JP5228435B2 - Inverter control device and control method thereof - Google Patents
Inverter control device and control method thereof Download PDFInfo
- Publication number
- JP5228435B2 JP5228435B2 JP2007271829A JP2007271829A JP5228435B2 JP 5228435 B2 JP5228435 B2 JP 5228435B2 JP 2007271829 A JP2007271829 A JP 2007271829A JP 2007271829 A JP2007271829 A JP 2007271829A JP 5228435 B2 JP5228435 B2 JP 5228435B2
- Authority
- JP
- Japan
- Prior art keywords
- axis
- motor
- delta
- gamma
- induced voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Ac Motors In General (AREA)
Description
本発明は、永久磁石を回転子とする永久磁石型同期電動機を速度・位置検出器を用いずに駆動するインバータ制御装置とその制御方法に関する。 The present invention relates to an inverter control device for driving a permanent magnet type synchronous motor having a permanent magnet as a rotor without using a speed / position detector, and a control method therefor.
従来の永久磁石型同期電動機を速度・位置検出器を用いずに駆動するインバータ制御装置は、同期電動機の誘起電圧を用いる方法として、電動機の指定磁軸であるγ軸とπ/2[rad]進んだδ軸からなる座標系において、回転子速度指令ωRREFの絶対値が大きくなる程小さくなる分配ゲインK1と回転子速度指令ωRREFの絶対値が大きくなる程大きくなる分配ゲインK2を用い、回転子速度指令ωRREFにK1を、同期電動機の誘起電圧もしくは誘起電圧推定値より求めた回転子速度推定値ωRPにK2をそれぞれ乗じたものを加算し、指定磁軸のγ−δ軸の回転子速度ωRγを決定している(例えば、特許文献1参照)。また、同期電動機の突極性を用いる方法として、推定磁束軸に高周波信号を重畳し、磁束位置の誤差信号を高周波信号と同じ周波数成分の電圧、電流検出信号から抽出して磁束の大きさと位置を推定し、ゼロ速度、ゼロ出力周波数領域を含む全ての駆動範囲で安定制御を行うものもある(例えば、特許文献2参照)。さらに、運転中に変化するq軸インダクタンスLqを過渡同定モデルを用いて同定し、速度や位置を推定する位置推定器で用いて位置推定精度を向上させているものもある(例えば、非特許文献1参照)。 An inverter control device that drives a conventional permanent magnet type synchronous motor without using a speed / position detector is a method using an induced voltage of the synchronous motor, and a γ axis and π / 2 [rad] which are designated magnetic axes of the motor. in a coordinate system consisting of advanced δ-axis, the distribution gain K 2 made larger as the absolute value of the smaller distribution gain K 1 and the rotor speed command omega RREF greater the absolute value of the rotor speed command omega RREF becomes large increases In addition, K 1 is added to the rotor speed command ω RREF, and the rotor speed estimated value ω RP obtained from the induced voltage of the synchronous motor or the estimated voltage estimated value is multiplied by K 2. The rotor speed ω Rγ of the −δ axis is determined (see, for example, Patent Document 1). In addition, as a method of using the saliency of the synchronous motor, a high frequency signal is superimposed on the estimated magnetic flux axis, and an error signal of the magnetic flux position is extracted from a voltage and current detection signal having the same frequency component as the high frequency signal to determine the magnitude and position of the magnetic flux. Some estimate and perform stable control over the entire drive range including the zero speed and zero output frequency regions (see, for example, Patent Document 2). In addition, there is a type in which q-axis inductance L q that changes during operation is identified using a transient identification model, and is used in a position estimator that estimates speed and position to improve position estimation accuracy (for example, non-patent) Reference 1).
一般に、同期電動機の発生する誘起電圧を用いて速度・位置を推定する際に用いられる同期電動機の誘起電圧モデルは、γ−δ座標系に構築され、そのモデルは(1)、(2)式で示される。 Generally, an induced voltage model of a synchronous motor used when estimating a speed and a position using an induced voltage generated by the synchronous motor is constructed in a γ-δ coordinate system, and the model is expressed by the equations (1) and (2). Indicated by
ここで、 here,
また、d−q軸とγ−δ軸の位相差Δθは(3)式で求められる。 Further, the phase difference Δθ between the dq axis and the γ-δ axis can be obtained by the equation (3).
ここで、d軸インダクタンスLdは負荷に対してほとんど変化しないが、q軸インダクタンスLqは大きく変化することが知られている。 Here, it is known that the d-axis inductance L d hardly changes with respect to the load, but the q-axis inductance L q changes greatly.
図4において、101は分配ゲイン発生器、102は速度コントローラ、103はγ軸電流指令発生器、104はδ軸電流コントローラ、105はγ軸電流コントローラ、106はベクトル制御回路、107はインバータ回路、108は同期電動機、109は3相2相変換器、110はγ−δ軸電流・誘起電圧推定器、111は比例制御用速度演算器、112は磁軸演算器、113は積分、磁軸回転用速度演算器である。
速度指令ωRREFにより分配ゲイン発生器101が分配ゲインK1、K2を作成し、γ軸指令iγREFは、iγREFL:低速時指令、iγREFH:高速時指令とK1、K2をγ軸電流指令発生器103に入力して作成する。速度コントローラ102はδ軸電流iδREF(k+1)を出力し、δ軸電流コントローラ104及びγ軸電流コントローラ105よりδ、γ軸電圧指令vδREF、vγREFを出力し、ベクトル制御回路106に入力される。ベクトル制御回路106には、磁軸演算器112よりθest(k+1)を入力し、電圧の大きさ、位置角をインバータ回路107に入力する。インバータ回路107は同期電動機108に電流を供給する。3相2相変換器109にiu、iwを入力し、回転子座標系γ−δ軸電流を作成する。これをγ−δ軸電流・誘起電圧推定器110に入力し、あわせて電圧指令vδREF、vγREFを入力する。γ−δ軸電流・誘起電圧推定器110により誘起電圧推定値εδest(k+1)、εγest(k+1)を比例制御用速度演算器111に入力し、指令制御用速度ωRPestを出力する。一方、iγest(k+1)、iδest(k+1)はδ軸電流コントローラ104及びγ軸電流コントローラ105に入力され、電圧指令を作成する。ωRPestとωRREF、分配ゲインK1、K2が積分、磁軸回転用速度演算器113に入力され、磁軸の回転速度ωRγestを出力する。
なお、誘起電圧推定器110は、誘起電圧値εγest、εδestを(4)式で、速度推定値ωRPestを(5)式で演算する。
In FIG. 4, 101 is a distributed gain generator, 102 is a speed controller, 103 is a γ-axis current command generator, 104 is a δ-axis current controller, 105 is a γ-axis current controller, 106 is a vector control circuit, 107 is an inverter circuit, 108 is a synchronous motor, 109 is a three-phase to two-phase converter, 110 is a γ-δ axis current / induced voltage estimator, 111 is a proportional control speed calculator, 112 is a magnetic axis calculator, 113 is integral, and magnetic axis rotation Speed calculator.
The distribution gain generator 101 creates distribution gains K 1 and K 2 in response to the speed command ω RREF , and the γ-axis command i γREF includes i γREFL : low-speed command, i γREFH : high-speed command and K 1 and K 2 as γ This is input to the shaft current command generator 103 and created. The speed controller 102 outputs a δ-axis current i δREF (k + 1), outputs δ and γ-axis voltage commands v δREF and v γREF from the δ-axis current controller 104 and the γ-axis current controller 105 and inputs them to the vector control circuit 106. The The vector control circuit 106 receives θ est (k + 1) from the magnetic axis calculator 112 and inputs the magnitude and position angle of the voltage to the inverter circuit 107. The inverter circuit 107 supplies current to the synchronous motor 108. Iu and iw are input to the three-phase to two-phase converter 109 to create a rotor coordinate system γ-δ axis current. This is input to the γ-δ axis current / induced voltage estimator 110 and voltage commands v δREF and v γREF are also input. The induced voltage estimated values ε δest (k + 1) and ε γest (k + 1) are input to the proportional control speed calculator 111 by the γ-δ axis current / induced voltage estimator 110, and the command control speed ω RTest is output. On the other hand, i γest (k + 1) and i δest (k + 1) are input to the δ-axis current controller 104 and the γ-axis current controller 105 to create a voltage command. ω RTest , ω RREF , and distribution gains K 1 and K 2 are input to the integral / magnetic axis rotation speed calculator 113 to output the rotation speed ω Rγest of the magnetic axis.
The induced voltage estimator 110 calculates the induced voltage values ε γest and ε δest by the equation (4) and the speed estimated value ω RTest by the equation (5).
但し、ωRφest:仮回転子速度推定値、Kp:比例ゲイン、TS:演算周期、K1〜K8:オブザーバゲイン。
このように、従来のインバータ制御装置は、同期電動機の誘起電圧を推定演算し、γ―δ軸に構築された誘起電圧モデル式に基づき、同期電動機の回転子速度や磁極位置を推定演算するのである。
Thus, the conventional inverter controller estimates and calculates the induced voltage of the synchronous motor, and estimates and calculates the rotor speed and magnetic pole position of the synchronous motor based on the induced voltage model formula built on the γ-δ axes. is there.
従来の永久磁石型同期電動機を速度・位置検出器を用いずに駆動するインバータ制御装置は、誘起電圧モデル式に含まれる固定子抵抗R、d軸インダクタンスLd、q軸インダクタンスLq及び誘起電圧定数φといった電動機パラメータに誤差があると、推定された誘起電圧値に誤差が生じ、結果として回転子速度推定値に誤差が発生したり、電動機の回転が振動したりするという問題があった。また、高周波信号を重畳する場合は、重畳する信号によりトルク振動が発生し、低速時と高速時の適応調整器を速度に応じて切り替え装置を必要とするという問題があった。さらに、過渡同定モデルを用いる場合は、同定用信号として瞬時変化の伴うq軸電流を必要とするために、トルク脈動が発生するという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、電動機パラメータが変化しても位置推定誤差を抑制するとともに、トルク振動やトルク脈動のない安定的な駆動ができる位置センサレス制御によるインバータ制御装置を提供することを目的とする。
An inverter control device for driving a conventional permanent magnet type synchronous motor without using a speed / position detector includes a stator resistance R, a d-axis inductance L d , a q-axis inductance L q and an induced voltage included in the induced voltage model formula. If there is an error in the motor parameter such as the constant φ, there is an error in the estimated induced voltage value, resulting in an error in the estimated rotor speed value or vibration of the motor. Further, when a high frequency signal is superimposed, torque vibration is generated by the superimposed signal, and there is a problem that a switching device is required for the adaptive adjuster at the low speed and the high speed depending on the speed. Further, when the transient identification model is used, there is a problem that torque pulsation occurs because a q-axis current with an instantaneous change is required as the identification signal.
The present invention has been made in view of such problems, and an inverter based on position sensorless control that can suppress a position estimation error even when the motor parameter changes and can stably drive without torque vibration or torque pulsation. An object is to provide a control device.
上記問題を解決するため、本発明は、次のように構成したのである。
本発明のインバータ制御装置は、永久磁石を回転子とする永久磁石型同期電動機に電圧を供給するインバータ部と、前記電動機に流れる電動機電流を検出する電流検出器と、前記電動機の磁軸をd、d軸からπ/2[rad]進んだqからなるd−q軸と、電動機の指定磁軸をγ、γ軸からπ/2[rad]進んだδからなるγ−δ軸の位相差Δθをゼロとするようにして前記電動機の磁極位置及び回転子速度を推定演算する位置速度推定器を備えたインバータ制御装置において、γ−δ軸に対しπ/4[rad]遅れたまたは進んだγm−δm軸を設定し、前記電動機の誘起電圧モデルをγm−δm軸に設け、γ m −δ m 軸の電圧指令値及び電流検出値を用いて、γ m −δ m 軸の前記電動機の誘起電圧値を推定演算する誘起電圧推定器と、前記誘起電圧値のγ m 軸成分に対するδ m 軸成分の比を用いた逆正接関数演算によって前記位相差Δθを算出する軸誤差演算器を備えるようにするものである。
また、本発明は、前記誘起電圧モデルが、
In order to solve the above problem, the present invention is configured as follows.
An inverter control apparatus according to the present invention includes an inverter unit that supplies a voltage to a permanent magnet type synchronous motor having a permanent magnet as a rotor, a current detector that detects a motor current flowing in the motor, and a magnetic axis of the motor. The phase difference between the dq axis composed of q advanced by π / 2 [rad] from the d axis and the γ-δ axis composed of γ advanced from the specified magnetic axis of the motor by γ and π advanced by π / 2 [rad] from the γ axis. In an inverter control apparatus provided with a position speed estimator for estimating and calculating the magnetic pole position and rotor speed of the electric motor so that Δθ is zero, it is delayed or advanced by π / 4 [rad] with respect to the γ-δ axis . set the gamma m - [delta m axis, provided the induced voltage model of the electric motor to the gamma m - [delta m-axis, using a voltage command value and the current detection value of gamma m - [delta m-axis, gamma m - [delta m-axis and the induced voltage estimator for calculating the EMF value of the electric motor estimated the And it is to include an axial error calculator for calculating the phase difference Δθ by the inverse tangent function calculation using the ratio of [delta] m-axis component to the gamma m-axis component of the induced voltage value.
In addition, the present invention is, before Symbol induced voltage model,
但し、 However,
によって示される近似誘起電圧モデルとするものである。
また、本発明は、前記誘起電圧推定器が、γm−δm座標系の前記電圧指令値、前記電流検出値及び前記回転子速度を用いて、前記誘起電圧値を推定演算する状態オブザーバとするものである。
また、本発明は、前記誤差演算器が、前記誘起電圧値を入力とし、
The approximate induced voltage model indicated by
Further, the present invention is pre-Symbol induced voltage estimator, the voltage command value of gamma m - [delta m coordinate system, using the current detection value and the rotor speed, estimates and calculates the front Ki誘 electromotive voltage It is a state observer.
Further, the present invention is pre-Symbol error calculator is an input the induced voltage value,
を用いて、前記位相差Δθを演算するものである。 Is used to calculate the phase difference Δθ.
上記問題を解決するため、本発明は、次のようにしたのである。
本発明は、永久磁石を回転子とする永久磁石型同期電動機に電圧を供給するインバータ部と、前記電動機に流れる電動機電流を検出する電流検出器と、前記電動機の磁軸をd、d軸からπ/2[rad]進んだqからなるd−q軸と、電動機の指定磁軸をγ、γ軸からπ/2[rad]進んだδからなるγ−δ軸の位相差Δθをゼロとするようにして前記電動機の磁極位置及び回転子速度を推定演算する位置速度推定器を備えたインバータ制御装置の制御方法において、γ−δ軸に対しπ/4[rad]遅れたまたは進んだγm−δm軸を設定し、前記電動機の誘起電圧モデルをγm−δm軸に設け、前記電圧指令値及び前記電流検出値を用いて、γ m −δ m 軸の前記電動機の誘誘起電圧値を推定演算し、前記誘起電圧値のγ m 軸成分に対するδ m 軸成分の比を用いた逆正接関数演算によって前記位相差Δθを算出するという手順をとったのである。
In order to solve the above problem, the present invention is as follows.
The present invention relates to an inverter for supplying voltage to a permanent magnet type synchronous motor having a permanent magnet as a rotor, a current detector for detecting a motor current flowing in the motor, and a magnetic axis of the motor from d and d axes. The phase difference Δθ between the dq axis composed of q advanced by π / 2 [rad] and the specified magnetic axis of the motor is γ, and the γ-δ axis composed of δ advanced from the γ axis by π / 2 [rad] is zero. In the control method of the inverter control apparatus including the position speed estimator for estimating and calculating the magnetic pole position and the rotor speed of the electric motor, the γ delayed or advanced by π / 4 [rad] with respect to the γ-δ axis set m - [delta m axis, provided the induced voltage model of the electric motor to the gamma m - [delta m-axis, with said voltage command value and the current detection value, the motor induced induction of the gamma m - [delta m-axis The voltage value is estimated and calculated, and δ m with respect to the γ m- axis component of the induced voltage value The procedure of calculating the phase difference Δθ by the arc tangent function calculation using the ratio of the axis components was taken.
本発明によると、位置推定誤差を抑制し、制御対象や運転状態を限定することなく安定的な電動機駆動を実現できる。
また、本発明によると、簡潔な演算により電流検出値から位相差Δθを算出することができる。
According to the present invention, it is possible to suppress a position estimation error and realize a stable motor drive without limiting a control target or an operation state.
Further, according to the present invention, the phase difference Δθ can be calculated from the detected current value by a simple calculation.
以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は本発明の位置センサレスインバータ制御装置の制御ブロック図である。図において、速度制御器1は、回転子速度指令値ω*と後述する回転子速度推定値ω^を入力し、その偏差を比例・積分(PI)制御により指令通りの回転数となるようにトルク電流指令iδ *を作成する。γ軸及びδ軸電流制御器2、3は、各軸の電流指令値iγ *、iδ *と後述の電流値iγ、iδを入力とし、指令通りの電流となるようにそれぞれ電圧指令vγ *、vδ *を作成する。ベクトル制御回路4は、γ−δ座標系での電圧指令vγ *、vδ *と、後述の磁極推定位置θ^を入力し、同期電動機6に印加する電圧振幅値と電圧位相を求める。インバータ部5は、電圧振幅値と電圧位相を入力とし、各相の電圧指令vu *、vv *、vw *に変換後、同期電動機6に印加する。同期電動機6は、制御対象としてインバータ部5に接続されている。電流検出器13は、相電流をiu、iv、iwを検出する。 FIG. 1 is a control block diagram of a position sensorless inverter control apparatus of the present invention. In the figure, a speed controller 1 inputs a rotor speed command value ω * and a rotor speed estimated value ω ^ to be described later so that the deviation becomes a rotational speed as commanded by proportional / integral (PI) control. A torque current command i δ * is created. gamma-axis and [delta]-axis current controller 2 and 3, the current command value i gamma * of the respective axes, i [delta] * and the current value i gamma described later, as input i [delta], respectively, as a current as commanded voltage Commands v γ * and v δ * are created. The vector control circuit 4 receives voltage commands v γ * and v δ * in the γ-δ coordinate system and a magnetic pole estimated position θ ^ described later, and obtains a voltage amplitude value and a voltage phase to be applied to the synchronous motor 6. The inverter unit 5 receives the voltage amplitude value and the voltage phase, converts them into voltage commands v u * , v v * , and v w * for each phase and applies them to the synchronous motor 6. The synchronous motor 6 is connected to the inverter unit 5 as a control target. The current detector 13 detects phase currents i u , i v , and i w .
また、座標変換器7は、検出された相電流をiu、iv、iwを同期電動機6の固定子の一つの相であるα軸と、α軸からπ/2[rad]進んだβ軸からなるα‐β座標系での電流値iα、iβに変換する。座標変換器8は、電流値iα、iβをγ−δ座標系での電流値iγ、iδに変換する。変換の際は後述の磁極位置の推定値θ^を用いる。座標変換器9は、−π/4[rad]回転させる変換器であり、γ−δ座標系の電流値iγ、iδをγm−δm座標系の電流値iγ m、iδ mに、また電圧指令値vγ *、vδ *をvγ m、vδ mに変換する。誘起電圧推定器10は、γ−δ軸に対しπ/4[rad]遅れたγm−δm軸に構成された同期電動機6の誘起電圧モデルで構成され、電圧指令値vγ m、vδ m及び電流検出値iγ m、iδ mを用いて、同期電動機6の電流値及び誘起電圧推定値を演算する。また、軸誤差演算器11は、誘起電圧推定器10が推定した誘起電圧推定値を用いて位相差Δθを算出する。さらに、位置速度推定器12は、位相差Δθを入力し、回転子速度推定値ω^及び磁極位置の推定値θ^を演算して出力する。
なお、誘起電圧推定器10、軸誤差演算器11、位置速度推定器12の動作については後で詳細に説明する。
本発明が従来技術と異なる部分は、座標変換器9を追加し、さらに変更された誘起電圧推定器10と軸誤差演算器11を備えた部分である。
The coordinate converter 7 advances the detected phase currents i u , i v , and i w by α axis which is one phase of the stator of the synchronous motor 6 and π / 2 [rad] from the α axis. The current values i α and i β in the α-β coordinate system composed of the β axis are converted. The coordinate converter 8 converts the current values i α and i β into current values i γ and i δ in the γ-δ coordinate system. In the conversion, an estimated value θ ^ of the magnetic pole position described later is used. Coordinate converter 9 is -π / 4 [rad] transducer rotates, the current value of the gamma-[delta] coordinate system i gamma, the current value of the i δ γ m -δ m coordinate system i γ m, i δ The voltage command values v γ * and v δ * are converted into v γ m and v δ m . The induced voltage estimator 10 includes an induced voltage model of the synchronous motor 6 configured on the γ m -δ m axis that is delayed by π / 4 [rad] with respect to the γ-δ axis, and includes voltage command values v γ m , v The current value and the induced voltage estimated value of the synchronous motor 6 are calculated using δ m and the current detection values i γ m and i δ m . The axis error calculator 11 calculates the phase difference Δθ using the induced voltage estimated value estimated by the induced voltage estimator 10. Further, the position / speed estimator 12 receives the phase difference Δθ, and calculates and outputs the rotor speed estimated value ω ^ and the magnetic pole position estimated value θ ^.
The operations of the induced voltage estimator 10, the axis error calculator 11, and the position / speed estimator 12 will be described in detail later.
The present invention is different from the prior art in that a coordinate converter 9 is added and an induced voltage estimator 10 and an axis error calculator 11 are further modified.
次に、図1に示した制御ブロック図を説明する。
座標変換器9は、γ−δ座標系での電流値iγ、iδを座標系γm−δm座標系での電流値iγ m、iδ mに変換する変換器であり、その変換行列T45は(6)式に示すものとなる。また、γ−δ座標系での電圧指令値vγ *、vδ *に対しても、同様の変換行列T45を用いて、座標系γm−δm座標系での電圧指令値vγ m、vδ mを求めている。
Next, the control block diagram shown in FIG. 1 will be described.
The coordinate converter 9 is a converter that converts current values i γ and i δ in the γ-δ coordinate system into current values i γ m and i δ m in the coordinate system γ m -δ m coordinate system. The transformation matrix T 45 is shown in the equation (6). Further, the voltage command values v γ * and v δ * in the γ-δ coordinate system are also used for the voltage command values v γ in the coordinate system γ m -δ m coordinate system using the same transformation matrix T 45. m and v δ m are obtained.
誘起電圧推定器10は、時刻t=k・Ts(Ts:演算周期)におけるγm−δm座標系での電流値iγ m、iδ m及び電圧指令値vγ m、vδ mを入力して、(7)式によりt=(k+1)・Ts時のγm−δm座標系での電流値iγ m^、iδ m^を、(8)式により誘起電圧εγ m^、εδ m^を推定演算している。 The induced voltage estimator 10 calculates current values i γ m and i δ m and voltage command values v γ m and v δ in the γ m -δ m coordinate system at time t = k · T s (T s : calculation period). m is input, the current values i γ m ^ and i δ m ^ in the γ m -δ m coordinate system at t = (k + 1) · T s according to the equation (7), the induced voltage according to the equation (8) ε γ m ^ and ε δ m ^ are estimated and calculated.
ここで、K11、K12、K21、K22、K31、K32、K41、K42:オブザーバゲインであり、 Here, K 11 , K 12 , K 21 , K 22 , K 31 , K 32 , K 41 , K 42 : Observer gain.
誘起電圧εγ m、εδ mは、拡張された誘起電圧と呼ばれ、(10)式で表されるものである。 The induced voltages ε γ m and ε δ m are called extended induced voltages and are expressed by the equation (10).
軸誤差演算器11は、推定された誘起電圧εγ m^、εδ m^を入力し、(11)式に示すεγ m、εδ mを用いた逆正接関数演算を行い、d−q軸とγ−δ軸の位相差Δθを算出している。 The axis error calculator 11 receives the estimated induced voltages ε γ m ^ and ε δ m ^, performs an arc tangent function calculation using ε γ m and ε δ m shown in equation (11), and d− The phase difference Δθ between the q axis and the γ-δ axis is calculated.
図2は、位置速度推定器12の詳細図である。図において、21は比例・積分要素で構成された速度推定器で、上記(11)式で算出された位相差Δθが入力されると、位相差Δθが0になるように制御して、回転子速度推定値ω^を出力する。22は磁極位置演算器で、回転子速度推定値ω^に演算周期Tsを乗じて、演算周期Tsあたりの位相更新量を算出し、それを積分して磁極位置の推定値θ^として出力する。
このように、γ−δ軸からπ/4[rad]遅れたγm−δm軸に同期電動機の誘起電圧モデルを構成し、電圧指令値vγ m、vδ m及び電流検出値iγ m、iδ mを用いて、誘起電圧推定値を演算して、位相差Δθ、回転子速度推定値ω^、磁極位置の推定値θ^を推定演算している。
FIG. 2 is a detailed view of the position / speed estimator 12. In the figure, reference numeral 21 denotes a speed estimator composed of proportional / integral elements. When the phase difference Δθ calculated by the above equation (11) is inputted, the phase difference Δθ is controlled to be 0 and rotated. The child speed estimated value ω ^ is output. A magnetic pole position calculator 22 multiplies the rotor speed estimated value ω ^ by the calculation period T s to calculate a phase update amount per calculation period T s and integrates it to obtain an estimated value θ ^ of the magnetic pole position. Output.
Thus, the induced voltage model of the synchronous motor is configured on the γ m -δ m axis delayed by π / 4 [rad] from the γ-δ axis, and the voltage command values v γ m , v δ m and the current detection value i γ are formed. The induced voltage estimated value is calculated using m 1 and i δ m to estimate and calculate the phase difference Δθ, the rotor speed estimated value ω ^, and the magnetic pole position estimated value θ ^.
次に、γm−δm座標上で位置推定すると、電動機パラメータが変化しても、いかにして位置推定誤差を抑制できるかについて説明する。
図3は、γ−δ座標系とγm‐δm座標系での軽負荷時および重負荷時のインピーダンス軌跡図である。図において、31は軽負荷時のインピーダンス軌跡、32は重負荷時のインピーダンス軌跡、33は永久磁石回転子、34はδ軸における負荷変動によるインピーダンスの変化を表しており、35はδm軸における負荷変動によるインピーダンスの変化を表している。
ここで、各座標系の相対関係についてまとめておく。α−β座標系は固定子巻線の一つの相を基準とした固定座標系、d−q座標系はα‐β座標系からθだけ進んだ位相にある座標系で回転子磁軸を基準としている。また、γ−δ座標系はd−q座標系に対しΔθだけ遅れ、γm−δm座標系はγ−δ座標系に対しπ/4[rad]だけ遅れている。
図3において、埋め込み型永久磁石電動機(IPM)のように突極性がある電動機のインピーダンス軌跡は、磁極方向に対し、直交する方向の径の大きな楕円形31となる。しかし、突極性がある電動機のインダクタンスは、電動機に流れる電流が大きい程小さくなり、d軸インダクタンスよりもq軸インダクタンスの方が小さくなる程度は大きい。このため、固定子抵抗(R)を一定とすると、軽負荷時には楕円形31であったインピーダンス軌跡は、円32に近づく。
Next, how the position estimation error can be suppressed by estimating the position on the γ m -δ m coordinate even if the motor parameter changes will be described.
FIG. 3 is an impedance locus diagram in light load and heavy load in the γ-δ coordinate system and the γ m -δ m coordinate system. In the figure, 31 is an impedance locus at light load, 32 is an impedance locus at heavy load, 33 is a permanent magnet rotor, 34 is a change in impedance due to load fluctuation in the δ axis, and 35 is in the δ m axis. It represents the change in impedance due to load fluctuation.
Here, the relative relationship of each coordinate system is summarized. The α-β coordinate system is a fixed coordinate system based on one phase of the stator winding, and the dq coordinate system is a coordinate system in a phase that is advanced by θ from the α-β coordinate system, and the rotor magnetic axis is referenced. It is said. The γ-δ coordinate system is delayed by Δθ with respect to the dq coordinate system, and the γ m -δ m coordinate system is delayed by π / 4 [rad] with respect to the γ-δ coordinate system.
In FIG. 3, the impedance locus of a motor having saliency, such as an embedded permanent magnet motor (IPM), is an ellipse 31 having a large diameter in a direction orthogonal to the magnetic pole direction. However, the inductance of a motor with saliency decreases as the current flowing through the motor increases, and the q-axis inductance is much smaller than the d-axis inductance. For this reason, assuming that the stator resistance (R) is constant, the impedance locus that was elliptical 31 at the time of light load approaches the circle 32.
このようなインピーダンス軌跡を有する電動機に対し、従来技術のようにγ−δ座標系に誘起電圧モデルを構築すると、位相差Δθを算出する際、q軸インダクタンスLqのパラメータ誤差は分子と分母の変化が同じ比率でなく不均衡を生じる。このため、従来技術で説明した(3)式で位相差Δθを演算すると位相誤差を発生してしまう。 For an electric motor having such an impedance locus, when an induced voltage model is constructed in the γ-δ coordinate system as in the prior art, when calculating the phase difference Δθ, the parameter error of the q-axis inductance L q is between the numerator and the denominator. The change is not the same ratio but an imbalance. For this reason, if the phase difference Δθ is calculated by the equation (3) described in the prior art, a phase error occurs.
ところが、本発明のようにγm−δm座標系に誘起電圧モデルを構築すると、iγ m、iδ mはほぼ等しくなるため、q軸インダクタンスLqのパラメータ誤差は、推定する誘起電圧εγ m、εδ mに同じ大きさの影響を与える。このため、q軸インダクタンスLqのパラメータ誤差は、(11)式(数12)の右辺の逆正接関数演算では影響を与えず、演算する位相差Δθの誤差を抑制することとなる。
換言すれば、γm−δm座標系に誘起電圧モデルを構築すると、負荷変動よるδ軸上のインダクタンスの変化分34に対してδm軸上のインダクタンスの変化分35を小さく抑えることが出来、誘起電圧モデル中のインダクタンスLd、Lqのパラメータ誤差を抑制することと同様の効果を得ている。
However, when the induced voltage model is constructed in the γ m -δ m coordinate system as in the present invention, i γ m and i δ m are substantially equal, and therefore the parameter error of the q-axis inductance L q is the estimated induced voltage ε It has the same influence on γ m and ε δ m . Therefore, parameter error of the q-axis inductance L q becomes possible to suppress the error of the phase difference Δθ, which does not give an arctan calculation in the influence of the right side, to the calculation of (11) (number 12).
In other words, when an induced voltage model is constructed in the γ m -δ m coordinate system, the inductance change 35 on the δ m axis can be suppressed smaller than the inductance change 34 on the δ axis due to the load fluctuation. The same effect as suppressing the parameter error of the inductances L d and L q in the induced voltage model is obtained.
また、誘起電圧定数φについても、γ−δ座標系に誘起電圧モデルを構築すると誘起電圧定数φのパラメータ誤差はεδにのみに影響を与えるが、γm−δm座標系に構築するとπ/4[rad]のsinとcosの値は等しいので、通常の制御状態である位相差Δθが0付近では、誘起電圧定数φのパラメータ誤差はεγ m、εδ mに等しく影響してキャンセルされ、演算する位相差Δθには誤差は発生しない。 As for the induced voltage constant φ, if an induced voltage model is constructed in the γ-δ coordinate system, the parameter error of the induced voltage constant φ affects only ε δ , but if constructed in the γ m -δ m coordinate system, π Since the sin and cos values of / 4 [rad] are equal, the parameter error of the induced voltage constant φ is equally affected by ε γ m and ε δ m when the phase difference Δθ in the normal control state is near 0. Thus, no error occurs in the calculated phase difference Δθ.
このように、q軸インダクタンスLqや誘起電圧定数φの変化に対して、位相差Δθの推定性能の劣化を抑制した位置推定が行え、さらには高周波信号の重畳や同定用信号を入力していないので、安定的でトルク振動のない電動機駆動を実現できる。 As described above, the position estimation can be performed while suppressing the deterioration of the estimation performance of the phase difference Δθ with respect to the change of the q-axis inductance L q and the induced voltage constant φ, and furthermore, the superposition of the high frequency signal and the identification signal are input. Therefore, it is possible to realize a stable motor drive without torque vibration.
1 速度制御器
2 d軸電流制御器
3 q軸電流制御器
4 ベクトル制御回路
5 インバータ部
6 同期電動機
7、8、9 座標変換器
10 誘起電圧推定器
11 軸誤差演算器
12 位置速度推定器
13 電流検出器
21 速度推定器
22 磁極位置演算器
31 軽負荷時インピーダンス軌跡
32 重負荷時インピーダンス軌跡
33 永久磁石
34 負荷によるδ軸インピーダンス変化分
35 負荷によるδm軸インピーダンス変化分
101 分配ゲイン発生器
102 速度コントローラ
103 γ軸電流指令発生器
104 δ軸電流コントローラ
105 γ軸電流コントローラ
106 ベクトル制御回路
107 インバータ回路
108 同期電動機
109 3相2相変換器
110 γ−δ軸電流・誘起電圧推定器
111 比例制御用速度演算器
112 磁軸演算器
113 積分、磁軸回転用速度演算器
DESCRIPTION OF SYMBOLS 1 Speed controller 2 d-axis current controller 3 q-axis current controller 4 Vector control circuit 5 Inverter part 6 Synchronous motor 7, 8, 9 Coordinate converter 10 Induced voltage estimator 11 Axis error calculator 12 Position speed estimator 13 Current detector 21 Speed estimator 22 Magnetic pole position calculator 31 Light load impedance locus 32 Heavy load impedance locus 33 Permanent magnet 34 δ-axis impedance change due to load 35 δ m- axis impedance change due to load 101 Distribution gain generator 102 Speed controller 103 γ-axis current command generator 104 δ-axis current controller 105 γ-axis current controller 106 Vector control circuit 107 Inverter circuit 108 Synchronous motor 109 Three-phase two-phase converter 110 γ-δ-axis current / induced voltage estimator 111 Proportional control Speed calculator 112 Magnetic axis calculator 113 Integration, magnetic axis rotation Speed calculator
Claims (5)
γ−δ軸に対しπ/4[rad]遅れたまたは進んだγm−δm軸を設定し、前記電動機の誘起電圧モデルをγm−δm 軸に設け、γ m −δ m 軸の電圧指令値及び電流検出値を用いてγ m −δ m 軸の前記電動機の誘起電圧値を推定演算する誘起電圧推定器と、
前記誘起電圧値のγ m 軸成分に対するδ m 軸成分の比を用いた逆正接関数演算によって前記位相差Δθを算出する軸誤差演算器を備えたことを特徴とするインバータ制御装置。 An inverter unit for supplying a voltage to a permanent magnet type synchronous motor having a permanent magnet as a rotor, a current detector for detecting a motor current flowing through the motor, and a magnetic axis of the motor from d and d axis to π / 2 [ rad] The phase difference Δθ between the dq axis composed of advanced q and the designated magnetic axis of the motor is γ, and the γ-δ axis composed of δ advanced by π / 2 [rad] from the γ axis is set to zero. In an inverter control device comprising a position speed estimator for estimating and calculating the magnetic pole position and rotor speed of the motor,
Set π / 4 [rad] delayed or advanced gamma m - [delta m-axis with respect to gamma-[delta] axes, it provided the induced voltage model of the electric motor to the gamma m - [delta m-axis, the gamma m - [delta m-axis and the induced voltage estimator for estimating the EMF value of the motor of gamma m - [delta m-axis by using the voltage command value and the current detection value,
Inverter control apparatus characterized by comprising an axial error calculator for calculating the phase difference Δθ by the inverse tangent function calculation using the ratio of [delta] m-axis component to the gamma m-axis component of the induced voltage value.
γ−δ軸に対しπ/4[rad]遅れたまたは進んだγm−δm軸を設定し、前記電動機の誘起電圧モデルをγm−δm軸に設け、γ m −δ m 軸の電圧指令値及び電流検出値を用いて、γ m −δ m 軸の前記電動機の誘起電圧値を推定演算し、
前記誘起電圧値のγ m 軸成分に対するδ m 軸成分の比を用いた逆正接関数演算によって前記位相差Δθを算出するという手順で処理することを特徴とするインバータ制御装置の制御方法。 An inverter unit for supplying a voltage to a permanent magnet type synchronous motor having a permanent magnet as a rotor, a current detector for detecting a motor current flowing through the motor, and a magnetic axis of the motor from d and d axis to π / 2 [ rad] The phase difference Δθ between the dq axis composed of advanced q and the designated magnetic axis of the motor is γ, and the γ-δ axis composed of δ advanced by π / 2 [rad] from the γ axis is set to zero. In the control method of the inverter control device including the position speed estimator for estimating and calculating the magnetic pole position and the rotor speed of the electric motor,
Set π / 4 [rad] delayed or advanced gamma m - [delta m-axis with respect to gamma-[delta] axes, it provided the induced voltage model of the electric motor to the gamma m - [delta m-axis, the gamma m - [delta m-axis using voltage command value及beauty current detection value, and estimates and calculates the EMF value of the motor of gamma m - [delta m-axis,
Control method for an inverter control device, characterized in that the treatment with the procedure of calculating the phase difference Δθ by the inverse tangent function calculation using the ratio of [delta] m-axis component to the gamma m-axis component of the induced voltage value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007271829A JP5228435B2 (en) | 2007-10-18 | 2007-10-18 | Inverter control device and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007271829A JP5228435B2 (en) | 2007-10-18 | 2007-10-18 | Inverter control device and control method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009100600A JP2009100600A (en) | 2009-05-07 |
JP2009100600A5 JP2009100600A5 (en) | 2011-07-07 |
JP5228435B2 true JP5228435B2 (en) | 2013-07-03 |
Family
ID=40703095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007271829A Active JP5228435B2 (en) | 2007-10-18 | 2007-10-18 | Inverter control device and control method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5228435B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6667407B2 (en) * | 2016-09-12 | 2020-03-18 | ルネサスエレクトロニクス株式会社 | Control device |
CN111224595B (en) * | 2020-02-25 | 2021-06-18 | 珠海格力电器股份有限公司 | Motor control method and device for improving safety, compressor and air conditioner |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3253004B2 (en) * | 1996-01-12 | 2002-02-04 | 株式会社安川電機 | Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position |
JP4419220B2 (en) * | 1999-08-25 | 2010-02-24 | 株式会社安川電機 | Vector control device for induction motor |
JP4665360B2 (en) * | 2001-08-06 | 2011-04-06 | 株式会社安川電機 | Electric motor control device |
JP4480696B2 (en) * | 2005-08-26 | 2010-06-16 | 三洋電機株式会社 | Motor control device |
-
2007
- 2007-10-18 JP JP2007271829A patent/JP5228435B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009100600A (en) | 2009-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5130031B2 (en) | Position sensorless control device for permanent magnet motor | |
JP4357967B2 (en) | Control device for synchronous reluctance motor | |
JP4284355B2 (en) | High response control device for permanent magnet motor | |
JP4928855B2 (en) | Sensorless control device for synchronous machine | |
JP4067949B2 (en) | Motor control device | |
EP2020743B1 (en) | Sensorless controlling apparatus for controlling a brushless motor | |
JP4989075B2 (en) | Electric motor drive control device and electric motor drive system | |
US20070046249A1 (en) | Motor control device | |
JP5425173B2 (en) | Control device | |
JP2007049843A (en) | Vector control device for permanent-magnet synchronous motors | |
JP5267848B2 (en) | Motor control device | |
JP2010063208A (en) | Drive system for synchronous motor, and controller used for this | |
JP3674741B2 (en) | Control device for permanent magnet synchronous motor | |
JP2008220096A (en) | Sensorless controller of synchronous electric motor | |
JP5428202B2 (en) | Control device for permanent magnet type synchronous motor | |
JP6166601B2 (en) | Motor control device and generator control device | |
JP5509167B2 (en) | Synchronous motor control system | |
JP2004032907A (en) | Controller for permanent magnet type synchronous motor | |
JPH08275599A (en) | Control method for permanent magnet synchronous motor | |
JP2009290962A (en) | Controller of permanent magnet type synchronous motor | |
JP5228435B2 (en) | Inverter control device and control method thereof | |
JP4535082B2 (en) | Sensorless control device and control method for synchronous generator | |
JP3692085B2 (en) | Motor control method and apparatus | |
JP6707050B2 (en) | Synchronous motor controller | |
JP5386813B2 (en) | Sensorless control device for brushless motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110525 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121016 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5228435 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |