JP5232412B2 - Directly connected water supply system - Google Patents
Directly connected water supply system Download PDFInfo
- Publication number
- JP5232412B2 JP5232412B2 JP2007171517A JP2007171517A JP5232412B2 JP 5232412 B2 JP5232412 B2 JP 5232412B2 JP 2007171517 A JP2007171517 A JP 2007171517A JP 2007171517 A JP2007171517 A JP 2007171517A JP 5232412 B2 JP5232412 B2 JP 5232412B2
- Authority
- JP
- Japan
- Prior art keywords
- pump
- pressure
- speed
- suction
- water supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
Description
本発明は、直結式給水装置に係り、特に水道本管に接続される複数台のポンプを並列運転する直結式給水装置に関するものである。 The present invention relates to a direct-coupled water supply apparatus, and more particularly to a direct-coupled water supply apparatus that operates a plurality of pumps connected to a water main in parallel.
集合住宅やビルなどに設置され、各給水端へ水を供給する装置として給水装置がある。図1はそのような給水装置の典型例を示すもので、給水装置は2台のモータポンプ1と、2台のモータポンプ1を駆動するための電力を供給するインバータ(周波数変換器)2を備えている。給水装置は、ポンプ1の吐出側に、圧力タンク3と吐出側圧力センサ4を備え、夫々のポンプ毎にフロースイッチ(流量検出手段)6と逆止弁7を備えている。また、ポンプの吸込側配管8は水道本管9に接続され、この吸込側配管8に吸込側圧力センサ10と逆流防止装置11とが設けられている。さらに、水道本管の圧力のみで給水を行うためのバイパス管12がポンプ1の吸込側配管8と吐出側配管13との間に設けられている。そして、バイパス管12の途中には逆止弁14が設けられている。モータポンプ1の制御を行う制御装置15は、これらのセンサ類からの信号に基づき、状況に応じたポンプ1の回転数制御及び台数制御を行う。
A water supply device is installed in an apartment house or a building and supplies water to each water supply end. FIG. 1 shows a typical example of such a water supply apparatus. The water supply apparatus includes two
図2はこのような給水装置の推定末端圧力一定制御を行う際のQH線図であり、横軸が流量Qを示し、縦軸が圧力(ヘッド)Hを示す。給水系の最低必要圧力PBと最大需要水量での必要圧力PAとは流量に依存する管路の抵抗曲線Rにより結ばれ、各流量における抵抗曲線Rの示す圧力が給水装置で供給すべき目標圧力となる。前記給水系の最低必要圧力PBおよび最大需要水量での必要圧力PAは、設定手段により予め制御装置15に設定され、記憶されている。制御装置15は、締切状態で圧力がPBとなるポンプ回転数HzBとポンプ最高回転数HzMaxとの間でインバータ2への回転数指令を行うが、現在のポンプ回転数指令値から流量を推定してその時点での目標圧力を決定し、吐出側圧力センサ4の検出圧力がその目標圧力に一致するようにインバータ2へ回転数指令を行う。
FIG. 2 is a QH diagram when performing such constant control of the estimated terminal pressure of the water supply apparatus, the horizontal axis indicates the flow rate Q, and the vertical axis indicates the pressure (head) H. The minimum required pressure PB of the water supply system and the required pressure PA at the maximum demand water volume are connected by a resistance curve R of the pipe line depending on the flow rate, and the pressure indicated by the resistance curve R at each flow rate is the target pressure to be supplied by the water supply device It becomes. The minimum required pressure PB of the water supply system and the required pressure PA at the maximum demand water amount are previously set and stored in the
上述のように構成された給水装置において、ポンプ停止中に需要側で水が使用され、吐出側圧力センサ4の検出圧力が始動圧力(最低必要圧力)PBを下回ると、制御装置15はポンプ1を1台起動させる。この場合、ポンプ1はポンプ回転数HzBで運転される。需要水量が増えると、ポンプ1はポンプ回転数HzBから、Hz1、Hz2・・・と回転数を上げていくが、流量がQ1以上になると、ポンプ回転数が最高回転数であるHzMaxに達しているので、目標圧力を満足することができなくなる。そこで、ポンプ回転数指令が最高回転数HzMaxに達すると、ポンプをもう1台追加で起動する。このとき、先に起動していたポンプ(先発ポンプ)は、運転速度が最高回転数HzMaxよりも若干低い所定の回転数HzMax’に固定され固定速ポンプとなり、追加されたポンプ(後発ポンプ)が需要水量によって可変速制御される変速ポンプとなり目標圧力を満たす。固定速ポンプは、吐出圧力の変動に拘らず、予め決められた所定の回転数で運転される。
In the water supply apparatus configured as described above, when water is used on the demand side while the pump is stopped and the detected pressure of the discharge-side pressure sensor 4 falls below the starting pressure (minimum required pressure) PB, the
2台のポンプが運転しているときに需要水量が減ると、後発ポンプの回転数が下げられていくが、Q1以下の水量であればポンプ1台で需要を満たすことができるため、後発ポンプを停止させる。制御装置15は、後発ポンプのフロースイッチ6により後発ポンプの送水水量が少水量であることを検知して、後発ポンプを解列停止し、先発ポンプを再び可変速制御する。
更に需要水量が減少すると先発ポンプの回転数が下げられていくが、先発ポンプのフロースイッチ6により水量が少水量であることを検知すると、制御装置15は先発ポンプも停止させ、再び水が使用されて吐出側圧力センサ4の検出圧力が始動圧力(最低必要圧力)PB以下になるまで待機状態となる。
If the demand water volume decreases while two pumps are operating, the number of revolutions of the later pump will be reduced. However, if the water volume is Q1 or less, the demand can be met with one pump. Stop. The
When the demand water volume further decreases, the rotational speed of the starter pump is lowered, but when the
また、直結式給水装置では、ポンプ吸込側に水道本管の圧力がかかっており、その圧力も変動する。吸込圧力が高くなると、より低いポンプ回転数で同じ圧力、流量を賄うことができるため、上述のPBとHzBの関係などが変化する。このため、吸込圧力に応じて目標圧力とポンプ回転数指令との関係を適宜補正して、適切な推定末端圧力一定制御を行うようになっている。吸込圧力が更に高くなり、目標圧力を超えるとポンプを駆動しなくとも給水が可能になるため、制御装置15はポンプを停止状態にする。吸込圧力が低下して目標圧力以下になると、再びポンプが駆動される。
Moreover, in the direct connection type water supply apparatus, the pressure of the water main pipe is applied to the pump suction side, and the pressure also fluctuates. When the suction pressure increases, the same pressure and flow rate can be covered at a lower pump rotation speed, so the relationship between PB and HzB described above changes. For this reason, the relationship between the target pressure and the pump rotation speed command is appropriately corrected according to the suction pressure, and appropriate estimated terminal pressure constant control is performed. If the suction pressure is further increased and exceeds the target pressure, water can be supplied without driving the pump, so the
推定末端圧力一定制御では、上述のようにポンプの回転数指令値に基づいてそのときの目標圧力を決定する。ポンプが2台運転されている状況では、吸込圧力に変動がなければ固定速で運転される先発ポンプの性能曲線に変動は生じないが、直結式給水装置では吸込圧力が変動するため、先発ポンプにも吸込圧力の変動を考慮しないと安定した末端圧力一定制御は行うことができない。 In the estimated terminal pressure constant control, the target pressure at that time is determined based on the rotational speed command value of the pump as described above. In the situation where two pumps are operating, if the suction pressure does not vary, the performance curve of the starting pump that operates at a fixed speed will not vary, but the suction pressure varies in the direct-coupled water supply system. In addition, stable terminal pressure constant control cannot be performed without taking account of fluctuations in the suction pressure.
また、水道本管の圧力が上昇して、水道本管の圧力だけで給水できるようになるとポンプを停止状態にするが、このとき水は主にバイパス管を流れ、ポンプなどがあり流路抵抗の大きい、ポンプの設置された配管に流れる水量は小さい。このため、需要水量が大きくポンプが2台運転している最中でも、水道本管の圧力が上昇して水道本管の圧力だけでの給水が行われるようになると、後発ポンプのフロースイッチが少水量を検知して、ポンプ1台のみの運転に移行してしまう。その後、水道本管の圧力が低下して吐出側圧力センサの検出圧力が目標圧力を下回ると、ポンプが再び回転を始めるが、吸込圧力の低下が急であって、需要水量が大きなままであった場合、ポンプ1台の運転では賄いきれず後発ポンプを追加しなければならなくなる。この結果、吐出圧力に変動をきたしてしまい、需要家に不快な思いをさせてしまうおそれがある。 Also, when the water main pressure rises and water can be supplied only with the water main pressure, the pump is stopped. At this time, the water mainly flows through the bypass pipe, and there is a pump, etc. The amount of water flowing through the pipe where the pump is installed is small. For this reason, even when the demand water volume is large and the two pumps are operating, if the water main pressure rises and water is supplied only with the water main pressure, the flow switch of the later pump is small. The amount of water is detected and the operation is shifted to the operation of only one pump. After that, when the water main pressure drops and the detection pressure of the discharge-side pressure sensor falls below the target pressure, the pump starts rotating again, but the suction pressure declines suddenly and the demand water volume remains large. In such a case, it is impossible to cover a single pump, and a new pump must be added. As a result, the discharge pressure fluctuates, which may make the consumer feel uncomfortable.
本発明は、上述の事情に鑑みなされたもので、並列運転される複数台の可変速モータポンプを備え、並列運転中の吸込圧力の変動によっても圧力変動の少ない安定した制御を行うことができる直結式給水装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes a plurality of variable speed motor pumps that are operated in parallel, and can perform stable control with little pressure fluctuation due to fluctuations in suction pressure during parallel operation. It aims at providing a direct connection type water supply apparatus.
上述した目的を達成するために、本発明の第1の態様は、水道本管に接続される複数台のポンプと、該ポンプをそれぞれ変速運転する複数の周波数変換器と、吐出側圧力センサと、吸込側圧力センサと、これら機器を制御する制御装置とを備え、複数台のポンプを並列運転する直結式給水装置であって、前記制御装置は、前記吐出側圧力センサの検出圧力に応じて変速運転される変速ポンプと所定の速度で運転される固定速ポンプとで並列運転を行い、吸込圧力が低下して前記変速ポンプへの周波数指令値が0Hzではなく、且つ、前記変速ポンプが少水量状態である場合に、前記変速ポンプを解列停止することを特徴とする。
ここで固定速ポンプとは、吐出圧力の変動には関係しない、所定の回転数で運転されるポンプを指し、所定の回転数が吐出圧力の変動以外の要因により変更されることは妨げない。
In order to achieve the above-described object, a first aspect of the present invention includes a plurality of pumps connected to a water main, a plurality of frequency converters that respectively shift the pumps, a discharge-side pressure sensor, A suction-side pressure sensor and a control device that controls these devices, and is a direct-coupled water supply device that operates a plurality of pumps in parallel, the control device according to the detected pressure of the discharge-side pressure sensor Parallel operation is performed with a variable speed pump that is operated at a variable speed and a fixed speed pump that is operated at a predetermined speed, the suction pressure is reduced , the frequency command value to the variable speed pump is not 0 Hz, and the number of variable speed pumps is small. When the water amount is present, the shift pump is stopped.
Here, the fixed speed pump refers to a pump that is operated at a predetermined rotation speed that is not related to the fluctuation of the discharge pressure, and does not prevent the predetermined rotation speed from being changed by factors other than the fluctuation of the discharge pressure.
本発明の第2の態様は、水道本管に接続される複数台のポンプと、該ポンプをそれぞれ変速運転する複数の周波数変換器と、吐出側圧力センサと、吸込側圧力センサと、これら機器を制御する制御装置とを備え、複数台のポンプを並列運転する直結式給水装置であって、前記制御装置は、前記吐出側圧力センサの検出圧力に応じて変速運転される変速ポンプと所定の速度で運転される固定速ポンプとで並列運転を行い、並列運転中に吸込圧力の上昇によりポンプを停止させる場合に、前記変速ポンプと前記固定速ポンプとの停止条件に差を持たせて前記変速ポンプを先に停止させ、吸込圧力の低下によりポンプを再始動させる際に前記変速ポンプを再始動させる前に予め前記固定速ポンプを先に再始動させることを特徴とする。 According to a second aspect of the present invention, a plurality of pumps connected to a water main, a plurality of frequency converters that respectively shift the pumps, a discharge side pressure sensor, a suction side pressure sensor, and these devices A direct-connection water supply device that operates a plurality of pumps in parallel, the control device being operated with a speed change pump in accordance with a pressure detected by the discharge side pressure sensor and a predetermined speed When parallel operation is performed with a fixed speed pump operated at a speed and the pump is stopped due to an increase in suction pressure during parallel operation, the stop condition between the transmission pump and the fixed speed pump is given a difference. When the speed change pump is stopped first and the pump is restarted due to a decrease in suction pressure, the fixed speed pump is restarted in advance before the speed change pump is restarted.
本発明の好ましい態様は、前記制御装置は、第一の圧力設定値と、該第一の圧力設定値より高い第二の圧力設定値とを有し、並列運転中に前記吸込側圧力センサの検出圧力が前記第一の圧力設定値を上回ると前記変速ポンプを停止させ、前記第二の圧力設定値を上回ると前記固定速ポンプを停止すると共に、吸込圧力が低下して前記吸込側圧力センサの検出圧力が前記第二の圧力設定値を下回ると前記固定速ポンプを再始動することを特徴とする。 In a preferred aspect of the present invention, the control device has a first pressure set value and a second pressure set value that is higher than the first pressure set value. When the detected pressure exceeds the first pressure set value, the transmission pump is stopped, and when the detected pressure exceeds the second pressure set value, the fixed speed pump is stopped and the suction pressure is reduced to reduce the suction side pressure sensor. When the detected pressure falls below the second pressure set value, the fixed speed pump is restarted.
本発明の第3の態様は、水道本管に接続される複数台のポンプと、該ポンプをそれぞれ変速運転する複数の周波数変換器と、吐出側圧力センサと、吸込側圧力センサと、これら機器を制御する制御装置とを備え、複数台のポンプを並列運転する直結式給水装置であって、前記制御装置は、前記吐出側圧力センサの検出圧力に応じて変速運転される変速ポンプと所定の速度で運転される固定速ポンプとで並列運転を行い、並列運転中に吸込圧力の上昇により前記変速ポンプ及び前記固定速ポンプを停止させた後に吸込圧力の低下によりポンプを再始動させる際に、前記変速ポンプを再始動させる前に予め前記固定速ポンプを先に再始動させることを特徴とする。
本発明の好ましい態様は、前記固定速ポンプを前記吸込側圧力センサの検出圧力に応じて設定される速度にて運転することを特徴とする。
According to a third aspect of the present invention, there are provided a plurality of pumps connected to a water main, a plurality of frequency converters for shifting the pumps, a discharge-side pressure sensor, a suction-side pressure sensor, and these devices. A direct-connection water supply device that operates a plurality of pumps in parallel, the control device being operated with a speed change pump in accordance with a pressure detected by the discharge side pressure sensor and a predetermined speed When performing parallel operation with a fixed speed pump operated at a speed, and restarting the pump due to a decrease in suction pressure after stopping the transmission pump and the fixed speed pump due to an increase in suction pressure during parallel operation, The fixed speed pump is restarted in advance before restarting the transmission pump.
In a preferred aspect of the present invention, the fixed speed pump is operated at a speed set in accordance with a pressure detected by the suction side pressure sensor.
本発明の好ましい態様は、前記制御装置は、前記吸込側圧力センサの検出圧力に応じて設定される前記固定速ポンプの速度を、該速度での締切圧力が吸込圧力の変動に拘らず一定となるように設定することを特徴とする。 In a preferred aspect of the present invention, the control device sets the speed of the fixed speed pump that is set according to the pressure detected by the suction side pressure sensor, so that the cutoff pressure at the speed is constant regardless of the fluctuation of the suction pressure. It sets so that it may become.
本発明によれば、並列運転される複数台の可変速モータポンプを備え、並列運転中の吸込圧力の変動によっても圧力変動の少ない安定した制御を行うことができる。
より具体的には、以下に列挙する効果を奏する。
(1)本発明の1態様によれば、吸込圧力が上昇してポンプが停止状態になったときに、並列運転を解除して後発ポンプを解列停止しないように、可変速運転しているポンプへの周波数指令値が0Hzである場合、もしくは、吸込圧力がPA以上ある場合、もしくは、HzB(その時の吸込圧力での締切圧力が給水系の最低必要圧力PB以上となる周波数)が0である場合には、解列動作を行わないという制御が行われる。
(2)本発明の1態様によれば、並列運転中に吸込圧力の上昇によりポンプが停止する場合に、可変速運転中のポンプと固定速運転中のポンプとの停止条件に差を持たせて可変速運転中のポンプを先に停止させるようにし、吸込圧力の低下によりポンプが再始動する際にも吐出圧力が目標圧力を下回る前に固定速ポンプが予め始動するため、圧力変動を抑制した安定した給水が可能になる。
(3)本発明の1態様によれば、ポンプの並列運転中に吸込圧力が上昇して第一の圧力設定値以上になると、変速運転している後発ポンプを停止させるが、固定速ポンプとして運転されている先発ポンプの運転は継続させる。吸込圧力が低下し、吐出圧力が目標圧力以下になると後発ポンプを再始動させるが、吸込圧力が更に上昇して第二の圧力設定値を超えると先発ポンプも停止させる。全てのポンプが停止した状態から、吸込圧力が低下して第二の圧力設定値を下回ると、先発ポンプを再始動し、その後吐出圧力が目標圧力を下回ると後発ポンプが変速運転で再始動される。したがって、複数台のポンプを再始動させる際に、圧力変動を抑制した安定した給水が可能になる。
(4)本発明の1態様によれば、並列運転中に、変速ポンプを変速運転するとともに、固定速ポンプを吸込圧力に応じて設定される速度で運転するため、固定速ポンプも吸込圧力の変動を考慮した安定した末端圧力一定制御を行うことができる。
According to the present invention, a plurality of variable speed motor pumps operated in parallel are provided, and stable control with little pressure fluctuation can be performed even by fluctuations in suction pressure during parallel operation.
More specifically, the following effects are obtained.
(1) According to one aspect of the present invention, when the suction pressure rises and the pump is stopped, the parallel operation is canceled and the subsequent pump is operated at a variable speed so as not to stop the parallel pump. If the frequency command value to the pump is 0 Hz, or if the suction pressure is PA or higher, or HzB (frequency at which the cutoff pressure at that time is the minimum required pressure PB of the water supply system) is 0 In some cases, control is performed such that the disconnection operation is not performed.
(2) According to one aspect of the present invention, when the pump stops due to an increase in suction pressure during parallel operation, there is a difference in the stop conditions between the pump during variable speed operation and the pump during fixed speed operation. The pump during variable speed operation is stopped first, and even when the pump is restarted due to a decrease in suction pressure, the fixed speed pump starts in advance before the discharge pressure falls below the target pressure, thus suppressing pressure fluctuations. Stable water supply becomes possible.
(3) According to one aspect of the present invention, when the suction pressure rises during the parallel operation of the pumps and becomes equal to or higher than the first pressure set value, the subsequent pump that is performing the shifting operation is stopped. Continue operation of the starting pump. When the suction pressure decreases and the discharge pressure falls below the target pressure, the subsequent pump is restarted. However, when the suction pressure further increases and exceeds the second pressure set value, the preceding pump is also stopped. When all the pumps are stopped, if the suction pressure falls below the second pressure set value, the first pump is restarted.If the discharge pressure falls below the target pressure, the second pump is restarted in the shift operation. The Therefore, when restarting a plurality of pumps, stable water supply with suppressed pressure fluctuation becomes possible.
(4) According to one aspect of the present invention, during the parallel operation, the speed change pump is speed-changed and the fixed speed pump is operated at a speed set according to the suction pressure. Stable end pressure constant control in consideration of fluctuations can be performed.
[第1の実施形態]
図3は、本発明の第1実施形態に係る直結式給水装置の概略構成図である。図3において図1と同一の構成については同一符号を付している。図3に示す直結式給水装置では、ポンプ1は3台備えられており、それぞれが並列に接続されている。また各ポンプ1に対応して、各ポンプ1を駆動するための電力を供給するインバータ(周波数変換器)2が設けられている。給水装置は、ポンプの吐出側に、圧力タンク3と吐出側圧力センサ4を備え、夫々のポンプ毎にフロースイッチ(流量検出手段)6と逆止弁7を備えている。また、ポンプの吸込側配管8は水道本管9に接続され、この吸込側配管8に吸込側圧力センサ10と逆流防止装置11とが設けられている。さらに、水道本管の圧力のみで給水を行うためのバイパス管12がポンプ1の吸込側配管8と吐出側配管13との間に設けられている。そして、バイパス管12の途中には逆止弁14が設けられている。
[First Embodiment]
FIG. 3 is a schematic configuration diagram of the direct-coupled water supply apparatus according to the first embodiment of the present invention. In FIG. 3, the same components as those in FIG. In the direct connection type water supply apparatus shown in FIG. 3, the three
制御装置15には、外部操作により給水系の最低必要圧力PBや最大需要水量での必要圧力PA等が設定され、記憶される。制御装置15と各インバータ2とはRS485等の通信手段により接続され、制御装置15からインバータ2へは、各種設定値や周波数指令値、発停信号(起動・停止信号)などの制御信号が送られ、インバータ2から制御装置15へは、実際の周波数値や電流値等の運転状況が逐次送られる。また、制御装置15は、吐出側圧力センサ4、吸込側圧力センサ10やフロースイッチ6等のセンサ類の信号を受け取り、それぞれのインバータの発停(起動・停止)の判断、周波数指令値の演算を行う。
The
図4は、このような給水装置の推定末端圧力一定制御のフローチャートである。まず、制御装置15に、吐出側圧力センサ4の検出圧力を取り込み、吸込側圧力センサ10の検出圧力を取り込む。次いで、その時の吸込圧力において、締切状態で給水系の最低必要圧力PBとなるポンプ回転数HzBを算出する。制御装置15は、吸込圧力とポンプの締切圧力とポンプ回転数との関係をテーブルデータや関数として記憶しており、この関係を用いてポンプ回転数HzBを算出する。また、その時の吸込圧力における最高運転周波数(ポンプ最高回転数)HzMaxを算出する。この最高運転周波数HzMaxはその時の吸込圧力で締切運転をして、吸込圧力が0の時にポンプの最高回転数で締切運転したときの圧力Pmax(図5参照)となる回転数である。上述した、その時の吸込圧力における最高運転周波数HzMaxも、制御装置15に記憶された吸込圧力とポンプの締切圧力と回転数との関係を示すテーブルデータや関数を用いて算出される。
FIG. 4 is a flowchart of the estimated terminal pressure constant control of such a water supply apparatus. First, the
次に、制御装置15は、算出したHzBや現在の周波数指令値に基づいて、推定末端圧力一定制御の目標圧力を算出する。そして、この算出された目標圧力と現在の吐出圧力とを比較して、PI演算により変速運転されているポンプの周波数指令値を演算し、この周波数指令値がHzBよりも小さければ周波数指令値をHzBとし、大きければ演算された値をそのまま周波数指令値とする。
次に、2台以上のポンプが並列で運転中かどうかを確認し、並列運転中であれば固定速ポンプとして運転されている先発ポンプの周波数指令として、上記ステップで算出したHzMaxの95%の周波数を指定する。そして、この周波数指令値もHzBを下回らないか否かが確認されて最終的に確定する。なお、ここではHzMaxの95%としたが、HzMaxを下回る周波数であれば、HzMaxに所定比率(95%に限らない)をかけた周波数でも、HzMaxから所定値を差し引いた周波数でも構わない。
Next, the
Next, it is confirmed whether or not two or more pumps are operating in parallel. If they are operating in parallel, the frequency command of the starting pump that is operated as a fixed speed pump is 95% of HzMax calculated in the above step. Specify the frequency. Then, it is finally confirmed whether or not this frequency command value does not fall below HzB. Here, 95% of HzMax is used, but as long as the frequency is lower than HzMax, a frequency obtained by multiplying HzMax by a predetermined ratio (not limited to 95%) or a frequency obtained by subtracting a predetermined value from HzMax may be used.
以上により、運転されているポンプ1の周波数指令値が決定し、制御装置15は各インバータ2にそれぞれの周波数指令値を送信する。HzMaxが吸込圧力によって変動するため、先発ポンプは固定速ポンプとはいえ、実際には吸込圧力の変動に応じてその運転周波数を変化させることになる。つまり、ここでいう固定速ポンプとは、吐出圧力と目標圧力との比較演算とは無関係であり、吸込圧力の変動に対応してのみ運転周波数を変化させるポンプである。そして、この運転周波数の変化により、その周波数での締切圧力が吸込圧力の変動に拘らず一定となり、つまり、先発ポンプの性能曲線が吸込圧力に拘らず一定になるため、推定末端圧力一定制御の目標圧力の算出が安定する。
Thus, the frequency command value of the
次に、吸込圧力が変動したときの制御を図5を参照して説明する。図5では横軸がポンプの運転周波数を表し、縦軸が圧力を表している。PB、PAは、図2と同様に、それぞれ給水系の最低必要圧力、最大需要水量での必要圧力である。曲線C0は吸込圧力が0の時のポンプの運転周波数とその時の締切圧力との関係を表している。圧力PB一定の直線と曲線C0との交点の周波数がHzBとなり、ポンプ最高回転数HzMaxでの圧力がPmaxとなる。
曲線C1〜C4のそれぞれは、吸込圧力がPin1〜Pin4となったときのポンプの運転周波数とその時の締切圧力との関係を表している。図4で説明したように、HzB、HzMaxは吸込圧力の変動によって更新されるが、その値は、図5中の曲線と圧力がPB一定,Pmax一定となる直線との交点によって表されており、吸込圧力がPin1のとき、HzB1、HzMax1となる。吸込圧力がPin2まで上がると、曲線C2と圧力PB一定の直線とは交差しなくなるが、このときのHzBはHzB2=0として設定される。更に吸込圧力が上がりPmaxよりも高いPin4になると、曲線C4は圧力Pmax一定の直線とも交わらなくなるが、このときのHzMaxはHzMax4=0として設定される。
Next, the control when the suction pressure varies will be described with reference to FIG. In FIG. 5, the horizontal axis represents the operating frequency of the pump, and the vertical axis represents the pressure. PB and PA are the minimum required pressure of the water supply system and the required pressure at the maximum demand water volume, respectively, as in FIG. A curve C0 represents the relationship between the operating frequency of the pump when the suction pressure is 0 and the cutoff pressure at that time. The frequency of the intersection of the straight line with the constant pressure PB and the curve C0 is HzB, and the pressure at the maximum pump speed HzMax is Pmax.
Each of the curves C1 to C4 represents the relationship between the operating frequency of the pump when the suction pressure becomes Pin1 to Pin4 and the cutoff pressure at that time. As explained in FIG. 4, HzB and HzMax are updated by the fluctuation of the suction pressure, but the values are represented by the intersection of the curve in FIG. 5 and the straight line where the pressure is constant PB and Pmax. When the suction pressure is Pin1, HzB1 and HzMax1 are obtained. When the suction pressure rises to Pin2, the curve C2 and the straight line with a constant pressure PB do not cross each other, but HzB at this time is set as HzB2 = 0. When the suction pressure further increases and becomes Pin 4 higher than Pmax, the curve C4 does not intersect with a straight line with a constant pressure Pmax, but at this time, HzMax is set as HzMax4 = 0.
今、ポンプ2台が並列運転されており、吸込圧力がPin1だとすると、先発ポンプはHzMax1×0.95の周波数で固定速ポンプとして運転されており、後発ポンプはHzB1以上の周波数で可変速運転されている。この状態で吸込圧力がPin3まで高まると、推定末端圧力一定制御における目標圧力の最大値PAを超えることになるので、変速運転されている後発ポンプへの指令周波数の演算結果は0Hzとなり、実質的に停止状態になる。一方、固定速ポンプとして運転される先発ポンプは、HzMax3×0.95>0Hzであるため、運転は継続している。このとき、給水はバイパス管を通しても行われている。そして、更に吸込圧力がPin4まで上がると、HzMax4=0となるので、先発ポンプへの指令周波数も0Hzとなり、実質的な停止状態となる。この例で吸込圧力がPin3以上で後発ポンプが停止した状態では、後発ポンプへの水の流れが小さくなるため、後発ポンプのフロースイッチは少水量状態を検知することになる。 Now, if two pumps are operating in parallel and the suction pressure is Pin1, the first pump is operated as a fixed speed pump at a frequency of HzMax1 × 0.95, and the second pump is operated at a variable speed at a frequency of HzB1 or higher. ing. If the suction pressure is increased to Pin3 in this state, the maximum value PA of the target pressure in the estimated terminal pressure constant control will be exceeded. Therefore, the calculation result of the command frequency for the subsequent pump that is operating at variable speed becomes 0 Hz, which is substantially Will stop. On the other hand, since the starting pump operated as a fixed speed pump is HzMax3 × 0.95> 0 Hz, the operation is continued. At this time, water supply is also performed through a bypass pipe. When the suction pressure further increases to Pin4, HzMax4 = 0, so the command frequency to the starting pump is also 0Hz, and a substantial stop state occurs. In this example, in a state where the suction pressure is Pin 3 or more and the subsequent pump is stopped, the flow of water to the subsequent pump becomes small, so the flow switch of the subsequent pump detects a low water amount state.
本実施形態では、吸込圧力が上昇してポンプが停止状態になったときに、並列運転を解除して後発ポンプを解列停止しないように、可変速運転しているポンプへの周波数指令値が0Hzである場合、もしくは、吸込圧力がPA以上ある場合、もしくは、HzB(その時の吸込圧力での締切圧力が給水系の最低必要圧力PB以上となる周波数)が0である場合には、解列動作を行わないという制御が行われる。つまり、本実施形態では、ポンプの解列停止条件として、可変速運転しているポンプが少水量状態になったことに加えて、そのポンプへの周波数指令が0Hzより大きいこと、もしくは、吸込圧力がPA以下であること、もしくは、HzB>0Hzであることが追加される。
この制御により、本実施形態では、流入圧力がPin4の状態で先発ポンプ、後発ポンプ共に周波数指令が0Hzで停止状態にはあるが、並列運転は解除されていない。ここから吸込圧力が下がっていき、Pmax以下になると、HzMaxが0Hzより大きくなるので、まず固定速ポンプとして運転される先発ポンプが再始動し、更に吸込圧力が下がってPAより小さくなると変速運転される後発ポンプも再始動する。
In this embodiment, when the suction pressure rises and the pump is stopped, the frequency command value to the pump that is operating at a variable speed is set so that the parallel operation is canceled and the subsequent pump is not disconnected and stopped. When 0 Hz, or when the suction pressure is PA or higher, or when HzB (frequency at which the cutoff pressure at that time is equal to or higher than the minimum required pressure PB of the water supply system) is 0, disconnection Control that no operation is performed is performed. That is, in this embodiment, as a condition for stopping the disconnection of the pump, in addition to the fact that the pump operating at variable speed is in a low water volume state, the frequency command to the pump is greater than 0 Hz, or the suction pressure Is not more than PA or HzB> 0 Hz.
With this control, in the present embodiment, the inflow pressure is Pin 4 and both the first and second pumps are stopped at the frequency command of 0 Hz, but the parallel operation is not released. When the suction pressure decreases from this point and becomes less than Pmax, HzMax becomes greater than 0 Hz. Therefore, the starting pump that is operated as a fixed speed pump is first restarted, and when the suction pressure is further decreased and becomes smaller than PA, the speed change operation is performed. The later pump will also restart.
従来のように並列運転が解除されてしまっていると、吸込圧力がPAより小さくなるまでポンプは再始動しないが、本実施形態の場合、それ以前に固定速ポンプとして運転される先発ポンプが再始動しているため、需要水量が大きく、吸込圧力のPA以下への低下が急だった場合にも圧力変動を抑制した安定した給水が可能になる。このように、並列運転中に吸込圧力の上昇によりポンプが停止する場合に、可変速運転中のポンプと固定速運転中のポンプとの停止条件に差を持たせて可変速運転中のポンプを先に停止させるようにし、吸込圧力の低下によりポンプが再始動する際にも吐出圧力が目標圧力を下回る前に固定速ポンプが予め始動するため、圧力変動を抑制した安定した給水が可能になる。 If parallel operation has been canceled as in the prior art, the pump will not restart until the suction pressure becomes lower than PA, but in this embodiment, the previous pump that was operated as a fixed speed pump before that is restarted. Since it has started, the amount of demand water is large, and stable water supply with suppressed pressure fluctuation is possible even when the suction pressure suddenly drops below PA. In this way, when the pump stops due to an increase in suction pressure during parallel operation, there is a difference in the stop conditions between the pump during variable speed operation and the pump during fixed speed operation. When the pump is restarted due to a decrease in the suction pressure, the fixed speed pump is started in advance before the discharge pressure falls below the target pressure even when the pump is restarted, enabling stable water supply with reduced pressure fluctuations. .
[第2の実施形態]
上述の第1実施形態では、吸込圧力の上昇時にポンプへの周波数指令値を0Hzまで低下させて、実質的な停止状態にするように制御したが、吸込圧力が所定値以上になったことを条件にポンプを停止させる制御が行われることがある。
図5を参照して説明すると、吸込圧力が給水系の最大目標圧力であるPA以上の所定値を超えると、駆動しているポンプを停止させるという制御が行われるが、複数のポンプが並列運転されている状態で全てのポンプを停止させてしまうと、吸込圧力が急に低下したときに複数台のポンプを再始動させなければならないため、圧力変動を生じさせやすい。
本実施形態では、変速運転されているポンプを停止させる第一の圧力設定値と、固定速ポンプとして運転されているポンプを停止させる第二の圧力設定値とを設定しておく。第一の圧力設定値は上述と同じく、PA以上となる所定の値であり、第二の圧力設定値は第一の圧力設定値より高い値であり、図5で言えば、Pmaxかその近傍の圧力値が望ましい。
[Second Embodiment]
In the first embodiment described above, control is performed so that the frequency command value to the pump is reduced to 0 Hz when the suction pressure is increased, and the pump is in a substantially stopped state. However, the suction pressure has reached a predetermined value or more. Control to stop the pump may be performed depending on conditions.
Referring to FIG. 5, when the suction pressure exceeds a predetermined value equal to or higher than PA, which is the maximum target pressure of the water supply system, control is performed to stop the driving pump. If all the pumps are stopped in a state where they are being operated, a plurality of pumps must be restarted when the suction pressure suddenly decreases, and therefore pressure fluctuations are likely to occur.
In the present embodiment, a first pressure set value for stopping a pump that is operating at a variable speed and a second pressure set value for stopping a pump that is operating as a fixed speed pump are set. As described above, the first pressure set value is a predetermined value that is equal to or greater than PA, and the second pressure set value is higher than the first pressure set value. In FIG. A pressure value of is desirable.
制御装置15は、ポンプの並列運転中に吸込圧力が上昇して第一の圧力設定値以上になると、変速運転している後発ポンプを停止させるが、固定速ポンプとして運転されている先発ポンプの運転は継続させる。吸込圧力が低下し、吐出圧力が目標圧力以下になると後発ポンプを再始動させるが、吸込圧力が更に上昇して第二の圧力設定値を超えると先発ポンプも停止させる。全てのポンプが停止した状態から、吸込圧力が低下して第二の圧力設定値を下回ると、先発ポンプを再始動し、その後吐出圧力が目標圧力を下回ると後発ポンプが変速運転で再始動される。
本実施形態でも、並列運転中に吸込圧力の上昇によりポンプが停止する場合に、可変速運転中のポンプと固定速運転中のポンプとの停止条件に差を持たせて可変速運転中のポンプを先に停止させるようにし、吸込圧力の低下によりポンプが再始動する際にも吐出圧力が目標圧力を下回る前に固定速ポンプが予め始動するため、圧力変動を抑制した安定した給水が可能になる。
When the suction pressure increases during the parallel operation of the pumps and becomes equal to or higher than the first pressure set value, the
Also in this embodiment, when the pump stops due to an increase in suction pressure during parallel operation, the pump under variable speed operation is given a difference in the stop conditions between the pump during variable speed operation and the pump during fixed speed operation. When the pump restarts due to a decrease in suction pressure, the fixed speed pump is started in advance before the discharge pressure falls below the target pressure, enabling stable water supply with reduced pressure fluctuations. Become.
1 モータポンプ
2 インバータ(周波数変換器)
3 圧力タンク
4 吐出側圧力センサ
6 フロースイッチ(流量検出手段)
7,14 逆止弁
8 吸込側配管
9 水道本管
10 吸込側圧力センサ
11 逆流防止装置
12 バイパス管
13 吐出側配管
15 制御装置
1
3 Pressure tank 4
7, 14 Check valve 8
Claims (6)
前記制御装置は、前記吐出側圧力センサの検出圧力に応じて変速運転される変速ポンプと所定の速度で運転される固定速ポンプとで並列運転を行い、吸込圧力が低下して前記変速ポンプへの周波数指令値が0Hzではなく、且つ、前記変速ポンプが少水量状態である場合に、前記変速ポンプを解列停止することを特徴とする直結式給水装置。 A plurality of pumps connected to the water main, a plurality of frequency converters that respectively shift the pumps, a discharge side pressure sensor, a suction side pressure sensor, and a control device that controls these devices, A directly connected water supply device that operates a plurality of pumps in parallel,
The control device performs parallel operation between a speed change pump that is speed-changed according to a pressure detected by the discharge-side pressure sensor and a fixed speed pump that is operated at a predetermined speed, and the suction pressure is reduced to the speed change pump. When the frequency command value is not 0 Hz and the speed change pump is in a low water amount state, the speed change pump is disconnected and stopped.
前記制御装置は、前記吐出側圧力センサの検出圧力に応じて変速運転される変速ポンプと所定の速度で運転される固定速ポンプとで並列運転を行い、並列運転中に吸込圧力の上昇によりポンプを停止させる場合に、前記変速ポンプと前記固定速ポンプとの停止条件に差を持たせて前記変速ポンプを先に停止させ、吸込圧力の低下によりポンプを再始動させる際に前記変速ポンプを再始動させる前に予め前記固定速ポンプを先に再始動させることを特徴とする直結式給水装置。 A plurality of pumps connected to the water main, a plurality of frequency converters that respectively shift the pumps, a discharge side pressure sensor, a suction side pressure sensor, and a control device that controls these devices, A directly connected water supply device that operates a plurality of pumps in parallel,
The control device performs a parallel operation with a speed change pump that is operated in accordance with a pressure detected by the discharge side pressure sensor and a fixed speed pump that is operated at a predetermined speed, and the pump is driven by an increase in suction pressure during the parallel operation. When the engine is stopped, the transmission pump is stopped first with a difference in the stop conditions between the transmission pump and the fixed speed pump, and the transmission pump is restarted when the pump is restarted due to a decrease in suction pressure. A direct-coupled water supply apparatus, wherein the fixed speed pump is restarted in advance before starting.
前記制御装置は、前記吐出側圧力センサの検出圧力に応じて変速運転される変速ポンプと所定の速度で運転される固定速ポンプとで並列運転を行い、並列運転中に吸込圧力の上昇により前記変速ポンプ及び前記固定速ポンプを停止させた後に吸込圧力の低下によりポンプを再始動させる際に、前記変速ポンプを再始動させる前に予め前記固定速ポンプを先に再始動させることを特徴とする直結式給水装置。The control device performs a parallel operation with a speed change pump operated in accordance with a detection pressure of the discharge side pressure sensor and a fixed speed pump operated at a predetermined speed, and the suction pressure increases during the parallel operation due to an increase in the suction pressure. When restarting the pump due to a decrease in suction pressure after stopping the variable speed pump and the fixed speed pump, the fixed speed pump is restarted in advance before restarting the variable speed pump. Directly connected water supply system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007171517A JP5232412B2 (en) | 2007-06-29 | 2007-06-29 | Directly connected water supply system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007171517A JP5232412B2 (en) | 2007-06-29 | 2007-06-29 | Directly connected water supply system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009008034A JP2009008034A (en) | 2009-01-15 |
JP5232412B2 true JP5232412B2 (en) | 2013-07-10 |
Family
ID=40323355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007171517A Expired - Fee Related JP5232412B2 (en) | 2007-06-29 | 2007-06-29 | Directly connected water supply system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5232412B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101963148A (en) * | 2010-09-28 | 2011-02-02 | 无锡炫宇水处理设备有限公司 | Pumping termination and energy saving control method for variable frequency water supply equipment provided with PLC control cabinet |
JP6682189B2 (en) * | 2015-04-06 | 2020-04-15 | 株式会社川本製作所 | Water supply device |
CN107237369A (en) * | 2017-06-28 | 2017-10-10 | 安徽舜禹水务股份有限公司 | A kind of human-computer interaction interface system for secondary water supply system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3425294B2 (en) * | 1995-03-28 | 2003-07-14 | 株式会社荏原製作所 | Variable speed water supply |
-
2007
- 2007-06-29 JP JP2007171517A patent/JP5232412B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009008034A (en) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6581626B2 (en) | Water supply equipment | |
US20130004337A1 (en) | System and method for driving a pump | |
US11035460B2 (en) | Method for controlling electric oil pump | |
JP5159187B2 (en) | Variable speed water supply device | |
JP5232412B2 (en) | Directly connected water supply system | |
JP5214296B2 (en) | Autonomous distributed water supply control system | |
JP2013007287A (en) | Steam system | |
JP4684478B2 (en) | Control method of water supply device | |
JP6469520B2 (en) | Pump device, remote control device, and control method of pump device | |
JP2000027788A (en) | Method for operating vertical shaft pump, and vertical shaft pump | |
JPH08159079A (en) | Revolution control water supply system with pressure fluctuation restraining function | |
JP2008202555A (en) | Water supply device | |
JP2020143626A (en) | Water supply device | |
JP4668403B2 (en) | Water supply equipment | |
EP2990652A1 (en) | Pump device | |
JPH10259622A (en) | Water supply system direct-connected to city water | |
JP4843385B2 (en) | Automatic water supply pump drought protection device | |
JPH08159078A (en) | Revolution control water supply system with small water quantity stop function | |
JP6665232B2 (en) | Water supply device | |
JP2001140678A (en) | Engine control device mounted on construction machine | |
JP6186366B2 (en) | Water supply equipment | |
JP4938304B2 (en) | Pump control method and water supply device | |
JP5154866B2 (en) | Variable speed water supply device | |
JP6665009B2 (en) | Pump system, control device, and control method | |
KR101605111B1 (en) | Apparatus and method of driving booster pump for saving power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100622 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120321 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130325 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5232412 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |