JP5229521B2 - π共役系化合物とその用途、およびそれらを用いた素子、装置 - Google Patents
π共役系化合物とその用途、およびそれらを用いた素子、装置 Download PDFInfo
- Publication number
- JP5229521B2 JP5229521B2 JP2006250292A JP2006250292A JP5229521B2 JP 5229521 B2 JP5229521 B2 JP 5229521B2 JP 2006250292 A JP2006250292 A JP 2006250292A JP 2006250292 A JP2006250292 A JP 2006250292A JP 5229521 B2 JP5229521 B2 JP 5229521B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- photon absorption
- photon
- light
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Pyrane Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Indole Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
三次元メモリ材料、光制限材料、光造形用光硬化樹脂の硬化材料、光化学療法用材料、二光子蛍光顕微鏡用蛍光色素材料などの用途、また、本発明の化合物は光電変換素子、薄膜トランジスタ素子、発光素子などの種々の有機エレクトロニクス用素子材料としても有用である。
ところで、二光子吸収現象とは、三次の非線形光学効果の一種で、分子が二つのフォトンを同時に吸収して、基底状態から励起状態へ遷移する現象であり、古くから知られていたがJean-Luc Bredas等が1998年に分子構造とメカニズムの関係を解明して以来(非特許文献1:Science, 281, 1653 (1998)参照)、近年になって二光子吸収能を有する材料に関する研究が進むようになった。
しかしながらこのような二光子同時吸収の遷移効率は、一光子吸収に較べて極めて低く、極めて大きなパワー密度の光子を必要とするため、通常に使用されるレーザー光強度では殆ど無視され、ピーク光強度(最大発光波長における光強度)が高いモード同期レーザーのようなフェムト秒程度の極超短パルスレーザーを用いると、観察されることが確認されている。
従来の有機系二光子吸収材料としては、ローダミン、クマリンなどの色素化合物、ジチエノチオフェン誘導体、オリゴフェニレンビニレン誘導体などの化合物が知られている。しかしながら、分子あたりの二光子吸収能を示す二光子吸収断面積が小さく、特にフェムト秒パルスレーザーを用いた場合の二光子吸収断面積は、200(GM:×10−50cm4・s・molecule−1・photon−1)未満のものが殆どで工業的な実用化には至っていない。
最近、インターネット等のネットワークやハイビジョンTVが急速に普及している。また、HDTV(HighDefinition Television)の放映も間近にひかえて、民生用途においても50GB以上、好ましくは100GB以上の画像情報を安価簡便に記録するための大容量記録媒体の要求が高まっている。さらにコンピューターバックアップ用途、放送バックアップ用途等、業務用途においては、1TB程度あるいはそれ以上の大容量の情報を高速かつ安価に記録できる光記録媒体が求められている。そのような中、DVD±Rのような従来の二次元光記録媒体は物理原理上、たとえ記録再生波長を短波長化したとしてもせいぜい25GB程度で、将来の要求に対応できる程の充分大きな記録容量が期待できるとは言えない状況である。
二光子吸収材料を固体として用いる場合、これまでは高分子中に分散させて使用していた。しかしながら長期保存時に二光子吸収材料の結晶化やマイグレーションによる偏析等による塗膜欠陥が発生し、品質が変化する不具合があった。
また、特開平6−28672号公報(特許文献11)、特開平6−118306号公報(特許文献12)には、屈折率変調により三次元的に記録する記録装置、及び再生装置、読み出し方法等が開示されているが、二光子吸収三次元光記録材料を用いた方法についての記載はない。
(1)スペクトル、屈折率または偏光状態の変化を、高感度に実現する、効率良く二光子を吸収する有機材料、すなわち二光子吸収断面積の大きな有機材料を提供すること。
(2)長期保存時にも塗膜欠陥(結晶化、マイグレーション)が発生しない品質の安定した二光子吸収断面積の大きな有機材料を提供すること。
(3)塗膜性に優れ二光子吸収能を有しかつ、高いホール輸送性を有するとともに耐久性に優れた光電変換素子用の材料を提供すること。優れた発光特性を有するとともに耐久性に優れた発光素子用の材料として、また薄膜トランジスタの活性層用材料として有用なπ共役系化合物を提供すること。
即ち、上記課題は、以下の本発明(1)〜(4)によって解決される。
(1)「下記一般式(I)で表わされることを特徴とする二光子吸収光記録材料:
(式中、Ar3は、アルキル基またはアルコキシ基で置換または未置換のフェニル、フルオレニル、アントリル、チオフェン、下記式(a)または下記式(b)の2価基を表わし、Ar1、Ar2はアルキル基またはアルコキシ基で置換または未置換のフェニル基を表わし、それぞれ同一でも異なっていてもよい。Ar4、Ar5はそれぞれ独立にアルキル基またはアルコキシ基で置換または未置換のフェニル基である。Xは−O−、−S−、−SO−、−SO2−、−CO−または炭素数1〜12のアルキレン基を表わす。R1、R2、R3およびR4は水素原子、アルキル基またはアルコキシ基から選択される基を表わす。Yは水素原子、アルキル基またはアルコキシ基で置換または未置換のフェニル基を表わす。)
(式中、Ar3は、アルキル基またはアルコキシ基で置換または未置換のフェニル、フルオレニル、アントリル、チオフェン、下記式(a)または下記式(b)の2価基を表わし、Ar1、Ar2はアルキル基またはアルコキシ基で置換または未置換のフェニル基を表わし、それぞれ同一でも異なっていてもよい。Ar4、Ar5はそれぞれ独立にアルキル基またはアルコキシ基で置換または未置換のフェニル基である。Xは−O−、−S−、−SO−、−SO2−、−CO−または炭素数1〜12のアルキレン基を表わす。R1、R2、R3およびR4は水素原子、アルキル基またはアルコキシ基から選択される基を表わす。Yは水素原子、アルキル基またはアルコキシ基で置換または未置換のフェニル基を表わす。)
(3)「前記第(1)項または第(2)項に記載の二光子吸収光記録材料を含む入射光に対して深さ方向に記録再生可能な三次元メモリ材料」、
(4)「前記第(1)項または第(2)項に記載の二光子吸収光記録材料を記録層中の少なくとも1種含む入射光に対して深さ方向に記録再生可能三次元記録媒体」。
基板として好ましくは、ポリエチレンテレフタレート、樹脂下塗り型ポリエチレンテレフタレート、火炎又は静電気放電処理されたポリエチレンテレフタレート、セルロースアセテート、ポリカーボネート、ポリメチルメタクリレート、ポリエステル、ポリビニルアルコール、ガラス等である。また、この基板にはあらかじめ、トラッキング用の案内溝やアドレス情報が付与されたものであっても良い。
使用した溶媒は乾燥時に蒸発除去することができる。蒸発除去には加熱や減圧を用いても良い。
上述した三次元多層光記録媒体の任意の層に焦点を合わせ、記録再生を実施することで、本発明の三次元記録媒体として機能する。また、層間を保護層(中間層)で区切っていなくとも、二光子吸収色素特性から深さ方向の三次元記録が可能である。
図中(b)の記録媒体においては、平らな支持体(基板1)に本発明の二光子吸収化合物を用いた記録層と、クロストーク防止用の中間層(保護層)が交互に(図1では5層程度しか示していないが)50層程度(あるいはそれ以上)ずつ積層され、各層はスピンコート法により成膜されている。記録層の厚さは0.01〜0.5μm、中間層の厚さは0.1〜5μmが好ましく、この構造であれば、現在普及しているCD/DVDと同じディスクサイズで、テラバイト級の大容量光記録が実現できる。更にデータの再生方法(透過/或いは反射型)により、基板(1)と同様の基板(2)(保護層)、或いは高反射率材料からなる反射層が構成される。
記録時は単一ビームが使用され、この場合フェムト秒オーダーの超短パルス光を利用することができる。また再生時は、データ記録に使用するビームとは異なる波長、或いは低出力の同波長の光を用いることもできる。記録及び再生は、ビット単位/深さ方向単位のいずれにおいても実行可能であり、面光源や二次元検出器等を利用する並行記録/再生は、転送レートの高速化に有効である。
また、図示はしないが、中間層が存在しないバルク状の記録層でも深さ方向へのいわゆるホログラム方式ページデータとして一括記録再生とすることで記録再生の転送レートを高速化できる。
なお、本発明に従い同様に形成される三次元多層光メモリの形態としては、図示はしないがカード状、テープ状、ドラム状の積層媒体等が挙げられる。
光通信や光情報処理では、情報等の信号を光で搬送するためには変調、スイッチング等の光制御が必要になる。この種の光制御には、電気信号を用いた電気−光制御方法が従来採用されている。しかし電気−光制御方法は、電気回路のようなCR時定数による帯域制限、素子自体の応答速度や電気信号と光信号との間の速度の不釣合いで処理速度が制限されることなどの制約があり、光の利点である広帯域性や高速性を十分に生かすためには、光信号によって光信号を制御する光−光制御技術が非常に重要になってくる。この要求に応えるものとして本発明の二光子吸収材料を加工して作製した光学素子は、光を照射することで引き起こされる透過率や屈折率、吸収係数などの光学的変化を利用し、電子回路技術を用いずに光の強度や周波数を変調することで、光通信、光交換、光コンピュータ、光インターコネクション等における光スイッチなどに応用することが可能である。
すなわち、本発明の高い二光子吸収能を有した材料の単独の薄膜、もしくは光硬化性樹脂や種々の成形が可能な樹脂等に分散させた固体物を光学素子として配置し、ひとつの波長(λ1)の光で励起状態に励起され、さらにその状態から他の波長(λ2)の光で他の状態に励起されることにより波長による屈折率変化分布を利用した光導波路の設計が可能となる。また、二光子吸収材料はその多くが蛍光を有するものが多く、光デバイスの一方の出射端またはその近傍に蛍光物質を配置し、他方から励起光(λ1)を出射させ、励起光と蛍光(λ2)で屈折率分布を形成することもできる。この場合、通常蛍光の方が励起光より弱いので、感度は蛍光の波長において大きくすることが望ましい。蛍光物質としては、蛍光色素を光硬化性物質や種々の樹脂等に分散させたものなどが例示される。
二光子光造形法の装置の概略図を図3示し、以下に説明する。
近赤外パルスレーザー光源(1)からの光をミラースキャナー(5)を通した後、レンズを用いて光硬化性樹脂(9)中に集光させレーザースポットを走査し、二光子吸収を誘起することによって焦点近傍のみにおいて樹脂を硬化させて任意の三次元構造を形成する二光子マイクロ光造形方法である。
(1)回折限界をこえる加工分解能:二光子吸収の光強度に対する非線形性によって、光の回折限界を超えた加工分解能を実現できる。
(2)超高速造形:二光子吸収を利用した場合、焦点以外の領域では、光硬化性樹脂が原理的にも硬化しない。このため照射させる光強度を大きくし、ビームのスキャン速度を速くすることができる。このため、造形速度を約10倍向上することができる。
(3)三次元加工:光硬化性樹脂は、二光子吸収を誘起する近赤外光に対して透明である。したがって焦点光を樹脂の内部へ深く集光した場合でも、内部硬化が可能である。従来の方法では、ビームを深く集光した場合、光吸収によって集光点の光強度が小さくなり、内部硬化が困難になる問題点が、本発明ではこうした問題点を確実に解決することができる。
(4)高い歩留り:従来法では樹脂の粘性や表面張力によって造形物が破損、変形するという問題があったが、本手法では、樹脂の内部で造形を行なうのでこうした問題は解消される。
(5)大量生産への適用:超高速造形を利用することによって、短時間に、連続的に多数個の部品あるいは可動機構の製造が可能である。
二(多)光子励起レーザー走査顕微鏡とは、近赤外パルスレーザーを標本面上に集光し走査させて、そこでの二(多)光子吸収により励起されて発生する蛍光を検出することにより像を得る顕微鏡である。
二光子励起レーザー走査顕微鏡の基本構成の概略図を図4に示す。
近赤外域波長のサブピコ秒の単色コヒーレント光パルスを発するレーザー光源(1)と、レーザー光源からの光束を所望の大きさに変える光束変換光学系(2)と、光束変換光学系で変換された光束を対物レンズの像面に集光し走査させる走査光学系(3)と、集光された上記変換光束を標本面(5)上に投影する対物レンズ系(4)と、光検出器(7)を備えている。
このような構成により、二光子吸収そのものの非線形効果を利用して、光軸方向の高分解能を得ることができる。加えて、共焦点ピンホール板を用いれば、さらなる高分解能(面内、光軸方向共)が得られる。
例えば、光ディスクでは上記薄膜が基板と接しており、その基板材料はポリエチレンテレフタレート、ポリカーボネート、ポリメチルメタクリレート、ポリエステル、ポリビニルアルコール、ガラス等である。また、積層する場合であれば、中間層(仕切層)に該薄膜表面が接している。中間層の具体例としてはポリプロピレン、ポリエチレン等のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンテレフタレートまたはセロファンフィルムなどのプラスチック製のフィルムまたは種々の光硬化樹脂等が挙げられる。
次に、各種光学デバイス、光造形デバイスに応用するにしても、各種樹脂に混合されているか、光硬化樹脂に混合され用いる。
従って、本発明の二光子吸収材料の使用要件としては、該材料が各種樹脂、またはガラスに混合されているか、二光子吸収材料層界面が各種樹脂、またはガラスに接していることである。
言い換えれば、本発明の二光子吸収材料はミクロレベル、又はマクロレベルで各種樹脂、又はガラスに接している構成となっている。
本発明のπ共役ポリマーの製造方法は、例えばアルデヒドとホスホネートを用いたWittig−Horner反応、アルデヒドとホスホニウム塩を用いたWittig反応、ビニル置換体とハロゲン化物を用いたHeck反応、アミンとハロゲン化物を用いたUllmann反応などを用いることができ、公知の方法により製造可能である。特にWittig−Horner反応およびWittig反応は反応操作の簡便さから有効である。
一例としてWittig−Horner反応を用いた本発明における重合体の製造方法について説明する。本発明における重合体は、一般的には下記反応式(1)で示されるようにホスホン酸エステル化合物およびアルデヒド化合物が化学量論的に等しく存在する溶液と、その2倍モル量以上の塩基を混合させることにより重合反応が進行し得ることができる。また、複数種のホスホン酸エステル化合物あるいはアルデヒド化合物を反応系内に添加することにより、ランダム共重合体を得ることもでき、諸特性を調整することも可能である。
反応に用いる塩基の量は、通常ホスホン酸エステル化合物の重合活性点に対して同量使用するだけでよいが、さらに過剰量用いても支障ない。
前記一般式(I)〜(VI)におけるAr3、Ar6、Ar9は置換または未置換の単環基、多環基(縮合多環基、非縮合多環基)の芳香族炭化水素基または芳香族複素環基であり、芳香族炭化水素基として以下のものを挙げることができる。例えばフェニル基、ナフチル基、ピレニル基、フルオレニル基、アズレニル基、アントリル基、トリフェニレニル基、クリセニル基、ビフェニル基、ターフェニル基などが挙げられる。また芳香族複素環基としてはチオフェン、ベンゾチオフェン、ジチエニルベンゼン、フラン、ベンゾフラン、カルバゾール等が挙げられる。また、上記の芳香族炭化水素基および芳香族複素環基は以下に示す置換基を有していてもよい。
(2)炭素数1〜25の無置換もしくは置換のアルキル基、アルコキシ基。
(3)アリールオキシ基。(アリール基としてフェニル基、ナフチル基を有するアリールオキシ基が挙げられる。これは、炭素数1〜25の無置換もしくは置換のアルキル基、炭素数1〜25の未置換もしくは置換のアルコキシ基、又はハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、4−クロロフェノキシ基、6−メチル−2−ナフチルオキシ基等が挙げられる。)
(4)アルキルチオ基又はアリールチオ基。(アルキルチオ基又はアリールチオ基としては、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。)
(5)アルキル置換アミノ基。(具体的には、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(p−トリル)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ユロリジル基等が挙げられる。)
(6)アシル基。(アシル基としては、具体的にはアセチル基、プロピオニル基、ブチリル基、マロニル基、ベンゾイル基等が挙げられる。)
前記一般式(I)、(IV)におけるR1、R2、R3およびR4は水素原子、ハロゲン原子、置換もしくは未置換のアルキル基またはアルコキシ基もしくはアルキルチオ基から選択される基を表わすが、その具体例は上述の定義と同様である。
その内容を参考までに記載すると、大要つぎのとおりである。
すなわち、当該公報には、「下記式(2)
(式中、Ar3、Ar6は置換もしくは無置換のアリール基を表わし、それぞれ同一でも異なっていてもよい。R1、R2、R3、R4は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基を表わし、それぞれ同一でも異なっていてもよい。Xは−O−、−S−、−SO−、−SO2−、−CO−、−CH2CH2−、C4〜C12の直鎖状または分岐状、環状のアルキレン基、置換もしくは無置換のアリレン基を表わす。)で表わされるアルデヒド化合物。」、および、「下記式(3)
(式中、R1、R2、R3、R4、R5、R6は水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシル基を表わし、それぞれ同一でも異なっていてもよい。Xは−O−、−S−、−SO−、−SO2−、−CO−、−CH2CH2−、C4〜C12の直鎖状または分岐状、環状のアルキレン基、置換もしくは無置換のアリレン基を表わす。)で表わされるアルデヒド化合物。」が開示され、「これらアルデヒド化合物は、下記式(5)
「<例1>窒素気流下、N,N−ジメチルホルムアミド(DMF)100mlにオキシ塩化リン77.28g(504.0mmol)を氷冷下3〜6℃で20分かけて滴下し、ヴィルスマイヤー試薬を生成させた。これに下記式(7)
で表わされるジアミン化合物54.67g(105.0mmol)をDMF300mlを用いて溶液とし、6℃で30分かけて滴下した。撹拌しながら30分かけて室温に戻し、更に86℃で3時間撹拌した。次に反応液を室温まで放冷した後、氷水2000mlに注ぎ、20%水酸化ナトリウム水溶液を加えアルカリ性として、室温で2時間撹拌を行なった。こうして生成した黄色沈殿物を酢酸エチルを用いて抽出し、さらに抽出した有機層を水洗し、無水硫酸マグネシウムで乾燥を行った。この酢酸エチル溶液を減圧下留去して黄黒色油状物を得た。これをシリカゲルカラムクロマト処理(溶離液;トルエン/酢酸エチル=20/1vol)を行ない、下記のジアルデヒド化合物の黄色結晶47.16g(収率77.9%)を得た。融点は155.5−157.5℃、元素分析値はC38H28N2O2Sとして、C%(実測値;79.14、計算値;79.31)、H%(実測値;4.89、計算値;4.96)、N%(実測値;4.86、計算値;4.74)。
2、7−ジフェニルアミノ−9,9−ジメチルキサンテン1.58gを脱水N,N−ジメチルホルムアミド40mlに溶解し、窒素気流下、オキシ塩化リン1.78gを室温にて徐々に滴下した。78〜88℃で11時間加熱攪拌した後、室温まで放冷し、内容物を氷水に注ぎ、20%苛性ソーダ水溶液を加えアルカリ性とした。酢酸エチルで抽出し、有機層を水洗、乾燥後溶媒を減圧下留去した。これをシリカゲルカラムクロマト精製(溶離液;トルエン/酢酸エチル=9/1)し、黄色ガラス質の下式で表わされるジアルデヒド1.20gを得た。
元素分析値(%)実測値(計算値)
C82.16(81.98)、H6.00(5.37)、N4.30(4.66)
赤外吸収スペクトル(KBr錠剤法)では1691cm−1にカルボニル伸縮振動に基づく吸収が認められた。
<合成例1>
前駆体例No.14で示されるジアルデヒド(特開2000−63337号公報実施例1に記載)2.15g、前駆体例No.5で示されるジホスホネート2.10gおよびベンズアルデヒド17.8mg(分子量調整剤)を脱水テトラヒドロフラン100mlに溶解し、窒素気流下カリウムt−ブトキシドの1.0mol dm−3テトラヒドロフラン溶液11.2mlを17〜20℃にて徐々に滴下した。滴下後室温で3時間撹拌した後、ベンジルホスホン酸ジエチル85mgを加え1時間攪拌し、酢酸で中和した。内容物を水に滴下し粗ポリマーを得た。これをテトラヒドロフラン/イオン交換水、ついでテトラヒドロフラン/メタノールで2回再沈精製を行なった後、塩化メチレンに溶解し、イオン交換水でその洗浄液の導電率がイオン交換水と同等になるまで洗浄を繰り返した。洗浄後メタノール中に滴下して黄色の下式で示されるπ共役ポリマー(1)を2.80g得た。
元素分析値(%)実測値(計算値)
C81.76(82.16)、H6.71(6.79)、N2.90(3.36)
赤外吸収スペクトル(NaClキャスト膜)を図6に示した。
GPCにより測定したポリスチレン換算の数平均分子量は7180、重量平均分子量は24900であった。
反応容器に、前駆体例No.21で示されるジアルデヒド1g及び、前駆体例No.5で示されるジホスホネート2.247gを入れ、窒素置換してテトラヒドロフラン90mlを加えた。この溶液にカリウムt−ブトキシドの1.0mol dm−3テトラヒドロフラン溶液14mlを滴下し室温で3時間撹拌した。ベンジルホスホン酸ジエチル0.09gを加え2時間攪拌した後、ベンズアルデヒド0.084gを加え、さらに2時間攪拌した。少量の酢酸を加えて反応を終了し、反応溶液を水に滴下した。析出したポリマーをテトラヒドロフラン及びメタノール、次いで、テトラヒドロフラン及びメタノールとアセトンの1:1混合溶液を用いた再沈澱による精製を行なった後、塩化メチレンに溶解し、脱イオン水でその洗浄液の導電率がイオン交換水と同等になるまで洗浄を繰り返した。洗浄後メタノール中に滴下して黄色の下式で示されるπ共役ポリマー(2)を0.9g得た。
元素分析値(計算値);C:82.58%(82.80%)、H:8.33%(8.14%)、N:2.79%(2.76%)。
GPCにより測定したポリスチレン換算の数平均分子量は15000、重量平均分子量は29600であった。
赤外吸収スペクトル(NaClキャスト膜)を図7に示した。
前駆体例No.25で示されるジアルデヒド1.00gと前駆体例No.5で示されるホスホン酸エステル0.94gを脱水テトラヒドロフラン50mlに溶解し、窒素気流下、カリウムt−ブトキシドの1.0mol dm−3テトラヒドロフラン溶液5.1mlを17〜20℃にて徐々に滴下した。滴下後室温で4時間撹拌した後、少量のベンズアルデヒドを加え室温で40分攪拌し、ついで少量のベンジルホスホン酸ジエチルを加え40分攪拌したのち酢酸で中和した。内容物を水に滴下し粗ポリマーを得た。これをテトラヒドロフラン/イオン交換水、ついでテトラヒドロフラン/メタノールで2回再沈精製をおこなった後、塩化メチレンに溶解し、イオン交換水でその洗浄液の導電率がイオン交換水と同等になるまで洗浄を繰り返した。洗浄後メタノール中に滴下して黄色の下式で示されるπ共役ポリマー(3)を0.88g得た。
元素分析値(%)実測値(計算値)
C83.65(84.06)、H7.08(7.07)、N3.21(3.27)
赤外吸収スペクトル(NaClキャスト膜)を図8に示したが、963cm−1にトランスオレフィの面外変角振動にもとづく吸収が認められた。
GPCにより測定したポリスチレン換算の数平均分子量は46919、重量平均分子量は164795であった。
上記の化合物例(11)、(12)、(13)、(16)、(17)で示したモノマーを用い、それぞれの濃度が0.01(mol/l)となるようにテトラヒドロフラン溶液を作成し、下記の二光子吸収断面積の評価方法により、その二光子吸収断面積を測定した。なお、上記実施例4、5は参考例である。
上記の化合物例(1)、(2)、(3)、(6)、(9)で示したポリマーにおいて、その繰り返し単位を分子量と換算し、濃度0.01(mol/l)テトラヒドロフラン溶液を作成し、下記の二光子吸収断面積の評価方法により、その二光子吸収断面積を測定した。なお、上記実施例7、8、10は参考例である。
以下の化合物(20)で示した化合物を用い、その濃度が0.01(mol/l)となるようにテトラヒドロフラン溶液を作成し、下記の二光子吸収断面積の評価方法により、その二光子吸収断面積を測定した。
測定システム概略図を図5に示す。
測定光源:フェムト秒チタンサファイアレーザ
波長:800nm
パルス幅:100fs
繰り返し:80MHz
光パワー:800mW
測定方法:Zスキャン法
光源波長:800nm
キュベット内径:10mm
測定光パワー:約500mW
繰り返し周波数:80MHz
集光レンズ:f=75mm
集光径:40〜50μm
集光されている光路部分に試料溶液を充填した石英セルを置き、その位置を光路に沿って移動させることによりZ−scan測定を実施した。
透過率を測定し、その結果から理論式(i)により非線形吸収係数を求めた。
T=[ln(1+I0L0β)]/I0L0β・・・・(i)
(上記式中、Tは透過率(%)、I0は励起光密度[GW/cm2]、L0は試料セル長[cm]、βは非線形吸収係数[cm/GW]を示す。)
この非線形吸収係数から、下記式(ii)により二光子吸収断面積δを求めた。(δの単位は1GM=1×10−50cm4・s・molecule−1・photon−1である。)
δ=1000×hνβ/NACβ・・・・(ii)
(上記式中、hはプランク定数[J・s]、νは入射レーザ光の振動数[s−1]、NAはアボガドロ数、Cは溶液濃度[mol/L]を示す。)
結果を表5に示す。
1 光源
3 シャッター
4 NDフィルター
5 ミラースキャナー
6 Zステージ
7 レンズ
8 コンピュータ
9 光硬化性樹脂液
10 光造形物
(図4について)
1 レーザー光源
2 光束変換光学系
3 走査光学系
4 対物レンズ系
5 標本面
6 ダイクロイックミラー
7 光検出器
(図9について)
3 感光性高分子膜
4a ミラー2mにより反射されたパルスレーザー光
4b ミラー2nにより反射されたパルスレーザー光
5 誘起構造部
θ パルスレーザー光(4a,4b)の入射角度
(図10について)
1 コリメート光(レーザ光)
2 集光素子
3 集光素子板
4 ビームスプリッタ
5 ピンホール板
6 弱正パワーの光学系(フィールドレンズ)
7 対物レンズ系
8 結像レンズ
9 対物レンズ
10 瞳
11 標本面
12 投影光学系
13 検出系
Claims (4)
- 下記一般式(I)で表わされることを特徴とする二光子吸収光記録材料。
(式中、Ar3は、アルキル基またはアルコキシ基で置換または未置換のフェニル、フルオレニル、アントリル、チオフェン、下記式(a)または下記式(b)の2価基を表わし、Ar1、Ar2はアルキル基またはアルコキシ基で置換または未置換のフェニル基を表わし、それぞれ同一でも異なっていてもよい。Ar4、Ar5はそれぞれ独立にアルキル基またはアルコキシ基で置換または未置換のフェニル基である。Xは−O−、−S−、−SO−、−SO2−、−CO−または炭素数1〜12のアルキレン基を表わす。R1、R2、R3およびR4は水素原子、アルキル基またはアルコキシ基から選択される基を表わす。Yは水素原子、アルキル基またはアルコキシ基で置換または未置換のフェニル基を表わす。
- 下記一般式(IV)で表わされる繰り返し構成単位を有することを特徴とする二光子吸収光記録材料。
(式中、Ar3は、アルキル基またはアルコキシ基で置換または未置換のフェニル、フルオレニル、アントリル、ビフェニル、チオフェン、下記式(a)または下記式(b)の2価基を表わし、Ar1、Ar2はアルキル基またはアルコキシ基で置換または未置換のフェニル基を表わし、それぞれ同一でも異なっていてもよい。Xは−O−、−S−、−SO−、−SO2−、−CO−または炭素数1〜12のアルキレン基を表わす。R1、R2、R3およびR4は水素原子、アルキル基またはアルコキシ基から選択される基を表わす。Yは水素原子、アルキル基またはアルコキシ基で置換または未置換のフェニル基を表わす。
- 請求項1または2に記載の二光子吸収光記録材料を含む入射光に対して深さ方向に記録再生可能な三次元メモリ材料。
- 請求項1または2に記載の二光子吸収光記録材料を記録層中の少なくとも1種含む入射光に対して深さ方向に記録再生可能三次元記録媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250292A JP5229521B2 (ja) | 2006-09-15 | 2006-09-15 | π共役系化合物とその用途、およびそれらを用いた素子、装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250292A JP5229521B2 (ja) | 2006-09-15 | 2006-09-15 | π共役系化合物とその用途、およびそれらを用いた素子、装置 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013018280A Division JP5578455B2 (ja) | 2013-02-01 | 2013-02-01 | π共役系化合物とその用途、およびそれらを用いた素子、装置 |
JP2013018277A Division JP5505748B2 (ja) | 2013-02-01 | 2013-02-01 | π共役系化合物とその用途、およびそれらを用いた素子、装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008069294A JP2008069294A (ja) | 2008-03-27 |
JP5229521B2 true JP5229521B2 (ja) | 2013-07-03 |
Family
ID=39291166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006250292A Expired - Fee Related JP5229521B2 (ja) | 2006-09-15 | 2006-09-15 | π共役系化合物とその用途、およびそれらを用いた素子、装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5229521B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10333074B2 (en) | 2015-09-11 | 2019-06-25 | Samsung Display Co., Ltd. | Organic light-emitting device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010054623A (ja) | 2008-08-26 | 2010-03-11 | Ricoh Co Ltd | 二光子吸収材料とその用途 |
KR102216673B1 (ko) * | 2014-03-11 | 2021-02-18 | 삼성디스플레이 주식회사 | 화합물 및 이를 포함한 유기 발광 소자 |
CN106770130A (zh) * | 2017-01-16 | 2017-05-31 | 浙江大学 | 一种测量双光子吸收截面的方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3357557B2 (ja) * | 1995-12-15 | 2002-12-16 | 株式会社リコー | 芳香族ポリカーボネート樹脂 |
US6267913B1 (en) * | 1996-11-12 | 2001-07-31 | California Institute Of Technology | Two-photon or higher-order absorbing optical materials and methods of use |
DE60138021D1 (ja) * | 2000-06-15 | 2009-04-30 | 3M Innovative Properties Co | |
JP2004347772A (ja) * | 2003-05-21 | 2004-12-09 | Konica Minolta Business Technologies Inc | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
JP2004347854A (ja) * | 2003-05-22 | 2004-12-09 | Konica Minolta Business Technologies Inc | 電子写真感光体、プロセスカートリッジ及び画像形成装置 |
JP4069862B2 (ja) * | 2003-12-19 | 2008-04-02 | コニカミノルタビジネステクノロジーズ株式会社 | 電子写真感光体、プロセスカートリッジ、画像形成装置及び画像形成方法 |
KR20050081981A (ko) * | 2004-02-17 | 2005-08-22 | 학교법인 서강대학교 | 이광자 흡수효과를 갖는[4-[2-(9,9-디헥실-9h-풀루오렌-2-일)-바이닐]-페닐]-비스(디페닐-아민) 화합물 |
CN1260214C (zh) * | 2004-06-10 | 2006-06-21 | 苏州大学 | 具有强双光子吸收特性的杂芴多枝衍生物 |
US7232913B2 (en) * | 2004-09-28 | 2007-06-19 | The Regents Of The University Of California | Paracyclophane molecules for two-photon absorption applications |
-
2006
- 2006-09-15 JP JP2006250292A patent/JP5229521B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10333074B2 (en) | 2015-09-11 | 2019-06-25 | Samsung Display Co., Ltd. | Organic light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP2008069294A (ja) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5774104B2 (ja) | 可視光スペクトルの範囲にある複数のレーザー波長に応答する光屈折性組成物 | |
JP5659189B2 (ja) | 非共鳴2光子吸収材料、非共鳴2光子吸収記録材料、記録媒体、記録再生方法及び非共鳴2光子吸収化合物 | |
JP2006330683A (ja) | 多光子吸収材料を用いた色素材料、色素溶液、多光子吸収材料を構成する金ナノロッド、及び金ナノロッドの製造方法。 | |
JP5157284B2 (ja) | 光増感型複合材料及び三次元メモリ材料と記録媒体、光制限材料と素子、光硬化材料と光造形システム、多光子蛍光顕微鏡用蛍光材料と装置 | |
TW201113879A (en) | Compositions, optical data storage media and methods for using the optical data storage media | |
JP4879158B2 (ja) | ホログラフィック記録用化合物、ホログラフィック記録用組成物、およびホログラフィック記録媒体 | |
JP5229521B2 (ja) | π共役系化合物とその用途、およびそれらを用いた素子、装置 | |
US8207330B2 (en) | Two-photon absorption material and application thereof | |
JP4906371B2 (ja) | 二光子吸収材料及びその用途 | |
JP4963367B2 (ja) | 二光子吸収材料 | |
JP5042513B2 (ja) | 二光子吸収材料とその用途 | |
JP4996115B2 (ja) | 二光子吸収材料とその用途 | |
JP5505748B2 (ja) | π共役系化合物とその用途、およびそれらを用いた素子、装置 | |
JP5578455B2 (ja) | π共役系化合物とその用途、およびそれらを用いた素子、装置 | |
JP5105808B2 (ja) | ジスチリルベンゼン誘導体及びこれを用いた三次元メモリ材料、光制限材料、光造形用光硬化樹脂の硬化材料、並びに二光子蛍光顕微鏡用蛍光色素材料。 | |
JP4969881B2 (ja) | 二光子吸収材料とその用途 | |
JP2010217579A (ja) | 二光子吸収材料とその用途 | |
CA2783403C (en) | Method of recording data in an optical data storage medium and an optical data storage medium | |
JP5343479B2 (ja) | 二光子吸収有機材料とその用途 | |
JP5339242B2 (ja) | 二光子吸収材料とその用途 | |
JP5047651B2 (ja) | 二光子吸収材料とその用途 | |
JP5321941B2 (ja) | 二光子吸収材料とその用途 | |
JP4154137B2 (ja) | 光情報記録媒体および情報の記録方法 | |
JP2013241415A (ja) | 二光子吸収材料とその用途 | |
JP2008163184A (ja) | 二光子吸収材料とその用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130306 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |