitude of the received signal with a threshold value,
The incident angle and the reception angle are the plate wave mode phase velocity c, the speed of sound in the medium between the first member and the transmitting ultrasonic probe, and the second member and the receiving ultrasonic probe. If the speed of sound in the medium between the children is ca,
θ = arcsin (ca / c)
The adhesiveness evaluation method is set based on the angle θ determined in step (1).
JP2009276874A 2009-12-04 2009-12-04 Adhesion evaluation apparatus and method Expired - Fee Related JP5237923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009276874A JP5237923B2 (en) 2009-12-04 2009-12-04 Adhesion evaluation apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009276874A JP5237923B2 (en) 2009-12-04 2009-12-04 Adhesion evaluation apparatus and method

Publications (2)

Publication Number Publication Date
JP2011117878A JP2011117878A (en) 2011-06-16
JP5237923B2 true JP5237923B2 (en) 2013-07-17

Family

ID=44283381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009276874A Expired - Fee Related JP5237923B2 (en) 2009-12-04 2009-12-04 Adhesion evaluation apparatus and method

Country Status (1)

Country Link
JP (1) JP5237923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475520B2 (en) 2019-09-20 2024-04-26 日精エー・エス・ビー機械株式会社 Apparatus and method for blow molding resin containers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973965B2 (en) * 2013-06-28 2016-08-23 株式会社豊田中央研究所 Bondability evaluation apparatus and bondability evaluation method
JP6496181B2 (en) * 2015-04-17 2019-04-03 三菱日立パワーシステムズ株式会社 Ultrasonic measurement method and ultrasonic measurement apparatus
US9599807B2 (en) * 2015-06-30 2017-03-21 General Electric Company Optical microscope and method for detecting lens immersion
JP6096851B1 (en) * 2015-09-07 2017-03-15 東芝プラントシステム株式会社 Nondestructive inspection equipment
JP6109431B1 (en) * 2016-03-01 2017-04-05 三菱電機株式会社 Ultrasonic measuring apparatus and ultrasonic measuring method
FR3057957B1 (en) * 2016-10-25 2018-11-02 Safran METHOD FOR NON-DESTRUCTIVE CONTROL OF A GLUE ASSEMBLY
NL2018810B1 (en) * 2017-04-28 2018-11-05 Fokker Aerostructures Bv An apparatus and a method for ultrasonic inspection of multi-layered structures
JP7104667B2 (en) * 2019-07-09 2022-07-21 公益財団法人鉄道総合技術研究所 Rail rupture detection device and method
CN110726772B (en) * 2019-11-13 2021-04-30 大连理工大学 Method for nondestructive measurement of coating interface bonding strength by ultrasonic bulk wave phase spectrum
JP7506901B2 (en) 2022-04-28 2024-06-27 ジャパンプローブ株式会社 Ultrasonic inspection method and ultrasonic inspection system
CN115219589A (en) * 2022-07-08 2022-10-21 中北大学 Nonlinear Lamb wave detection system and method for monitoring curing state of lining

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222160A (en) * 1986-03-25 1987-09-30 Hitachi Constr Mach Co Ltd Strength measurement of seam-welding by means of supersonic wave
JPS63175762A (en) * 1987-01-16 1988-07-20 Hitachi Constr Mach Co Ltd Adhesion state inspecting method using ultrasonic wave
JPH07244026A (en) * 1994-03-04 1995-09-19 Kobe Steel Ltd Ultrasonic flaw detecting method for honeycmb panel
JPH11118771A (en) * 1997-10-20 1999-04-30 Nkk Corp Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
JP4092704B2 (en) * 2005-07-04 2008-05-28 独立行政法人 宇宙航空研究開発機構 Ultrasonic test method and ultrasonic test apparatus using the same
JP4630992B2 (en) * 2006-12-27 2011-02-09 独立行政法人 宇宙航空研究開発機構 Ultrasonic inspection method and ultrasonic inspection apparatus used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475520B2 (en) 2019-09-20 2024-04-26 日精エー・エス・ビー機械株式会社 Apparatus and method for blow molding resin containers

Also Published As

Publication number Publication date
JP2011117878A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5237923B2 (en) Adhesion evaluation apparatus and method
CN106596725B (en) A kind of composite structure Zone R defect ultrasound method of discrimination
RU2515202C2 (en) Method to control connections of metal parts with plastics for availability of cavities by means of ultrasound
JP2012112851A (en) Ultrasonic inspection device and ultrasonic inspection method
Arun et al. An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection
JP6797788B2 (en) Ultrasonic probe
JP2010054497A (en) Ultrasonic flaw detection sensitivity setting method and ultrasonic flaw detector
CN103512953B (en) Adopt multi-probe supersonic testing method
JP4952489B2 (en) Flaw detection method and apparatus
JP2002062281A (en) Flaw depth measuring method and its device
JP2017173095A (en) Ultrasonic probe and manufacturing method therefor
Mažeika et al. Ultrasonic guided wave tomography for the inspection of the fuel tanks floor
JP2008139325A (en) Ultrasonic flaw detector
JP2009058238A (en) Method and device for defect inspection
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
CN203396753U (en) Adjustable weld inspection guided-wave probe
JPWO2020039850A1 (en) Bonding interface evaluation method and bonding interface evaluation device
JP2006023215A (en) Ultrasonic inspection method, ultrasonic inspection device and guide wave transducer for the ultrasonic inspection device
JP2002243703A (en) Ultrasonic flaw detector
JP2021081189A (en) Defect detection method
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
WO2019150953A1 (en) Ultrasonic probe
WO2018135242A1 (en) Inspection method
JP2009139225A (en) Method of detecting end of defect or the like and detection device for detecting end of defect or the like
JP2002277447A (en) Ultrasonic flaw detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees