[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5234653B2 - Light wave distance meter - Google Patents

Light wave distance meter Download PDF

Info

Publication number
JP5234653B2
JP5234653B2 JP2009149699A JP2009149699A JP5234653B2 JP 5234653 B2 JP5234653 B2 JP 5234653B2 JP 2009149699 A JP2009149699 A JP 2009149699A JP 2009149699 A JP2009149699 A JP 2009149699A JP 5234653 B2 JP5234653 B2 JP 5234653B2
Authority
JP
Japan
Prior art keywords
frequency
modulation
light
lowest
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009149699A
Other languages
Japanese (ja)
Other versions
JP2011007551A (en
Inventor
康俊 青木
Original Assignee
株式会社 ソキア・トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ソキア・トプコン filed Critical 株式会社 ソキア・トプコン
Priority to JP2009149699A priority Critical patent/JP5234653B2/en
Publication of JP2011007551A publication Critical patent/JP2011007551A/en
Application granted granted Critical
Publication of JP5234653B2 publication Critical patent/JP5234653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、位相差方式の光波距離計に関する。   The present invention relates to a phase difference type lightwave distance meter.

位相差方式の光波距離計としては、下記特許文献1に開示されたようなものが知られている。図14に、この光波距離計のブロック図を示す。   As a phase difference type optical wave distance meter, the one disclosed in Patent Document 1 below is known. FIG. 14 shows a block diagram of this light wave distance meter.

この光波距離計では、レーザダイオ−ド等の光源3Pから出射された測距光Lは、プリズム10P、12P、ミラー4P、対物レンズ5P等の送光光学系を経て、測点上に置かれたターゲット(プリズム等)6Pに向けて出射される。この光源3Pは変調器2Pに接続されており、変調器2Pは基準信号発振器1Pに接続されており、測距光Lは基準信号発振器1Pで発生された基準信号Kによって変調される。   In this light wave distance meter, distance measuring light L emitted from a light source 3P such as a laser diode is placed on a measurement point via a light transmission optical system such as a prism 10P, 12P, a mirror 4P, and an objective lens 5P. The light is emitted toward a target (prism or the like) 6P. The light source 3P is connected to the modulator 2P, the modulator 2P is connected to the reference signal oscillator 1P, and the distance measuring light L is modulated by the reference signal K generated by the reference signal oscillator 1P.

ターゲット6Pで反射された測距光Lは、対物レンズ5Pとミラー4Pからなる受光光学系を経て、ホトダイオード等の検出器(受光素子)7Pに入射する。すると、検出器7Pによって、測距光Lが測距信号Mなる電気信号に変換される。この測距信号Mと、変調器2Pから送られてくる基準信号Kとは、位相計9Pによって互いの位相差が測定され、この位相差からターゲット6Pまでの距離が求まる。   The distance measuring light L reflected by the target 6P is incident on a detector (light receiving element) 7P such as a photodiode through a light receiving optical system including an objective lens 5P and a mirror 4P. Then, the distance measuring light L is converted into an electric signal as a distance measuring signal M by the detector 7P. The phase difference between the distance measurement signal M and the reference signal K sent from the modulator 2P is measured by the phase meter 9P, and the distance to the target 6P is determined from the phase difference.

一方、光源3Pから出射された測距光Lは、シャッター8Pの位置を切り換えることにより、測距光Lがターゲット6Pまで往復する外部光路を経た場合と、このような外部光路を経ずに、プリズム10P、11P、12Pから構成される内部光路を経て参照光Rとして直ちに検出器7Pに入射する場合とに切換え可能にできる。この内部光路を経た参照光Rを用いて、外部光路を経た測距光Lと同様に距離測定すると、この光波距離計に固有な誤差を知ることができる。こうして、測距光Lによる測定と参照光Rによる測定を交互に行うことによって、測距光Lを用いて測定した距離から光波距離計に固有な誤差を補正して、ターゲット6Pまでの精確な距離を求めることができる。   On the other hand, the distance measuring light L emitted from the light source 3P switches the position of the shutter 8P so that the distance measuring light L passes through an external optical path that reciprocates to the target 6P, and without such an external optical path, It is possible to switch between the case where the light beam immediately enters the detector 7P as the reference light R through the internal optical path constituted by the prisms 10P, 11P, 12P. When the distance is measured using the reference light R that has passed through the internal optical path in the same manner as the distance measuring light L that has passed through the external optical path, an error inherent to the light wave rangefinder can be known. In this way, by alternately performing the measurement with the distance measuring light L and the measurement with the reference light R, the error inherent in the lightwave distance meter is corrected from the distance measured using the distance measuring light L, and the accurate measurement up to the target 6P The distance can be determined.

特許第3236941号公報Japanese Patent No. 3236941

一般に、前述した位相差方式の光波距離計においては、測距光Lは複数の基準信号Kを用いて変調されている。ここで、基準信号Kによる変調周波数F、F、Fを、それぞれ75MHz、3.75MHz、250kHzとすると、それぞれの波長は4m、80m、1200mとなり、それぞれの測定可能な範囲は2m、40m、600mとなる。これから分かるように、遠距離測定の際には低い変調周波数を使用する必要がある。しかし、数百kHz以下の変調周波数を使用すると、空気中の微粒子からの測距光Lの反射量が増して測定誤差が大きくなるという問題もあった。特に近年の高精度の光波距離計では、遠距離測定の際の空気中の微粒子からの測距光Lの反射量が無視できない程度になってきた。 Generally, in the above-described phase difference type lightwave distance meter, the distance measuring light L is modulated using a plurality of reference signals K. Here, if the modulation frequencies F 1 , F 2 , and F 3 based on the reference signal K are 75 MHz, 3.75 MHz, and 250 kHz, respectively, the respective wavelengths are 4 m, 80 m, and 1200 m, and each measurable range is 2 m, 40m and 600m. As can be seen, it is necessary to use a low modulation frequency for long distance measurements. However, when a modulation frequency of several hundred kHz or less is used, there is a problem in that the amount of reflection of the distance measuring light L from the fine particles in the air increases and the measurement error increases. In particular, in recent high-accuracy lightwave rangefinders, the amount of reflection of ranging light L from fine particles in the air at the time of long-distance measurement has reached a level that cannot be ignored.

本発明は、前記問題に鑑みてなされたもので、位相差方式の光波距離計による遠距離測定の測定誤差を小さくすることを課題とする。   The present invention has been made in view of the above problems, and an object of the present invention is to reduce measurement errors in long-distance measurement using a phase-difference optical wave distance meter.

前記課題を解決するため、請求項1に係る発明では、複数の変調周波数を重ね合わせる周波数重畳回路と、該周波数重畳回路で重ね合わされた複数の変調周波数で変調された光を出射する発光素子と、該発光素子から出射された光を受光する受光素子と、該受光素子に接続される複数の周波数変換器とを備えた光波距離計において、前記周波数重畳回路が、最も低い変調周波数以外の変調周波数が入力されるAND回路と、該AND回路の出力及び最も低い変調周波数が入力されるXOR回路とから構成されることを特徴とする。   In order to solve the above problems, in the invention according to claim 1, a frequency superimposing circuit for superimposing a plurality of modulation frequencies, and a light emitting element for emitting light modulated at a plurality of modulation frequencies superimposed by the frequency superimposing circuit, In the lightwave distance meter comprising a light receiving element that receives light emitted from the light emitting element and a plurality of frequency converters connected to the light receiving element, the frequency superimposing circuit includes a modulation other than the lowest modulation frequency. An AND circuit to which a frequency is input and an XOR circuit to which an output of the AND circuit and the lowest modulation frequency are input are characterized.

請求項2に係る発明では、請求項1に係る発明において、最も低い周波数の局部発振信号が2番目に低い変調周波数と最も低い変調周波数との差又は和といくらか異なる周波数であることを特徴とする。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, the local oscillation signal of the lowest frequency is a frequency somewhat different from the difference or sum of the second lowest modulation frequency and the lowest modulation frequency. To do.

請求項3に係る発明では、請求項1に係る発明において、前記複数の周波数変換器にはそれぞれ異なる周波数の局部発振信号が加えられ、最も低い周波数の局部発振信号が最も低い変調周波数以外の1つの変調周波数と最も低い変調周波数との差又は和といくらか異なる周波数であることを特徴とする。   In the invention according to claim 3, in the invention according to claim 1, a local oscillation signal having a different frequency is added to each of the plurality of frequency converters, and the local oscillation signal having the lowest frequency has a frequency other than the lowest modulation frequency. The frequency is somewhat different from the difference or sum of the two modulation frequencies and the lowest modulation frequency.

請求項4に係る発明では、請求項1、2又は3に係る発明において、最も低い変調周波数の変調信号のデューテイ比が18〜23%又は77〜85%で、最も低い変調周波数以外の変調信号のデューテイ比が50%であることを特徴とする。   In the invention according to claim 4, in the invention according to claim 1, 2, or 3, the duty ratio of the modulation signal having the lowest modulation frequency is 18 to 23% or 77 to 85%, and the modulation signal other than the lowest modulation frequency is used. The duty ratio is 50%.

請求項1に係る発明によれば、周波数重畳回路が、最も低い変調周波数以外の変調周波数が入力されるAND回路と、該AND回路の出力及び最も低い変調周波数が入力されるXOR回路とから構成されたから、最も低い変調周波数Fに係る信号が、従来の一個のAND回路だけの場合に比べて強くなって、遠距離測定の精度と信頼性を向上させることができる。 According to the first aspect of the present invention, the frequency superimposing circuit includes an AND circuit to which a modulation frequency other than the lowest modulation frequency is input, and an XOR circuit to which the output of the AND circuit and the lowest modulation frequency are input. because is, the signal of the lowest modulation frequency F 3 is, it becomes stronger than in the case of only the conventional one of the aND circuit, thereby improving the accuracy and reliability of long-distance measurement.

請求項2に係る発明によれば、請求項1に係る発明において、最も低い周波数の局部発振信号が2番目に低い変調周波数と最も低い変調周波数との差又は和といくらか異なる周波数にしたから、2番目に低い変調周波数と最も低い変調周波数の差となる周波数成分に最も低い周波数の局部発振信号が乗算されて得られた中間周波信号から、2番目に低い変調周波数と最も低い変調周波数の差となる周波数の変調周波数を用いた場合の測距値が得られる。2番目に低い変調周波数と最も低い変調周波数の差は、2番目に低い変調周波数と接近しているので、近接法によって、測距信号から最も低い変調周波数成分を検出することなく、最も低い変調周波数を用いた場合の測距値を得ることができる。これにより、測距光の空気中の微粒子による反射による影響を少なくすることができる。しかも、2番目に低い変調周波数と最も低い変調周波数の差又は和の周波数成分は、充分なレベルを保つことができ、充分なS/N比が得られるので、いっそう遠距離測定の精度と信頼性を向上させることができる。   According to the invention according to claim 2, in the invention according to claim 1, the local oscillation signal having the lowest frequency is set to a frequency somewhat different from the difference or sum of the second lowest modulation frequency and the lowest modulation frequency. The difference between the second lowest modulation frequency and the lowest modulation frequency from the intermediate frequency signal obtained by multiplying the frequency component that is the difference between the second lowest modulation frequency and the lowest modulation frequency by the local oscillation signal of the lowest frequency. A distance measurement value is obtained when using a modulation frequency of Since the difference between the second lowest modulation frequency and the second lowest modulation frequency is close to the second lowest modulation frequency, the lowest modulation frequency is not detected by the proximity method without detecting the lowest modulation frequency component from the ranging signal. A distance measurement value using the frequency can be obtained. Thereby, it is possible to reduce the influence of the reflection of the ranging light by the fine particles in the air. In addition, the frequency component of the difference or sum of the second lowest modulation frequency and the lowest modulation frequency can be maintained at a sufficient level, and a sufficient S / N ratio can be obtained. Can be improved.

請求項3に係る発明によれば、請求項1に係る発明において、最も低い周波数の局部発振信号が最も低い変調周波数以外の1つの変調周波数と最も低い変調周波数との差又は和といくらか異なる周波数とされたので、請求項2に係る発明と同様に、近接法によって、測距信号から最も低い変調周波数成分を検出することなく、最も低い変調周波数を用いた場合の測距値を得ることができる。しかも、最も低い変調周波数以外の1つの変調周波数と最も低い変調周波数との差又は和の周波数成分は、充分なレベルを保つことができ、充分なS/N比が得られる。これにより、請求項2に係る発明と同様な効果を奏する。   According to the invention of claim 3, in the invention of claim 1, the frequency of the local oscillation signal of the lowest frequency is somewhat different from the difference or sum of one modulation frequency other than the lowest modulation frequency and the lowest modulation frequency. Therefore, as in the invention according to claim 2, the distance measurement value when the lowest modulation frequency is used can be obtained by the proximity method without detecting the lowest modulation frequency component from the distance measurement signal. it can. Moreover, the difference or sum frequency component between one modulation frequency other than the lowest modulation frequency and the lowest modulation frequency can maintain a sufficient level, and a sufficient S / N ratio can be obtained. Thus, the same effect as in the second aspect of the invention can be achieved.

請求項4に係る発明によれば、請求項1、2又は3に係る発明において、最も低い変調周波数の変調信号のデューテイ比が18〜23%又は77〜85%で、最も低い変調周波数以外の変調信号のデューテイ比が50%としたことにより、全ての変調周波数に係る信号を所定以上のレベルに維持でき、全ての測定レンジで測定の精度と信頼性をいっそう向上させることができる。   According to the invention according to claim 4, in the invention according to claim 1, 2, or 3, the duty ratio of the modulation signal having the lowest modulation frequency is 18 to 23% or 77 to 85%, and other than the lowest modulation frequency. By setting the duty ratio of the modulation signal to 50%, signals related to all modulation frequencies can be maintained at a predetermined level or higher, and the accuracy and reliability of measurement can be further improved in all measurement ranges.

本発明の一実施例に係る光波距離計のブロック図である。It is a block diagram of the light wave distance meter concerning one example of the present invention. 前記光波距離計の発光素子から出射される光に含まれる周波数成分を示す図である。It is a figure which shows the frequency component contained in the light radiate | emitted from the light emitting element of the said light wave distance meter. 近接した2つの周波数から両周波数の差の周波数を得る方法を説明する図である。It is a figure explaining the method of obtaining the frequency of the difference of both frequencies from two adjacent frequencies. 近接した2つの変調周波数を用いて測距値を得る近接法について説明する図である。It is a figure explaining the proximity method which obtains a ranging value using two adjacent modulation frequencies. 前記光波距離計の周波数重畳回路を説明する図である。It is a figure explaining the frequency superposition circuit of the said light wave distance meter. 周波数F(75MHz)、F(3.75MHz)、F(250kHz)の信号を全て1個のAND回路に入力させたときのAND回路の出力について、周波数F付近をフーリエ級数展開したシミュレーションの結果である。For the output of the AND circuit when the signals of frequencies F 1 (75 MHz), F 2 (3.75 MHz), and F 3 (250 kHz) are all input to one AND circuit, the vicinity of the frequency F 1 is expanded in the Fourier series. It is a result of simulation. 同じく、周波数F付近をフーリエ級数展開したシミュレーションの結果である。Similarly, it is a result of a simulation in which the vicinity of the frequency F 2 is expanded by Fourier series. 周波数F、F、Fの信号を前記光波光波距離計の周波数重畳回路に入力させたときの前記周波数重畳回路からの出力について、周波数F付近をフーリエ級数展開したシミュレーションの結果である。Wherein the output from the frequency superposing circuit, the result of a simulation Fourier series expansion near frequencies F 1 when the signal of frequency F 1, F 2, F 3 was input to the frequency superimposing circuit of the light wave light wave rangefinder . 同じく、周波数F付近をフーリエ級数展開したシミュレーションの結果である。Similarly, it is a result of a simulation in which the vicinity of the frequency F 2 is expanded by Fourier series. 図6〜図9に示した結果の要点を説明する表である。10 is a table for explaining the main points of the results shown in FIGS. 周波数Fのデューティ比と周波数Fの信号レベルとの関係を示す図である。It is a diagram showing a relationship between the duty ratio and the frequencies F 1 of the signal level of the frequency F 3. 周波数Fのデューティ比と周波数Fの信号レベルとの関係を示す図である。It is a diagram showing a relationship between the duty ratio and the frequency F 2 of the signal level of the frequency F 3. 周波数Fのデューティ比と周波数Fの信号レベルとの関係を示す図である。It is a diagram showing a relationship between the duty ratio and the frequency F 3 of the signal level of the frequency F 3. 従来の光波距離計のブロック図である。It is a block diagram of the conventional lightwave distance meter.

以下、図面に基づいて、本発明の光波距離計の一実施例について説明する。   Hereinafter, an embodiment of the lightwave distance meter of the present invention will be described with reference to the drawings.

まず、この光波距離計について、図1に示したブロック図に基づいて詳細に説明する。   First, the lightwave distance meter will be described in detail based on the block diagram shown in FIG.

発振器1で変調周波数Fの信号を発生させる。この変調周波数Fの信号は、分周部2に入力されるとともに、PLL5を介して、発振器6に入力される。PLL5は、発振器6から出力される信号を正確に発振器1から出力される信号と同期させるために使用する。 In the oscillator 1 generates a signal of a modulation frequency F 1. The signal having the modulation frequency F 1 is input to the frequency divider 2 and also input to the oscillator 6 via the PLL 5. The PLL 5 is used to accurately synchronize the signal output from the oscillator 6 with the signal output from the oscillator 1.

分周部2は、変調周波数Fの信号を分周して、変調周波数F2及びFの信号を発生する。この変調周波数F2及びFの信号と変調周波数Fの信号とは、周波数重畳回路3を経て駆動回路4へ入力される。負荷抵抗8に接続された発光素子11は、駆動回路4によって駆動され、変調周波数F、F及びFで変調された光を出射する。 The frequency divider 2 divides the signal of the modulation frequency F 1 and generates signals of the modulation frequencies F 2 and F 3 . The signals of the modulation frequencies F 2 and F 3 and the signal of the modulation frequency F 1 are input to the drive circuit 4 through the frequency superimposing circuit 3. The light emitting element 11 connected to the load resistor 8 is driven by the drive circuit 4 and emits light modulated by the modulation frequencies F 1 , F 2 and F 3 .

発振器6は、変調周波数Fといくらか異なる局部発振周波数F+Δfの信号を発生する。この局部発振周波数F+Δfの信号からは、周波数生成回路12で分周されて、変調周波数F及びFとそれぞれいくらか異なる局部発振周波数F+Δf及びF−F+Δfの局部発振信号も生成される。これらの局部発振周波数F+Δf、F+Δf及びF−F+Δfの局部発振信号は、後述するように、それぞれ周波数変換器32、35、38へ入力される。 The oscillator 6 generates a signal with a local oscillation frequency F 1 + Δf 1 that is somewhat different from the modulation frequency F 1 . The signal of the local oscillation frequency F 1 + Δf 1 is divided by the frequency generation circuit 12 and has local oscillation frequencies F 2 + Δf 2 and F 2 −F 3 + Δf 3 that are somewhat different from the modulation frequencies F 2 and F 3 , respectively. A local oscillation signal is also generated. These local oscillation signals of local oscillation frequencies F 1 + Δf 1 , F 2 + Δf 2 and F 2 −F 3 + Δf 3 are input to frequency converters 32, 35 and 38, respectively, as will be described later.

発光素子11から出射された光は、ビームスプリッタ20で2つに分けられ、シャッター28を切換えることにより、一方が図示しない送光光学系から測距光として出射され、目標反射物22までを往復する測距光路23を経て受光素子30に入射し、他方が参照光として、光波距離計内部の参照光路26を経て受光素子30に入射する。測距光路23には、受光素子30の前に、受光光学系24と光量調整用の可変濃度フィルタ25が配置されている。参照光路26にも、受光素子30の前に光量減衰用の濃度フィルタ27が配置されている。   The light emitted from the light emitting element 11 is divided into two by the beam splitter 20, and by switching the shutter 28, one is emitted as distance measuring light from a light transmission optical system (not shown) and reciprocates to the target reflector 22. The light enters the light receiving element 30 through the distance measuring optical path 23, and the other enters the light receiving element 30 as the reference light through the reference light path 26 inside the lightwave distance meter. In the distance measuring optical path 23, a light receiving optical system 24 and a variable density filter 25 for adjusting the amount of light are disposed in front of the light receiving element 30. Also in the reference optical path 26, a density filter 27 for attenuating the amount of light is arranged in front of the light receiving element 30.

受光素子30から出力される測距信号は、増幅器31を経て3つに分けられ、一つ目は第1の周波数変換器32に入力され、2つ目は第2の周波数変換器35に入力され、3つ目は第3の周波数変換器38に入力される。   A distance measurement signal output from the light receiving element 30 is divided into three through an amplifier 31, the first being input to the first frequency converter 32 and the second being input to the second frequency converter 35. The third is input to the third frequency converter 38.

第1の周波数変換器32は、測距光路23を経た測距光又は参照光路26を経た参照光から得られた測距信号の周波数F成分に、前述した周波数Fといくらか異なる局部発振周波数F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。第2の周波数変換器35は、測距光路23を経た測距光又は参照光路26を経た参照光から得られた測距信号の周波数F成分に、前述した周波数Fといくらか異なる局部発振周波数F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。 The first frequency converter 32 generates a local oscillation somewhat different from the frequency F 1 described above in the frequency F 1 component of the ranging signal obtained from the ranging light that has passed through the ranging optical path 23 or the reference light that has passed through the reference optical path 26. Multiply the signal of frequency F 1 + Δf 1 to generate an intermediate frequency signal of frequency Δf 1 . The second frequency converter 35 generates a local oscillation that is somewhat different from the frequency F 2 described above, in the frequency F 2 component of the ranging signal obtained from the ranging light that has passed through the ranging optical path 23 or the reference light that has passed through the reference optical path 26. Multiply the signal of frequency F 2 + Δf 2 to generate an intermediate frequency signal of frequency Δf 2 .

ところで、発光素子11を周波数F、F、Fで変調すると、周波数F>F>Fの場合、図2に示したように、周波数F、F、Fの成分の他に、周波数F+F、F−F、F+F、F−Fの成分も含まれることになる。なお、周波数F+F、F−Fの成分も発生するが、周波数F又はFとは周波数が大きくかけ離れるため、図2に示していない。 By the way, when the light emitting element 11 is modulated with the frequencies F 1 , F 2 , and F 3 , when the frequency F 1 > F 2 > F 3 , the components of the frequencies F 1 , F 2 , and F 3 as shown in FIG. In addition, components of frequencies F 1 + F 3 , F 1 -F 3 , F 2 + F 3 , and F 2 -F 3 are also included. Although components of frequencies F 1 + F 2 and F 1 -F 2 are also generated, they are not shown in FIG. 2 because the frequency is far from the frequency F 1 or F 2 .

第3の周波数変換器38には、前述した周波数F−Fといくらか異なる局部発振周波数F−F+Δfが加えられているので、測距光路23を経た測距光又は参照光路26を経た参照光から得られた測距信号の周波数F−F成分に局部発振周波数F−F+Δfの信号を乗算して、周波数Δfの中間周波信号を発生させる。ここでは、前述したように、周波数F−Fといくらか異なる局部発振周波数F−F+Δfを用いたが、局部発振周波数としてはF−F−Δfを用いることも可能である。 The third frequency converter 38 is provided with a local oscillation frequency F 2 -F 3 + Δf 3 that is somewhat different from the above-described frequency F 2 -F 3 , so that the distance measuring light or reference light path via the distance measuring optical path 23 is added. 26, the frequency F 2 -F 3 component of the ranging signal obtained from the reference light that has passed through 26 is multiplied by the signal of the local oscillation frequency F 2 -F 3 + Δf 3 to generate an intermediate frequency signal of frequency Δf 3 . Here, as described above, was used somewhat different local oscillation frequency F 2 -F 3 + Δf 3 and the frequency F 2 -F 3, can also be used F 2 -F 3 -Δf 3 as the local oscillation frequency It is.

各周波数変換器32、35、38から出力された中間周波信号は、それぞれ、低域フィルタ33、36、39によって高周波成分が除去される。   The intermediate frequency signals output from the frequency converters 32, 35, and 38 are respectively removed from high-frequency components by the low-pass filters 33, 36, and 39.

各低域フィルタ33、36、39を経た中間周波信号は、それぞれA/D変換器34、37、40に入力される。そして、これらの中間周波信号は、図示しないCPU(演算制御部)によって初期位相及び振幅が求められる。各中間周波信号の初期位相が求まると、目標反射物22までの距離が光波距離計内部で発生する誤差を補正して算出される。また、各中間周波信号の振幅も求まると、これらの振幅は可変濃度フィルタ25による光量調節に利用される。   The intermediate frequency signals that have passed through the low-pass filters 33, 36, and 39 are input to A / D converters 34, 37, and 40, respectively. Then, the initial phase and amplitude of these intermediate frequency signals are obtained by a CPU (arithmetic control unit) (not shown). When the initial phase of each intermediate frequency signal is obtained, the distance to the target reflector 22 is calculated by correcting an error generated inside the light wave rangefinder. Further, when the amplitudes of the intermediate frequency signals are obtained, these amplitudes are used for light amount adjustment by the variable density filter 25.

本実施例によれば、従来と同様にして変調周波数F及びFでの測距値が得られる。また、近接法により、近接した2つの変調周波数F及びF−Fの差となる変調周波数Fでの測距値dも得られる。以下、変調周波数Fでの測距値が得られる理由を説明する。 According to the present embodiment, ranging values at the modulation frequencies F 1 and F 2 can be obtained in the same manner as in the past. Further, a distance measurement value d 3 at the modulation frequency F 3 that is the difference between the two adjacent modulation frequencies F 2 and F 2 −F 3 is also obtained by the proximity method. Hereinafter, explaining the reason why the distance value at the modulation frequency F 3 is obtained.

変調周波数F、Fは、一般に変調周波数Fを分周して作る。例えば、周波数Fを20分周して周波数Fを作り、周波数Fを300分周して周波数Fを作ったとする。例えば、Fを75MHzとすると、Fは3.75MHz、Fは250kHzとなる。したがって、測距信号からは、周波数F−F=3.5MHzの成分も検出できることになる。近接した周波数F、F−Fの両成分からは、図3に示したように、ビート(うなり)により両周波数F、F−Fの差の周波数Fの成分を生じる。この例から分かるように、一般的に次式が成立する。
=F−(F−F) (1)
The modulation frequencies F 2 and F 3 are generally generated by dividing the modulation frequency F 1 . For example, to make a frequency F 2 to the frequencies F 1 and circumferential 20 minutes, and made a frequency F 3 and the frequencies F 1 300 divided. For example, if the F 1 and 75 MHz, F 2 is 3.75 MHz, F 3 becomes 250 kHz. Therefore, a component of frequency F 2 −F 3 = 3.5 MHz can be detected from the distance measurement signal. As shown in FIG. 3, a component of the frequency F 3 that is the difference between the two frequencies F 2 and F 2 -F 3 is generated from both components of the adjacent frequencies F 2 and F 2 -F 3 by a beat. . As can be seen from this example, the following equation generally holds.
F 3 = F 2 - (F 2 -F 3) (1)

周波数Fでの波長をλ、周波数Fでの波長をλ、周波数F−Fでの波長をλ23、光速をcとすると、(1)式は次式のようにも書ける。
c/λ=c/λ−c/λ23 又は 1/λ=1/λ−1/λ23 (2)
Assuming that the wavelength at the frequency F 3 is λ 3 , the wavelength at the frequency F 2 is λ 2 , the wavelength at the frequency F 2 -F 3 is λ 23 , and the speed of light is c, the equation (1) can also be expressed as I can write.
c / λ 3 = c / λ 2 −c / λ 23 or 1 / λ 3 = 1 / λ 2 −1 / λ 23 (2)

図4に、周波数FとF−Fとが近接した3.75MHz(波長80m)と3.5MHz(波長約86m)の場合の、距離と位相との関係を示す。距離600m(往復1200m)で両者の位相差は2πになる。一方、両周波数FとF−Fとの差となる周波数F(波長1200m)の位相も2πになる。これから、周波数Fの位相は、周波数Fの位相と周波数F−Fの位相との位相差に等しいことが分かる。一般に、周波数Fでの測距値をd、周波数Fでの測距値をd、周波数F−Fでの測距値をd23とすると、次式が成立する。
2d/λ=2d/λ−2d23/λ23=θ/(2π) (3)
FIG. 4 shows the relationship between distance and phase when the frequencies F 2 and F 2 -F 3 are close to 3.75 MHz (wavelength 80 m) and 3.5 MHz (wavelength about 86 m). At a distance of 600 m (roundtrip 1200 m), the phase difference between the two becomes 2π. On the other hand, the phase of the frequency F 3 (wavelength 1200 m) that is the difference between the two frequencies F 3 and F 2 −F 3 is also 2π. Now, the phase of the frequency F 3, it is seen equal the phase difference between the frequency F 3 phase and frequency F 2 -F 3 phases. In general, when the distance measurement value at the frequency F 3 is d 3 , the distance measurement value at the frequency F 2 is d 2 , and the distance measurement value at the frequency F 2 -F 3 is d 23 , the following equation is established.
2d 3 / λ 3 = 2d 2 / λ 2 -2d 23 / λ 23 = θ / (2π) (3)

ただし、θは周波数Fでの位相である。したがって、この位相θは、周波数Fでの位相2π(2d/λ)と周波数F−Fでの位相2π(2d23/λ23)の位相差から算出できる。なお、(3)式において、2d、2d、2d23としたのは、測距光が目標反射物22までを往復するからである。もし、2d/λ−2d23/λ23の値が負の場合は、2πを加えてこの位相角θを算出する。こうして位相角θを算出すると、次式から周波数Fでの測距値dを算出できる。
=λ・θ /(4π) (4)
However, θ is the phase of the frequency F 3. Therefore, the phase θ can be calculated from the phase difference of the phase 2π (2d 23 / λ 23) of the phase 2π (2d 2 / λ 2) and the frequency F 2 -F 3 at the frequency F 2. In Equation (3), 2d 3 , 2d 2 , and 2d 23 are set because the distance measuring light reciprocates to the target reflector 22. If the value of 2d 2 / λ 2 −2d 23 / λ 23 is negative, 2π is added to calculate this phase angle θ. When the phase angle θ is thus calculated, the distance measurement value d 3 at the frequency F 3 can be calculated from the following equation.
d 3 = λ 3 · θ / (4π) (4)

このように、周波数FとF−Fとが近接した3.75MHzと3.5MHzであれば、両周波数FとF−Fとの差となる周波数Fは、250kHzで、その波長は1200mとなる。こうして、測距信号から極めて低い周波数F成分を検出することなく、極めて低い変調周波数Fを用いた場合の測距値dを得ることができ、遠距離測定が可能となり、しかも従来よりも誤差を小さくできる。 Thus, if the 3.75MHz and 3.5MHz for the frequency F 2 and F 2 -F 3 is close, the frequency F 3 which is a difference between the two frequencies F 3 and F 2 -F 3 is a 250kHz The wavelength is 1200 m. In this way, it is possible to obtain the distance value d 3 when the extremely low modulation frequency F 3 is used without detecting the extremely low frequency F 3 component from the distance measurement signal, and it becomes possible to measure a long distance, and moreover than before. Can also reduce the error.

ところで、本実施例において、前記周波数重畳回路3として単純にAND回路を用いることが考えられるが、周波数重畳回路3の出力では一般に周波数F−F成分が周波数F成分に比べて小さくなるため(図10参照)、特に遠距離測定の場合、充分なS/N比が得られず、変調周波数Fをそのまま用いた測定に比べて、精度や信頼性が格別向上しない恐れもある。そこで、本実施例では、周波数F−F成分をなるべく大きくするため、周波数重畳回路3を図5に示したように、変調周波数F、Fが入力されるAND回路3Aと、AND回路3Aの出力と変調周波数Fが入力されるXOR回路(排他的OR回路)3Xから構成する。 Incidentally, in this embodiment, the it is conceivable to simply use AND circuit as the frequency superimposing circuit 3, as compared with the general frequency F 2 -F 3 component frequency F 3 component in the output of frequency superimposing circuit 3 becomes smaller If for (see FIG. 10), in particular long distance measurement, not sufficient S / N ratio can be obtained, as compared with measurement using as a modulation frequency F 3, there is a possibility that the accuracy and reliability is not particularly improved. Therefore, in this embodiment, in order to increase the frequency F 2 -F 3 component as much as possible, the frequency superimposing circuit 3 has an AND circuit 3A to which the modulation frequencies F 1 and F 2 are inputted, as shown in FIG. consist XOR circuit (exclusive OR circuit) 3X the output modulation frequency F 3 of the circuit 3A are inputted.

図6〜図13に基づいて、本実施例における周波数重畳回路3の効果を説明する。図6は、周波数F(75MHz)、F(3.75MHz)、F(250kHz)で、それぞれデューテイ比50%の信号を全て単独のAND回路に入力させたときのAND回路の出力について、周波数F1付近をフーリエ級数展開したシミュレーションの結果である。図7は、同じく、周波数F(3.75MHz)付近をフーリエ級数展開したシミュレーションの結果である。図8は、周波数F(75MHz)、F(3.75MHz)でそれぞれデューティ比50%の信号と、周波数F(250kHz)でデューティ比77.17%の信号を本実施例の周波数重畳回路3に入力させたときの周波数重畳回路3からの出力について、周波数F1付近をフーリエ級数展開したシミュレーションの結果である。図9は、同じく、周波数F(3.75MHz)付近をフーリエ級数展開したシミュレーションの結果である。図10は、図6〜図9に示した結果の要点を説明する表である。図11は、周波数Fのデューティ比と周波数Fの信号レベルとの関係を示す図である。図12は、周波数Fのデューティ比と周波数Fの信号レベルとの関係を示す図である。図13は、周波数Fのデューティ比と周波数Fの信号レベルとの関係を示す図である。 The effect of the frequency superimposing circuit 3 in this embodiment will be described with reference to FIGS. FIG. 6 shows the output of the AND circuit when all signals having a duty ratio of 50% are input to a single AND circuit at frequencies F 1 (75 MHz), F 2 (3.75 MHz), and F 3 (250 kHz). This is a result of a simulation in which the vicinity of the frequency F1 is expanded in the Fourier series. FIG. 7 also shows the result of a simulation in which the vicinity of the frequency F 2 (3.75 MHz) is expanded in the Fourier series. FIG. 8 shows the frequency superposition of this embodiment with a signal having a duty ratio of 50% at frequencies F 1 (75 MHz) and F 2 (3.75 MHz) and a signal having a duty ratio of 77.17% at frequency F 3 (250 kHz). It is the result of the simulation which carried out the Fourier series expansion | deployment of the vicinity of the frequency F1 about the output from the frequency superimposition circuit 3 when making it input into the circuit 3. FIG. FIG. 9 also shows the result of a simulation in which the vicinity of the frequency F 2 (3.75 MHz) is expanded in the Fourier series. FIG. 10 is a table for explaining the main points of the results shown in FIGS. FIG. 11 is a diagram illustrating the relationship between the duty ratio of the frequency F 3 and the signal level of the frequency F 1 . Figure 12 is a graph showing the relationship between the duty ratio and the frequency F 2 of the signal level of the frequency F 3. Figure 13 is a diagram showing the relationship between the duty ratio and the frequency F 3 of the signal level of the frequency F 3.

図10から分かるように、本実施例では、周波数F1の信号レベルは、周波数重畳回路3が一個のAND回路だけの場合より強くなっている。周波数Fの信号レベルは、一個のAND回路だけの場合よりいくらか弱くなっているが、その差は1dB以内で問題はない。本実施例で特筆すべきことは、周波数F±F、特にF−Fに係る信号は、一個のAND回路だけの場合に比べて、かなり強くなっていて、周波数Fの信号に比べてもさほど遜色のないことである。したがって、本実施例によれば、変調周波数F−Fに係る信号で充分なS/N比が得られ、遠距離測定の精度と信頼性を向上させることができる。 As can be seen from FIG. 10, in this embodiment, the signal level of the frequency F 1 is stronger than when the frequency superimposing circuit 3 is only one AND circuit. Signal level of the frequency F 2 is becomes somewhat weaker than in the case of only one of the AND circuit, the difference is no problem within 1 dB. What should be noted in the present embodiment is that the signal relating to the frequency F 2 ± F 3 , especially the signal relating to F 2 -F 3 is considerably stronger than the case of only one AND circuit, and the signal of the frequency F 3 It is not much inferior to. Therefore, according to the present embodiment, a sufficient S / N ratio can be obtained with a signal related to the modulation frequency F 2 -F 3 , and the accuracy and reliability of long-distance measurement can be improved.

また、図11〜図13から分かるように、周波数F、F、Fに係る信号レベルが全て略−10dB以上になるように、周波数Fのデューティ比は18〜23%又は77〜85%程度が適切である。 As can be seen from FIGS. 11 to 13, the duty ratio of the frequency F 3 is 18 to 23% or 77 to so that the signal levels related to the frequencies F 1 , F 2 , and F 3 are all about −10 dB or more. About 85% is appropriate.

ところで、本発明は、前記各実施例の光波距離計だけに限るものではなく、光波距離計を内蔵した測量機、例えばトータルステーションや、その他の距離測定装置等にも広く利用できる。   By the way, the present invention is not limited to the lightwave distance meter of each of the above embodiments, but can be widely used in surveying instruments having a built-in lightwave distance meter, for example, a total station or other distance measuring devices.

また、前述した周波数F−Fの代わりに、図2に示された周波数F+F(4MHz、波長75m)、F−F(75.25MHz、波長5.99m)、F+F(74.75MHz、波長4.01m)を使用してもよい。これらの場合は、図1の実施例において、周波数変換器38に、それぞれ周波数F+F±Δf、F−F±Δf、F+F±Δfの局部発振信号を加え、周波数Δfの中間周波信号を得る。いずれの場合でも近接法により周波数Fでの測距値が得られる。 Further, instead of the frequency F 2 -F 3 as described above, the frequency F 2 + F 3 shown in FIG. 2 (4 MHz, the wavelength 75m), F 1 -F 3 ( 75.25MHz, wavelength 5.99m), F 1 + F 3 (74.75 MHz, wavelength 4.01 m) may be used. In these cases, local oscillation signals of frequencies F 2 + F 3 ± Δf 3 , F 1 −F 3 ± Δf 3 , and F 1 + F 3 ± Δf 3 are added to the frequency converter 38 in the embodiment of FIG. Then, an intermediate frequency signal having a frequency Δf 3 is obtained. Distance value at the frequency F 3 is obtained by the proximity method any case.

さらに、空気中の粒子による測距光の反射が少ない環境(高地や宇宙空間等)では、近接法を用いずに変調周波数Fで直接測定しても、遠距離測定の精度と信頼性を向上させることができる。この場合は、図1の実施例において、周波数変換器38に加える局部発振周波数はF±Δfと変更する。 Furthermore, the environmental reflections is less of the distance measuring light by particles in the air (high altitude or space, etc.), be measured directly at the modulation frequency F 3 without using a proximity method, the accuracy and reliability of long-distance measurement Can be improved. In this case, in the embodiment of FIG. 1, the local oscillation frequency applied to the frequency converter 38 is changed to F 3 ± Δf 3 .

3 周波数重畳回路
3A AND回路
3X XOR回路
11 発光素子
22 目標反射物
23 測距光路
26 参照光路
28 シャッター
30 受光素子
32、35、38 周波数変換器
、F、F 変調周波数
+ΔF、F+ΔF、F−F+ΔF 局部発振周波数
3 frequency superimposing circuit 3A AND circuit 3X XOR circuit 11 light emitting element 22 target reflector 23 distance measuring optical path 26 reference optical path 28 shutter 30 light receiving elements 32, 35, 38 frequency converters F 1 , F 2 , F 3 modulation frequency F 1 + ΔF 1 , F 2 + ΔF 2 , F 2 -F 3 + ΔF 3 Local oscillation frequency

Claims (4)

複数の変調周波数を重ね合わせる周波数重畳回路と、該周波数重畳回路で重ね合わされた複数の変調周波数で変調された光を出射する発光素子と、該発光素子から出射された光を受光する受光素子と、該受光素子に接続されるともにそれぞれ異なる周波数の局部発振信号が加えられる複数の周波数変換器とを備えた光波距離計において、
前記周波数重畳回路が、最も低い変調周波数以外の変調周波数が入力されるAND回路と、該AND回路の出力及び最も低い変調周波数が入力されるXOR回路とから構成されたことを特徴とする光波距離計。
A frequency superimposing circuit that superimposes a plurality of modulation frequencies, a light emitting element that emits light modulated at a plurality of modulation frequencies superimposed by the frequency superimposing circuit, and a light receiving element that receives the light emitted from the light emitting element; In a lightwave distance meter comprising a plurality of frequency converters connected to the light receiving element and applied with local oscillation signals of different frequencies,
The frequency superimposing circuit is composed of an AND circuit to which a modulation frequency other than the lowest modulation frequency is input, and an XOR circuit to which an output of the AND circuit and the lowest modulation frequency are input, Total.
最も低い周波数の局部発振信号が2番目に低い変調周波数と最も低い変調周波数との差又は和といくらか異なる周波数であることを特徴とする請求項1に記載の光波距離計。   2. The optical rangefinder according to claim 1, wherein the local oscillation signal having the lowest frequency has a frequency somewhat different from the difference or sum of the second lowest modulation frequency and the lowest modulation frequency. 前記複数の周波数変換器にはそれぞれ異なる周波数の局部発振信号が加えられ、最も低い周波数の局部発振信号が最も低い変調周波数以外の1つの変調周波数と最も低い変調周波数との差又は和といくらか異なる周波数であることを特徴とする請求項1に記載の光波距離計。   The plurality of frequency converters are applied with local oscillation signals of different frequencies, and the local oscillation signal of the lowest frequency is somewhat different from the difference or sum of one modulation frequency other than the lowest modulation frequency and the lowest modulation frequency. The light wave distance meter according to claim 1, wherein the light wave distance meter is a frequency. 最も低い変調周波数の変調信号のデューテイ比が18〜23%又は77〜85%で、最も低い変調周波数以外の変調信号のデューテイ比が50%であることを特徴とする請求項1、2又は3に記載の光波距離計。   The duty ratio of the modulation signal having the lowest modulation frequency is 18 to 23% or 77 to 85%, and the duty ratio of the modulation signal other than the lowest modulation frequency is 50%. Lightwave distance meter as described in 1.
JP2009149699A 2009-06-24 2009-06-24 Light wave distance meter Active JP5234653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149699A JP5234653B2 (en) 2009-06-24 2009-06-24 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149699A JP5234653B2 (en) 2009-06-24 2009-06-24 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2011007551A JP2011007551A (en) 2011-01-13
JP5234653B2 true JP5234653B2 (en) 2013-07-10

Family

ID=43564407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149699A Active JP5234653B2 (en) 2009-06-24 2009-06-24 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP5234653B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181695A1 (en) * 2018-03-23 2019-09-26 パイオニア株式会社 Distance measuring device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132580A (en) * 1980-03-10 1981-10-16 Tokyo Optical Co Ltd Light wave rangemeter
JP2929385B2 (en) * 1990-02-03 1999-08-03 株式会社ソキア Lightwave rangefinder
JPH04131787A (en) * 1990-09-21 1992-05-06 Topcon Corp Distance measuring device
JP2874580B2 (en) * 1995-02-13 1999-03-24 日本電気株式会社 Lightwave ranging device
JP3641870B2 (en) * 1996-03-28 2005-04-27 日産自動車株式会社 Random modulation radar equipment
JP4828245B2 (en) * 2006-02-02 2011-11-30 株式会社 ソキア・トプコン Light wave distance meter
JP2010286240A (en) * 2009-06-09 2010-12-24 Sokkia Topcon Co Ltd Light wave range finder

Also Published As

Publication number Publication date
JP2011007551A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP6541325B2 (en) Determination of position using synthetic wave laser ranging
JP6792933B2 (en) Synthetic wave laser ranging sensor and method
JP2008524563A (en) Single channel heterodyne distance measurement method
JP2015094760A5 (en)
JP4828245B2 (en) Light wave distance meter
US9798004B2 (en) Laser ranging sensors and methods that use a ladder of synthetic waves having increasing wavelengths to calculate a distance measurement
EP4249947A1 (en) Electro-optical distance meter
US8570494B2 (en) Electro-optical distance meter
JP5234653B2 (en) Light wave distance meter
JP6895192B2 (en) Distance measuring device
JP6902902B2 (en) Light wave rangefinder
JP6991034B2 (en) Method for determining modulation frequency of light wave rangefinder and feedback signal
JP5475349B2 (en) Light wave distance meter
JP2009258006A (en) Light wave range finder
JP5730094B2 (en) Light wave distance meter
JP2010286240A (en) Light wave range finder
JP5535599B2 (en) Light wave distance meter
JP2004264116A (en) Optical wave range finder
JP2007155660A (en) Light wave range finder
JP5450181B2 (en) Light wave distance meter
JP2006138702A (en) Light wave range finder
JP2019039924A (en) Light wave rangefinder
JPH0682552A (en) Electrooptical distance measurement
JP5674117B2 (en) Light wave distance meter
JP4698373B2 (en) Position information acquisition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5234653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250