JP5228118B2 - Method for producing aluminum alloy conductor - Google Patents
Method for producing aluminum alloy conductorInfo
- Publication number
- JP5228118B2 JP5228118B2 JP2011553225A JP2011553225A JP5228118B2 JP 5228118 B2 JP5228118 B2 JP 5228118B2 JP 2011553225 A JP2011553225 A JP 2011553225A JP 2011553225 A JP2011553225 A JP 2011553225A JP 5228118 B2 JP5228118 B2 JP 5228118B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- wire
- aluminum alloy
- heat treatment
- alloy conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 title claims description 98
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 89
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 45
- 238000000137 annealing Methods 0.000 claims description 38
- 229910052782 aluminium Inorganic materials 0.000 claims description 36
- 238000005491 wire drawing Methods 0.000 claims description 34
- 229910052802 copper Inorganic materials 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 24
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 23
- 229910052738 indium Inorganic materials 0.000 claims description 23
- 229910052749 magnesium Inorganic materials 0.000 claims description 23
- 229910052793 cadmium Inorganic materials 0.000 claims description 22
- 229910052718 tin Inorganic materials 0.000 claims description 22
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 238000005266 casting Methods 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 17
- 229910052720 vanadium Inorganic materials 0.000 claims description 17
- 238000009749 continuous casting Methods 0.000 claims description 15
- 238000005096 rolling process Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 238000010622 cold drawing Methods 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- 238000005452 bending Methods 0.000 description 47
- 239000010949 copper Substances 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 22
- 239000013078 crystal Substances 0.000 description 19
- 239000002245 particle Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 238000012360 testing method Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 238000009661 fatigue test Methods 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 210000003660 reticulum Anatomy 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910018580 Al—Zr Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- -1 or further Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/023—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Insulated Conductors (AREA)
Description
本発明は、電気配線体の導体として用いられるアルミニウム合金導体およびその製造方法に関する。 The present invention relates to an aluminum alloy conductor used as a conductor of an electric wiring body and a manufacturing method thereof.
従来、自動車、電車、航空機等の移動体の電気配線体として、ワイヤハーネスと呼ばれる銅または銅合金の導体を含む電線に銅または銅合金(例えば、黄銅)製の端子(コネクタ)を装着した部材が用いられていたが、近年の移動体の軽量化の中で、電気配線体の導体として、銅又は銅合金より軽量なアルミニウム又はアルミニウム合金を用いる検討が進められている。
アルミニウムの比重は銅の約1/3、アルミニウムの導電率は銅の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、純アルミニウムの導体線材に純銅の導体線材と同じ電流を流すためには、純アルミニウムの導体線材の断面積を純銅の導体線材の約1.5倍にする必要があるが、それでも質量では銅に比べて約半分となるので、有利な点がある。
なお、上記の%IACSとは、万国標準軟銅(International Annealed Copper Standard)の抵抗率1.7241×10−8Ωmを100%IACSとした場合の導電率を表したものである。
2. Description of the Related Art Conventionally, a member in which a terminal (connector) made of copper or copper alloy (for example, brass) is mounted on an electric wire including a copper or copper alloy conductor called a wire harness as an electric wiring body of a moving body such as an automobile, a train, or an aircraft However, in light of the recent weight savings of moving bodies, studies are underway to use aluminum or aluminum alloys that are lighter than copper or copper alloys as conductors of electrical wiring bodies.
The specific gravity of aluminum is about 1/3 of copper, and the electrical conductivity of aluminum is about 2/3 of copper (pure aluminum is about 66% IACS when pure copper is used as the standard of 100% IACS). In order to pass the same current as that of a pure copper conductor wire, the cross-sectional area of the pure aluminum conductor wire needs to be about 1.5 times that of the pure copper conductor wire, but the mass is still about half that of copper. Therefore, there is an advantage.
In addition, said% IACS expresses the electrical conductivity when the resistivity 1.7241 × 10 −8 Ωm of universal standard annealed copper (International Annealed Copper Standard) is 100% IACS.
そのアルミニウムを移動体の電気配線体の導体として用いるためには幾つかの課題がありそのひとつに耐屈曲疲労特性の向上がある。移動体の電気配線体に使用されるアルミニウム導体に耐屈曲疲労特性が要求されるのは、ドアなどに取り付けられたワイヤハーネスではドアの開閉により繰り返し曲げ応力を受けるためである。アルミニウムなどの金属材料は、一回の負荷では破断しないような低い荷重でもドアの開閉のように荷重を加えたり除いたりを繰り返し行なうと、ある繰り返し回数で破断する疲労破壊が生じる。前記アルミニウム導体が開閉部に用いられたとき、耐屈曲疲労特性が悪いとその使用中に導体が破断することが懸念され、耐久性、信頼性に欠けるという問題を生ずる。
一般に強度の高い材料ほど疲労特性は良好と言われている。そこで、強度の高いアルミニウム線材を適用すればよいが、ワイヤハーネスはその設置時の取り回し(車体への取り付け作業)がしやすいことが要求されているために、一般的には伸びが10%以上確保できる鈍し材(焼鈍材)が使われていることが多い。
There are several problems in using the aluminum as a conductor of an electric wiring body of a moving body, and one of them is improvement of bending fatigue resistance. The reason why the aluminum conductor used for the electric wiring body of the moving body is required to have bending fatigue resistance is that the wire harness attached to the door or the like is repeatedly subjected to bending stress by opening and closing the door. When a metal material such as aluminum is repeatedly applied and removed such as opening and closing of a door even at a low load that does not break at a single load, fatigue failure that breaks at a certain number of repetitions occurs. When the aluminum conductor is used for an opening / closing portion, if the bending fatigue resistance is poor, there is a concern that the conductor may break during use, resulting in a problem of lack of durability and reliability.
Generally, it is said that a material having higher strength has better fatigue characteristics. Therefore, high-strength aluminum wire may be applied, but the wire harness is required to be easy to handle (installation work on the vehicle body) at the time of installation, and generally has an elongation of 10% or more. In many cases, a dull material (annealed material) that can be secured is used.
よって、移動体の電気配線体に使用されるアルミニウム導体には、取扱い及び取り付け時に必要となる強度、及び電気を多く流すために必要となる導電率に加えて、耐屈曲疲労特性の優れた材料が求められている。 Therefore, the aluminum conductor used for the electric wiring body of the moving body is a material having excellent bending fatigue resistance in addition to the strength required for handling and mounting, and the conductivity necessary for flowing a large amount of electricity. Is required.
このような要求のある用途に対して、送電線用アルミニウム合金線材(JIS A1060やJIS A1070)を代表とする純アルミニウム系では、ドアなどの開閉で生じる繰り返し曲げ応力に十分耐えることはできない。また、種々の添加元素を加えた合金化した材料は強度には優れるものの、アルミニウム中への添加元素の固溶現象により導電率の低下を招くこと、アルミニウム中に過剰な金属間化合物を形成することで伸線加工中に断線を引き起こす場合があることが問題であった。そのため、添加元素を限定、選択して導電率低下及び加工性劣化を防ぎ、強度及び耐屈曲疲労特性を向上する必要があった。 For such demanding applications, pure aluminum systems such as power transmission line aluminum alloy wires (JIS A1060 and JIS A1070) cannot sufficiently withstand repeated bending stresses that occur when doors are opened and closed. In addition, although alloyed materials with various additive elements are excellent in strength, they cause a decrease in conductivity due to a solid solution phenomenon of the additive elements in aluminum, and excessive intermetallic compounds are formed in aluminum. Therefore, there is a problem that wire breakage may be caused during wire drawing. Therefore, it is necessary to limit and select additive elements to prevent the decrease in conductivity and workability, and to improve the strength and the bending fatigue resistance.
移動体の電気配線体に用いられるアルミニウム導体として代表的なものに特許文献1〜3に記載のものがある。しかし下記のように、いずれの特許文献記載の発明も、さらに解決すべき課題を有する。
特許文献1に記載されている電線導体は、引張強度が高すぎであり、車体への取り付け作業がしにくくなることがある。
特許文献2に具体的に記載されているアルミ導電線では、仕上げ焼鈍を行なっていない。またCuが含まれていないため、伸びが低く、車体での取り付け作業にはさらに柔軟性が高いものが要望される。
特許文献3には軽量、柔軟かつ屈曲性に優れたアルミニウム導電線が開示されているが、移動体の電気配線体への特性改善の要求は強まるばかりであり、さらなる特性の向上が望まれている。
Typical examples of the aluminum conductor used for the electric wiring body of the moving body include those described in Patent Documents 1 to 3. However, as described below, the inventions described in any of the patent documents have further problems to be solved.
The electric wire conductor described in Patent Document 1 has an excessively high tensile strength, and it may be difficult to perform the attachment work to the vehicle body.
The aluminum conductive wire specifically described in
本発明は、耐屈曲疲労特性などに優れたアルミニウム合金導体の製造方法を提供することを課題とする。 This invention makes it a subject to provide the manufacturing method of the aluminum alloy conductor excellent in the bending fatigue-proof characteristic etc.
本発明者らは種々の検討を重ね、要求される耐屈曲疲労特性を満足するものとして、アルミニウム合金導体に含まれる成分、ならびに前記導体の鋳造冷却速度や仕上げ焼鈍条件などの製造工程を制御することにより、添加元素の効果を利用し、前記導体の結晶粒径を最適化することで、前記特性を改善し得ることを見出し、この知見に基づき、本発明を完成するに至った。 As a result of various studies, the present inventors control the production process such as the components contained in the aluminum alloy conductor and the casting cooling rate and finish annealing condition of the conductor as satisfying the required bending fatigue resistance. Thus, the inventors have found that the characteristics can be improved by utilizing the effect of the additive element and optimizing the crystal grain size of the conductor, and based on this finding, the present invention has been completed.
すなわち、本発明は、以下の解決手段を提供するものである。
(1)Feを0.01〜0.4mass%と、Cuを0.3〜0.5mass%と、Mgを0.04〜0.3mass%と、Siを0.02〜0.3mass%とを含有し、さらにTiとVを合わせて0.001〜0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記連続鋳造圧延を、鋳造冷却速度が1〜20℃/秒の条件で行い、前記冷間線引き加工を、加工前の線材断面積をA0、加工後の線材断面積をA1として、η=ln(A0/A1)で表される加工度が1以上6以下の条件で行い、前記熱処理を、温度300〜450℃で10分〜6時間の条件で行い、前記伸線加工を加工度が1以上6以下の条件で行い、前記焼鈍熱処理を、温度300〜450℃で10分〜6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。
(2)Feを0.01〜0.4mass%と、Cuを0.3〜0.5mass%と、Mgを0.04〜0.3mass%と、Siを0.02〜0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01〜0.5mass%とを含有し、さらにTiとVを合わせて0.001〜0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記連続鋳造圧延を、鋳造冷却速度が1〜20℃/秒の条件で行い、前記冷間線引き加工を、加工前の線材断面積をA0、加工後の線材断面積をA1として、η=ln(A0/A1)で表される加工度が1以上6以下の条件で行い、前記熱処理を、温度300〜450℃で10分〜6時間の条件で行い、前記伸線加工を加工度が1以上6以下の条件で行い、前記焼鈍熱処理を、温度300〜450℃で10分〜6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。
(3)Feを0.01〜0.4mass%と、Cuを0.3〜0.5mass%と、Mgを0.04〜0.3mass%と、Siを0.02〜0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01〜0.5mass%とを含有し、さらにTiとVを合わせて0.001〜0.01mass%含み、Zrを0.001〜0.1mass%を含み、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記連続鋳造圧延を、鋳造冷却速度が1〜20℃/秒の条件で行い、前記冷間線引き加工を、加工前の線材断面積をA0、加工後の線材断面積をA1として、η=ln(A0/A1)で表される加工度が1以上6以下の条件で行い、前記熱処理を、温度300〜450℃で10分〜6時間の条件で行い、前記伸線加工を加工度が1以上6以下の条件で行い、前記焼鈍熱処理を、温度300〜450℃で10分〜6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。
(4)Feを0.01〜0.4mass%と、Cuを0.3〜0.5mass%と、Mgを0.04〜0.3mass%と、Siを0.02〜0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01〜0.5mass%とを含有し、さらにTiとVを合わせて0.001〜0.01mass%含み、Zrを0.001〜0.1mass%を含み、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比(W1/W2)が、0.6〜2.6であり、残部Alと不可避不純物からなるアルミニウム合金成分を溶解後、連続鋳造圧延を施して粗棒材とし、冷間線引き加工して荒引き線材とし、熱処理を施し、伸線加工を行って線材とし、さらに焼鈍熱処理を行う工程を有してなるアルミニウム合金導体の製造方法であって、前記連続鋳造圧延を、鋳造冷却速度が1〜20℃/秒の条件で行い、前記冷間線引き加工を、加工前の線材断面積をA0、加工後の線材断面積をA1として、η=ln(A0/A1)で表される加工度が1以上6以下の条件で行い、前記熱処理を、温度300〜450℃で10分〜6時間の条件で行い、前記伸線加工を加工度が1以上6以下の条件で行い、前記焼鈍熱処理を、温度300〜450℃で10分〜6時間の条件で行うことを特徴とするアルミニウム合金導体の製造方法。
That is, the present invention provides the following solutions.
(1) Fe is 0.01 to 0.4 mass%, Cu is 0.3 to 0.5 mass%, Mg is 0.04 to 0.3 mass%, and Si is 0.02 to 0.3 mass%. In addition, it contains 0.001 to 0.01 mass% of Ti and V in combination, and after melting the aluminum alloy component consisting of the remaining Al and inevitable impurities, it is subjected to continuous casting and rolling to obtain a rough bar, which is cold drawn A method for producing an aluminum alloy conductor comprising a step of performing a heat treatment, performing a wire drawing process to obtain a wire, and further performing an annealing heat treatment, wherein the continuous casting rolling is performed at a casting cooling rate. Is performed under the conditions of 1 to 20 ° C./second, and the cold drawing is performed with η = ln (A 0 / A 1 ), where A 0 is the cross-sectional area of the wire before processing and A 1 is the cross-sectional area of the wire after processing. The degree of processing expressed by And the heat treatment is performed at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours, the wire drawing is performed at a workability of 1 to 6 and the annealing heat treatment is performed at a temperature of 300 to 450 ° C. A method for producing an aluminum alloy conductor, which is performed under conditions of 10 minutes to 6 hours.
(2) Fe 0.01-0.4 mass%, Cu 0.3-0.5 mass%, Mg 0.04-0.3 mass%, Si 0.02-0.3 mass% , Sn, Cd and In, at least one element selected from the group consisting of 0.01 to 0.5 mass% in total amount, further including 0.001 to 0.01 mass% of Ti and V together, the balance After melting the aluminum alloy component consisting of Al and unavoidable impurities, it is continuously cast and rolled into a rough bar, cold drawn to a rough drawn wire, heat treated, drawn to a wire, and further annealed A method for producing an aluminum alloy conductor comprising a step of performing a heat treatment, wherein the continuous casting and rolling is performed at a casting cooling rate of 1 to 20 ° C / second, and the cold drawing is performed before the processing. A wire cross section is A 0 , where the processed wire rod cross-sectional area is A 1 and the degree of processing represented by η = ln (A 0 / A 1 ) is 1 to 6 and the heat treatment is performed at a temperature of 300 to 450 ° C. Characterized in that the wire drawing is performed under conditions of a working degree of 1 to 6 and the annealing heat treatment is performed at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours. A method for producing an aluminum alloy conductor.
(3) 0.01-0.4 mass% Fe, 0.3-0.5 mass% Cu, 0.04-0.3 mass% Mg, 0.02-0.3 mass% Si And at least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, further including 0.001 to 0.01 mass% of Ti and V in combination, After melting the aluminum alloy component consisting of 0.001 to 0.1 mass% and the balance Al and inevitable impurities, it is continuously cast and rolled into a rough bar, cold drawn to a rough drawn wire, and heat treatment A method for producing an aluminum alloy conductor comprising a step of performing wire drawing to obtain a wire, and further performing annealing heat treatment, wherein the continuous casting rolling is performed under a condition of a casting cooling rate of 1 to 20 ° C./sec. Done in front In the cold drawing process, the processing degree represented by η = ln (A 0 / A 1 ) is 1 or more and 6 or less, where A 0 is the cross-sectional area of the wire before processing and A 1 is the cross-sectional area of the wire after processing. The heat treatment is performed at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours, the wire drawing is performed at a workability of 1 to 6 and the annealing heat treatment is performed at a temperature of 300 to 450. The manufacturing method of the aluminum alloy conductor characterized by performing on the conditions for 10 minutes-6 hours at ° C.
(4) Fe 0.01-0.4 mass%, Cu 0.3-0.5 mass%, Mg 0.04-0.3 mass%, Si 0.02-0.3 mass% And at least one element selected from the group consisting of Sn, Cd and In in a total amount of 0.01 to 0.5 mass%, further including 0.001 to 0.01 mass% of Ti and V in combination, The mass ratio (W1 /) of the total content (W1) of at least one element selected from the group consisting of Sn, Cd and In and the content (W2) of Zr, including 0.001 to 0.1 mass% W2) is 0.6 to 2.6, and after melting the aluminum alloy component consisting of the balance Al and inevitable impurities, it is continuously cast and rolled to form a rough bar, cold drawn to a rough drawn wire, Perform heat treatment and wire drawing A method for producing an aluminum alloy conductor comprising a step of performing annealing heat treatment, wherein the continuous casting and rolling is performed at a casting cooling rate of 1 to 20 ° C./second, and the cold Drawing is performed under the condition that the degree of processing expressed by η = ln (A 0 / A 1 ) is 1 or more and 6 or less, where A 0 is the cross-sectional area of the wire before processing and A 1 is the cross-sectional area of the wire after processing. The heat treatment is performed at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours, the wire drawing is performed at a workability of 1 to 6 and the annealing heat treatment is performed at a temperature of 300 to 450 ° C. for 10 hours. A method for producing an aluminum alloy conductor, which is carried out under conditions of minutes to 6 hours.
以下、前記(1)項記載のアルミニウム合金導体の製造方法を、本発明の第1の実施態様という。
前記(2)〜(4)項記載のアルミニウム合金導体の製造方法を、本発明の第2の実施態様という。
ここで、特に断らない限り、本発明とは、前記第1および第2の実施態様を包含する意味である。
Hereinafter, the method for producing an aluminum alloy conductor described in the item (1) is referred to as a first embodiment of the present invention.
The method for producing an aluminum alloy conductor described in the items (2) to (4) is referred to as a second embodiment of the present invention.
Here, unless otherwise specified, the present invention is meant to include the first and second embodiments.
本発明の製造方法で製造されるアルミニウム合金導体は強度、及び導電率に優れ、移動体に搭載されるバッテリーケーブル、ハーネスあるいはモータ用導体として有用なもので、優れた耐屈曲疲労特性が求められるドアやトランク、ボンネットなどにも好適に用いることができる。
さらに、本発明の製造方法で製造されるアルミニウム合金導体は、高温(例えば120℃)に曝されても屈曲疲労特性が低下しない優れたものであり、耐食性に優れるものである。
The aluminum alloy conductor produced by the production method of the present invention is excellent in strength and conductivity, and is useful as a battery cable, harness or motor conductor mounted on a moving body, and requires excellent bending fatigue resistance. It can be suitably used for doors, trunks, bonnets, and the like.
Furthermore, the aluminum alloy conductor produced by the production method of the present invention is excellent in that the bending fatigue characteristics do not deteriorate even when exposed to high temperatures (for example, 120 ° C.), and is excellent in corrosion resistance.
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
まず、本発明の第1の実施態様について説明する。
本発明の好ましい実施態様で製造されるアルミニウム合金導体は、Feを0.01〜0.4mass%と、Cuを0.3〜0.5mass%と、Mgを0.04〜0.3mass%と、Siを0.02〜0.3mass%とを含有し、さらにTiとVを合わせて0.001〜0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金導体であって、その伸線方向の垂直断面における結晶粒径が5〜25μmのアルミニウム合金導体である。
First, the first embodiment of the present invention will be described.
The aluminum alloy conductor manufactured in a preferred embodiment of the present invention has Fe of 0.01 to 0.4 mass%, Cu of 0.3 to 0.5 mass%, and Mg of 0.04 to 0.3 mass%. , An aluminum alloy conductor containing 0.02 to 0.3 mass% of Si and further containing 0.001 to 0.01 mass% of Ti and V in combination, the balance being Al and inevitable impurities, It is an aluminum alloy conductor having a crystal grain size of 5 to 25 μm in a vertical cross section in the direction.
本実施態様において、Feの含有量を0.01〜0.4mass%とするのは、主にAl−Fe系の金属間化合物による様々な効果を利用するためである。Feはアルミニウム中には655℃において0.05mass%しか固溶せず、室温では更に少ない。残りはAl−Fe系の第2相粒子として晶出または析出する。この晶出物または析出物は結晶粒の微細化材として働くと共に、強度、及び耐屈曲疲労特性を向上させる。一方、Feの固溶によっても強度が上昇する。Feの含有量が少なすぎるとこれらの効果が不十分であり、多すぎると晶出物の粗大化により伸線加工及び撚線加工において断線の原因となる。目的の耐屈曲疲労特性も得られない。Feの含有量は好ましくは0.10〜0.3mass%、さらに好ましくは0.15〜0.25mass%である。 In the present embodiment, the reason why the Fe content is set to 0.01 to 0.4 mass% is mainly to utilize various effects of the Al—Fe-based intermetallic compound. Fe dissolves only 0.05 mass% in aluminum at 655 ° C., and is even less at room temperature. The remainder crystallizes or precipitates as Al-Fe-based second phase particles. This crystallized product or precipitate acts as a crystal grain refining material, and improves strength and bending fatigue resistance. On the other hand, the strength also increases due to the solid solution of Fe. When the Fe content is too small, these effects are insufficient, and when the Fe content is too large, the crystallized material becomes coarse, which causes disconnection in wire drawing and twisting. The desired bending fatigue resistance cannot be obtained. The Fe content is preferably 0.10 to 0.3 mass%, more preferably 0.15 to 0.25 mass%.
本実施態様において、Cuの含有量を0.3〜0.5mass%とするのは、Cuはアルミニウム母材中に固溶して強化し、耐屈曲疲労特性を向上させるためであり、さらに、Al、Fe、Mg、Siと第2相粒子を形成し、耐屈曲疲労特性を向上させるためである。Cuの含有量が少なすぎると効果が不十分であり、多すぎると耐食性及び導電率の低下を招く。さらに加工性が悪くなる。Cuの含有量は好ましくは0.35〜0.5mass%、さらに好ましくは0.4〜0.5mass%である。 In the present embodiment, the Cu content is set to 0.3 to 0.5 mass% because Cu is solid-solved and strengthened in the aluminum base material to improve the bending fatigue resistance. This is because Al, Fe, Mg, Si and second phase particles are formed to improve the bending fatigue resistance. If the Cu content is too low, the effect is insufficient, and if it is too high, the corrosion resistance and the conductivity are lowered. Furthermore, workability is deteriorated. The Cu content is preferably 0.35 to 0.5 mass%, more preferably 0.4 to 0.5 mass%.
本実施態様において、Mgの含有量を0.04〜0.3mass%とするのは、Mgはアルミニウム母材中に固溶して強化すると共に、その一部はAl、Fe、Cu、Siと第2相粒子を形成して強度、耐屈曲疲労特性、及び耐熱性を向上させることができるためである。Mgの含有量が少なすぎると効果が不十分であり、多すぎると導電率を低下させる。また、Mgの含有量が多すぎると耐力が過剰となり、成形性、撚り性を劣化させ、加工性が悪くなることがある。Mgの含有量は好ましくは0.08〜0.3mass%、さらに好ましくは0.1〜0.28mass%である。 In this embodiment, the Mg content is set to 0.04 to 0.3 mass% because Mg is solid-solution-strengthened in the aluminum base material, and a part thereof is Al, Fe, Cu, Si. This is because the second phase particles can be formed to improve strength, bending fatigue resistance, and heat resistance. If the Mg content is too low, the effect is insufficient, and if it is too high, the conductivity is lowered. Moreover, when there is too much content of Mg, yield strength will become excess, a moldability and twist property may be degraded, and workability may worsen. The Mg content is preferably 0.08 to 0.3 mass%, more preferably 0.1 to 0.28 mass%.
本実施態様において、Siの含有量を0.02〜0.3mass%とするのは、Siはアルミニウム母材中に固溶して強化すると共に、その一部はAl、Fe、Cu、Mgと第2相粒子を形成して強度、耐屈曲疲労特性、及び耐熱性を向上させることができるためである。Siの含有量が少なすぎると効果が不十分であり、多すぎると導電率が低下し、成形性、撚り性を劣化させ、加工性が悪くなる。また、線材製造中の熱処理過程におけるSi単体の析出が断線の原因になる。Siの含有量は好ましくは0.04〜0.25mass%、さらに好ましくは0.04〜0.20mass%である。 In the present embodiment, the Si content is 0.02 to 0.3 mass% because Si is solid-solution-strengthened in the aluminum base material and a part thereof is Al, Fe, Cu, Mg. This is because the second phase particles can be formed to improve strength, bending fatigue resistance, and heat resistance. If the Si content is too small, the effect is insufficient, and if it is too large, the electrical conductivity decreases, the moldability and twistability deteriorate, and the workability deteriorates. In addition, the precipitation of Si alone during the heat treatment process during the production of the wire causes disconnection. The Si content is preferably 0.04 to 0.25 mass%, more preferably 0.04 to 0.20 mass%.
本実施態様において、TiとVは共に溶解鋳造時の鋳塊の微細化材として作用する。鋳塊の組織が粗大であると、線材加工工程で割れが発生して工業的に望ましくない。TiとVの含有量は、少なすぎると効果が不十分であり、多すぎると導電率を大きく低下させ、その効果も飽和する。TiとVの合計の含有量は好ましくは0.002〜0.008mass%、さらに好ましくは0.003〜0.006mass%である。 In this embodiment, both Ti and V act as ingot refining materials during melt casting. If the structure of the ingot is coarse, cracks occur in the wire processing step, which is not industrially desirable. When the contents of Ti and V are too small, the effect is insufficient, and when the contents are too large, the conductivity is greatly reduced, and the effect is saturated. The total content of Ti and V is preferably 0.002 to 0.008 mass%, more preferably 0.003 to 0.006 mass%.
本発明のこの実施態様で製造されるアルミニウム合金導体によれば、上記の成分以外に結晶粒径を厳密に規定することにより、所望の優れた耐屈曲疲労特性、強度、及び導電率を具備したアルミニウム合金導体を得ることができる。 According to the aluminum alloy conductor produced in this embodiment of the present invention, the desired excellent bending fatigue resistance, strength, and conductivity were achieved by strictly defining the crystal grain size in addition to the above components. An aluminum alloy conductor can be obtained.
(結晶粒径)
本発明のこの実施態様で製造されるアルミニウム合金導体では、アルミニウム合金導体の伸線方向の垂直断面における結晶粒径を5〜25μmとする。この理由は、5μm未満では部分的な未再結晶組織が残存して伸びが著しく低下するためであり、25μmを上限とするのは、これを超えた粗大な組織を形成すると変形挙動が不均一となり、同様に伸びが低下、さらに強度が著しく低下するためである。結晶粒径は、より好ましくは5〜20μmである。
(Crystal grain size)
In the aluminum alloy conductor is produced in this embodiment of the present invention, the crystal grain size of the drawing direction of the aluminum alloy conductors in vertical section and 5 to 25 [mu] m. The reason for this is that if the thickness is less than 5 μm, a partially unrecrystallized structure remains and the elongation is remarkably reduced. The upper limit is 25 μm, and if a coarse structure exceeding this is formed, the deformation behavior is not uniform. Similarly, the elongation is lowered and the strength is remarkably lowered. The crystal grain size is more preferably 5 to 20 μm.
(引張強度)
本発明のこの実施態様で製造されるアルミニウム合金導体の引張強度は120MPa以上である。これは、引張強度が120MPa未満では取り扱いを含めて強度不足であり、工業用導体として使用することが難しいためである。引張強度は好ましくは120〜160MPaであり、さらに好ましくは120〜150MPaである。
(Tensile strength)
The tensile strength of the aluminum alloy conductor produced in this embodiment of the present invention is 120 MPa or more. This is because if the tensile strength is less than 120 MPa, the strength is insufficient including handling, and it is difficult to use as an industrial conductor. The tensile strength is preferably 120 to 160 MPa, more preferably 120 to 150 MPa.
(導電率)
本発明のこの実施態様で製造されるアルミニウム合金導体の導電率は57%IACS以上である。これは、導電率が57%IACS未満では、動力線に用いる場合では数十A(アンペア)の高電流が流れるため、電流ロスが激しいためである。導電率は好ましくは57〜62%IACS導電率であり、さらに好ましくは58〜62%IACSである。
(conductivity)
The conductivity of the aluminum alloy conductor produced in this embodiment of the present invention is greater than 57% IACS. This is because when the electrical conductivity is less than 57% IACS, a high current of several tens of A (amperes) flows when used for a power line, so that current loss is severe. The conductivity is preferably 57-62% IACS conductivity, more preferably 58-62% IACS.
(耐屈曲疲労特性)
本発明のこの実施態様で製造されるアルミニウム合金導体は、優れた耐屈曲疲労特性を有する。耐屈曲疲労特性の基準として、本実施形態ではひずみ振幅±0.17%で試験を行う。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合疲労寿命は短くなり、ひずみ振幅が小さい場合疲労寿命は長くなる。ひずみ振幅は図1記載の線材(アルミニウム合金導体)1の線径と曲げ冶具2、3の曲率半径により決定することができるため、線材1の線径と曲げ冶具2、3の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。
次に、1日あたりの開閉回数を10回とし20年間の使用を想定した場合、開閉回数は73000回となる(1年365日として計算)。実際に使用される電線は単線ではなく、撚り線構造となり、さらに被覆処理がされているために電線導体への負担は数分の一となる。単線での評価値として十分な耐屈曲疲労特性が確保できる90000回以上の繰返破断回数が望ましいとし、表1及び表2に記載した。より好ましくは100000回以上である。
(Bending fatigue resistance)
The aluminum alloy conductor produced in this embodiment of the present invention has excellent bending fatigue resistance. In this embodiment, the test is performed with a strain amplitude of ± 0.17% as a reference for the bending fatigue resistance. Bending fatigue resistance varies with strain amplitude. When the strain amplitude is large, the fatigue life is shortened, and when the strain amplitude is small, the fatigue life is lengthened. Since the strain amplitude can be determined by the wire diameter of the wire rod (aluminum alloy conductor) 1 shown in FIG. 1 and the curvature radii of the bending
Next, assuming that the number of times of opening and closing per day is 10 and the use for 20 years is assumed, the number of times of opening and closing is 73,000 (calculated as 365 days a year). The actually used electric wire is not a single wire but has a stranded wire structure, and since the coating process is performed, the burden on the electric wire conductor becomes a fraction. Table 1 and Table 2 show that the number of repeated fractures of 90000 times or more that can ensure sufficient bending fatigue resistance as an evaluation value for a single wire is desirable. More preferably, it is 100,000 times or more.
次に、本発明の第2の実施態様について説明する。
本発明の別の好ましい実施態様で製造されるアルミニウム合金導体は、Feを0.01〜0.4mass%と、Cuを0.3〜0.5mass%と、Mgを0.04〜0.3mass%と、Siを0.02〜0.3mass%と、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素を総量で0.01〜0.5mass%とを含有し、さらにTiとVを合わせて0.001〜0.01mass%含み、残部Alと不可避不純物からなるアルミニウム合金導体であって、その伸線方向の垂直断面における結晶粒径が5〜25μmのアルミニウム合金導体である。
Next, a second embodiment of the present invention will be described.
The aluminum alloy conductor produced in another preferred embodiment of the present invention comprises Fe of 0.01 to 0.4 mass%, Cu of 0.3 to 0.5 mass%, and Mg of 0.04 to 0.3 mass. %, Si in an amount of 0.02 to 0.3 mass%, and at least one element selected from the group consisting of Sn, Cd, and In, in a total amount of 0.01 to 0.5 mass%, further containing Ti and V Is an aluminum alloy conductor containing 0.001 to 0.01 mass% of the balance, the balance being Al and unavoidable impurities, and an aluminum alloy conductor having a crystal grain size of 5 to 25 μm in a vertical section in the wire drawing direction.
Fe、Cu、Mg、Si、Ti、Vの作用効果、添加量の範囲の制限理由、好ましい添加量の範囲、は、先記した通りである。 The effects of Fe, Cu, Mg, Si, Ti, and V, the reasons for limiting the range of the addition amount, and the preferable range of the addition amount are as described above.
耐屈曲疲労特性を、先記の合金よりもさらに向上させるためには、Al、Fe、Cu、Mg、Siの二種以上を成分とする第二相粒子の生成を抑制することが好ましい。
ところで、Sn、CdおよびInは、アルミニウム合金中の空孔を捕獲する作用を有しており、すなわち空孔を伴って進行する拡散作用を抑制する、あるいは遅延する働きがあり、それによりAl、Fe、Cu、Mg、Siの二種以上を成分とする第二相粒子の生成を抑制する。その結果、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の添加により、耐屈曲疲労特性をより向上させることができる。
Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量を、総量で0.01〜0.5mass%とするのは、0.01mass%未満では、第二相粒子生成の抑止効果が無く、0.5mass%を超えると生成を抑止する効果がなくなり逆に第二相粒子の生成を加速すると共に、伸びが低下し、また、この総量が多すぎると、伸線加工時に割れを生じやすくなり工業的な製造が成り立たないためである。
In order to further improve the bending fatigue resistance as compared with the alloys described above, it is preferable to suppress the formation of second phase particles containing two or more of Al, Fe, Cu, Mg, and Si as components.
By the way, Sn, Cd, and In have a function of capturing vacancies in the aluminum alloy, that is, a function of suppressing or delaying a diffusion action that proceeds with the vacancies. Generation of second phase particles containing two or more of Fe, Cu, Mg, and Si as components is suppressed. As a result, the bending fatigue resistance can be further improved by adding at least one element selected from the group consisting of Sn, Cd and In.
The content of at least one element selected from the group consisting of Sn, Cd, and In is 0.01 to 0.5 mass% in total. If it is less than 0.01 mass%, the effect of inhibiting the generation of second phase particles If the amount exceeds 0.5 mass%, the effect of inhibiting the formation is lost and conversely the generation of the second phase particles is accelerated, and the elongation decreases. If the total amount is too large, cracks occur during wire drawing. This is because it tends to occur and industrial production cannot be realized.
しかし、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の添加による、第二相粒子の生成を抑制する効果は、100℃以下の低温では顕著であるが、100℃を超える高温で、温度が高いほど、抑制の効果が現れなくなり、析出粒子が生成されることがある。そこで、さらにZrを添加することにより、析出抑制効果が消失してしまう現象をキャンセルすることができる。Zrは、Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素と共に添加することにより、100℃を超える高温においても、Al、Fe、Cu、Mg、Siの二種以上を成分とする第二相粒子の生成を抑制する効果を有している。Zrの添加量を0.001〜0.1mass%とするのは、0.001mass%未満では、その効果が不十分であり、0.1mass%を超えると、Al−Zr系の第二相粒子の生成量が多大となって、耐屈曲疲労特性を低下させるためである。 However, the effect of suppressing the formation of second phase particles by the addition of at least one element selected from the group consisting of Sn, Cd and In is remarkable at a low temperature of 100 ° C. or lower, but at a high temperature exceeding 100 ° C. The higher the temperature is, the less effective the suppression is and the generation of precipitated particles may occur. Therefore, the phenomenon that the precipitation suppressing effect disappears can be canceled by further adding Zr. Zr is added together with at least one element selected from the group consisting of Sn, Cd, and In, so that even at a high temperature exceeding 100 ° C., Zr contains two or more of Al, Fe, Cu, Mg, and Si as components. It has the effect of suppressing the formation of two-phase particles. If the amount of Zr added is 0.001 to 0.1 mass%, the effect is insufficient if it is less than 0.001 mass%, and if it exceeds 0.1 mass%, Al-Zr-based second phase particles. This is because the generation amount of is increased to reduce the bending fatigue resistance.
Sn、CdおよびInからなる群から選ばれる少なくとも1つの元素の含有量の総量(W1)と、Zrの含有量(W2)の質量比(W1/W2)において、より好ましい範囲は、0.6〜2.6である。この範囲において、100℃を超える高温においても、Al、Fe、Cu、Mg、Siの二種以上を成分とする第二相粒子の生成をより効果的に抑制する効果を有する。 In the mass ratio (W1 / W2) of the total content (W1) of at least one element selected from the group consisting of Sn, Cd, and In and the content (W2) of Zr (W1 / W2), a more preferable range is 0.6. ~ 2.6. Within this range, even at a high temperature exceeding 100 ° C., it has the effect of more effectively suppressing the generation of second phase particles containing two or more of Al, Fe, Cu, Mg, and Si as components.
本発明のこの実施態様で製造されるアルミニウム合金導体によれば、上記の成分以外に結晶粒径を厳密に規定することにより、所望の優れた耐屈曲疲労特性、強度、及び導電率を具備したアルミニウム合金導体を得ることができる。 According to the aluminum alloy conductor produced in this embodiment of the present invention, the desired excellent bending fatigue resistance, strength, and conductivity were achieved by strictly defining the crystal grain size in addition to the above components. An aluminum alloy conductor can be obtained.
(結晶粒径)
本発明のこの実施態様で製造されるアルミニウム合金導体では、アルミニウム合金導体の伸線方向の垂直断面における結晶粒径を5〜25μmとする。この理由は、5μm未満では部分的な未再結晶組織が残存して伸びが著しく低下するためであり、25μmを上限とするのは、これを超えた粗大な組織を形成すると変形挙動が不均一となり、同様に伸びが低下、さらに強度が著しく低下するためである。結晶粒径は、より好ましくは5〜20μmである。
(Crystal grain size)
In the aluminum alloy conductor is produced in this embodiment of the present invention, the crystal grain size of the drawing direction of the aluminum alloy conductors in vertical section and 5 to 25 [mu] m. The reason for this is that if the thickness is less than 5 μm, a partially unrecrystallized structure remains and the elongation is remarkably reduced. The upper limit is 25 μm, and if a coarse structure exceeding this is formed, the deformation behavior is not uniform. Similarly, the elongation is lowered and the strength is remarkably lowered. The crystal grain size is more preferably 5 to 20 μm.
(引張強度)
本発明のこの実施態様で製造されるアルミニウム合金導体の引張強度は120MPa以上である。これは、引張強度が120MPa未満では取り扱いを含めて強度不足であり、工業用導体として使用することが難しいためである。引張強度は好ましくは120〜160MPaであり、さらに好ましくは120〜150MPaである。
(Tensile strength)
The tensile strength of the aluminum alloy conductor produced in this embodiment of the present invention is 120 MPa or more. This is because if the tensile strength is less than 120 MPa, the strength is insufficient including handling, and it is difficult to use as an industrial conductor. The tensile strength is preferably 120 to 160 MPa, more preferably 120 to 150 MPa.
(導電率)
本発明のこの実施態様で製造されるアルミニウム合金導体の導電率は52%IACS以上である。本来、導電率が57%IACS未満では、動力線に用いる場合では数十A(アンペア)の高電流が流れるため、電流ロスが激しくなる懸念があるため、好ましくは57〜62%IACS導電率である。しかし、例えば移動体内のバッテリーケーブルやワイヤハーネス等の通信線への適用に際しては、この57%IACS以上の範囲に限るものではなく、前記52%IACS以上であればよい。
(conductivity)
The conductivity of the aluminum alloy conductor produced in this embodiment of the invention is 52% IACS or higher. Originally, when the electrical conductivity is less than 57% IACS, a high current of several tens of A (amperes) flows when used for a power line, and there is a concern that current loss becomes severe. is there. However, for example, when applied to a communication line such as a battery cable or a wire harness in a moving body, the range is not limited to 57% IACS or more, and may be 52% IACS or more.
(耐屈曲疲労特性)
本発明のこの実施態様で製造されるアルミニウム合金導体は、優れた耐屈曲疲労特性を有する。耐屈曲疲労特性の基準として、本実施形態ではひずみ振幅±0.17%で試験を行う。耐屈曲疲労特性はひずみ振幅によって変化する。ひずみ振幅が大きい場合疲労寿命は短くなり、ひずみ振幅が小さい場合疲労寿命は長くなる。ひずみ振幅は図1記載の線材(アルミニウム合金導体)1の線径と曲げ冶具2、3の曲率半径により決定することができるため、線材1の線径と曲げ冶具2、3の曲率半径は任意に設定して屈曲疲労試験を実施することが可能である。
次に、1日あたりの開閉回数を10回とし20年間の使用を想定した場合、開閉回数は73000回となる(1年365日として計算)。実際に使用される電線は単線ではなく、撚り線構造となり、さらに被覆処理がされているために電線導体への負担は数分の一となる。単線での評価値として十分な耐屈曲疲労特性が確保できる80000回以上の繰返破断回数が望ましいとし、表3に記載した。より好ましくは100000回以上であり、さらに好ましくは150000回以上である。また、自動車用途では、過酷な使用環境下、電線は高温に曝されることがある。一般に、10年の使用を想定した場合、120℃の高温にて120時間曝す加速試験が適用される。よって、120℃、120時間の放置後にも、80000回以上の繰返し破断回数であることが好ましく、90000回以上の繰返し破断回数であることがより好ましい。
(Bending fatigue resistance)
The aluminum alloy conductor produced in this embodiment of the present invention has excellent bending fatigue resistance. In this embodiment, the test is performed with a strain amplitude of ± 0.17% as a reference for the bending fatigue resistance. Bending fatigue resistance varies with strain amplitude. When the strain amplitude is large, the fatigue life is shortened, and when the strain amplitude is small, the fatigue life is lengthened. Since the strain amplitude can be determined by the wire diameter of the wire rod (aluminum alloy conductor) 1 shown in FIG. 1 and the curvature radii of the bending
Next, assuming that the number of times of opening and closing per day is 10 and the use for 20 years is assumed, the number of times of opening and closing is 73,000 (calculated as 365 days a year). The actually used electric wire is not a single wire but has a stranded wire structure, and since the coating process is performed, the burden on the electric wire conductor becomes a fraction. Table 3 shows that the number of repeated fractures of 80000 times or more that can ensure sufficient bending fatigue resistance as an evaluation value for a single wire is desirable. More preferably, it is 100,000 times or more, More preferably, it is 150,000 times or more. In automobile applications, electric wires may be exposed to high temperatures under harsh usage environments. In general, when 10 years of use is assumed, an accelerated test is applied in which exposure is performed at a high temperature of 120 ° C. for 120 hours. Therefore, even after leaving at 120 ° C. for 120 hours, the number of repeated fractures is preferably 80000 times or more, and more preferably 90000 times or more.
(製造方法)
本発明の第1および第2の実施態様のアルミニウム合金導体の製造方法について説明する。
本発明の第1および第2の実施態様の製造方法で製造されるアルミニウム合金導体は、[1]溶解、[2]鋳造、[3]熱間または冷間加工(溝ロール加工など)、[4]伸線加工、[5]熱処理(中間焼鈍)、[6]伸線加工、[7]熱処理(仕上げ焼鈍)の各工程を経て、所定の製造条件で製造することができる。
(Production method)
The manufacturing method of the aluminum alloy conductor of the 1st and 2nd embodiment of this invention is demonstrated.
The aluminum alloy conductor manufactured by the manufacturing method of the first and second embodiments of the present invention includes [1] melting, [2] casting, [3] hot or cold processing (such as groove roll processing), [ 4) Wire drawing, [5] Heat treatment (intermediate annealing), [6] Wire drawing, [7] Heat treatment (finish annealing) can be produced under predetermined production conditions .
本発明のアルミニウム合金組成を得るには、まず、Fe、Cu、Mg、Si、Ti、V及びAlの各合金成分、またはこれらにさらにSn、CdおよびInからなる群から選ばれる少なくとも1つの元素を併せた各合金成分、またはこれらいずれかの合金成分とさらにZrを併せた各合金成分を、所望の濃度となるような分量で溶製する。 To obtain the aluminum alloy composition of the present invention, first, at least one element selected from the group consisting of Fe, Cu, Mg, Si, Ti, V, and Al, or further, Sn, Cd, and In. Each alloy component combined with each other, or each alloy component combined with any one of these alloy components and Zr is melted in an amount so as to obtain a desired concentration.
次いで、鋳造輪とベルトを組み合わせたプロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行ない、約10mmφの粗棒材とする。鋳造から約φ10mmの線材の加工まで連続的に行なうことができ、更に再熱工程などの工程を省略することが可能であるため、生産性を大幅に向上させることができる。このときの鋳造冷却速度は1〜20℃/秒である。 Next, rolling is performed while continuously casting the molten metal in a water-cooled mold using a Properti-type continuous casting and rolling machine in which a casting wheel and a belt are combined to obtain a rough bar having a diameter of about 10 mm. From casting to processing of a wire of about φ10 mm can be carried out continuously, and further, steps such as a reheating step can be omitted, so that productivity can be greatly improved. The casting cooling rate at this time is 1 to 20 ° C./second.
次いで、表面の皮むきを実施して、9〜9.5mmφとし、これを伸線加工して荒引き線材とする。ここで、伸線加工前の線材断面積をA0、伸線加工後の線材断面積をA1とすると、η=ln(A0/A1)で表される加工度は、1以上6以下である。加工度が小さすぎると、次工程の熱処理時、再結晶粒が粗大化し強度及び伸びが著しく低下し、断線の原因にもなる。大きすぎると、伸線加工が困難となり、伸線加工中に断線するなど品質の面で問題がある。表面の皮むきは、行なうことによって表面の清浄化がなされるが、行なわなくてもよい。 Next, the surface is peeled to 9 to 9.5 mmφ, which is drawn to obtain a rough drawn wire. Here, when the wire cross-sectional area before wire drawing is A 0 , and the wire cross-sectional area after wire drawing is A 1 , the degree of work represented by η = ln (A 0 / A 1 ) is 1 or more and 6 It is as follows. If the degree of work is too small, the recrystallized grains become coarse during the heat treatment in the next step, and the strength and elongation are remarkably reduced, causing disconnection. If it is too large, the wire drawing process becomes difficult, and there is a problem in terms of quality such as disconnection during the wire drawing process. Although the surface is cleaned by carrying out the peeling of the surface, it may not be carried out.
冷間伸線した荒引き線材にバッチ式焼鈍炉により中間焼鈍を施す。中間焼鈍の条件は、温度は300〜450℃である。300℃未満であると、未再結晶粒が残存して、後工程の伸線加工中に断線する原因となる。また、450℃を超えると粗大な再結晶粒が形成され、引張強度、伸びが著しく低下し、やはりこの場合も伸線加工中に断線するなど品質の面で問題がある。時間は10分〜6時間である。10分未満であると、未再結晶粒が残存して、後工程の伸線加工中に断線する原因となる。また、6時間を超えると熱処理温度によっては粗大な再結晶粒が形成され、引張強度、伸びが著しく低下し、伸線加工中に断線する恐れがある。生産性の点からも6時間を越えると良くない。中間焼鈍の条件は、好ましくは300〜450℃、30分〜4時間である。 Cold-drawn rough drawn wire is subjected to intermediate annealing using a batch annealing furnace. The temperature of the intermediate annealing is 300 to 450 ° C. If it is lower than 300 ° C., unrecrystallized grains remain and cause breakage during the subsequent wire drawing. Moreover, when it exceeds 450 degreeC, a coarse recrystallized grain will be formed, tensile strength and elongation will fall remarkably, and also in this case, there is a problem in terms of quality, such as disconnection during wire drawing. The time is 10 minutes to 6 hours. If it is less than 10 minutes, unrecrystallized grains remain and cause wire breakage during subsequent wire drawing. On the other hand, if it exceeds 6 hours, coarse recrystallized grains are formed depending on the heat treatment temperature, the tensile strength and the elongation are remarkably lowered, and there is a risk of disconnection during the wire drawing. From the viewpoint of productivity, it is not good if it exceeds 6 hours. The conditions for the intermediate annealing are preferably 300 to 450 ° C. and 30 minutes to 4 hours.
さらに伸線加工を施して線材とする。この際も加工度は前述の理由により1以上6以下である。 Further, wire drawing is performed to obtain a wire. At this time, the degree of processing is 1 or more and 6 or less for the above-mentioned reason.
冷間伸線した所定線径の線材にバッチ式焼鈍炉により仕上げ焼鈍を行ない、アルミニウム合金導体を得る。仕上げ焼鈍の条件は、温度は300〜450℃である。300℃未満であると、未再結晶粒が残存して、柔軟性が十分に確保できないためである。また、450℃を超えると粗大な再結晶粒が形成され、引張強度、伸びが著しく低下するためである。時間は10分〜6時間である。10分未満であると、未再結晶粒が残存して、柔軟性が十分に確保できないためである。また、6時間を超えると熱処理温度によっては粗大な再結晶粒が形成され、引張強度、伸びが著しく低下するためである。生産性の点からも6時間を越えると良くない。仕上げ焼鈍の条件は、好ましくは300〜450℃、30分〜4時間である。
なお、仕上げ焼鈍はバッチ式焼鈍の他に、例えば、導体に電気を流してジュール熱で焼鈍する通電焼鈍や、高温に保持した焼鈍炉中を線材が連続的に通過して焼鈍させる走間焼鈍や、磁場中を線材が連続的に通過して焼鈍させる誘導加熱でもよい。この場合、一般的に高温短時間の熱処理となるため、仕上げ焼鈍の条件はバッチ式焼鈍とは異なる。
A cold-drawn wire having a predetermined wire diameter is subjected to finish annealing in a batch annealing furnace to obtain an aluminum alloy conductor. The temperature of the finish annealing is 300 to 450 ° C. This is because when the temperature is lower than 300 ° C., non-recrystallized grains remain and sufficient flexibility cannot be secured. Moreover, when it exceeds 450 degreeC, a coarse recrystallized grain will be formed and tensile strength and elongation will fall remarkably. The time is 10 minutes to 6 hours. If it is less than 10 minutes, unrecrystallized grains remain and sufficient flexibility cannot be secured. Further, if it exceeds 6 hours, coarse recrystallized grains are formed depending on the heat treatment temperature, and the tensile strength and elongation are remarkably lowered. From the viewpoint of productivity, it is not good if it exceeds 6 hours. The conditions for finish annealing are preferably 300 to 450 ° C. and 30 minutes to 4 hours.
In addition to batch-type annealing, finish annealing includes, for example, electrical annealing in which electricity is applied to the conductor and annealing with Joule heat, and running annealing in which the wire continuously passes through an annealing furnace maintained at a high temperature. Alternatively, induction heating in which the wire is continuously passed through the magnetic field and annealed may be used. In this case, since the heat treatment is generally performed at a high temperature for a short time, the conditions for finish annealing are different from those for batch annealing.
以上詳述したように適正に熱処理を施して作製した本発明のこれらの実施態様で製造されるアルミニウム合金導体は、上記所定の結晶粒径を有することに加えて、再結晶組織を有する。再結晶組織とは、塑性加工により導入される転位などの格子欠陥が少ない結晶粒で構成された組織状態のことである。再結晶組織を有することにより、引張破断伸び、導電率が回復し、十分な柔軟性を得ることができる。 As described above in detail, the aluminum alloy conductor produced in these embodiments of the present invention, which has been appropriately heat-treated, has a recrystallized structure in addition to having the predetermined crystal grain size. The recrystallized structure is a structure state composed of crystal grains with few lattice defects such as dislocations introduced by plastic working. By having a recrystallized structure, tensile elongation at break and electrical conductivity are recovered, and sufficient flexibility can be obtained.
本発明を以下の実施例に基づきさらに詳細に説明する。なお本発明は、以下に示す実施例に限定されるものではない。 The invention is explained in more detail on the basis of the following examples. In addition, this invention is not limited to the Example shown below.
実施例No.1〜24、比較例No.1〜12
(本発明の第1の実施態様、つまり前記(1)項記載の発明の実施例および比較例)
後記の表1(実施例)及び表2(比較例)に示すように、Fe、Cu、Mg、Si、Ti、V及びAlを、所定量比(質量%)で用いて合金とした。ここで、Alについては、JIS−H4040 合金番号1070であって、不可避不純物の含有量が表1及び表2の値を超えないものとした。比較例No.1(純Al)、比較例No.2、比較例No.8については、Alとして高純度アルミニウム(フォーナイン(4N))を用いた。
この合金を、プロペルチ式の連続鋳造圧延機を用いて、溶湯を水冷した鋳型で連続的に鋳造しながら圧延を行ない、約10mmφの粗棒材とした。このときの鋳造冷却速度は1〜20℃/秒であった。
次いで、表面の皮むきを実施して、9〜9.5mmφとし、これを伸線加工して、2.6mmφの荒引き線材とした。次に表1及び表2に示すように、この冷間伸線した加工材に温度300〜450℃で0.5〜4時間の中間焼鈍を施し、更に、伸線加工を行って線径0.31mmφの線材とした。
最後に仕上げ焼鈍として、温度300〜450℃(比較例では250℃、500℃を含む)で0.5〜4時間のバッチ式熱処理を仕上げ焼鈍として施して、アルミニウム合金導体を得た。
Example No. 1-24, Comparative Example No. 1-12
(First embodiment of the present invention, that is, examples and comparative examples of the invention described in the above item (1) )
As shown in Table 1 (Examples) and Table 2 (Comparative Examples) described later, Fe, Cu, Mg, Si, Ti, V, and Al were used at predetermined ratios (mass%) to form alloys. Here, about Al, it was JIS-H4040 alloy number 1070 and content of an inevitable impurity shall not exceed the value of Table 1 and Table 2. Comparative Example No. 1 (pure Al), Comparative Example No. 2, Comparative Example No. For No. 8, high-purity aluminum (Four Nine (4N)) was used as Al.
This alloy was rolled using a Properti type continuous casting and rolling machine while continuously casting it in a mold in which the molten metal was cooled with water to obtain a rough bar having a diameter of about 10 mm. The casting cooling rate at this time was 1 to 20 ° C./second.
Next, the surface was peeled to 9 to 9.5 mmφ, which was drawn to obtain a 2.6 mmφ rough wire. Next, as shown in Table 1 and Table 2, this cold-drawn workpiece is subjected to intermediate annealing at a temperature of 300 to 450 ° C. for 0.5 to 4 hours, and further drawn to obtain a wire diameter of 0. A wire rod of 31 mmφ was used.
Finally, as final annealing, batch-type heat treatment was performed as finishing annealing at a temperature of 300 to 450 ° C. (including 250 ° C. and 500 ° C. in the comparative example) for 0.5 to 4 hours to obtain an aluminum alloy conductor.
比較例No.13
後記の表2に示すように、Fe、Cu、Mg、及びAlを、所定量比(質量%)で用いて常法により溶解し、25.4mm角の鋳型に鋳込んで鋳塊を得た。次に400℃に1時間鋳塊を保持し、溝ロールで熱間圧延を行い線径9.5mmの荒引線に加工した。
次いで、この荒引き線を線径0.9mmまで伸線加工した後、350℃で2時間保持の熱処理を加え焼き入れ後、更に伸線加工を続けて線径0.32mmのアルミニウム合金素線を作製した。
最後に、作製した線径0.32mmのアルミニウム合金素線を350℃で2時間保持の熱処理を加え徐冷した。
Comparative Example No. 13
As shown in Table 2 below, Fe, Cu, Mg, and Al were dissolved in a conventional manner using a predetermined amount ratio (mass%), and cast into a 25.4 mm square mold to obtain an ingot. . Next, the ingot was held at 400 ° C. for 1 hour, and hot rolled with a groove roll to process into a rough drawn wire having a wire diameter of 9.5 mm.
Next, after drawing the rough drawn wire to a wire diameter of 0.9 mm, heat-treating at 350 ° C. for 2 hours and quenching, and then continuing the wire drawing to an aluminum alloy wire having a wire diameter of 0.32 mm Was made.
Finally, the manufactured aluminum alloy strand having a wire diameter of 0.32 mm was subjected to a heat treatment held at 350 ° C. for 2 hours and gradually cooled.
比較例No.14
後記の表2に示すように、Fe、Mg、Si及びAlを、所定量比(質量%)で用いて常法により溶解し、連続鋳造圧延法により線径9.5mmの荒引き線に加工した。
次いで、この荒引き線を線径2.6mmまで伸線加工した後、熱処理上がりの引張強度が150MPa以下となるような350℃で2時間保持の熱処理を加え、更に伸線加工を続けて線径0.32mmのアルミ合金素線を作製した。
Comparative Example No. 14
As shown in Table 2 below, Fe, Mg, Si and Al are melted by a conventional method using a predetermined amount ratio (mass%) and processed into a rough drawn wire having a wire diameter of 9.5 mm by a continuous casting and rolling method. did.
Next, after drawing the rough drawn wire to a wire diameter of 2.6 mm, a heat treatment was held at 350 ° C. for 2 hours so that the tensile strength after heat treatment was 150 MPa or less, and the wire drawing was continued. An aluminum alloy strand having a diameter of 0.32 mm was produced.
比較例No.15
後記の表2に示すように、Fe、Mg、Si及びAlを、所定量比(質量%)で用いて溶製した合金溶湯を連続鋳造機により鋳造して、キャストバーを作製した。次いで、熱間圧延機によりφ9.5mmのワイヤロッドを作製し、得られたワイヤロッドに冷間伸線加工を施して、φ0.26mmの電線素線を作製した。次いで、電線素線7本を撚り合わせて撚線とした。その後、溶体化処理、冷却、時効熱処理を行ない、電線導体を得た。このときの溶体化処理温度は550℃、時効熱処理の焼き戻し温度は170℃、焼き戻し時間は12時間である。なお、表2に示す各特性は、撚線をばらして1本の素線とし、評価を行なった。
Comparative Example No. 15
As shown in Table 2 below, a cast bar was manufactured by casting an alloy melt prepared by melting Fe, Mg, Si, and Al at a predetermined ratio (mass%) using a continuous casting machine. Next, a φ9.5 mm wire rod was produced by a hot rolling mill, and the obtained wire rod was subjected to cold wire drawing to produce a φ0.26 mm wire element. Subsequently, seven wire strands were twisted to form a stranded wire. Thereafter, solution treatment, cooling, and aging heat treatment were performed to obtain a wire conductor. The solution treatment temperature at this time is 550 ° C., the tempering temperature in aging heat treatment is 170 ° C., and the tempering time is 12 hours. Each characteristic shown in Table 2 was evaluated by separating the stranded wire into one strand.
作製した各々の実施例及び比較例のアルミニウム合金導体について下記の方法により各特性を測定した。その結果を後記の表1及び表2に示す。 Each characteristic was measured by the following method about the produced aluminum alloy conductor of each Example and a comparative example. The results are shown in Tables 1 and 2 below.
(a)結晶粒径(GS)
伸線方向に垂直に切り出した供試材の横断面を樹脂で埋め、機械研磨後、電解研磨を行った。電解研磨条件は、研磨液が過塩素酸20%のエタノール溶液、液温は0〜5℃、電圧は10V、電流は10mA、時間は30〜60秒である。次いで、結晶粒コントラストを得るため、2%ホウフッ化水素酸を用いて、電圧20V、電流20mA、時間2〜3分の条件でアノーダイジング仕上げを行なった。この組織を200〜400倍の光学顕微鏡で撮影し、交差法による粒径測定を行った。具体的には、撮影された写真に直線を引いて、その直線の長さと粒界が交わる数を測定して平均粒径を求めた。なお、粒径は50〜100個が数えられるように直線の長さと数を変えて算出した。
(b)引張強度(TS)及び柔軟性(引張破断伸び、El)
JIS Z 2241に準じて各3本ずつ試験し、その平均値を求めた。柔軟性については引張破断伸びを用いて評価し、引張破断伸びが10%以上を合格とした。
(c)導電率(EC)
長さ300mmの試験片を20℃(±0.5℃)に保持した恒温漕中で、四端子法を用いて比抵抗を各3本ずつ測定し、その平均導電率を算出した。端子間距離は200mmとした。
(d)繰返破断回数
藤井精機株式会社(現 株式会社フジイ)製の両振屈曲疲労試験機を用い、線材(アルミニウム合金導体)に±0.17%の曲げ歪みが与えられる治具を使用して、繰り返し曲げを実施することにより、繰返破断回数を測定した。繰返破断回数は各4本ずつ測定し、その平均値を求めた。図1の説明図に示すように、線材1を、曲げ治具2及び3の間を1mm空けて挿入し、冶具2及び3に沿わせるような形で繰り返し運動をさせた。線材の一端は繰り返し曲げが実施できるよう押さえ冶具5に固定し、もう一端には約10gの重り4をぶら下げた。試験中は押さえ冶具5が動くため、それに固定されている線材1も動き、繰り返し曲げが実施できる。繰り返しは1.5Hz(1秒間に往復1.5回)の条件で行い、線材の試験片1が破断すると、重り4が落下し、カウントを停止する仕組みになっている。
(A) Crystal grain size (GS)
The cross section of the specimen cut out perpendicular to the wire drawing direction was filled with resin, and after mechanical polishing, electrolytic polishing was performed. The electrolytic polishing conditions are: an ethanol solution containing 20% perchloric acid as the polishing liquid, a liquid temperature of 0 to 5 ° C., a voltage of 10 V, a current of 10 mA, and a time of 30 to 60 seconds. Next, in order to obtain crystal grain contrast, anodic finishing was performed using 2% borohydrofluoric acid under the conditions of a voltage of 20 V, a current of 20 mA, and a time of 2 to 3 minutes. This structure was photographed with an optical microscope of 200 to 400 times, and the particle size was measured by the crossing method. Specifically, a straight line was drawn on the photographed image, and the number of intersections of the straight line length and the grain boundary was measured to obtain the average particle diameter. The particle size was calculated by changing the length and number of straight lines so that 50 to 100 particles could be counted.
(B) Tensile strength (TS) and flexibility (tensile elongation at break, El)
Three each were tested according to JIS Z 2241 and the average value was determined. The flexibility was evaluated using the tensile elongation at break, and the tensile elongation at break was 10% or more.
(C) Conductivity (EC)
Three specific resistances were measured using a four-terminal method in a constant temperature bath holding a 300 mm long test piece at 20 ° C. (± 0.5 ° C.), and the average conductivity was calculated. The distance between the terminals was 200 mm.
(D) Number of repeated fractures Using a double-bending bending fatigue testing machine manufactured by Fujii Seiki Co., Ltd. (currently Fujii Co., Ltd.), a jig that gives a bending strain of ± 0.17% to the wire (aluminum alloy conductor) is used. Then, the number of repeated fractures was measured by repeatedly bending. The number of repeated ruptures was measured four by four and the average value was determined. As shown in the explanatory view of FIG. 1, the wire 1 was inserted with a gap of 1 mm between the bending
表1及び表2から明らかなように、純Alからなる比較例No.1の導体では結晶粒径が大きく、引張強度が低く、さらに、耐屈曲疲労特性に劣るため繰返破断回数の値が小さくなっている。比較例No.2〜10のアルミニウム合金導体では合金組成が本発明の規定範囲外となる例であるが、比較例No.2〜4、6、8〜10のアルミニウム合金導体では繰返破断回数が不足する。比較例No.5、7、9、10のアルミニウム合金導体では導電率が不足する。さらに、比較例2、4、6のアルミニウム合金導体では引張強度が不足する。比較例No.11、12のアルミニウム合金導体は製造条件が本発明の規定範囲外となる例であるが、どちらも引張破断伸びが不足し、比較例No.12のアルミニウム合金導体では引張強度及び繰返破断回数も不足する。比較例No.13のアルミニウム合金導体は特開2006−253109の実施例2を再現したものであるが、繰返破断回数が不足する。比較例No.14のアルミニウム合金導体は特開2006−19163の実施例6を再現したものであるが、本発明の結晶粒径が得られず、引張破断伸びが不足する。比較例No.15のアルミニウム合金導体は特開2008−112620の実施例3を再現したものであるが、本発明の結晶粒径が得られず、引張破断伸び及び導電率が不足する。
これに対し、実施例No.1〜24のアルミニウム合金導体では耐屈曲疲労特性、引張特性および導電性に優れ、移動車体のドアやトランク、ボンネットなどに用いられるワイヤハーネス等の用途に好適なアルミニウム合金導体であった。
As is apparent from Tables 1 and 2, Comparative Example No. made of pure Al. The conductor No. 1 has a large crystal grain size, low tensile strength, and inferior bending fatigue resistance, so the number of repeated fractures is small. Comparative Example No. In the case of 2 to 10 aluminum alloy conductors, the alloy composition is outside the specified range of the present invention. The number of repeated fractures is insufficient in aluminum alloy conductors of 2 to 4, 6, and 8 to 10. Comparative Example No. The 5, 7, 9, 10 aluminum alloy conductors have insufficient electrical conductivity. Further, the aluminum alloy conductors of Comparative Examples 2, 4, and 6 have insufficient tensile strength. Comparative Example No. The aluminum alloy conductors Nos. 11 and 12 are examples in which the production conditions are outside the specified range of the present invention. The 12 aluminum alloy conductors also lack the tensile strength and the number of repeated breaks. Comparative Example No. The aluminum alloy conductor 13 is a reproduction of Example 2 of JP-A-2006-253109, but the number of repeated fractures is insufficient. Comparative Example No. The aluminum alloy conductor No. 14 is a reproduction of Example 6 of JP-A-2006-19163, but the crystal grain size of the present invention cannot be obtained and the tensile elongation at break is insufficient. Comparative Example No. The aluminum alloy conductor No. 15 is a reproduction of Example 3 of JP-A-2008-112620, but the crystal grain size of the present invention cannot be obtained, and the tensile elongation at break and the electrical conductivity are insufficient.
On the other hand, Example No. The aluminum alloy conductors 1 to 24 were excellent in bending fatigue resistance, tensile characteristics, and conductivity, and were aluminum alloy conductors suitable for applications such as wire harnesses used for doors, trunks, bonnets and the like of moving vehicle bodies.
実施例No.101〜120、比較例No.121〜127
(本発明の第2の実施態様、つまり前記(2)〜(4)項記載の発明の実施例および比較例)
後記の表3、表4に示すように、Fe、Cu、Mg、Si、Ti、V、Sn、Cd、In、Zr及びAlを、所定量比(質量%)で用いて、先述の実施例と同様にして、アルミニウム合金導体を作成した。
作製した各々の実施例及び比較例のアルミニウム合金導体について、先述の実施例と同様に各特性を測定した。また、繰り返し破断回数については、120℃に120時間放置した後の特性についても、計測した。その結果を表3及び表4に示す。また、先述の実施例中の表1に記載のアルミニウム合金導体No.1〜20について、120℃、120時間放置した後の繰り返し破断回数を測定した。その結果を表5に示す。
Example No. 101-120, Comparative Example No. 121-127
(Second embodiment of the present invention, that is, examples and comparative examples of the invention described in the above items (2) to (4) )
As shown in Tables 3 and 4 to be described later, Fe, Cu, Mg, Si, Ti, V, Sn, Cd, In, Zr, and Al were used in a predetermined amount ratio (mass%), and the above-described examples were used. In the same manner, an aluminum alloy conductor was prepared.
Each characteristic was measured about the produced aluminum alloy conductor of each Example and the comparative example similarly to the above-mentioned Example. Further, the number of repeated breaks was also measured for the characteristics after being left at 120 ° C. for 120 hours. The results are shown in Tables 3 and 4. In addition, the aluminum alloy conductor Nos. About 1-20, the frequency | count of repeated fracture | rupture after standing at 120 degreeC for 120 hours was measured. The results are shown in Table 5.
表3より、No.101〜120のSn、Cd、In、Zrを含有するアルミニウム合金導体における、繰り返し破断回数は、表1記載のSn、Cd、In、Zrを含有しないアルミニウム合金導体に比べ、やや低いものであった。しかし、No.101〜114のアルミニウム合金導体は、120℃放置後の繰り返し破断回数が、該加熱放置をしない場合と比べてあまり低下しておらず、高い耐屈曲性を維持した。なお、表5は、表1記載の線材の、120℃放置後の繰り返し破断回数であるが、該加熱放置による低下が著しいことが分かる。
また、No.115〜120のアルミニウム合金導体は、120℃放置により繰り返し破断回数が逆に向上する結果であった。
以上より、No.101〜120のSn、Cd、In、Zrを含有するアルミニウム合金導体が、120℃放置後も、繰り返し破断回数を大幅に劣化させることはなく、あるいは逆に向上させることが分かった。
これに対し、Sn、Cd、Inの添加量の少なすぎたNo.121〜123のアルミニウム合金導体、および表5のSn、Cd、In、Zrを添加しなかったアルミニウム合金導体における、120℃放置後の繰り返し破断回数は全て120℃加熱放置前に比べて著しく低減する結果であった。また、Sn、Cd、In、Zrを過剰に添加した場合(表4、No.124〜126)は、120℃放置後の繰り返し破断回数が、放置しなかった場合に比べ大幅に低減しており、また、伸びの低下、導電率の低下が大きかった。また、過剰Zrを添加した場合(表4、No.127)は、120℃放置せずともくり返し破断回数が低かった。
From Table 3, No. In the aluminum alloy conductor containing Sn, Cd, In, and Zr of 101 to 120, the number of repeated breaks was slightly lower than that of the aluminum alloy conductor not containing Sn, Cd, In, and Zr shown in Table 1. . However, no. In the 101-114 aluminum alloy conductors, the number of repeated breaks after leaving at 120 ° C. did not decrease much as compared with the case where it was not left to heat, and maintained high bending resistance. Table 5 shows the number of repeated breaks of the wire materials listed in Table 1 after being left at 120 ° C., and it can be seen that the decrease due to the heating is significant.
No. The 115 to 120 aluminum alloy conductors had the result that the number of repeated breaks on the contrary was improved when left at 120 ° C.
From the above, no. It has been found that an aluminum alloy conductor containing 101 to 120 Sn, Cd, In, and Zr does not significantly degrade the number of repeated breaks, or conversely, even after being left at 120 ° C.
On the other hand, no. In the aluminum alloy conductors 121 to 123 and the aluminum alloy conductors to which Sn, Cd, In, and Zr in Table 5 were not added, the number of repeated breaks after leaving at 120 ° C. was significantly reduced compared to that before leaving at 120 ° C. for heating. It was a result. In addition, when Sn, Cd, In, and Zr are added excessively (Table 4, Nos. 124 to 126), the number of repeated breaks after leaving at 120 ° C. is greatly reduced as compared with the case of not leaving them. Moreover, the fall of elongation and the fall of electrical conductivity were large. In addition, when excess Zr was added (Table 4, No. 127), the number of repeated fractures was low without being left at 120 ° C.
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
本願は、2010年7月20日に日本国で特許出願された特願2010−163416に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims the priority based on Japanese Patent Application No. 2010-163416 for which it applied for a patent in Japan on July 20, 2010, and this is referred to here for the contents of this description. Capture as part.
1 試験片(線材、アルミニウム合金導体)
2、3 曲げ治具
4 重り
5 押さえ冶具
1 Test piece (wire, aluminum alloy conductor)
2, 3
Claims (4)
0.01 to 0.4 mass% Fe, 0.3 to 0.5 mass% Cu, 0.04 to 0.3 mass% Mg, 0.02 to 0.3 mass% Si, Sn, At least one element selected from the group consisting of Cd and In is contained in a total amount of 0.01 to 0.5 mass%, and Ti and V are combined in an amount of 0.001 to 0.01 mass%. The mass ratio (W1 / W2) of the total content (W1) of at least one element selected from the group consisting of Sn, Cd and In and the content (W2) of Zr including 001 to 0.1 mass% 0.6 to 2.6, after melting the aluminum alloy component consisting of the remaining Al and inevitable impurities, continuous casting and rolling to obtain a rough bar, cold drawn to a rough drawn wire, and heat treatment Wire drawing, wire drawing And a method of manufacturing an aluminum alloy conductor further comprising a step of performing annealing heat treatment, wherein the continuous casting and rolling is performed under a condition of a casting cooling rate of 1 to 20 ° C./second, and the cold drawing process is performed. The degree of work represented by η = ln (A 0 / A 1 ) is 1 or more and 6 or less, where A 0 is the cross-sectional area of the wire before processing, and A 1 is the cross-sectional area of the wire after processing. Is performed at a temperature of 300 to 450 ° C. for 10 minutes to 6 hours, the wire drawing is performed at a workability of 1 to 6 and the annealing heat treatment is performed at a temperature of 300 to 450 ° C. for 10 minutes to 6 The manufacturing method of the aluminum alloy conductor characterized by performing on the conditions of time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011553225A JP5228118B2 (en) | 2010-07-20 | 2011-07-20 | Method for producing aluminum alloy conductor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010163416 | 2010-07-20 | ||
JP2010163416 | 2010-07-20 | ||
JP2011553225A JP5228118B2 (en) | 2010-07-20 | 2011-07-20 | Method for producing aluminum alloy conductor |
PCT/JP2011/066499 WO2012011513A1 (en) | 2010-07-20 | 2011-07-20 | Aluminium alloy conductor and manufacturing method for same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013025015A Division JP5469262B2 (en) | 2010-07-20 | 2013-02-12 | Aluminum alloy conductor and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5228118B2 true JP5228118B2 (en) | 2013-07-03 |
JPWO2012011513A1 JPWO2012011513A1 (en) | 2013-09-09 |
Family
ID=45496932
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011553225A Active JP5228118B2 (en) | 2010-07-20 | 2011-07-20 | Method for producing aluminum alloy conductor |
JP2013025015A Active JP5469262B2 (en) | 2010-07-20 | 2013-02-12 | Aluminum alloy conductor and method for producing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013025015A Active JP5469262B2 (en) | 2010-07-20 | 2013-02-12 | Aluminum alloy conductor and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP5228118B2 (en) |
WO (1) | WO2012011513A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2597168B1 (en) * | 2010-07-15 | 2019-09-11 | Furukawa Electric Co., Ltd. | Aluminum alloy conductor |
CN104032191A (en) * | 2014-06-24 | 2014-09-10 | 江苏长峰电缆有限公司 | Energy-saving high-elongation soft aluminum alloy wire and preparation method thereof |
CN104538116B (en) * | 2014-12-16 | 2016-09-28 | 广东省材料与加工研究所 | A kind of high intensity, the production method of high-conductivity aluminum alloy wire |
CN105018803B (en) * | 2015-07-10 | 2016-11-09 | 南通玖伍捌科技企业孵化器有限公司 | A kind of aluminium alloy conductor material of anti-folding stretch-proof and preparation method thereof |
AU2016424982A1 (en) * | 2016-09-30 | 2019-04-11 | Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr" | Method for making deformed semi-finished products from aluminium alloys |
CN114402401B (en) * | 2020-08-06 | 2024-07-12 | 古河电气工业株式会社 | Aluminum wire, aluminum twisted wire, covered wire with crimp terminal, and CVT cable or CVT cable with crimp terminal |
CN116435003A (en) * | 2023-05-24 | 2023-07-14 | 中天科技海缆股份有限公司 | Modified aluminum alloy conductor, production process thereof and modified aluminum alloy conductor cable |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4943162B1 (en) * | 1970-05-06 | 1974-11-19 | ||
JP2001254160A (en) * | 2000-03-09 | 2001-09-18 | Mitsubishi Cable Ind Ltd | Method of manufacturing aluminum alloy wire, and aluminum alloy |
JP2005174554A (en) * | 2003-12-05 | 2005-06-30 | Furukawa Electric Co Ltd:The | Aluminum conductive wire |
JP2006253109A (en) * | 2005-02-08 | 2006-09-21 | Furukawa Electric Co Ltd:The | Aluminum conductive wire |
WO2010082670A1 (en) * | 2009-01-19 | 2010-07-22 | 古河電気工業株式会社 | Aluminum alloy wire |
WO2010082671A1 (en) * | 2009-01-19 | 2010-07-22 | 古河電気工業株式会社 | Aluminum alloy wire |
JP2010163675A (en) * | 2009-01-19 | 2010-07-29 | Furukawa Electric Co Ltd:The | Aluminum alloy wire rod |
JP2010163676A (en) * | 2009-01-19 | 2010-07-29 | Furukawa Electric Co Ltd:The | Aluminum alloy wire rod |
WO2012011447A1 (en) * | 2010-07-20 | 2012-01-26 | 古河電気工業株式会社 | Aluminium alloy conductor and manufacturing method for same |
JP4986251B2 (en) * | 2010-02-26 | 2012-07-25 | 古河電気工業株式会社 | Aluminum alloy conductor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS495807B1 (en) * | 1966-04-23 | 1974-02-09 | ||
JPS50110915A (en) * | 1974-02-08 | 1975-09-01 | ||
JP2006176833A (en) * | 2004-12-22 | 2006-07-06 | Hitachi Cable Ltd | Aluminum alloy for conduction, and aluminum alloy wire for conduction and method for producing the same |
-
2011
- 2011-07-20 JP JP2011553225A patent/JP5228118B2/en active Active
- 2011-07-20 WO PCT/JP2011/066499 patent/WO2012011513A1/en active Application Filing
-
2013
- 2013-02-12 JP JP2013025015A patent/JP5469262B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4943162B1 (en) * | 1970-05-06 | 1974-11-19 | ||
JP2001254160A (en) * | 2000-03-09 | 2001-09-18 | Mitsubishi Cable Ind Ltd | Method of manufacturing aluminum alloy wire, and aluminum alloy |
JP2005174554A (en) * | 2003-12-05 | 2005-06-30 | Furukawa Electric Co Ltd:The | Aluminum conductive wire |
JP2006253109A (en) * | 2005-02-08 | 2006-09-21 | Furukawa Electric Co Ltd:The | Aluminum conductive wire |
WO2010082670A1 (en) * | 2009-01-19 | 2010-07-22 | 古河電気工業株式会社 | Aluminum alloy wire |
WO2010082671A1 (en) * | 2009-01-19 | 2010-07-22 | 古河電気工業株式会社 | Aluminum alloy wire |
JP2010163675A (en) * | 2009-01-19 | 2010-07-29 | Furukawa Electric Co Ltd:The | Aluminum alloy wire rod |
JP2010163676A (en) * | 2009-01-19 | 2010-07-29 | Furukawa Electric Co Ltd:The | Aluminum alloy wire rod |
JP4986251B2 (en) * | 2010-02-26 | 2012-07-25 | 古河電気工業株式会社 | Aluminum alloy conductor |
WO2012011447A1 (en) * | 2010-07-20 | 2012-01-26 | 古河電気工業株式会社 | Aluminium alloy conductor and manufacturing method for same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012011513A1 (en) | 2013-09-09 |
JP2013151750A (en) | 2013-08-08 |
WO2012011513A1 (en) | 2012-01-26 |
JP5469262B2 (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5193374B2 (en) | Aluminum alloy conductor and method for producing the same | |
JP6462662B2 (en) | Aluminum alloy wire, aluminum alloy twisted wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method | |
JP5193375B2 (en) | Method for producing aluminum alloy conductor | |
KR101813772B1 (en) | Aluminum alloy conductor, alum1inum alloy stranded wire, sheathed wire, wire harness, and method for manufacturing aluminum alloy conductor | |
JP5607855B1 (en) | Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method | |
JP4986251B2 (en) | Aluminum alloy conductor | |
JP5607856B1 (en) | Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, wire harness, and aluminum alloy wire manufacturing method | |
US8951370B2 (en) | Aluminum alloy wire material | |
JP6147167B2 (en) | Aluminum alloy conductor, aluminum alloy stranded wire, covered electric wire and wire harness | |
JP5228118B2 (en) | Method for producing aluminum alloy conductor | |
WO2016088887A1 (en) | Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material | |
KR101982913B1 (en) | Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire | |
JP4986252B2 (en) | Aluminum alloy conductor | |
JP2013044038A (en) | Aluminum alloy conductor | |
JP5939530B2 (en) | Aluminum alloy conductor | |
WO2011105586A1 (en) | Aluminum alloy conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130318 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5228118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160322 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |