[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5223666B2 - Circuit board manufacturing method and semiconductor device manufacturing method - Google Patents

Circuit board manufacturing method and semiconductor device manufacturing method Download PDF

Info

Publication number
JP5223666B2
JP5223666B2 JP2008333019A JP2008333019A JP5223666B2 JP 5223666 B2 JP5223666 B2 JP 5223666B2 JP 2008333019 A JP2008333019 A JP 2008333019A JP 2008333019 A JP2008333019 A JP 2008333019A JP 5223666 B2 JP5223666 B2 JP 5223666B2
Authority
JP
Japan
Prior art keywords
solder
circuit board
metal
tin
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008333019A
Other languages
Japanese (ja)
Other versions
JP2010153744A (en
Inventor
延弘 今泉
元亨 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008333019A priority Critical patent/JP5223666B2/en
Publication of JP2010153744A publication Critical patent/JP2010153744A/en
Application granted granted Critical
Publication of JP5223666B2 publication Critical patent/JP5223666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Wire Bonding (AREA)

Description

本発明は回路基板の製造方法及び半導体装置の製造方法に関するものである。   The present invention relates to a circuit board manufacturing method and a semiconductor device manufacturing method.

近年のコンピュータシステムの回路基板は、高速化且つ大規模化に対応できることが要求される。そのため、半導体素子同士の接続方法或いは半導体素子と回路基板の接続方法として金バンプを用いたフリップチップ接合が提供されている。   A circuit board of a computer system in recent years is required to be able to cope with high speed and large scale. Therefore, flip-chip bonding using gold bumps is provided as a method for connecting semiconductor elements or a method for connecting a semiconductor element and a circuit board.

このようなフリップチップ実装においては、回路基板の実装面に設けた基板電極上にはんだを形成した後、半導体素子の端子と基板電極上のはんだを接合することにより電気的に接続する金−はんだ接合方式が用いられている。   In such flip chip mounting, solder is formed on a substrate electrode provided on a mounting surface of a circuit board, and then electrically connected by joining a terminal of a semiconductor element and solder on the substrate electrode. A joining method is used.

ここで、図12を参照して従来の金−はんだ接合プロセスを説明する。図12は従来の金−はんだ接合プロセスの説明図であり、図12(a)に示すように、回路基板61に設けた基板電極62上に錫を含むはんだ63を形成し、半導体素子71に形成されている金端子72と位置合わせを行う。   Here, a conventional gold-solder joining process will be described with reference to FIG. FIG. 12 is an explanatory view of a conventional gold-solder joining process. As shown in FIG. 12A, a solder 63 containing tin is formed on a substrate electrode 62 provided on a circuit board 61, and a semiconductor element 71 is formed. Alignment with the formed gold terminal 72 is performed.

次いで、図12(b)に示すように、例えば、280℃〜320℃に加熱したボンディング加熱ヘッド64を半導体素子71に当接して押圧し、金端子72から熱を供給して錫を含むはんだ63を溶融させることにより電気的導通を得る。   Next, as shown in FIG. 12B, for example, a bonding heating head 64 heated to 280 ° C. to 320 ° C. is pressed against the semiconductor element 71, and heat is supplied from the gold terminal 72 so that the solder contains tin. Electrical conduction is obtained by melting 63.

次いで、図12(c)に示すように、シリンジ65を用いてアンダーフィル樹脂66を半導体素子71と回路基板61との間に注入することによって、半導体実装装置の基本構成が完成する。 Next, as shown in FIG. 12C, the basic configuration of the semiconductor mounting apparatus is completed by injecting the underfill resin 66 between the semiconductor element 71 and the circuit board 61 using the syringe 65.

この方式は、接合時に低荷重で実装を行うことができるため、半導体素子71を回路基板61に実装する際の搭載精度の低下が防止でき、半導体素子71の高密度化に伴う端子に精細化に対応できる技術とされている。   Since this method can be mounted with a low load at the time of bonding, it is possible to prevent a reduction in mounting accuracy when the semiconductor element 71 is mounted on the circuit board 61 and to refine the terminals due to the higher density of the semiconductor element 71. It is considered to be a technology that can cope with this.

現在、基板回路上に錫を含むはんだを形成する技術としては、電解めっき法、無電解めっき法、或いは、基板電極上に粘着材を形成し、はんだ粉を粘着させることによるスーパージャフィット方式がある。
特開2005−057245号公報
Currently, as a technique for forming a solder containing tin on a substrate circuit, there is an electroplating method, an electroless plating method, or a super just method by forming an adhesive material on a substrate electrode and adhering solder powder. is there.
JP 2005-057245 A

しかし、電解めっき法の場合にはめっき厚のバラツキが大きく、半導体素子を接合した際に、錫またははんだ量が多い場合には端子間のショートが発生し、一方、量が少ない場合には接合部が破断するオープン不良発生するという問題がある。また、めっき線の形成が必須であるため、めっき線が半導体パッケージの小型化の妨げになる。   However, in the case of the electrolytic plating method, the plating thickness varies widely, and when the semiconductor element is joined, if the amount of tin or solder is large, a short circuit occurs between the terminals, while if the amount is small, the joining is performed. There is a problem that an open defect occurs in which the part breaks. Moreover, since it is essential to form a plated wire, the plated wire hinders miniaturization of the semiconductor package.

また、スーパージャフィット方式においては、はんだ粉末を原料とするため、半導体素子の端子がファインピッチになった場合に、微小な粉末を製造するためには製造コストが高くなるという問題がある。また、粉末の表面積が大きくなるため、表面の酸化の影響により安定した形状が得られにくいという問題もある。   Moreover, in the super just method, since solder powder is used as a raw material, there is a problem that the manufacturing cost is high in order to manufacture a fine powder when the terminals of the semiconductor element have a fine pitch. In addition, since the surface area of the powder is increased, there is a problem that it is difficult to obtain a stable shape due to the effect of surface oxidation.

さらに、無電解めっき法の場合には錫またははんだ量はバラツキが少なく製造できるが、回路基板の配線を構成する銅を金属置換して形成する置換型めっき法のみしか量産性を満足できるものがなく、その膜厚は2μm程度までであり、半導体素子実装後に端子の強度を確保できるような十分な厚さが確保できないという問題がある。   Furthermore, in the case of the electroless plating method, the amount of tin or solder can be manufactured with little variation, but only the substitutional plating method in which the copper constituting the wiring of the circuit board is formed by metal replacement can satisfy mass productivity. However, the film thickness is up to about 2 μm, and there is a problem that a sufficient thickness that can secure the strength of the terminal after mounting the semiconductor element cannot be secured.

したがって、本発明は、金−はんだ接合方式に用いる基板配線上に形成する錫を含むはんだを、膜厚バラツキを抑制して厚付けすることを目的とする。   Therefore, an object of the present invention is to thicken a solder containing tin formed on a substrate wiring used for a gold-solder joining method while suppressing variations in film thickness.

本発明の一観点からは、回路基板の実装面に設けられた複数の接続部導体パターンの間に、金属置換により錫を含むはんだに置換可能な金属膜を設ける工程と、前記金属膜を金属置換により錫を含むはんだに置換する工程と、前記置換した錫を含むはんだを溶融させて、前記接続部導体パターン間で分割して前記接続部導体パターン表面に錫を含むはんだを厚付けする工程とを有する回路基板の製造方法が提供される。 From one aspect of the present invention, a step of providing a metal film that can be replaced with solder containing tin by metal substitution between a plurality of connection portion conductor patterns provided on a mounting surface of a circuit board; Substituting solder containing tin by substitution, melting the solder containing substituted tin, dividing between the connection part conductor patterns, and thickening the solder containing tin on the surface of the connection part conductor pattern A circuit board manufacturing method is provided.

また、本発明の別の観点からは、回路基板の実装面に設けられた複数の接続部導体パターンの間に、金属置換により錫を含むはんだに置換可能な金属膜を設ける工程と、前記金属膜を金属置換により錫を含むはんだに置換する工程と、前記置換した錫を含むはんだを溶融させて、前記接続部導体パターン間で分割して前記接続部導体パターン表面に錫を含むはんだを厚付けする工程と、前記錫を含むはんだを厚付けした接続部導体パターンと半導体素子に設けた接続端子とをフリップチップボンディングにより電気的に接続する工程とを有する半導体装置の製造方法が提供される。 According to another aspect of the present invention, a step of providing a metal film that can be replaced with solder containing tin by metal replacement between a plurality of connection portion conductor patterns provided on a mounting surface of a circuit board; A step of replacing the film with a solder containing tin by metal substitution, and melting the solder containing the substituted tin, dividing the connection part conductor pattern, and thickening the solder containing tin on the surface of the connection part conductor pattern There is provided a method of manufacturing a semiconductor device, including a step of attaching, and a step of electrically connecting the connection conductor pattern thickened with the solder containing tin and the connection terminal provided on the semiconductor element by flip chip bonding. .

開示の回路基板の製造方法及び半導体装置の製造方法によれば、基板配線上に形成する錫を含むはんだを、膜厚バラツキを抑制して厚付けすることができ、それによって、半導体パッケージの小型化、ファインピッチの半導体素子の端子を用いた信頼性の高い実装を安定して行うことが可能になる。   According to the disclosed circuit board manufacturing method and semiconductor device manufacturing method, it is possible to thicken the solder containing tin formed on the substrate wiring while suppressing variation in film thickness, thereby reducing the size of the semiconductor package. And reliable mounting using the terminals of the fine pitch semiconductor element.

ここで、図1乃至図5を参照して、本発明の実施の形態の回路基板の製造方法を説明する。図1は、本発明の実施の形態の回路基板の製造工程の説明図であり、まず、図1(a)に示すように、回路基板1上にめっきシード層2を介して銅からなるペリフェラル基板電極3を設ける。   Here, with reference to FIG. 1 thru | or FIG. 5, the manufacturing method of the circuit board of embodiment of this invention is demonstrated. FIG. 1 is an explanatory diagram of a manufacturing process of a circuit board according to an embodiment of the present invention. First, as shown in FIG. 1A, a peripheral made of copper on a circuit board 1 with a plating seed layer 2 interposed therebetween. A substrate electrode 3 is provided.

次いで、図1(b)に示すように、無電解めっき法或いはスパッタリング法を用いて、ペリフェラル基板電極3を設けた領域に0.5μm〜2.5μmの厚さの置換用金属膜4を設ける。この場合の金属膜4は、金属置換により錫を含むはんだに置換可能な金属からなり、例えば、Cu、Al、Cr或いはこれらの合金からなる。   Next, as shown in FIG. 1B, a replacement metal film 4 having a thickness of 0.5 μm to 2.5 μm is provided in the region where the peripheral substrate electrode 3 is provided using an electroless plating method or a sputtering method. . In this case, the metal film 4 is made of a metal that can be replaced with a solder containing tin by metal substitution, and is made of, for example, Cu, Al, Cr, or an alloy thereof.

次いで、図1(c)に示すように、Snを含む置換型無電解めっき浴を用いて置換用金属膜4を、錫を含むはんだ5に置換する。この場合の錫を含むはんだとは、Sn,Sn−Ag,Sn−Bi,Sn−Cu,Sn−Zn,Sn−Ag−Cu等が挙げられ、Snの組成比が複数の構成元素の中で最大であることが望ましく、その組成に応じてSnを含む置換型無電解めっき浴の組成を変える。なお、AgやBi等を添加することによってはんだの融点がSnの融点より低くなる。   Next, as shown in FIG. 1C, the replacement metal film 4 is replaced with solder 5 containing tin using a substitutional electroless plating bath containing Sn. Examples of the solder containing tin include Sn, Sn-Ag, Sn-Bi, Sn-Cu, Sn-Zn, Sn-Ag-Cu, and the like. The maximum is desirable, and the composition of the substitutional electroless plating bath containing Sn is changed according to the composition. Note that by adding Ag, Bi, or the like, the melting point of the solder becomes lower than the melting point of Sn.

次いで、図1(d)に示すように、加熱処理によって錫を含むはんだ5を溶融させる。
この時、ペリフェラル基板電極3の表面と回路基板1の表面における溶融はんだの接触角が異なるので、表面張力によって溶融はんだはペリフェラル基板電極3の表面に集まってはんだ層6を形成する。このはんだ層6は、ペリフェラル基板電極3同士の間の錫を含むはんだ5も集めたものになるため、ペリフェラル基板電極3同士の間隔にもよるが初期に成膜した置換用金属膜の膜厚より2倍以上の厚さに厚付けされる。
Next, as shown in FIG. 1D, the solder 5 containing tin is melted by heat treatment.
At this time, since the contact angle of the molten solder on the surface of the peripheral substrate electrode 3 and the surface of the circuit substrate 1 is different, the molten solder gathers on the surface of the peripheral substrate electrode 3 due to surface tension to form the solder layer 6. Since this solder layer 6 is also a collection of solder 5 containing tin between the peripheral substrate electrodes 3, the thickness of the replacement metal film formed in the initial stage depends on the distance between the peripheral substrate electrodes 3. More than twice as thick.

なお、この場合のはんだ層6は、金属置換工程の前に置換用金属を接続バッド部のみに残存するようにエッチングするか、或いは、金属置換工程の後に錫を含むはんだを接続バッド部のみに残存するようにエッチングして形成する。   In this case, the solder layer 6 is etched so that the replacement metal remains only in the connection pad portion before the metal replacement step, or the solder containing tin is applied only to the connection pad portion after the metal replacement step. Etching is performed so that it remains.

図2は、このようにして形成した回路基板と、回路基板を用いた実装構造の説明図である。図2(a)は回路基板の概念的平面図であり、回路基板1の実装面にペリフェラル基板電極3が整列して形成され、上述のように接続パッドの表面にのみ錫或いは錫を主成分とするはんだからなるはんだ層6が形成されている。また、それ以外の領域はソルダーレジスト7で覆われている。   FIG. 2 is an explanatory diagram of the circuit board thus formed and a mounting structure using the circuit board. FIG. 2A is a conceptual plan view of the circuit board, in which the peripheral substrate electrode 3 is formed in alignment on the mounting surface of the circuit board 1, and tin or tin is the main component only on the surface of the connection pad as described above. A solder layer 6 made of the solder is formed. The other areas are covered with the solder resist 7.

図2(b)は、回路基板を用いた実装構造の概念的断面図であり、従来例で説明した通りの工程で、半導体素子8に設けた金バンプ9を接続パッドに当接させて加熱することによって金−はんだ接合を形成する。次いで、アンダーフィル樹脂10を充填することによって実装半導体装置が完成する。   FIG. 2B is a conceptual cross-sectional view of a mounting structure using a circuit board. In the process as described in the conventional example, the gold bumps 9 provided on the semiconductor element 8 are brought into contact with the connection pads and heated. To form a gold-solder joint. Next, the mounting semiconductor device is completed by filling the underfill resin 10.

この本発明の実施の形態においては、バラツキの少ない無電解めっき法或いはスパッタリング法によって置換用金属膜を成膜しているので、接続バッドを覆うはんだ層の厚さのバラツキも少なく、且つ、半導体素子の端子強度が得られる厚さに形成することができる。それによって、ファインピッチに対応した半導体装置の接続信頼性の向上が可能になる。   In this embodiment of the present invention, since the replacement metal film is formed by the electroless plating method or the sputtering method with little variation, the variation in the thickness of the solder layer covering the connection pad is small, and the semiconductor It can be formed to a thickness that provides the terminal strength of the element. Thereby, the connection reliability of the semiconductor device corresponding to the fine pitch can be improved.

なお、置換用金属膜は回路基板の製造方法として広く知られているセミアディティブ工法におけるめっきシード層を用いても良いので、その様子を図3及び図4を参照して説明する。まず、図3(a)に示すように、基板ベース層11の表面に厚さが、例えば、0.5μm〜2μmのCuめっきシード層12を設け、めっきフレームとなるレジストパターン13を設ける。   The replacement metal film may be a plating seed layer in a semi-additive method that is widely known as a method for manufacturing a circuit board, which will be described with reference to FIGS. First, as shown in FIG. 3A, a Cu plating seed layer 12 having a thickness of, for example, 0.5 μm to 2 μm is provided on the surface of the substrate base layer 11, and a resist pattern 13 serving as a plating frame is provided.

次いで、図3(b)に示すように、電解めっき法によりCuめっき層14を形成する。
次いで、図3(c)に示すようにレジストパターン13を除去する。次いで、図4(d)に示すように、硫酸系のCuエッチング液によりCuめっきシード層12の露出部を除去して残部を配線パターンとするのが従来のセミアディティブ工法である。しかし、本発明の実施の形態においては、ペリフェラル基板電極となるCuめっき層14の周囲のCuめっきシード層は残存させておく。
Next, as shown in FIG. 3B, a Cu plating layer 14 is formed by electrolytic plating.
Next, the resist pattern 13 is removed as shown in FIG. Next, as shown in FIG. 4D, in the conventional semi-additive method, the exposed portion of the Cu plating seed layer 12 is removed with a sulfuric acid-based Cu etching solution and the remaining portion is used as a wiring pattern. However, in the embodiment of the present invention, the Cu plating seed layer around the Cu plating layer 14 to be the peripheral substrate electrode is left.

次いで、図4(e)に示すように、ペリフェラル基板電極となるCuめっき層14の周辺部のみを露出させた状態で、Sn置換型無電解めっき浴を用いて無電解めっきすることにより、Cuめっきシード層12を錫はんだ層15に置換するとともに、Cuめっき層14の表面も錫はんだ層15に置換する。   Next, as shown in FIG. 4 (e), by performing electroless plating using an Sn substitutional electroless plating bath with only the peripheral portion of the Cu plating layer 14 serving as a peripheral substrate electrode exposed, Cu plating is performed. The plating seed layer 12 is replaced with the tin solder layer 15 and the surface of the Cu plating layer 14 is also replaced with the tin solder layer 15.

次いで、図4(f)に示すように、加熱により錫はんだ層15を溶融させることにより、溶融錫の表面張力によりCuめっき層14の表面に厚膜の錫はんだ層16が形成されるとともに、隣接するCuめっき層14同士の間が電気的に分離される。この場合には、置換用金属膜の成膜工程を省略することができるので、工程を簡素化することができる。   Next, as shown in FIG. 4 (f), by melting the tin solder layer 15 by heating, a thick tin solder layer 16 is formed on the surface of the Cu plating layer 14 by the surface tension of the molten tin, Adjacent Cu plating layers 14 are electrically separated from each other. In this case, the process of forming the replacement metal film can be omitted, and therefore the process can be simplified.

また、金属置換無電解めっき工程は2段階工程でも良いので、その様子を図5を参照して説明する。まず、図5(a)に示すように、回路基板21上にめっきシード層22を介して銅からなるペリフェラル基板電極23を設ける。次いで、図5(b)に示すように、無電解めっき法を用いて、ペリフェラル基板電極23を設けた領域に厚さが、例えば、2μmの厚さの置換用金属膜24を設ける。   Further, since the metal substitution electroless plating process may be a two-stage process, the state will be described with reference to FIG. First, as shown in FIG. 5A, a peripheral substrate electrode 23 made of copper is provided on a circuit substrate 21 via a plating seed layer 22. Next, as shown in FIG. 5B, a replacement metal film 24 having a thickness of, for example, 2 μm is provided in the region where the peripheral substrate electrode 23 is provided using an electroless plating method.

次いで、図5(c)に示すように、例えば、60℃のSn置換型無電解めっき浴を用いて置換用金属膜24の表面の0.1μm〜1.5μm、例えば、0.5μm程度を錫はんだ層25に置換する。   Next, as shown in FIG. 5 (c), for example, using a Sn substitution type electroless plating bath at 60 ° C., the surface of the replacement metal film 24 is 0.1 μm to 1.5 μm, for example, about 0.5 μm. The tin solder layer 25 is replaced.

次いで、図5(d)に示すように、より高温にした例えば、70℃のSn置換型無電解めっき浴を用いて置換用金属膜24の残部を錫はんだ層26に置換する。なお、第1段階のSn置換型無電解めっき浴と第2段階のSn置換型無電解めっき浴の成分は、Sn置換型無電解めっきのめっき形成速度が第2段階のめっき浴の方が速くなるように調整する。   Next, as shown in FIG. 5D, the remaining portion of the replacement metal film 24 is replaced with a tin solder layer 26 using a Sn substitution type electroless plating bath at a higher temperature, for example, 70 ° C. The components of the first stage Sn-substitution type electroless plating bath and the second stage Sn-substitution type electroless plating bath are higher in the plating speed of the Sn-substitution type electroless plating in the second stage plating bath. Adjust so that

この場合、第1段階のSn置換型無電解めっき浴は、低い温度でゆっくり形成しているために、緻密な錫はんだ層25とすることができる。一方、第1段階に比して、高温で早く錫はんだ層を形成するSn置換型無電解めっき浴では、膜質が良くない。しかしながら、本実施形態では、第1段階で緻密な錫はんだ層25を形成しているため、第2段階では、この緻密な錫はんだ層25の影響を受け、錫はんだ層の形成速度を上げても、膜質を保つことができる。   In this case, since the first-stage Sn-substitution type electroless plating bath is slowly formed at a low temperature, a dense tin solder layer 25 can be formed. On the other hand, film quality is not good in the Sn substitution type electroless plating bath which forms the tin solder layer quickly at a high temperature as compared with the first stage. However, in the present embodiment, the dense tin solder layer 25 is formed in the first stage. Therefore, in the second stage, the formation speed of the tin solder layer is increased under the influence of the dense tin solder layer 25. Even the film quality can be maintained.

次いで、図5(e)に示すように、加熱処理によって錫はんだ層25,26を溶融させてペリフェラル基板電極23の表面に置換用金属膜24の膜厚の2倍以上の膜厚の錫はんだ層27で覆う。このように、2段階金属置換を行うことによって、錫はんだ層25,26が置換用金属膜24の表面の膜質を拾うことがなく、良質の錫はんだ層27とすることができる。   Next, as shown in FIG. 5 (e), the tin solder layers 25 and 26 are melted by heat treatment, and a tin solder having a thickness of at least twice the thickness of the replacement metal film 24 on the surface of the peripheral substrate electrode 23. Cover with layer 27. As described above, by performing the two-stage metal replacement, the tin solder layers 25 and 26 do not pick up the film quality of the surface of the replacement metal film 24, and the high-quality tin solder layer 27 can be obtained.

以上を前提として、次に、図6及び図7を参照して本発明の実施例1の回路基板の製造工程を説明する。まず、図6(a)に示すように、回路基板31上に幅が例えば、25μmのペリフェラル基板電極32を25μm間隔で400個形成し、半導体素子の搭載エリアの回路基板31上にソルダーレジスト33を形成する。なお、回路基板31は例えば、厚さ0.35mmのBTレジン製の基板であり例えば、8.5mm角の半導体素子を搭載できるものである。また、図は接続バッド近傍の一部を斜視図として示したものである。   Based on the above, next, the manufacturing process of the circuit board according to the first embodiment of the present invention will be described with reference to FIGS. First, as shown in FIG. 6A, 400 peripheral substrate electrodes 32 having a width of, for example, 25 μm are formed on the circuit substrate 31 at intervals of 25 μm, and a solder resist 33 is formed on the circuit substrate 31 in the semiconductor element mounting area. Form. The circuit board 31 is, for example, a BT resin board having a thickness of 0.35 mm, and can be mounted with, for example, an 8.5 mm square semiconductor element. Further, the figure shows a part near the connection pad as a perspective view.

次いで、図6(b)に示すように、ソルダーレジスト33に合わせる形でめっきレジスト34を形成し、接続パッド部を開口させる。次いで、図6(c)に示すように、無電解銅めっき処理により厚さが、例えば、2μmの無電解Cuめっき層35を形成する。次いで、図7(d)に示すように、めっきレジスト34を剥離することによって、めっきレジスト34上に堆積した無電解Cuめっき層35も同時に除去する。   Next, as shown in FIG. 6B, a plating resist 34 is formed so as to match the solder resist 33, and the connection pad portion is opened. Next, as shown in FIG. 6C, an electroless Cu plating layer 35 having a thickness of, for example, 2 μm is formed by electroless copper plating. Next, as shown in FIG. 7D, the electroless Cu plating layer 35 deposited on the plating resist 34 is removed at the same time by peeling the plating resist 34.

次いで、図7(e)に示すように、例えば、置換型無電解すずめっき浴580MJ(石原薬品製商品型番)を用いて、60℃で30分間無電解めっき処理を行う。この置換型無電解すずめっき処理によって、無電解Cuめっき層35は殆ど純粋なSnに置換されてSnはんだ層36となる。   Next, as shown in FIG. 7E, for example, electroless plating treatment is performed at 60 ° C. for 30 minutes using a substitutional electroless tin plating bath 580MJ (Ishihara Pharmaceutical product model number). By this substitutional electroless tin plating process, the electroless Cu plating layer 35 is replaced with almost pure Sn to become a Sn solder layer 36.

次いで、図7(f)に示すように、めっき処理部にフラックスを塗布し、回路基板31の表面温度が最高で260℃になるように設定されたリフロー炉を用いて、リフロー処理を行い、フラックス洗浄を行う。このリフロー処理工程においてSnはんだ層36は溶融し、溶融したSnの表面張力により厚膜のSnはんだ層37が接続パッドの表面を覆う。   Next, as shown in FIG. 7 (f), a flux is applied to the plating processing section, and a reflow process is performed using a reflow furnace set so that the surface temperature of the circuit board 31 is 260 ° C. at the maximum, Perform flux cleaning. In this reflow processing step, the Sn solder layer 36 is melted, and a thick Sn solder layer 37 covers the surface of the connection pad by the surface tension of the melted Sn.

このSnはんだ層37の高さを蛍光X線装置を用いて測定した結果、Snはんだ層37の最大厚さは、平均4.7μmであり、従来の工法でめっき処理を行った場合には、最大2.1μm厚であったため、2倍以上の厚さにできることが確認できた。   As a result of measuring the height of the Sn solder layer 37 using a fluorescent X-ray apparatus, the maximum thickness of the Sn solder layer 37 is 4.7 μm on average, and when plating is performed by a conventional method, Since the maximum thickness was 2.1 μm, it was confirmed that the thickness could be twice or more.

以降は、上記の図2に示したように、400個の端子上にワイヤボンディングの金ボールを利用した金端子を備えた8.5mm角の半導体素子をこの回路基板31上に実装する。この時の金端子の形成条件は、ボールボンダーのステージ温度200℃とした。   Thereafter, as shown in FIG. 2 described above, an 8.5 mm square semiconductor element having gold terminals using wire-bonded gold balls on 400 terminals is mounted on the circuit board 31. The gold terminal formation conditions at this time were a ball bonder stage temperature of 200 ° C.

この半導体素子をフリップチップボンダにより、回路基板31と位置合わせを行った後、半導体素子側から温度300℃/3秒で、荷重を3g/端子を印加することにより、接合した。 その後、アンダーフィル材を注入し150℃の恒温槽で2時間硬化させた。   After aligning the semiconductor element with the circuit board 31 using a flip chip bonder, bonding was performed by applying a load of 3 g / terminal at a temperature of 300 ° C./3 seconds from the semiconductor element side. Thereafter, an underfill material was injected and cured in a thermostatic bath at 150 ° C. for 2 hours.

実装後に完成した半導体装置の接合部を断面研磨により観察した。このとき、従来工法では、Snはんだが金端子の先端部にしか存在せず、金端子下部に接合応力が原因と思われるクラックが発生していたが、本発明の実施例1ではSnはんだが金端子の外周を十分に覆う形で存在しており、接合部にクラックの発生も見られなかった。   The joint portion of the semiconductor device completed after mounting was observed by cross-sectional polishing. At this time, in the conventional method, Sn solder was present only at the tip of the gold terminal, and cracks that were thought to be caused by bonding stress occurred at the bottom of the gold terminal. However, in Example 1 of the present invention, Sn solder was present. It existed in a form that sufficiently covered the outer periphery of the gold terminal, and no cracks were observed at the joint.

次に、図8及び図9を参照して本発明の実施例2の回路基板の製造工程を説明する。まず、図8(a)に示すように、セミアディティブ法により回路基板41上にCuめっきシード層42を介して幅が例えば、25μmのペリフェラル基板電極となるCuめっき層43を25μm間隔で400個形成したのち、レジストパターン(図示は省略)を除去する。   Next, the manufacturing process of the circuit board according to the second embodiment of the present invention will be described with reference to FIGS. First, as shown in FIG. 8A, 400 Cu plating layers 43 serving as peripheral substrate electrodes having a width of, for example, 25 μm are formed on the circuit substrate 41 via a Cu plating seed layer 42 by a semi-additive method at intervals of 25 μm. After the formation, the resist pattern (not shown) is removed.

次いで、図8(b)に示すように、接続パッド部を覆うようにエッチングレジスト44を設ける。次いで、図8(c)に示すように、エッチングレジスト44をマスクとしてCuめっきシード層42の露出部をエッチングにより除去したのち、エッチングレジスト44を除去する。   Next, as shown in FIG. 8B, an etching resist 44 is provided so as to cover the connection pad portion. Next, as shown in FIG. 8C, the exposed portion of the Cu plating seed layer 42 is removed by etching using the etching resist 44 as a mask, and then the etching resist 44 is removed.

次いで、図9(d)に示すように、接続パッド部を露出するようにソルダーレジスト45を形成する。次いで、図9(e)に示すように、例えば、置換型無電解すずめっき浴580MJ(石原薬品製商品型番)を用いて、60℃で30分間無電解めっき処理を行う。この置換型無電解すずめっき処理によって、Cuめっきシード層42及びCuめっき層43は殆ど純粋なSnに置換されてSnはんだ層46となる。   Next, as shown in FIG. 9D, a solder resist 45 is formed so as to expose the connection pad portion. Next, as shown in FIG. 9E, for example, an electroless plating treatment is performed at 60 ° C. for 30 minutes using a substitutional electroless tin plating bath 580MJ (product model number manufactured by Ishihara Pharmaceutical). By this substitutional electroless tin plating process, the Cu plating seed layer 42 and the Cu plating layer 43 are replaced with almost pure Sn to become the Sn solder layer 46.

次いで、図9(f)に示すように、めっき処理部にフラックスを塗布し、回路基板41の表面温度が最高で260℃になるように設定されたリフロー炉を用いてリフロー処理を行い、フラックス洗浄を行う。このリフロー処理工程においてSnはんだ層46は溶融し、溶融したSnの表面張力により厚膜のSnはんだ層47が接続パッドの表面を覆う。   Next, as shown in FIG. 9 (f), flux is applied to the plating portion, and reflow treatment is performed using a reflow furnace set so that the surface temperature of the circuit board 41 is 260 ° C. at the maximum. Wash. In this reflow process, the Sn solder layer 46 is melted, and the thick Sn solder layer 47 covers the surface of the connection pad by the surface tension of the melted Sn.

このSnはんだ層47の高さを蛍光X線装置を用いて測定した結果、Snはんだ層47の最大厚さは、平均4.6μmであり、従来の工法でめっき処理を行った場合には、最大2.1μm厚であったため、2倍以上の厚さにできることが確認できた。   As a result of measuring the height of the Sn solder layer 47 using a fluorescent X-ray apparatus, the maximum thickness of the Sn solder layer 47 is an average of 4.6 μm, and when the plating process is performed by the conventional method, Since the maximum thickness was 2.1 μm, it was confirmed that the thickness could be twice or more.

以降は、上記の実施例1と同様にして回路基板41上に半導体素子を実装して半導体装置を完成した。実装後に完成した半導体装置の接合部を断面研磨により観察した。実施例1と同様にSnはんだが金端子の外周を十分に覆う形で存在しており、接合部にクラックの発生も見られなかった。   Thereafter, the semiconductor device was completed by mounting the semiconductor element on the circuit board 41 in the same manner as in the first embodiment. The joint portion of the semiconductor device completed after mounting was observed by cross-sectional polishing. Similar to Example 1, Sn solder was present in a form that sufficiently covered the outer periphery of the gold terminal, and no cracks were observed at the joint.

次に、図10及び図11を参照して本発明の実施例3の回路基板の製造工程を説明する。まず、図10(a)に示すように、セミアディティブ法により回路基板41上にCuめっきシード層42を介して幅が例えば、25μmのペリフェラル基板電極となるCuめっき層43を25μm間隔で400個形成したのち、レジストパターン(図示は省略)を除去する。   Next, the manufacturing process of the circuit board according to the third embodiment of the present invention will be described with reference to FIGS. First, as shown in FIG. 10A, 400 Cu plating layers 43 serving as peripheral substrate electrodes having a width of, for example, 25 μm are formed on the circuit substrate 41 via a Cu plating seed layer 42 by a semi-additive method at intervals of 25 μm. After the formation, the resist pattern (not shown) is removed.

次いで、図10(b)に示すように、例えば、置換型無電解すずめっき浴580MJ(石原薬品製商品型番)を用いて、60℃で30分間無電解めっき処理を行う。この置換型無電解すずめっき処理によって、Cuめっきシード層42及びCuめっき層43は殆ど純粋なSnに置換されてSnはんだ層48となる。   Next, as shown in FIG. 10B, for example, electroless plating treatment is performed at 60 ° C. for 30 minutes using a substitutional electroless tin plating bath 580MJ (product model number manufactured by Ishihara Pharmaceutical). By this substitutional electroless tin plating process, the Cu plating seed layer 42 and the Cu plating layer 43 are replaced with almost pure Sn to become the Sn solder layer 48.

次いで、図10(c)に示すように、接続パッド部を覆うようにエッチングレジスト49を設ける。次いで、図11(d)に示すように、エッチングレジスト49をマスクとしてSnはんだ層48の露出部をエッチングにより除去したのち、エッチングレジスト49を除去する。   Next, as shown in FIG. 10C, an etching resist 49 is provided so as to cover the connection pad portion. Next, as shown in FIG. 11D, the exposed portion of the Sn solder layer 48 is removed by etching using the etching resist 49 as a mask, and then the etching resist 49 is removed.

次いで、図11(e)に示すように、接続パッド部を露出するようにソルダーレジスト50を形成する。次いで、図11(f)に示すように、めっき処理部にフラックスを塗布し、回路基板41の表面温度が最高で260℃になるように設定されたリフロー炉を用いてリフロー処理を行い、フラックス洗浄を行う。このリフロー処理工程においてSnはんだ層48は溶融し、溶融したSnの表面張力により厚膜のSnはんだ層51が接続パッドの表面を覆う。   Next, as shown in FIG. 11E, a solder resist 50 is formed so as to expose the connection pad portion. Next, as shown in FIG. 11 (f), flux is applied to the plating portion, and reflow treatment is performed using a reflow furnace set so that the surface temperature of the circuit board 41 is 260 ° C. at the maximum. Wash. In this reflow process, the Sn solder layer 48 is melted, and the thick Sn solder layer 51 covers the surface of the connection pad by the surface tension of the melted Sn.

このSnはんだ層51の高さを蛍光X線装置を用いて測定した結果、Snはんだ層51の最大厚さは、平均4.8μmであり、従来の工法でめっき処理を行った場合には、最大2.1μm厚であったため、2倍以上の厚さにできることが確認できた。   As a result of measuring the height of the Sn solder layer 51 using a fluorescent X-ray apparatus, the maximum thickness of the Sn solder layer 51 is 4.8 μm on average, and when plating is performed by a conventional method, Since the maximum thickness was 2.1 μm, it was confirmed that the thickness could be twice or more.

以降は、上記の実施例1と同様にして回路基板41上に半導体素子を実装して半導体装置を完成した。実装後に完成した半導体装置の接合部を断面研磨により観察した。この実施例3も実施例1と同様にSnはんだが金端子の外周を十分に覆う形で存在しており、接合部にクラックの発生も見られなかった。   Thereafter, the semiconductor device was completed by mounting the semiconductor element on the circuit board 41 in the same manner as in the first embodiment. The joint portion of the semiconductor device completed after mounting was observed by cross-sectional polishing. Similarly to Example 1, in Example 3, Sn solder was present in a form that sufficiently covered the outer periphery of the gold terminal, and no crack was observed at the joint.

本発明の実施の形態の回路基板の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the circuit board of embodiment of this invention. 回路基板と回路基板を用いた実装構造の説明図である。It is explanatory drawing of the mounting structure using a circuit board and a circuit board. セミアディティブ工法に適用した場合の途中までの工程説明図である。It is process explanatory drawing to the middle at the time of applying to a semi-additive construction method. セミアディティブ工法に適用した場合の図3以降の工程説明図である。It is process explanatory drawing after FIG. 3 at the time of applying to a semi-additive construction method. 二段階金属置換工程の工程説明図である。It is process explanatory drawing of a two-stage metal substitution process. 本発明の実施例1の回路基板の製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the circuit board of Example 1 of this invention. 本発明の実施例1の回路基板の製造工程の図6以降の説明図である。It is explanatory drawing after FIG. 6 of the manufacturing process of the circuit board of Example 1 of this invention. 本発明の実施例2の回路基板の製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the circuit board of Example 2 of this invention. 本発明の実施例2の回路基板の製造工程の図8以降の説明図である。It is explanatory drawing after FIG. 8 of the manufacturing process of the circuit board of Example 2 of this invention. 本発明の実施例3の回路基板の製造工程の途中までの説明図である。It is explanatory drawing to the middle of the manufacturing process of the circuit board of Example 3 of this invention. 本発明の実施例3の回路基板の製造工程の図10以降の説明図である。It is explanatory drawing after FIG. 10 of the manufacturing process of the circuit board of Example 3 of this invention. 従来の金−はんだ接合プロセスの説明図である。It is explanatory drawing of the conventional gold-solder joining process.

符号の説明Explanation of symbols

1 回路基板
2 めっきシード層
3 ペリフェラル基板電極
4 置換用金属膜
5 錫を含むはんだ
6 はんだ層
7 ソルダーレジスト
8 半導体素子
9 金バンプ
10 アンダーフィル樹脂
11 基板ベース層
12 Cuめっきシード層
13 レジストパターン
14 Cuめっき層
15 錫はんだ層
16 錫はんだ層
21 回路基板
22 めっきシード層
23 ペリフェラル基板電極
24 置換用金属膜
25,26,27 錫はんだ層
31 回路基板
32 ペリフェラル基板電極
33 ソルダーレジスト
34 めっきレジスト
35 無電解Cuめっき層
36 Snはんだ層
37 Snはんだ層
41 回路基板
42 Cuめっきシード層
43 Cuめっき層
44,49 エッチングレジスト
45,50 ソルダーレジスト
46,48 Snはんだ層
47,51 Snはんだ層
61 回路基板
62 基板電極
63 錫を含むはんだ
64 ボンディング加熱ヘッド
65 シリンジ
66 アンダーフィル樹脂
71 半導体素子
72 金端子
DESCRIPTION OF SYMBOLS 1 Circuit board 2 Plating seed layer 3 Peripheral board electrode 4 Substitution metal film 5 Solder containing tin 6 Solder layer 7 Solder resist 8 Semiconductor element 9 Gold bump 10 Underfill resin 11 Substrate base layer 12 Cu plating seed layer 13 Resist pattern 14 Cu plating layer 15 Tin solder layer 16 Tin solder layer 21 Circuit board 22 Plating seed layer 23 Peripheral board electrode 24 Replacement metal film 25, 26, 27 Tin solder layer 31 Circuit board 32 Peripheral board electrode 33 Solder resist 34 Plating resist 35 None Electrolytic Cu plating layer 36 Sn solder layer 37 Sn solder layer 41 Circuit board 42 Cu plating seed layer 43 Cu plating layer 44, 49 Etching resist 45, 50 Solder resist 46, 48 Sn solder layer 47, 51 Sn solder layer 61 Circuit board 62 Base Plate electrode 63 Solder containing tin 64 Bonding heating head 65 Syringe 66 Underfill resin 71 Semiconductor element 72 Gold terminal

Claims (6)

回路基板の実装面に設けられた複数の接続部導体パターンの間に、金属置換により錫を含むはんだに置換可能な金属膜を設ける工程と、
前記金属膜を金属置換により錫を含むはんだに置換する工程と、
前記置換した錫を含むはんだを溶融させて、前記接続部導体パターン間で分割して前記接続部導体パターン表面に錫を含むはんだを厚付けする工程と
を有する回路基板の製造方法。
A step of providing a metal film that can be replaced with solder containing tin by metal replacement between the plurality of connection portion conductor patterns provided on the mounting surface of the circuit board;
Replacing the metal film with solder containing tin by metal substitution;
A method of manufacturing a circuit board, comprising: melting the substituted tin-containing solder and dividing the solder between the connection portion conductor patterns to thicken the solder containing tin on the surface of the connection portion conductor pattern.
前記はんだに置換する工程において、錫を含む置換型無電解めっき浴を用いる請求項1に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 1, wherein a substitutional electroless plating bath containing tin is used in the step of replacing with solder. 前記金属膜を金属置換により錫を含むはんだに置換する工程が、金属膜の表面の一部を金属置換する第1の金属置換工程と、前記第1の金属置換工程より高温で前記金属膜の残部を金属置換する第2の金属置換工程とからなる請求項1または2に記載の回路基板の製造方法。 The step of replacing the metal film with a solder containing tin by metal replacement includes a first metal replacement step of replacing a part of the surface of the metal film with metal, and a temperature of the metal film at a higher temperature than the first metal replacement step. The method for manufacturing a circuit board according to claim 1, further comprising a second metal replacement step of replacing the remainder with a metal. 前記金属膜として、前記回路基板の配線パターンの形成過程で用いるめっきシード層を用いる請求項1乃至3のいずれか1項に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 1, wherein a plating seed layer used in a process of forming a wiring pattern of the circuit board is used as the metal film. 前記接続部導体パターンの間に金属置換により錫を含むはんだに置換可能な金属膜を設ける工程が、接続パッド部以外の前記接続部導体パターンの表面をめっきレジストで覆った状態で金属膜を設ける工程である請求項1乃至請求項4のいずれか1項に記載の回路基板の製造方法。 The step of providing a metal film that can be replaced with solder containing tin by metal replacement between the connection part conductor patterns provides the metal film with the surface of the connection part conductor pattern other than the connection pad part covered with a plating resist. The method for manufacturing a circuit board according to claim 1, wherein the method is a process. 回路基板の実装面に設けられた複数の接続部導体パターンの間に、金属置換により錫を含むはんだに置換可能な金属膜を設ける工程と、
前記金属膜を金属置換により錫を含むはんだに置換する工程と、
前記置換した錫を含むはんだを溶融させて、前記接続部導体パターン間で分割して前記接続部導体パターン表面に錫を含むはんだを厚付けする工程と、
前記錫を含むはんだを厚付けした接続部導体パターンと半導体素子に設けた接続端子とをフリップチップボンディングにより電気的に接続する工程と
を有する半導体装置の製造方法。
A step of providing a metal film that can be replaced with solder containing tin by metal replacement between the plurality of connection portion conductor patterns provided on the mounting surface of the circuit board;
Replacing the metal film with solder containing tin by metal substitution;
Melting the substituted tin-containing solder, dividing between the connection portion conductor patterns and thickening the solder containing tin on the connection portion conductor pattern surface; and
A method of manufacturing a semiconductor device, comprising: electrically connecting a connection portion conductor pattern thickened with solder containing tin and a connection terminal provided on a semiconductor element by flip chip bonding.
JP2008333019A 2008-12-26 2008-12-26 Circuit board manufacturing method and semiconductor device manufacturing method Expired - Fee Related JP5223666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333019A JP5223666B2 (en) 2008-12-26 2008-12-26 Circuit board manufacturing method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333019A JP5223666B2 (en) 2008-12-26 2008-12-26 Circuit board manufacturing method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2010153744A JP2010153744A (en) 2010-07-08
JP5223666B2 true JP5223666B2 (en) 2013-06-26

Family

ID=42572488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333019A Expired - Fee Related JP5223666B2 (en) 2008-12-26 2008-12-26 Circuit board manufacturing method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP5223666B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123415B2 (en) 2012-09-07 2018-11-06 Ngk Spark Plug Co., Ltd. Wiring substrate and production method therefor
JP7348486B2 (en) 2019-07-25 2023-09-21 日亜化学工業株式会社 Method for manufacturing a light emitting device, light emitting device, wiring board for mounting an element, and method for manufacturing a wiring board for mounting an element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267836A (en) * 1992-03-18 1993-10-15 Victor Co Of Japan Ltd Manufacturing of solder pre-coated printed circuit board and printed circuit board
JPH0621621A (en) * 1992-05-08 1994-01-28 C Uyemura & Co Ltd Method for formation of circuit pattern
JPH10224029A (en) * 1997-02-05 1998-08-21 Sony Corp Production of bump
JP3071723B2 (en) * 1997-05-23 2000-07-31 京セラ株式会社 Method for manufacturing multilayer wiring board
JP2006165426A (en) * 2004-12-10 2006-06-22 Ishihara Chem Co Ltd Method for manufacturing film carrier or the like
JP4998704B2 (en) * 2007-01-22 2012-08-15 上村工業株式会社 Method for forming substituted tin alloy plating film, substituted tin alloy plating bath, and method for maintaining plating performance

Also Published As

Publication number Publication date
JP2010153744A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
KR100545008B1 (en) Semiconductor element and a producing method for the same, and a semiconductor device and a producing method for the same
KR100790978B1 (en) A joining method at low temperature, anda mounting method of semiconductor package using the joining method
JP4405554B2 (en) Electronic component mounting method
KR100967344B1 (en) Method for manufacturing flip chip packaging substrate
JP5820991B2 (en) Semiconductor device manufacturing method and semiconductor device
US7812460B2 (en) Packaging substrate and method for fabricating the same
US6781234B2 (en) Semiconductor device having electrodes containing at least copper nickel phosphorous and tin
KR101036388B1 (en) Printed circuit board and method for manufacturing the same
TW201503771A (en) Wiring board
US7956472B2 (en) Packaging substrate having electrical connection structure and method for fabricating the same
JP2006279062A (en) Semiconductor element and semiconductor device
TWI502666B (en) Electronic parts mounting body, electronic parts, substrate
JP4729963B2 (en) PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM
JP2007251053A (en) Mounting structure of semiconductor device and method of manufacturing mounting structure
JP2009004454A (en) Electrode structure, forming method thereof, electronic component, and mounting substrate
JP5223666B2 (en) Circuit board manufacturing method and semiconductor device manufacturing method
US8168890B2 (en) Printed circuit board and component package having the same
JP2001060760A (en) Circuit electrode and formation process thereof
JP4888096B2 (en) Semiconductor device, circuit wiring board, and manufacturing method of semiconductor device
JP2010267741A (en) Method for manufacturing semiconductor device
TWI478312B (en) Stack package substrate
JP4940662B2 (en) Solder bump, method of forming solder bump, and semiconductor device
JPH09213702A (en) Semiconductor device and method for mounting the same
JP4946965B2 (en) Electronic component mounting apparatus and manufacturing method thereof
JP2012028437A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees