[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5225337B2 - Composite materials that can expand the light absorption range of the original structural material - Google Patents

Composite materials that can expand the light absorption range of the original structural material Download PDF

Info

Publication number
JP5225337B2
JP5225337B2 JP2010169512A JP2010169512A JP5225337B2 JP 5225337 B2 JP5225337 B2 JP 5225337B2 JP 2010169512 A JP2010169512 A JP 2010169512A JP 2010169512 A JP2010169512 A JP 2010169512A JP 5225337 B2 JP5225337 B2 JP 5225337B2
Authority
JP
Japan
Prior art keywords
oxygen
oxide
film layer
deficient
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010169512A
Other languages
Japanese (ja)
Other versions
JP2012030144A (en
Inventor
蔡定平
黄鴻基
Original Assignee
財団法人國家實驗研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人國家實驗研究院 filed Critical 財団法人國家實驗研究院
Priority to JP2010169512A priority Critical patent/JP5225337B2/en
Publication of JP2012030144A publication Critical patent/JP2012030144A/en
Application granted granted Critical
Publication of JP5225337B2 publication Critical patent/JP5225337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Catalysts (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、原構造材料の光吸収範囲を拡大できる複合材料に関するもので、化学工程,環境工程および太陽電池の応用などのグリーン科学技術中では、光駆動(photo-induced)の物理または化学反応に応用される必要があり、原構造材料の操作反応効率を増加する。   The present invention relates to a composite material capable of expanding the light absorption range of an original structural material. In green science and technology such as chemical processes, environmental processes, and solar cell applications, photo-induced physical or chemical reactions. To increase the operational reaction efficiency of the original structural material.

ここ数年来、石油エネルギーの使用量の激増により貯蔵量の不足問題に直面する以外に、更に石油エネルギーの使用のために、二酸化炭素の排出量が絶えずに増加することを招き、温室効果が益々厳しくなる。石油エネルギーの不足および二酸化炭素の排出量の継続的な激増の問題を有効に解決するために、既に数多くの学者・専門家がエネルギー応用の改善および二酸化炭素排出の除去の問題の研究に投入する。   In recent years, in addition to confronting the problem of shortage of storage due to drastic increase in the use of petroleum energy, the use of petroleum energy has led to a continuous increase in carbon dioxide emissions, and the greenhouse effect has been increasing. It becomes severe. Numerous scholars and experts have already invested in research on the problem of improving energy applications and removing carbon dioxide emissions in order to effectively solve the problem of shortage of petroleum energy and the continuous surge of carbon dioxide emissions. .

エネルギー開発の研究上では、太陽光の捕獲(harvest)及び使用可能なエネルギーの転化が清潔で且つ大部分の人たちの受け入れる重要な技術である。元来、シリコン(Si),カドミウム(Cd),第3族と第4族(III-IV group)の材料を基礎とする太陽電池以外に、二酸化チタン(TiO2)を基礎とする染料増感太陽電池(dye-sensitized photovoltaic)が極めて大きな価格および製造材料の優位性を有するので、数多くの研究開発人員の注意および投入を吸引する。その他に大気中の二酸化炭素含有量の低減上では、二酸化チタン,炭化ケイ素(SiC),ガリウム燐(GaP)等の半導体・光触媒により二酸化炭素に対し光触媒還元反応を行いホルムアルデヒド(HCHO),メタノール(CH3OH)等の生成物を得る方法を、利用する。 In energy development research, harvesting of sunlight and conversion of usable energy are important technologies that are clean and accepted by most people. Originally solar cells based on silicon (Si), cadmium (Cd), Group 3 and Group 4 (III-IV group) materials, as well as dye sensitization based on titanium dioxide (TiO 2 ) As solar cells (dye-sensitized photovoltaics) have a huge price and manufacturing material advantage, they attract the attention and input of many R & D personnel. In addition, to reduce the carbon dioxide content in the atmosphere, photocatalytic reduction reaction is performed on carbon dioxide with semiconductors and photocatalysts such as titanium dioxide, silicon carbide (SiC), and gallium phosphorus (GaP) to formaldehyde (HCHO), methanol ( A method of obtaining a product such as CH 3 OH) is utilized.

前述の二つの最も先進的で人気があるグリーン化学技術(green chemical technology)では、二酸化チタンが何れも重要な構造材料の優先的なオプションの一つとなり、二酸化チタンの本質的なバンドギャップ・エネルギーが3.2Vであるので、波長が400nmよりも小さくなる紫外線周波帯(UV band)の光のエネルギーのみは、やっと二酸化チタンにより吸収され且つ光化学反応の必要なエネルギーに転換できる。これにより、二酸化チタンの吸収・応用可能な光波長範囲を可視光線の周波帯までに拡大し、ひいては二酸化チタンの操作効率を増進し、重要な課題となり、数多くの材料改質(modification of material)技術も相対的に生成し、但し可撓性を有し質量が軽いで価格が安値で且つ高温製造プロセスの必要がない材料改質方法および技術を、依然として欠ける。   In the two most advanced and popular green chemical technologies mentioned above, titanium dioxide is one of the preferred options for important structural materials, and the intrinsic band gap energy of titanium dioxide. Is 3.2 V, so that only the energy of light in the ultraviolet band (UV band) whose wavelength is smaller than 400 nm can be finally absorbed by titanium dioxide and converted into energy required for photochemical reaction. As a result, the wavelength range of light absorption and application of titanium dioxide is expanded to the visible light frequency band, and as a result, the operation efficiency of titanium dioxide becomes an important issue. The technology also produces relatively, but still lacks material modification methods and techniques that are flexible, light in weight, inexpensive, and do not require high temperature manufacturing processes.

本願の発明者は、前述の慣用方式により生成された各欠点に鑑み、より改良して革新しようと意図し、且つ苦心を経て孤独に努力して鋭意に研究した後に、ついに本発明の原構造材料の光吸収範囲を拡大できる複合材料を、成功的に研究して完成する。   The inventor of the present application intends to improve and innovate in view of the respective disadvantages generated by the above-mentioned conventional method, and after earnestly researching through loneliness through hard work, finally the original structure of the present invention Successful research and completion of a composite material that can expand the light absorption range of the material.

本発明の主要な目的は、即ち異なる酸化度合いの同質な材料の間の接触・固定する複合材料を提出し、一つ又は一つ以上の材料を含む酸化物およびその酸素欠損酸化物を、接触・固定することにより、光駆動反応を有効に励起する光吸収周波帯範囲の増加を達成する目的である。   The main object of the present invention is to provide a composite material that contacts and fixes between homogeneous materials of different degrees of oxidation, and contacts an oxide containing one or more materials and its oxygen deficient oxide. The purpose is to achieve an increase in the light absorption frequency band range that effectively excites the light-driven reaction by fixing.

本発明の副次的な目的は、即ち異なる酸化度合いの同質な材料の間の接触・固定する複合材料の製造プロセスを提出するもので、酸化物と酸素欠損酸化物を組成して複合材料となる時に、接触固定操作過程中では、高温焼成プロセス(Calcinations process)の必要がなく、従ってプラスチック又は他の高温加熱に相応しくない基板に適用できる。   A secondary object of the present invention is to provide a process for manufacturing a composite material that contacts and fixes homogeneous materials of different degrees of oxidation, and is composed of an oxide and an oxygen-deficient oxide. As such, there is no need for a high temperature calcinations process during the contact fixing operation process, and therefore it can be applied to plastics or other substrates not suitable for high temperature heating.

本発明の目的は、即ち可撓性を有し質量が軽いで価格が安値で且つ高温の必要がない複合材料の組成方式を提出し、便利で且つ快速な製造プロセスを達成する目的である。   An object of the present invention is to provide a composition method of a composite material that is flexible, light in weight, low in price, and does not require high temperature, and achieves a convenient and fast manufacturing process.

前述の発明目的を達成できる、原構造材料の光吸収範囲を拡大できる複合材料は一つの基板と、一つの酸素欠損酸化物膜層と、酸化物とを含み、前記酸素欠損酸化物膜層と、酸化物は、同じ組成物質および異なる酸素含有量の材料で組成され、前記酸素欠損酸化物の酸素含有量は、前記酸化物の酸素含有量の50%以上であり、前記基板の表面に酸素欠損酸化物膜層をめっき又は沈積し、或いは該基材自身が即ち酸素欠損酸化物膜層であり前記酸素欠損酸化物膜層の酸素欠損酸化物が酸化物と接触して固定した後に、複合材料を形成し前記複合材料太陽光または追加した光照射されると、光エネルギーが酸素欠損酸化物内に伝送でき、或いは酸素欠損酸化物と接触・固定する酸化物内に移転することにより、酸化物内の電子(electron)ホール(hole)が分離して、酸化物が光触媒反応を行う The foregoing invention object can be achieved, composite materials capable of expanding the light absorption range of the original structural material may include a single substrate, and one oxygen deficiency oxide film layer, and an oxide, the oxygen vacancies oxide film The layer and the oxide are composed of a material having the same composition material and different oxygen content, and the oxygen content of the oxygen deficient oxide is 50% or more of the oxygen content of the oxide, and the surface of the substrate oxygen vacancies oxide layer plated or deposited on, or the substrate itself is the i.e. oxygen deficiency oxide film layer, oxygen vacancies oxide of the oxygen-deficient oxide film layer was fixed in contact with the oxide later, to form a composite material, said the light sunlight or added to the composite material Ru is irradiated, can transmit the light energy in an oxygen-deficient oxide or oxygen deficiency oxide contact-fixing oxides in the By transferring, the electrons in the oxide (electro n) and holes are separated and the oxide undergoes a photocatalytic reaction .

原構造材料の光吸収範囲を拡大できる複合材料の製造プロセスの分解図および合成図である。It is the exploded view and synthetic | combination figure of the manufacturing process of the composite material which can expand the light absorption range of original structure material. 原構造材料の光吸収範囲を拡大できる複合材料の製造プロセスの分解図および合成図である。It is the exploded view and synthetic | combination figure of the manufacturing process of the composite material which can expand the light absorption range of original structure material. 原構造材料の光吸収範囲を拡大できる複合材料の製造プロセスの他の分解図および合成図である。It is the other exploded view and synthetic | combination figure of the manufacturing process of the composite material which can expand the light absorption range of original structure material. 原構造材料の光吸収範囲を拡大できる複合材料の製造プロセスの他の分解図および合成図である。It is the other exploded view and synthetic | combination figure of the manufacturing process of the composite material which can expand the light absorption range of original structure material. 原構造材料の光吸収範囲を拡大できる複合材料の製造プロセスの実施の模式図である。It is a schematic diagram of implementation of the manufacturing process of the composite material which can expand the light absorption range of original structure material. 原構造材料の光吸収範囲を拡大できる複合材料の他の実施の模式図である。It is the schematic diagram of other implementation of the composite material which can expand the light absorption range of original structure material. 原構造材料の光吸収範囲を拡大できる複合材料のスペクトル測定図である。It is a spectrum measurement figure of the composite material which can expand the light absorption range of original structure material. 原構造材料の光吸収範囲を拡大できる複合材料がメチルオレンジ溶液の光触媒の色除去反応に用いられ、蛍光灯の照射下でメチルオレンジの濃度と元濃度との比率が作用時間に連れて変化する変化図である。A composite material that can expand the light absorption range of the original structural material is used for photocatalyst color removal reaction of methyl orange solution, and the ratio of methyl orange concentration to original concentration changes with the action time under irradiation of fluorescent lamp FIG.

[実施例1]
図1〜図2を参照して示すように、これらが本発明の原構造材料の光吸収範囲を拡大できる複合材料の構造模式図であるが、一つの基板1,一つの酸素欠損酸化物膜層2と一つの酸化物3を含み、基板1は、その材質が構造支持強度を有するガラス又はプラスチックで、該基板1の表面上に酸素欠損酸化物粒子をめっき又は沈積でき、そして該基板1の上に酸素欠損酸化物膜層2(図1Aと図1Bを参照して示す)を形成し、或いは該基板もチタン(Ti),タングステン(W),亜鉛(Zn),シリコン(Si),白金(Pt),銀(Ag),カドミウム(Cd),鉄(Fe),錫(Sn),インジウム(In),アンチモン(Sb),ビスマス(Bi),バナジウム(V),モリブデン(Mo),鉛(Pb)またはストロンチウム(Sr)などの金属や半導体材料自身、その酸化物あるいはその他の材料との複合物であってもよく、更に該基板も酸素欠損酸化物膜層2であってもよい。
酸素欠損酸化物膜層2は、酸素欠損酸化物粒子を積み上げ或いは酸素欠損酸化物膜層2を嵌入することにより組成され、該酸素欠損酸化物膜層2の酸素欠損酸化物粒子が、チタン(Ti),タングステン(W),亜鉛(Zn),シリコン(Si),白金(Pt),銀(Ag),カドミウム(Cd),鉄(Fe),錫(Sn),インジウム(In),アンチモン(Sb),ビスマス(Bi),バナジウム(V),モリブデン(Mo),鉛(Pb)またはストロンチウム(Sr)などの金属や半導体材料自身、その酸化物あるいはその他の材料との複合物により構成される。
該酸化物3が、光により照射された後に光触媒活性を有するナノ酸化物粒子により組成され、酸素欠損酸化物膜層2と接触して固定した後に、複合材料を形成するように用いられる。
[Example 1]
As shown with reference to FIG. 1 and FIG. 2, these are structural schematic diagrams of a composite material that can expand the light absorption range of the original structural material of the present invention. The substrate 1 includes a layer 2 and an oxide 3, and the substrate 1 is made of glass or plastic having a structural support strength, and oxygen deficient oxide particles can be plated or deposited on the surface of the substrate 1. An oxygen deficient oxide film layer 2 (shown with reference to FIGS. 1A and 1B) is formed on the substrate, or the substrate is made of titanium (Ti), tungsten (W), zinc (Zn), silicon (Si), Platinum (Pt), Silver (Ag), Cadmium (Cd), Iron (Fe), Tin (Sn), Indium (In), Antimony (Sb), Bismuth (Bi), Vanadium (V), Molybdenum (Mo), Metals such as lead (Pb) or strontium (Sr) and semiconductor materials themselves, their oxides Rui may be a composite with other materials, may be further substrate is also an oxygen-deficient oxide layer 2.
The oxygen-deficient oxide film layer 2 is composed by stacking oxygen-deficient oxide particles or inserting the oxygen-deficient oxide film layer 2, and the oxygen-deficient oxide film layer 2 contains titanium ( Ti), tungsten (W), zinc (Zn), silicon (Si), platinum (Pt), silver (Ag), cadmium (Cd), iron (Fe), tin (Sn), indium (In), antimony ( Sb), Bismuth (Bi), Vanadium (V), Molybdenum (Mo), Lead (Pb), Strontium (Sr) and other metals and semiconductor materials themselves, composed of oxides or composites with other materials .
The oxide 3 is composed of nano-oxide particles having photocatalytic activity after being irradiated with light, and is used to form a composite material after being fixed in contact with the oxygen-deficient oxide film layer 2.

その他に酸化物粒子も基板の上に沈積またはめっきでき、酸化物膜層となり、或いは該酸化物膜層自身が即ち基板で、そして該酸化物と同じ組成成分の酸素欠損酸化物が、該酸化物と接触・固定した後に、複合材料(図面中に描画しない)を形成する。   In addition, oxide particles can be deposited or plated on the substrate to form an oxide film layer, or the oxide film layer itself, that is, the substrate, and an oxygen-deficient oxide having the same composition as the oxide. After contacting and fixing the object, a composite material (not drawn in the drawing) is formed.

その中でも、該基板1の材質がプラスチックであれば、酸素欠損酸化物が紫外線光の反射または吸収能力を有するので、ひいてはプラスチック材質を基板1と看做す時に、プラスチック材質基板の使用寿命を延長できる。
その中でも、該酸化物3と酸素欠損酸化物膜層2の酸素欠損酸化物が同質な材料で、但し異なる酸化度合いを有し、該酸素欠損酸化物の酸素含有量が不足することにより、材料が完全酸化状態の化合物状態を形成し、原材料が完全酸化する時にその酸素欠損度合いが必要な酸素含有量の50%以上であってもよい。
その中でも、該酸化物3と酸素欠損酸化物膜層2の酸素欠損酸化物の酸化物粒子が、追加した光により照射された後に、特定な機能、例えば光触媒の化合物を有することを可能とする。
Among them, if the material of the substrate 1 is plastic, the oxygen-deficient oxide has the ability to reflect or absorb ultraviolet light, so that when the plastic material is regarded as the substrate 1, the service life of the plastic material substrate is extended. it can.
Among them, the oxygen-deficient oxide of the oxide 3 and the oxygen-deficient oxide film layer 2 are the same material, but have different degrees of oxidation, and the oxygen content of the oxygen-deficient oxide is insufficient. May form a fully oxidized compound state, and when the raw material is completely oxidized, the oxygen deficiency may be 50% or more of the required oxygen content.
Among them, the oxide particles of the oxygen-deficient oxide of the oxide 3 and the oxygen-deficient oxide film layer 2 can have a specific function, for example, a photocatalytic compound after being irradiated with the added light. .

図3〜図4を参照して示すように、これらが本発明の原構造材料の光吸収範囲を拡大できる複合材料の実施模式図である。
該基板1の表面上に酸素欠損酸化物膜層2をめっき又は沈積し、該酸素欠損酸化物膜層2の酸素欠損酸化物21の粒子が酸化物3の粒子と接触・固定した後に、つまり複合材料4を形成し、光源5を吸収し、例えば太陽光または追加した光にて照射されたエネルギーが該酸素欠損酸化物21の粒子により受け入れられることを可能とし、エネルギー6が該酸素欠損酸化物21の粒子内に伝送でき、或いは該酸素欠損酸化物21と接触・固定する酸化物3の粒子内に移転し、そして酸化物3の粒子内のエネルギーを伝送することにより、該酸化物の電子(electron)31とホール(hole)32が分離し、そして該酸化物3が光触媒反応を行う機能および光エネルギーも声,光,熱,力,電気または磁気などの他のタイプのエネルギーに転換できる機能を、駆動する。
As shown with reference to FIG. 3 to FIG. 4, these are schematic diagrams of implementations of composite materials that can expand the light absorption range of the original structural material of the present invention.
After the oxygen deficient oxide film layer 2 is plated or deposited on the surface of the substrate 1 and the oxygen deficient oxide 21 particles of the oxygen deficient oxide film layer 2 are in contact with and fixed to the oxide 3 particles, that is, The composite material 4 is formed, the light source 5 is absorbed, and the energy irradiated by, for example, sunlight or added light can be received by the particles of the oxygen deficient oxide 21, and the energy 6 is oxidized by the oxygen deficient oxidation. Can be transmitted into the particles of the oxide 21, or transferred into the particles of the oxide 3 that are in contact with and fixed to the oxygen-deficient oxide 21, and the energy in the particles of the oxide 3 is transmitted, thereby Electron 31 and hole 32 are separated, and the oxide 3 functions to perform photocatalytic reaction and light energy is also converted into other types of energy such as voice, light, heat, force, electricity or magnetism. Machine The drives.

その他に該基板の表面上に酸化物膜層をめっき又は沈積でき、或いは該基板自身が即ち酸化物膜層で、該酸化物膜層の酸化物粒子が酸素欠損酸化物粒子と接触・固定した後に、つまり複合材料(図面中に描画しない)を形成する。   In addition, an oxide film layer can be plated or deposited on the surface of the substrate, or the substrate itself is an oxide film layer, and the oxide particles of the oxide film layer are in contact with and fixed to the oxygen-deficient oxide particles. Later, that is, a composite material (not drawn in the drawing) is formed.

その他に、その中でも自身が即ち酸素欠損酸化物膜層の基板で、高温処理を経由してより安定する結晶格子(図面中に描画しない)を形成できる。
その中でも、該酸化物3と酸素欠損酸化物21の粒子間が接触・固定した後に、形成された複合材料4は、摂氏100度以下の温度に1時間以上加熱することにより、酸化物3と酸素欠損酸化物21との間の水分を除去できる。
その中でも、該酸化物3と酸素欠損酸化物21の粒子間が接触・固定して複合材料4を形成する方法は、基板1の表面上における酸素欠損酸化物膜層2又は即ち自身の酸素欠損酸化物膜層を、酸化物コロイド溶液の内に浸漬し、該酸素欠損酸化物膜層を取り出した後に、該酸素欠損酸化物膜層の上に残留する溶剤を揮発して除去できる。
その中でも、該酸化物3と酸素欠損酸化物21の粒子間が接触・固定して複合材料4を形成する方法は、高温加熱,電子ビーム加熱,アルゴンイオン加速衝突,レーザー剥離または化学気相反応を利用することにより、酸化物3の粒子がキャリアガス又は真空中に浮かび、そして酸素欠損酸化物21に接触して吸着でき、更にキャリアガスに浮かぶ酸化物3の粒子も、酸化物3の粒子を含有するコロイド溶液の中に注入し、キャリアガスがコロイド溶液から離れることに連れてキャリアガスの中に浮かぶことを可能とする。
その中でも、酸化物3と酸素欠損酸化物21の粒子間が接触・固定した後に、ひいては機能の需要のために、余計に他の有機物,酸化物または金属などの材料を添加できる。
その中でも、該自身が即ち基板である酸化物膜層または酸素欠損酸化物膜層は、高温処理を経由してより安定する結晶格子を形成できる。
In addition, among them, a crystal lattice (not drawn in the drawing) can be formed by itself, that is, a substrate having an oxygen-deficient oxide film layer through high-temperature treatment.
Among them, after the particles of the oxide 3 and the oxygen-deficient oxide 21 are contacted and fixed, the formed composite material 4 is heated to a temperature of 100 degrees Celsius or less for 1 hour or more to form the oxide 3 Water between the oxygen deficient oxide 21 can be removed.
Among them, the method of forming the composite material 4 by contacting and fixing the particles of the oxide 3 and the oxygen-deficient oxide 21 is the oxygen-deficient oxide film layer 2 on the surface of the substrate 1 or its own oxygen-deficiency. After the oxide film layer is immersed in an oxide colloid solution and the oxygen deficient oxide film layer is taken out, the solvent remaining on the oxygen deficient oxide film layer can be volatilized and removed.
Among them, the method of forming the composite material 4 by contacting and fixing the particles of the oxide 3 and the oxygen-deficient oxide 21 includes high temperature heating, electron beam heating, argon ion accelerated collision, laser peeling, or chemical vapor reaction. The oxide 3 particles float in the carrier gas or vacuum and can be adsorbed in contact with the oxygen-deficient oxide 21, and the oxide 3 particles floating in the carrier gas are also oxidized to the oxide 3 particles. Into the colloidal solution containing the carrier gas, allowing the carrier gas to float in the carrier gas as it leaves the colloidal solution.
Among them, after the particles of the oxide 3 and the oxygen-deficient oxide 21 are brought into contact with each other and fixed, extra materials such as organic substances, oxides, metals, and the like can be added for functional demand.
Among them, the oxide film layer or the oxygen-deficient oxide film layer that is itself a substrate can form a more stable crystal lattice through high-temperature treatment.

[実施例2]
本発明の実施例は、二酸化チタン(TiO2)(酸化物)と酸素欠損二酸化チタン(TiOx;その中でもxが2より小さい)基板(酸素欠損酸化物自身が即ち基板)の接触・固定する可視光線範囲を拡大し、且つ光触媒のメチルオレンジ色除去反応の実験に応用できる。
[Example 2]
In an embodiment of the present invention, titanium dioxide (TiO 2 ) (oxide) and oxygen-deficient titanium dioxide (TiO x, among which x is smaller than 2) substrate (oxygen-deficient oxide itself is the substrate) is contacted and fixed. The range of visible light can be expanded and applied to experiments for photocatalytic methyl orange removal reaction.

その操作方式は、下記のように叙述する。   The operation method is described as follows.

ポリスチレン基板の上に、酸素欠損二酸化チタン(TiO2)をターゲット材料とし、一層の60ナノメートルのTiOx薄膜をスパッタリングして被覆し、その中でもxが2より小さくなる。後続の100℃より大きな加熱処理をまだ経由しない下では、酸素欠損二酸化チタン薄膜めっき基板を完成する。平均粒子寸法が21ナノメートルであるP-25二酸化チタンは、10g/Lの比例にて脱イオン水の中に溶解してコロイド溶液を形成する。前述の酸素欠損二酸化チタン薄膜めっき基板を、P-25二酸化チタン・コロイド溶液の中に置き入れ、5分間静置した後に取り出す。前述のP-25コロイド溶液を付着する酸素欠損二酸化チタン基板は、ホットプレートにより、一般大気環境中に90℃で10分間加熱し、基板上に残留する溶剤を揮発して除去する。完成の異なる構造の複合材料基板は、流速が3L/minより大きな大量の清水により、約1分間洗い流し、一般大気環境中に自然に陰干しし、異なる酸化度合いの複合材料めっき基板を完成する。その吸収スペクトルが図5に示すように、元来のP-25二酸化チタン・ナノ粒子の主要な吸収ピーク境界が約380nmである。TiOx基板上に付着された後に、その主要な吸収ピークが可視光線周波帯の502nmまでに延伸される。 On a polystyrene substrate, oxygen deficient titanium dioxide (TiO 2 ) is used as a target material, and a 60-nanometer TiO x thin film is sputtered and coated, and among these, x is smaller than 2. The oxygen-deficient titanium dioxide thin film plating substrate is completed under the subsequent heat treatment greater than 100 ° C. yet. P-25 titanium dioxide having an average particle size of 21 nanometers dissolves in deionized water at a rate of 10 g / L to form a colloidal solution. The above-mentioned oxygen deficient titanium dioxide thin film plating substrate is placed in a P-25 titanium dioxide colloid solution, allowed to stand for 5 minutes, and then taken out. The above oxygen-deficient titanium dioxide substrate to which the P-25 colloidal solution is attached is heated in a general atmospheric environment at 90 ° C. for 10 minutes by a hot plate to volatilize and remove the solvent remaining on the substrate. The composite material substrate having a different structure is washed with a large amount of fresh water having a flow rate of more than 3 L / min for about 1 minute, and is naturally shaded in a general atmospheric environment to complete composite material plating substrates having different degrees of oxidation. As shown in FIG. 5, the main absorption peak boundary of the original P-25 titanium dioxide nanoparticles is about 380 nm. After being deposited on the TiO x substrate, its main absorption peak is stretched to the visible light frequency band of 502 nm.

前述の総面積が約8cm2である、異なる酸化度合いの複合材料めっき基板は、濃度が4uMである50ccのメチルオレンジ溶液の中に静置し、6W紫外線除去の蛍光灯の照射下では、溶液中にメチルオレンジの濃度が時間に連れて変化することを観察する。図6に示すように、可視光線の照射下では、24時間後に溶液中におけるメチルオレンジの濃度が、元来の濃度の15%以下まで低減する。本発明の異なる構造の複合材料基板は、元のP-25二酸化チタンのナノ粒子の使用不可能な可視光線の周波帯の光を吸収でき、且つメチルオレンジ溶液の光触媒の色除去反応を行う。 The above-mentioned composite plating substrates with different degrees of oxidation having a total area of about 8 cm 2 are allowed to stand in a 50 cc methyl orange solution having a concentration of 4 uM. Observe that the concentration of methyl orange changes with time. As shown in FIG. 6, under visible light irradiation, the concentration of methyl orange in the solution decreases to 15% or less of the original concentration after 24 hours. The composite substrate of different structure of the present invention can absorb the light of the unusable visible light band of the original P-25 titanium dioxide nanoparticles, and performs the color removal reaction of the photocatalyst of the methyl orange solution.

本発明の提供する、原構造材料の光吸収範囲を拡大できる複合材料は、他の慣用の技術と互いに比較する時に、下記の利点を更に有する。   The composite material provided by the present invention capable of expanding the light absorption range of the original structural material further has the following advantages when compared with other conventional techniques.

1.特定な材料が光誘起化学反応および光エネルギー移転反応に用いられる上では、光周波帯の吸収範囲を誘起する拡張を、実現する。 1. When a specific material is used for a photo-induced chemical reaction and a light energy transfer reaction, an extension that induces an absorption range of an optical frequency band is realized.

2.本発明は、高温製造プロセスの必要がなく、故にプラスチック又はガラス等の材質を基板として使用でき、基板の使用寿命を延長できる。 2. The present invention does not require a high-temperature manufacturing process, so that a material such as plastic or glass can be used as the substrate, and the service life of the substrate can be extended.

以上の詳細な説明は、本発明に対して実行可能な実施例の具体的な説明で、但し該実施例が本発明の特許請求の範囲を限定するために用いられるものではなく、例えば本発明の技術精神をまだ逸脱しない下で完成された等価な実施または変更が、何れも本発明の特許請求の範囲中に含まれるべきである。   The foregoing detailed description is a specific description of the embodiments that can be implemented with respect to the present invention, but the embodiments are not used to limit the scope of the claims of the present invention. Any equivalent implementations or modifications completed without departing from the spirit of the present invention should be included in the claims of the present invention.

1 基板
2 酸素欠損酸化物膜層
3 酸化物
4 複合材料
5 光源
6 エネルギー
21 酸素欠損酸化物
31 電子
32 ホール
DESCRIPTION OF SYMBOLS 1 Substrate 2 Oxygen deficient oxide film layer 3 Oxide 4 Composite material 5 Light source 6 Energy 21 Oxygen deficient oxide 31 Electron 32 Hole

Claims (15)

一つの基板と、一つの酸素欠損酸化物膜層と、酸化物とを含む原構造材料の光吸収範囲を拡大できる複合材料であって、
前記酸素欠損酸化物膜層と、酸化物は、同じ組成物質および異なる酸素含有量の材料で組成され、
前記基板の材質は構造支持強度を有するガラス又はプラスチックであり、
前記酸素欠損酸化物の酸素含有量は、前記酸化物の酸素含有量の50%以上であり、
前記基板の表面上に酸素欠損酸化物粒子をめっき、又は沈積して基板上に酸素欠損酸化物膜層を形成し、
前記酸素欠損酸化物膜層がチタン(Ti)よりなる酸素欠損酸化物粒子により組成され、
前記酸化物がチタン(Ti)よりなるナノ酸化物粒子により組成され、
前記酸化物は、酸素欠損酸化物の酸素欠損酸化物と接触して固定した後に複合材料を形成し、
前記複合材料が光源により照射されると、電子・ホールが分離する現象を生成できることを特徴とする、
原構造材料の光吸収範囲を拡大できる複合材料。
A composite material capable of expanding the light absorption range of an original structure material including one substrate, one oxygen-deficient oxide film layer, and an oxide,
The oxygen-deficient oxide film layer and the oxide are composed of the same composition material and different oxygen content materials,
The material of the substrate is glass or plastic having structural support strength,
The oxygen content of the oxygen deficient oxide is 50% or more of the oxygen content of the oxide,
Plating or depositing oxygen deficient oxide particles on the surface of the substrate to form an oxygen deficient oxide film layer on the substrate;
The oxygen deficient oxide film layer is composed of oxygen deficient oxide particles made of titanium (Ti) ,
The oxide is composed of nano-oxide particles made of titanium (Ti) ,
The oxide forms a composite material after fixing in contact with the oxygen deficient oxide of the oxygen deficient oxide,
When the composite material is irradiated with a light source, it can generate a phenomenon in which electrons and holes are separated,
A composite material that can expand the light absorption range of the original structural material.
前記該酸素欠損酸化物膜層は、酸素欠損酸化物粒子を積み上げ或いは酸素欠損酸化物膜層を嵌入することにより組成されることを特徴とする、請求項1に記載の原構造材料の光吸収範囲を拡大できる複合材料。   The light absorption of the original structure material according to claim 1, wherein the oxygen-deficient oxide film layer is composed by stacking oxygen-deficient oxide particles or inserting an oxygen-deficient oxide film layer. Composite materials that can expand the range. 前記酸素欠損酸化物膜層は、高温処理を経由してより安定する結晶格子を形成できることを、更に含むことを特徴とする、請求項1に記載の原構造材料の光吸収範囲を拡大できる複合材料。   2. The composite capable of expanding the light absorption range of the original structural material according to claim 1, further comprising the oxygen deficient oxide film layer being capable of forming a more stable crystal lattice through a high temperature treatment. material. 前記酸素欠損酸化物膜層の酸素欠損酸化物粒子間の接触・固定する方法は、基板の表面上における酸素欠損酸化物膜層を酸化物コロイド溶液の内に浸漬し、該酸素欠損酸化物膜層を取り出した後に、該酸素欠損酸化物膜層の上に残留する溶剤を揮発して除去することを、更に含むことを特徴とする、請求項1に記載の原構造材料の光吸収範囲を拡大できる複合材料。   The oxygen deficient oxide film layer is brought into contact with and fixed to the oxygen deficient oxide particles by immersing the oxygen deficient oxide film layer on the surface of the substrate in an oxide colloid solution, The light absorption range of the original structural material according to claim 1, further comprising volatilizing and removing the solvent remaining on the oxygen deficient oxide film layer after removing the layer. Composite material that can be expanded. 前記酸化物と該酸素欠損酸化物膜層の酸素欠損酸化物粒子の接触・固定する方法は、高温加熱,電子ビーム加熱,アルゴンイオン加速衝突,レーザー剥離または化学気相反応を利用することにより、酸化物粒子がキャリアガス又は真空中に浮かび、そして酸素欠損酸化物に接触して吸着することを、更に含むことを特徴とする、請求項1に記載の原構造材料の光吸収範囲を拡大できる複合材料。   The method of contacting and fixing the oxide and oxygen-deficient oxide particles of the oxygen-deficient oxide film layer is performed by using high-temperature heating, electron beam heating, argon ion accelerated collision, laser peeling, or chemical vapor reaction. The range of light absorption of the original structural material according to claim 1, further comprising the oxide particles floating in a carrier gas or vacuum and adsorbing in contact with the oxygen-deficient oxide. Composite material. 前記キャリアガスの中に浮かぶ酸化物粒子は、酸化物粒子を含有するコロイド溶液の中に注入し、キャリアガスがコロイド溶液から離れることに連れてキャリアガスの中に浮かぶことを、更に含むことを特徴とする、請求項に記載の原構造材料の光吸収範囲を拡大できる複合材料。 The oxide particles floating in the carrier gas further include injecting into the colloidal solution containing the oxide particles, and floating in the carrier gas as the carrier gas leaves the colloidal solution. A composite material capable of extending the light absorption range of the original structural material according to claim 5 . 前記酸化物と酸素欠損酸化物膜層の酸素欠損酸化物粒子の間が接触・固定した後に、形成された複合材料は、摂氏100度以下の温度に1時間以上加熱することにより酸化物と酸素欠損酸化物との間の水分を除去することを、更に含むことを特徴とする、請求項1に記載の原構造材料の光吸収範囲を拡大できる複合材料。   After the oxide and the oxygen-deficient oxide film layer in the oxygen-deficient oxide film layer are contacted and fixed, the formed composite material is heated to a temperature of 100 degrees Celsius or less for 1 hour or more to thereby form the oxide and oxygen. The composite material capable of extending the light absorption range of the original structural material according to claim 1, further comprising removing moisture between the deficient oxide. 前記酸素欠損酸化物膜層の酸素欠損酸化物粒子の間が接触・固定した後に、余計に他の有機物,酸化物または金属などの材料を添加することを、更に含むことを特徴とする、請求項1に記載の原構造材料の光吸収範囲を拡大できる複合材料。   The method further includes adding another material such as an organic substance, an oxide, or a metal after the oxygen-deficient oxide film layer is in contact with and fixed between the oxygen-deficient oxide film layers. A composite material capable of expanding the light absorption range of the original structural material according to Item 1. 一つの基板と、一つの酸素欠損酸化物膜層と、酸化物とを含む原構造材料の光吸収範囲を拡大できる複合材料であって、
前記酸素欠損酸化物膜層と、酸化物は、同じ組成物質および異なる酸素含有量の材料で組成され、
前記酸素欠損酸化物の酸素含有量は、前記酸化物の酸素含有量の50%以上であり、
前記酸素欠損酸化物膜層がチタン(Ti)よりなる酸素欠損酸化物粒子により組成され、
前記酸素欠損酸化物膜層自身が構造強度を有する基板であり、
前記酸化物がチタン(Ti)よりなるナノ酸化物粒子により組成され、
前記酸化物は、酸素欠損酸化物膜層の酸素欠損酸化物と接触して固定した後に、複合材料を形成し、
前記複合材料が光源により照射されると、電子・ホールが分離する現象を生成できることを特徴とする、
原構造材料の光吸収範囲を拡大できる複合材料。
A composite material capable of expanding the light absorption range of an original structure material including one substrate, one oxygen-deficient oxide film layer, and an oxide,
The oxygen-deficient oxide film layer and the oxide are composed of the same composition material and different oxygen content materials,
The oxygen content of the oxygen deficient oxide is 50% or more of the oxygen content of the oxide,
The oxygen deficient oxide film layer is composed of oxygen deficient oxide particles made of titanium (Ti) ,
The oxygen deficient oxide film layer itself is a substrate having structural strength,
The oxide is composed of nano-oxide particles made of titanium (Ti) ,
The oxide is fixed in contact with the oxygen deficient oxide of the oxygen deficient oxide film layer, and then forms a composite material,
When the composite material is irradiated with a light source, it can generate a phenomenon in which electrons and holes are separated,
A composite material that can expand the light absorption range of the original structural material.
前記酸素欠損酸化物膜層は、酸素欠損酸化物の粒子を積み上げ或いは酸素欠損酸化物膜層を嵌入することにより組成されることを特徴とする、請求項に記載の原構造材料の光吸収範囲を拡大できる複合材料。 The light absorption of the original structure material according to claim 9 , wherein the oxygen deficient oxide film layer is composed by stacking oxygen deficient oxide particles or inserting an oxygen deficient oxide film layer. Composite materials that can expand the range. 前記酸素欠損酸化物膜層は、高温処理を経由してより安定する結晶格子を形成できることを、更に含むことを特徴とする、請求項に記載の原構造材料の光吸収範囲を拡大できる複合材料。 10. The composite capable of expanding the light absorption range of the original structural material according to claim 9 , further comprising that the oxygen-deficient oxide film layer can form a more stable crystal lattice through high-temperature treatment. material. 前記酸化物と該酸素欠損酸化物膜層の酸素欠損酸化物粒子の接触・固定する方法は、高温加熱,電子ビーム加熱,アルゴンイオン加速衝突,レーザー剥離または化学気相反応を利用することにより、酸化物粒子がキャリアガス又は真空中に浮かび、そして酸素欠損酸化物に接触して吸着することを、更に含むことを特徴とする、請求項に記載の原構造材料の光吸収範囲を拡大できる複合材料。 The method of contacting and fixing the oxide and oxygen-deficient oxide particles of the oxygen-deficient oxide film layer is performed by using high-temperature heating, electron beam heating, argon ion accelerated collision, laser peeling, or chemical vapor reaction. The light absorption range of the original structural material according to claim 9 , further comprising the oxide particles floating in a carrier gas or vacuum and adsorbing in contact with the oxygen-deficient oxide. Composite material. 前記キャリアガスの中に浮かぶ酸化物粒子は、酸化物粒子を含有するコロイド溶液の中に注入し、キャリアガスがコロイド溶液から離れることに連れてキャリアガスの中に浮かぶことを、更に含むことを特徴とする、請求項12に記載の原構造材料の光吸収範囲を拡大できる複合材料。 The oxide particles floating in the carrier gas further include injecting into the colloidal solution containing the oxide particles, and floating in the carrier gas as the carrier gas leaves the colloidal solution. A composite material capable of extending the light absorption range of the original structural material according to claim 12 . 前記酸化物と酸素欠損酸化物膜層の酸素欠損酸化物粒子の間が接触・固定した後に、形成された複合材料は、摂氏100度以下の温度に1時間以上加熱することにより酸化物と酸素欠損酸化物との間の水分を除去することを、更に含むことを特徴とする、請求項に記載の原構造材料の光吸収範囲を拡大できる複合材料。 After the oxide and the oxygen-deficient oxide film layer in the oxygen-deficient oxide film layer are contacted and fixed, the formed composite material is heated to a temperature of 100 degrees Celsius or less for 1 hour or more to thereby form the oxide and oxygen. The composite material capable of extending the light absorption range of the original structural material according to claim 9 , further comprising removing moisture between the deficient oxide. 前記酸素欠損酸化物膜層の酸素欠損酸化物粒子の間が接触・固定した後に、余計に他の有機物,酸化物または金属などの材料を添加することを、更に含むことを特徴とする、請求項に記載の原構造材料の光吸収範囲を拡大できる複合材料。 After between oxygen deficiency oxide particles of the oxygen deficiency oxide film layer is in contact and fixed, extra other organics, the addition of a material such as oxide or metal, and further comprising, wherein Item 10. A composite material capable of expanding the light absorption range of the original structural material according to Item 9 .
JP2010169512A 2010-07-28 2010-07-28 Composite materials that can expand the light absorption range of the original structural material Expired - Fee Related JP5225337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010169512A JP5225337B2 (en) 2010-07-28 2010-07-28 Composite materials that can expand the light absorption range of the original structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169512A JP5225337B2 (en) 2010-07-28 2010-07-28 Composite materials that can expand the light absorption range of the original structural material

Publications (2)

Publication Number Publication Date
JP2012030144A JP2012030144A (en) 2012-02-16
JP5225337B2 true JP5225337B2 (en) 2013-07-03

Family

ID=45844228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169512A Expired - Fee Related JP5225337B2 (en) 2010-07-28 2010-07-28 Composite materials that can expand the light absorption range of the original structural material

Country Status (1)

Country Link
JP (1) JP5225337B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601532B2 (en) * 1999-08-05 2004-12-15 株式会社豊田中央研究所 Photocatalyst substance, photocatalyst body and production method thereof
JP3923462B2 (en) * 2003-10-02 2007-05-30 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
JP2006265697A (en) * 2005-03-25 2006-10-05 Sharp Corp Semiconductor light electrode for water electrolysis
JP5401666B2 (en) * 2007-03-08 2014-01-29 国立大学法人 千葉大学 Nitrogen fixing material, method for producing the same, and nitrogen fixing method

Also Published As

Publication number Publication date
JP2012030144A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
Yang et al. Recent advances in earth‐abundant photocathodes for photoelectrochemical water splitting
Wheeler et al. Photoelectrochemical properties and stability of nanoporous p-type LaFeO3 photoelectrodes prepared by electrodeposition
Liu et al. 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting
Mali et al. Enhanced photoelectrochemical solar water splitting using a platinum-decorated CIGS/CdS/ZnO photocathode
Tian et al. Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells
Chang et al. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture
CN109267096B (en) Efficient and stable silicon-based photolysis water hydrogen production electrode and preparation method and application thereof
CN103055873A (en) Composite photocatalyst membrane material with hierarchical pore structure and preparation method thereof
CN110368968B (en) NiFe-LDH/Ti3C2/Bi2WO6Nano-sheet array and preparation method and application thereof
WO2022062228A1 (en) Z-type heterojunction photoanode production method and z-type heterojunction photoanode
Esakki et al. Influence on the efficiency of dye-sensitized solar cell using Cd doped ZnO via solvothermal method
TW201234625A (en) Compound semiconductor thin-film solar cell and method for producing thereof
Geng et al. Efficient photocatalytic inactivation of E. coli by Mn-CdS/ZnCuInSe/CuInS2 quantum dots-sensitized TiO2 nanowires
CN111101142B (en) Construction method of graphical integrated high-efficiency photocatalytic decomposition water system
JP6143737B2 (en) Compound solar cell and method for forming a thin film having sulfide single crystal nanoparticles
CN107742652A (en) A kind of cadmium telluride diaphragm solar battery of composite window layer and preparation method thereof
CN102324306A (en) Silver nanowire doped dye-sensitized solar cell working electrode and preparation method thereof
JP5225337B2 (en) Composite materials that can expand the light absorption range of the original structural material
CN105514283B (en) The perovskite solar cell and preparation method of a kind of dendroid complex light anode
Qi et al. Construction of In2S3/ag-Ag2S-AgInS2/TNR Nanoarrays with excellent Photoelectrochemical and photocatalytic properties
Hu et al. Enhanced photocurrent and photocatalytic degradation of methyl orange in cobalt hydroxide loaded titanium dioxide film
CN105895735A (en) Method for preparing CZTS (copper zinc tin sulfide) thin-film solar cell through zinc oxide target sputtering
TWI386308B (en) It is possible to enlarge the composite material in which the original constituent material absorbs the light range
CN110010770A (en) A kind of preparation of the perovskite solar battery of gold bipyramid plasma enhancing
CN109378387A (en) One kind growing inorganic CuGaO based on PLD2The translucent battery of transparent membrane

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5225337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees