[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5214910B2 - Field effect transistor - Google Patents

Field effect transistor Download PDF

Info

Publication number
JP5214910B2
JP5214910B2 JP2007139959A JP2007139959A JP5214910B2 JP 5214910 B2 JP5214910 B2 JP 5214910B2 JP 2007139959 A JP2007139959 A JP 2007139959A JP 2007139959 A JP2007139959 A JP 2007139959A JP 5214910 B2 JP5214910 B2 JP 5214910B2
Authority
JP
Japan
Prior art keywords
group
field effect
carbon atoms
mmol
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007139959A
Other languages
Japanese (ja)
Other versions
JP2008294321A (en
Inventor
哲夫 筒井
剛 安田
孝生 鈴木
満 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Tosoh Corp
Original Assignee
Kyushu University NUC
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Tosoh Corp filed Critical Kyushu University NUC
Priority to JP2007139959A priority Critical patent/JP5214910B2/en
Publication of JP2008294321A publication Critical patent/JP2008294321A/en
Application granted granted Critical
Publication of JP5214910B2 publication Critical patent/JP5214910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、電界効果型有機薄膜トランジスタ(以下、電界効果トランジスタという)に関し、より詳しくは、特定の高分子化合物を含んでなるp型有機半導体部を備えた電界効果トランジスタに関する。   The present invention relates to a field effect organic thin film transistor (hereinafter referred to as a field effect transistor), and more particularly to a field effect transistor provided with a p-type organic semiconductor portion containing a specific polymer compound.

近年、有機半導体を半導体層に用いた電界効果トランジスタの研究開発が活発に行われている。電界効果トランジスタは、有機材料の持つ多様性、機械的フレキシビリティ、また軽量化と言う観点からシートディスプレイ、電子ペーパー、ICカード、情報タグ等への応用が期待されている。   In recent years, research and development of field effect transistors using an organic semiconductor as a semiconductor layer have been actively conducted. Field effect transistors are expected to be applied to sheet displays, electronic paper, IC cards, information tags and the like from the viewpoints of diversity, mechanical flexibility, and weight reduction of organic materials.

一般に現在使用されているトランジスタでは、主にa−Si(アモルファスシリコン)、p−Si(ポリシリコン)などの半導体を用いて作られている。しかし、その製造工程は、シリコン単結晶基板を用い、露光、不純物添加、成膜、エッチング等の複雑かつ精密な工程や高温プロセスを要する点からクリーンルームや真空装置等の装置コストやランニングコストが非常に膨大なものとなっている。   In general, currently used transistors are mainly made using a semiconductor such as a-Si (amorphous silicon) or p-Si (polysilicon). However, the manufacturing process uses a silicon single crystal substrate and requires complicated and precise processes such as exposure, impurity addition, film formation, etching, and high-temperature processes. It has become enormous.

一方、電界効果トランジスタでは、比較的低い温度での真空蒸着プロセスや、溶媒に可溶な有機半導体を用いる場合には、その溶液からインクジェット方式等の塗布プロセスによって有機半導体層を形成することが可能であるため、シリコンベースのトランジスタに比べ安価に製造することが可能となる。特に後者においては、印刷法やロールトゥーロール方式を用いると大量生産が可能となるため、製造コストの大幅なダウンや大面積化等が期待される。   On the other hand, in a field effect transistor, when using a vacuum deposition process at a relatively low temperature or an organic semiconductor soluble in a solvent, an organic semiconductor layer can be formed from the solution by a coating process such as an inkjet method. Therefore, it can be manufactured at a lower cost than a silicon-based transistor. In particular, in the latter case, mass production becomes possible by using a printing method or a roll-to-roll method, so that a significant reduction in manufacturing cost, an increase in area, and the like are expected.

このような電界効果トランジスタ素子を実現するための半導体材料としては、例えば、低分子材料ではペンタセンやテトラセンと言ったアセン類(例えば、特許文献1、非特許文献1参照。)、フタロシアニン(例えば、非特許文献2参照。)、フラーレン(例えば、非特許文献3参照)、ビスジチエノチオフェン(例えば、非特許文献4参照)、アントラジチオフェン(例えば、非特許文献5参照)、チオフェンオリゴマー(例えば、特許文献2、非特許文献6参照)などが、また高分子材料ではポリチオフェン(例えば、非特許文献7参照)、ポリチエニレンビニレン(例えば、非特許文献8参照)、ポリ−p−フェニレンビニレン(例えば、非特許文献9参照)などの幾つかの材料が提案されている。   As a semiconductor material for realizing such a field effect transistor element, for example, in a low molecular material, acenes such as pentacene and tetracene (for example, refer to Patent Document 1 and Non-Patent Document 1), phthalocyanine (for example, Non-patent document 2), fullerene (for example, refer to non-patent document 3), bisdithienothiophene (for example, refer to non-patent document 4), anthradithiophene (for example, refer to non-patent document 5), thiophene oligomer (for example, , Patent Document 2, Non-Patent Document 6) and the like, and polymer materials such as polythiophene (for example, see Non-Patent Document 7), polythienylene vinylene (for example, see Non-Patent Document 8), poly-p-phenylene vinylene. Several materials such as (see, for example, Non-Patent Document 9) have been proposed.

特に、ペンタセンは約1cm/Vsの移動度を有すると報告されている。しかし、ペンタセンは溶媒に難溶性であり、ペンタセンの薄膜を溶液から形成することは困難である。また、ペンタセンは、酸素を含有する雰囲気下では経時酸化する傾向があり、酸化に対して不安定である。また、高い立体規則性および電界効果移動度(以下、移動度という)を有することで知られるポリ(3−ヘキシルチオフェン)においても、空気中の酸素がドーパントとして作用し、導電率が増大し、素子のオフ電流が大きくなる結果、オン/オフ比が低下するといった課題がある。また、ポリアリールアミン系材料(例えば、特許文献3参照)なども提案されているが、さらなる高移動度化が求められている。 In particular, pentacene has been reported to have a mobility of about 1 cm 2 / Vs. However, pentacene is hardly soluble in a solvent, and it is difficult to form a pentacene thin film from a solution. Pentacene tends to oxidize with time in an atmosphere containing oxygen and is unstable to oxidation. In addition, even in poly (3-hexylthiophene) known to have high stereoregularity and field effect mobility (hereinafter referred to as mobility), oxygen in the air acts as a dopant, increasing the conductivity, As a result of the increase in the off-state current of the element, there is a problem that the on / off ratio decreases. In addition, polyarylamine-based materials (see, for example, Patent Document 3) have been proposed, but higher mobility is required.

以上のように、幾つかの材料が有機半導体材料として提案されているものの、全ての特性を満足させる有機半導体材料は未だに得られていないのが現状である。好ましい有機半導体材料においては、移動度、オン/オフ比などの良好なトランジスタ特性に加え、湿式プロセスにより作製され得るような溶媒への溶解性を示し、加えて耐酸化性をはじめとする保存安定性が求められる。
アドバンスド・マテリアルズ、2002年、第14巻、99ページ Appl.Phys.Lett.,69,3066,1996. Appl.Phys.Lett.,67,121,1995. Appl.Phys.Lett.,71,3871,1997. J.Am.Chem.Soc.,120,664,1998. Chem.Mater.,10,457,1998. Appl.Phys.Lett.,62,1794,1993. Appl.Phys.Lett.,63,1372,1993. J.Appl.Phys.,77,3523,1995. 特開平5−55568号公報 特許第3145294号公報 特表2004−525501公報
As described above, although several materials have been proposed as organic semiconductor materials, the present situation is that an organic semiconductor material that satisfies all the characteristics has not yet been obtained. Preferred organic semiconductor materials exhibit good transistor characteristics such as mobility and on / off ratio, as well as solubility in solvents that can be produced by wet processes, and in addition, storage stability including oxidation resistance Sex is required.
Advanced Materials, 2002, Volume 14, Page 99 Appl. Phys. Lett. 69, 3066, 1996. Appl. Phys. Lett. 67, 121, 1995. Appl. Phys. Lett. 71, 3871, 1997. J. et al. Am. Chem. Soc. , 120, 664, 1998. Chem. Mater. 10, 457, 1998. Appl. Phys. Lett. 62, 1794, 1993. Appl. Phys. Lett. 63, 1372, 1993. J. et al. Appl. Phys. , 77, 3523, 1995. JP-A-5-55568 Japanese Patent No. 3145294 Special table 2004-525501 gazette

本発明の目的は、塗布や印刷等の容易なプロセスで半導体層を作製することができる有機系材料であって、キャリア移動度が高く、高い安定性を持つ有機半導体材料、これを用いた電界効果トランジスタを提供することにある。   An object of the present invention is an organic material capable of producing a semiconductor layer by an easy process such as coating or printing, an organic semiconductor material having high carrier mobility and high stability, and an electric field using the organic material. It is to provide an effect transistor.

本発明は、上記課題に鑑みてなされたものである。即ち、本発明は、製造の容易な有機系の材料からなるp型半導体部を備えた電界効果トランジスタであって、移動度およびオン/オフ比に優れた電界効果トランジスタを提供することを目的とする。   The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a field effect transistor having a p-type semiconductor portion made of an organic material that is easy to manufacture, and having an excellent mobility and on / off ratio. To do.

本発明者らは、上記課題を解決すべく鋭意検討した結果、p−フェニレン構造を繰り返し単位として有するアリールアミンポリマーは、特定の繰返し単位長を有するフェニレン骨格において、優れたp型の半導体特性を示すとの知見を得た。また、このアリールアミンポリマーを電界効果トランジスタのp型半導体部の材料として用いることにより、得られる電界効果トランジスタが優れた移動度およびオン/オフ比を示すことを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an arylamine polymer having a p-phenylene structure as a repeating unit exhibits excellent p-type semiconductor characteristics in a phenylene skeleton having a specific repeating unit length. Obtained knowledge to show. In addition, by using this arylamine polymer as a material for the p-type semiconductor part of a field effect transistor, it was found that the resulting field effect transistor exhibits excellent mobility and on / off ratio, and the present invention has been completed. It was.

すなわち本発明は、少なくともp型有機半導体、ソース電極、ドレイン電極およびゲート電極を備える電界効果トランジスタにおいて、該p型有機半導体成分が、下記一般式(1)   That is, the present invention provides a field effect transistor having at least a p-type organic semiconductor, a source electrode, a drain electrode, and a gate electrode, wherein the p-type organic semiconductor component is represented by the following general formula (1):

[式中、Arは置換若しくは無置換の炭素数6〜60のアリール基である。RおよびRは各々独立して水素原子、炭素数1〜18のアルキル基若しくはアルコキシ基、または炭素数6〜18のアリール基であり、隣り合う炭素原子と縮合環を形成しても良い。mは〜5の整数、aは0〜4の整数、bは0≦b≦2m+4の整数である。]
で表される繰り返し単位を有する重量平均分子量3,000〜50,000の高分子化合物を含んでなる電界効果トランジスタを提供することにある。
[Wherein Ar 1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms. R 1 and R 2 are each independently a hydrogen atom, an alkyl or alkoxy group having 1 to 18 carbon atoms, or an aryl group having 6 to 18 carbon atoms, and may form a condensed ring with adjacent carbon atoms. . m is an integer of 1 to 5, a is an integer of 0 to 4, and b is an integer of 0 ≦ b ≦ 2m + 4. ]
It is providing the field effect transistor which comprises the high molecular compound of weight average molecular weight 3,000-50,000 which has a repeating unit represented by these.

本発明に用いる有機半導体材料は、高純度であり、電荷輸送材料としてキャリア移動度が高いため、有機薄膜トランジスタに用いた場合、オン/オフ比が大きく、しかも応答速度が高速化されており、高いトランジスタ性能を有するものである。よって、本発明の特定の高分子化合物を含有する電界効果トランジスタは、移動度およびオン/オフ比に優れたものとなる。   The organic semiconductor material used in the present invention has high purity and high carrier mobility as a charge transport material. Therefore, when used in an organic thin film transistor, the on / off ratio is large and the response speed is increased. It has transistor performance. Therefore, the field effect transistor containing the specific polymer compound of the present invention is excellent in mobility and on / off ratio.

前記一般式(1)で表される繰り返し単位を有する本発明のアリールアミンポリマーの分子量は、重量平均分子量で3,000〜50,000、好ましくは5,000〜30,000である。重量平均分子量が5,000〜30,000の範囲にあるアリールアミンポリマーは有機トランジスタの移動度を高めることができる。   The molecular weight of the arylamine polymer of the present invention having the repeating unit represented by the general formula (1) is 3,000 to 50,000, preferably 5,000 to 30,000 in terms of weight average molecular weight. An arylamine polymer having a weight average molecular weight in the range of 5,000 to 30,000 can increase the mobility of the organic transistor.

前記一般式(1)で表される構造単位中において、Arは置換若しくは無置換の炭素数6〜60のアリール基を表すが、具体的には下記一般式(2)または(3)で表される構造が特に好ましい。 In the structural unit represented by the general formula (1), Ar 1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms, specifically, in the following general formula (2) or (3) The structure represented is particularly preferred.

[式中、R、RおよびRは各々独立して水素原子、炭素数1〜18のアルキル基若しくはアルコキシ基、または炭素数6〜18のアリール基である。cは0〜4の整数である。] [Wherein, R 3 , R 4 and R 5 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms or an alkoxy group, or an aryl group having 6 to 18 carbon atoms. c is an integer of 0-4. ]

前記一般式(1)において、RおよびRは前記の定義に該当すれば特に限定されるものではないが、具体的には水素原子の他、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、n−ヘキシル基、2−エチルブチル基、3,3−ジメチルブチル基、シクロヘキシル基、n−ヘプチル基、4−メチル−シクロヘキシル基、シクロヘキシルメチル基、n−オクチル基、tert−オクチル基、2−エチルヘキシル基、n−ノニル基、n−デシル基、n−ドデシル基等のアルキル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、n−ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、シクロペンチルオキシ基、n−ヘキシルオキシ基、2−エチルブトキシ基、3,3−ジメチルブトキシ基、シクロヘキシルオキシ基、n−ヘプチルオキシ基、シクロヘキシルメチルオキシ基、n−オクチルオキシ基、2−エチルヘキシルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ドデシルオキシ基等のアルコキシ基、フェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2−ヒドロキシフェニル基、3−ヒドロキシフェニル基、4−ヒドロキシフェニル基、2−トリフルオロメチルフェニル基、3−トリフルオロメチルフェニル基、4−トリフルオロメチルフェニル基、2,6−ジメチルフェニル基、3,6−ジメチルフェニル基、2,3−ジメチルフェニル基、3,4−ジメチルフェニル基、2,4−ジメチルフェニル基、3,5−ジメチルフェニル基、3−(トリフルオロメトキシ)フェニル基、4−(トリフルオロメトキシ)フェニル基、3,4−(メチレンジオキシ)フェニル基、4−n−ブチルフェニル基、4−sec−ブチルフェニル基、4−tert−ブチルフェニル基、4−n−ヘキシルフェニル基、4−n−オクチルフェニル基、4−(2’−エチルヘキシルオキシ)フェニル基、2−ビフェニル基、3−ビフェニル基、4−ビフェニル基、4−ターフェニル基、1−ナフチル基、2−ナフチル基、2−メチルナフチル基、4−メチルナフチル基、9−アントラセニル基、9,9−二置換−2−フルオレニル基等のアリール基を挙げることができる。より好ましくは水素原子、アルキル基またはアリール基のいずれかである。 In the general formula (1), R 1 and R 2 are not particularly limited as long as they fall within the above definition. Specifically, in addition to a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, Isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, n-hexyl group, 2-ethylbutyl group, 3,3-dimethylbutyl group, cyclohexyl group, n-heptyl group, 4-methyl-cyclohexyl group, cyclohexylmethyl group, n-octyl group, tert-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl Group, alkyl group such as n-dodecyl group, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy , Sec-butoxy group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, cyclopentyloxy group, n-hexyloxy group, 2-ethylbutoxy group, 3,3-dimethylbutoxy group, cyclohexyloxy group, alkoxy groups such as n-heptyloxy group, cyclohexylmethyloxy group, n-octyloxy group, 2-ethylhexyloxy group, n-nonyloxy group, n-decyloxy group, n-dodecyloxy group, phenyl group, 2-methoxyphenyl Group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-hydroxyphenyl group, 3-hydroxyphenyl group, 4-hydroxyphenyl group, 2-trifluoromethylphenyl group, 3-trifluoro Methylphenyl group, 4-trifluoromethylphenyl group, 2,6-dimethylphenyl group, 3,6-dimethylphenyl group, 2,3-dimethylphenyl group, 3,4-dimethylphenyl group, 2,4-dimethylphenyl Group, 3,5-dimethylphenyl group, 3- (trifluoromethoxy) phenyl group, 4- (trifluoromethoxy) phenyl group, 3,4- (methylenedioxy) phenyl group, 4-n-butylphenyl group, 4-sec-butylphenyl group, 4-tert-butylphenyl group, 4-n-hexylphenyl group, 4-n-octylphenyl group, 4- (2′-ethylhexyloxy) phenyl group, 2-biphenyl group, 3 -Biphenyl group, 4-biphenyl group, 4-terphenyl group, 1-naphthyl group, 2-naphthyl group, 2-methylnaphthyl group, 4-methyl Examples thereof include aryl groups such as a naphthyl group, a 9-anthracenyl group, and a 9,9-disubstituted-2-fluorenyl group. More preferably, they are any of a hydrogen atom, an alkyl group, or an aryl group.

前記一般式(2)および(3)において、R、RおよびRは前記の定義に該当すれば特に限定されるものではないが、具体的にはRおよびRと同じ置換基が挙げられる。 In the general formulas (2) and (3), R 3 , R 4 and R 5 are not particularly limited as long as they fall under the above definition, but specifically, the same substituents as R 1 and R 2 Is mentioned.

本発明の前記一般式(1)で表される繰り返し単位を有するアリールアミンポリマーは、前記の定義に該当すれば特に限定されるものではないが、下記一般式()〜(8)の構造の繰り返し単位を有するトリアリールアミンポリマーが好ましい。 The arylamine polymer having a repeating unit represented by the general formula (1) of the present invention is not particularly limited as long as it meets the above definition, but the structures of the following general formulas ( 5 ) to (8) A triarylamine polymer having a repeating unit of

[式中、R、R、R、R、R10およびR11は各々独立して炭素数4〜18の直鎖、分鎖若しくは環状のアルキル基、または炭素数6〜60のアリール基である。]
本発明の一般式(1)で表される繰り返し単位を有するアリールアミンポリマーの製造方法としては特に制限はなく、様々な方法を用いることができるが、例えば、以下のように容易に合成することができる。代表的な合成経路を示す。
[Wherein, R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are each independently a linear, branched or cyclic alkyl group having 4 to 18 carbon atoms, or 6 to 60 carbon atoms. An aryl group. ]
There is no restriction | limiting in particular as a manufacturing method of the arylamine polymer which has a repeating unit represented by General formula (1) of this invention, Although various methods can be used, For example, it synthesize | combines easily as follows. Can do. A representative synthetic route is shown.

[式中、Arは置換若しくは無置換の炭素数6〜60のアリール基である。RおよびRは各々独立して水素原子、炭素数1〜18のアルキル基若しくはアルコキシ基、または炭素数6〜18のアリール基であり、隣り合う炭素原子と縮合環を形成しても良い。nは1以上の整数、mは〜5の整数、aは0〜4の整数、bは0≦b≦2m+4の整数である。] [Wherein Ar 1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms. R 1 and R 2 are each independently a hydrogen atom, an alkyl or alkoxy group having 1 to 18 carbon atoms, or an aryl group having 6 to 18 carbon atoms, and may form a condensed ring with adjacent carbon atoms. . n is an integer of 1 or more, m is an integer of 1 to 5, a is an integer of 0 to 4, and b is an integer of 0 ≦ b ≦ 2m + 4. ]

反応後のポリマー末端は、原料の仕込比によってハロゲン原子であったり、第二級アミンであったりするため、反応性部位を残したくない場合には、末端がハロゲン原子の場合には第二級アミン、第二級アミンの場合には芳香族ハライドで末端処理を実施することが好ましい。   The polymer terminal after the reaction may be a halogen atom or a secondary amine depending on the charging ratio of the raw materials. Therefore, when it is not desired to leave a reactive site, a secondary terminal is used when the terminal is a halogen atom. In the case of an amine or a secondary amine, it is preferable to carry out terminal treatment with an aromatic halide.

また、アリールボロン酸を使用することで同等の繰返し単位構造を有するポリマーを合成することも可能である。   Moreover, it is also possible to synthesize a polymer having an equivalent repeating unit structure by using an aryl boronic acid.

[式中、Arは置換若しくは無置換の炭素数6〜60のアリール基である。RおよびRは各々独立して水素原子、炭素数1〜18のアルキル基若しくはアルコキシ基、または炭素数6〜18のアリール基であり、隣り合う炭素原子と縮合環を形成しても良い。nは1以上の整数、mは〜5の整数、aは0〜4の整数、bは0≦b≦2m+4の整数である。] [Wherein Ar 1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms. R 1 and R 2 are each independently a hydrogen atom, an alkyl or alkoxy group having 1 to 18 carbon atoms, or an aryl group having 6 to 18 carbon atoms, and may form a condensed ring with adjacent carbon atoms. . n is an integer of 1 or more, m is an integer of 1 to 5, a is an integer of 0 to 4, and b is an integer of 0 ≦ b ≦ 2m + 4. ]

本発明の有機半導体材料を電界効果トランジスタのp型有機半導体層として使用することで、良好に駆動するトランジスタ装置を提供することができる。   By using the organic semiconductor material of the present invention as a p-type organic semiconductor layer of a field effect transistor, a transistor device that is driven satisfactorily can be provided.

電界効果トランジスタは、基板上に有機半導体層(チャネル)で連結されたソース電極とドレイン電極を有し、その上に絶縁層を介してゲート電極を有するトップゲート型と、基板上にまずゲート電極を有し、絶縁層を介して有機半導体層(チャネル)で連結されたソース電極とドレイン電極を有するボトムゲート型に大別される。   A field effect transistor has a source electrode and a drain electrode connected by an organic semiconductor layer (channel) on a substrate, a top gate type having a gate electrode via an insulating layer thereon, and a gate electrode on the substrate first. And a bottom gate type having a source electrode and a drain electrode connected by an organic semiconductor layer (channel) through an insulating layer.

本発明の高分子化合物を用いて電界効果トランジスタの有機半導体層を形成する方法としては、高分子化合物を可溶な溶剤に溶解し、必要に応じて添加剤を加え調製した溶液をキャスト法、スピンコート法、インクジェット法、印刷法等により基板上に成膜することが好ましい。   As a method of forming the organic semiconductor layer of the field effect transistor using the polymer compound of the present invention, the polymer compound is dissolved in a soluble solvent, and if necessary, a solution prepared by adding an additive is cast, It is preferable to form a film on the substrate by a spin coating method, an ink jet method, a printing method or the like.

本発明の有機半導体を溶解するために用いられる溶剤としては、該有機半導体を溶解して適当な濃度の溶液が調製できるものであれば特に限定されるものではないが、具体的にはトルエン、クロロベンゼン等の芳香族系溶剤、ジエチルエーテルやジイソプロピルエーテル等の鎖状エーテル系溶剤、テトラヒドロフランやジオキサン等の環状エーテル系溶剤等を挙げることができる。   The solvent used for dissolving the organic semiconductor of the present invention is not particularly limited as long as the organic semiconductor can be dissolved to prepare a solution having an appropriate concentration. Specifically, toluene, Examples thereof include aromatic solvents such as chlorobenzene, chain ether solvents such as diethyl ether and diisopropyl ether, and cyclic ether solvents such as tetrahydrofuran and dioxane.

これら有機半導体からなる薄膜の膜厚としては特に制限はないが、電界効果トランジスタの特性は、有機半導体層の膜厚に左右されることが多く、その膜厚は、有機半導体により異なるが、一般に1μm以下、好ましくは10〜500nm、より好ましくは10〜100nmである。   The film thickness of these organic semiconductor thin films is not particularly limited, but the characteristics of the field effect transistor are often influenced by the film thickness of the organic semiconductor layer, and the film thickness varies depending on the organic semiconductor. It is 1 μm or less, preferably 10 to 500 nm, more preferably 10 to 100 nm.

上述の方法によって有機半導体層を形成する際に、該高分子化合物をアニール処理することにより、電界効果トランジスタの特性を大きく改善することができる。これは、アニール処理で一旦高分子膜の分子運動を誘起してから冷却することにより、高分子の再配列により特性や安定性の向上が図られるものと考えられる。   When the organic semiconductor layer is formed by the above-described method, the characteristics of the field effect transistor can be greatly improved by annealing the polymer compound. It is considered that the property and stability can be improved by rearranging the polymers by inducing molecular motion of the polymer film by annealing and then cooling.

本発明のアニール処理の条件としては、移動度の低下を招かない条件であれば特に制限はないが、その有機半導体材料のガラス転移温度付近での加熱が好ましく、その温度以下であっても長時間の処理により同様の効果が得られる。   The annealing treatment conditions of the present invention are not particularly limited as long as they do not cause a decrease in mobility, but heating near the glass transition temperature of the organic semiconductor material is preferable, and even if the temperature is lower than that temperature, it is long. A similar effect can be obtained by processing time.

続いて、本発明に係る有機半導体材料、電界効果トランジスタについて説明する。図1に、本発明の有機半導体材料を用いた電界効果トランジスタの主な概略構成例を示すが、いずれも有機半導体層はソース電極およびドレイン電極を連結させるようになっている。   Next, the organic semiconductor material and field effect transistor according to the present invention will be described. FIG. 1 shows a main schematic configuration example of a field effect transistor using the organic semiconductor material of the present invention. In either case, the organic semiconductor layer connects a source electrode and a drain electrode.

本発明の電界効果トランジスタは、通常ガラス、シリコン、プラスチックからなる基板に形成される。特にプラスチックシートを用いることで、素子の軽量化、フレキシビリティを改善することが可能であり、また価格面、耐衝撃面の改善も可能である。   The field effect transistor of the present invention is usually formed on a substrate made of glass, silicon, or plastic. In particular, by using a plastic sheet, it is possible to reduce the weight and flexibility of the device, and to improve the price and impact resistance.

また、ゲート絶縁層は、種々の絶縁膜を用いることができるが、好適な絶縁材としては、例えば、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、窒化アルミニウム等の無機系材料や、ポリイミド、ポリビニルアルコール、ポリビニルフェノール、ポリエステル、ポリエチレン、ポリフェニレンスルフィド、ポリパラキシリレン、ポリアクリロニトリル、シアノエチルプルラン等の高分子系化合物等が挙げられる。   As the gate insulating layer, various insulating films can be used. Examples of suitable insulating materials include inorganic materials such as silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, and aluminum nitride, polyimide, Examples thereof include polymer compounds such as polyvinyl alcohol, polyvinyl phenol, polyester, polyethylene, polyphenylene sulfide, polyparaxylylene, polyacrylonitrile, cyanoethyl pullulan, and the like.

これら絶縁層の形成方法としては特に限定されるものではないが、CVD法、真空蒸着法、プラズマ重合法、スプレーコート法、スピンコート法、キャスト法、インクジェット法等が挙げられる。   The method for forming these insulating layers is not particularly limited, and examples thereof include a CVD method, a vacuum deposition method, a plasma polymerization method, a spray coating method, a spin coating method, a casting method, and an ink jet method.

ソース電極、ドレイン電極およびゲート電極を形成する材料は、導電性材料であれば特に限定されるものではないが、例えば、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン、鉛、タンタル、インジウム、パラジウム、アルミニウム、亜鉛、マグネシウム、およびこれらの合金やインジウム・錫酸化物(ITO)等の導電性金属酸化物等が用いられる。特に、白金、金、銀、銅、インジウム、ITOが好ましい。また、ドーピング等で導電率を向上させた無機および有機半導体、例えば、シリコン単結晶、ポリシリコン、アモルファスシリコン、ポリチオフェン、ポリアニリン、ポリピロール等も用いることができる。ソース電極およびドレイン電極は、上述の物質の中でも有機半導体層との接触面において電気抵抗が少ないものが好ましい。   The material for forming the source electrode, drain electrode and gate electrode is not particularly limited as long as it is a conductive material. For example, platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony, lead Tantalum, indium, palladium, aluminum, zinc, magnesium, and alloys thereof, and conductive metal oxides such as indium tin oxide (ITO) are used. In particular, platinum, gold, silver, copper, indium, and ITO are preferable. In addition, inorganic and organic semiconductors whose conductivity is improved by doping or the like, for example, silicon single crystal, polysilicon, amorphous silicon, polythiophene, polyaniline, polypyrrole, or the like can also be used. The source electrode and the drain electrode are preferably those having low electrical resistance at the contact surface with the organic semiconductor layer among the above-described substances.

電極の形成方法としては、メタルマスクを介して真空蒸着により金属電極をパターン化する方法、蒸着やスパッタリング等の方法を用いて形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅などの金属箔上に熱転写、インクジェット等によるレジストを用いてエッチングする方法等がある。また、有機半導体の溶液あるいは分散液、導電性微粒子分散液を直接インクジェットによりパターニングしても良いし、塗工膜からリソグラフやレーザーアブレーションなどにより形成しても良い。さらに、有機半導体や導電性微粒子を含むインク、導電性ペーストなどを凸版、凹版、平版、スクリーン印刷などの印刷法でパターニングする方法も用いることができる。   As a method for forming an electrode, a method for patterning a metal electrode by vacuum deposition through a metal mask, a conductive thin film formed by using a method such as vapor deposition or sputtering, and the like using a known photolithographic method or lift-off method. There are a method of forming an electrode, a method of etching on a metal foil such as aluminum or copper, using a resist by thermal transfer, ink jet, or the like. Further, an organic semiconductor solution or dispersion, or conductive fine particle dispersion may be directly patterned by ink jetting, or may be formed from a coating film by lithography or laser ablation. Furthermore, a method of patterning an ink containing an organic semiconductor or conductive fine particles, a conductive paste, or the like by a printing method such as relief printing, intaglio printing, planographic printing, or screen printing can also be used.

(実施例)
以下に本発明の実施例を示すが、本発明はこれら実施例に限定されるものではない。
(Example)
Examples of the present invention are shown below, but the present invention is not limited to these Examples.

なお、本実施例で用いた分析機器及び測定方法を以下に列記する。   The analytical instruments and measurement methods used in this example are listed below.

[元素分析]
元素分析計:パーキンエルマー全自動元素分析装置 2400II
酸素フラスコ燃焼−IC測定法:東ソー製 イオンクロマトグラフ IC−2001
[赤外分光分析]
赤外分光分析装置:パーキンエルマー赤外分光分析装置 システム2000
測定方法:ヌジョール法
[GPC測定]
測定方法:東ソー製 HLC−8220;カラム:東ソー製 G5000HXL−G3000HXL
溶媒:THF、濃度:0.5重量%、流速:1.0ml/分
[ガラス転移温度測定]
測定装置:マックサイエンスDSC−3100
測定方法:標準試料=Al5.0mg、昇温速度=10℃/分(窒素雰囲気)
[NMR測定]
NMR測定装置:VARIAN Gemini−200
[質量分析]
質量分析装置:日立製作所製 M−80B
測定方法:FD−MS分析またはGC−MS分析
[Elemental analysis]
Element analyzer: Perkin Elmer fully automatic element analyzer 2400II
Oxygen flask combustion-IC measurement method: Tosoh ion chromatography IC-2001
[Infrared spectroscopy]
Infrared Spectrometer: Perkin Elmer Infrared Spectrometer System 2000
Measurement method: Nujol method [GPC measurement]
Measuring method: Tosoh HLC-8220; Column: Tosoh G5000H XL- G3000H XL
Solvent: THF, concentration: 0.5% by weight, flow rate: 1.0 ml / min [glass transition temperature measurement]
Measuring device: Mac Science DSC-3100
Measuring method: standard sample = Al 2 O 3 5.0 mg, temperature rising rate = 10 ° C./min (nitrogen atmosphere)
[NMR measurement]
NMR measuring apparatus: VARIAN Gemini-200
[Mass spectrometry]
Mass spectrometer: M-80B manufactured by Hitachi, Ltd.
Measuring method: FD-MS analysis or GC-MS analysis

合成例1(化合物10の合成)
冷却管、温度計を装着した100ml四つ口丸底フラスコに、室温下、4,4”−ジヨード−p−ターフェニル 4.34g(10mmol)、4−n−ブチルアニリン 1.79g(12mmol)、ナトリウム−tert−ブトキシド 2.31g(24mmol;臭素原子に対して1.2当量)およびo−キシレン 35mlを仕込んだ。この混合液に、予め窒素雰囲気下で調製したトリス(ジベンジリデンアセトン)二パラジウムクロロホルム錯体22.9mg(0.025mmol;臭素原子に対して0.25mol%)およびトリ−tert−ブチルホスフィン 0.22ml(パラジウム原子に対して4当量)のo−キシレン(5ml)溶液を添加した。その後、窒素雰囲気下、温度を120℃まで昇温し、120℃で加熱攪拌しながら3時間熟成した。反応終了後、この反応混合物を約80℃まで冷却し、90%アセトン水溶液(200ml)の攪拌溶液へゆっくり加えた。ろ過により固体をろ別回収し、アセトン、水、アセトンの順番で洗浄した後、減圧乾燥して淡黄色粉体を得た(収率88%)。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(9)で表されるトリアリールアミンポリマーであることが確認された。
Synthesis Example 1 (Synthesis of Compound 10)
A 100 ml four-necked round bottom flask equipped with a condenser and a thermometer was charged with 4.4 g (10 mmol) of 4,4 ″ -diiodo-p-terphenyl and 1.79 g (12 mmol) of 4-n-butylaniline at room temperature. , Sodium-tert-butoxide (2.31 g, 24 mmol; 1.2 equivalents relative to bromine atom) and o-xylene (35 ml) were charged with tris (dibenzylideneacetone) 2 prepared in advance in a nitrogen atmosphere. A solution of 22.9 mg (0.025 mmol; 0.25 mol% with respect to bromine atom) of palladium-chloroform complex and 0.22 ml of tri-tert-butylphosphine (4 equivalents with respect to palladium atom) in o-xylene (5 ml) was added. Thereafter, the temperature was raised to 120 ° C. in a nitrogen atmosphere, and the mixture was not heated and stirred at 120 ° C. After completion of the reaction, the reaction mixture was cooled to about 80 ° C. and slowly added to a stirring solution of 90% aqueous acetone (200 ml), and the solid was collected by filtration and collected with acetone, water, acetone And then dried under reduced pressure to obtain a pale yellow powder (yield 88%). The obtained powder was measured by elemental analysis and infrared spectroscopic analysis. It was confirmed to be the represented triarylamine polymer.

続いて冷却管、温度計を装着した100ml四つ口丸底フラスコに、室温下、一般式(9)で表されるトリアリールアミンポリマー3.31g、ブロモベンゼン0.4g(2.5mmol)、ナトリウム−tert−ブトキシド 0.3g(3mmol)およびo−キシレン 25mlを仕込んだ。この混合液に、予め窒素雰囲気下で調製したトリス(ジベンジリデンアセトン)二パラジウムクロロホルム錯体9.2mg(0.01mmol)およびトリ−tert−ブチルホスフィン 0.09mlのo−キシレン(5ml)溶液を添加した。その後、窒素雰囲気下、温度を120℃まで昇温し、120℃で加熱攪拌しながら3時間熟成した。この反応混合物を室温まで冷却し、蒸留水(10ml)を加えて水洗した(3回)。溶媒を一部減圧留去した後、90%アセトン水溶液(300ml)の攪拌溶液へゆっくり加えた。ろ過により固体をろ別回収し、アセトン、水、アセトンの順番で洗浄した後、減圧乾燥して淡黄色粉体を得た(収率96%)。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(10)で表されるトリアリールアミンポリマーであることが確認された。元素分析および赤外分光分析の測定結果をそれぞれ表1および図2に示す。   Subsequently, in a 100 ml four-necked round bottom flask equipped with a condenser and a thermometer, at room temperature, 3.31 g of a triarylamine polymer represented by the general formula (9), 0.4 g (2.5 mmol) of bromobenzene, Sodium-tert-butoxide 0.3 g (3 mmol) and o-xylene 25 ml were charged. To this mixed solution was added a solution of 9.2 mg (0.01 mmol) of tris (dibenzylideneacetone) dipalladium chloroform complex prepared in advance in a nitrogen atmosphere and 0.09 ml of tri-tert-butylphosphine in 5 ml of o-xylene. did. Thereafter, the temperature was raised to 120 ° C. in a nitrogen atmosphere, and the mixture was aged for 3 hours while heating and stirring at 120 ° C. The reaction mixture was cooled to room temperature, distilled water (10 ml) was added and washed with water (3 times). The solvent was partially distilled off under reduced pressure, and then slowly added to a stirring solution of 90% aqueous acetone (300 ml). The solid was collected by filtration, washed in the order of acetone, water, and acetone, and then dried under reduced pressure to obtain a pale yellow powder (yield 96%). When the obtained powder was measured by elemental analysis and infrared spectroscopic analysis, it was confirmed to be a triarylamine polymer represented by the following general formula (10). The measurement results of elemental analysis and infrared spectroscopic analysis are shown in Table 1 and FIG. 2, respectively.

また、得られたポリマーをTHF系GPC(東ソー(株)製:HLC−8220;カラム:G5000HXL−G3000HXL(いずれも東ソー(株)製))にて分析した結果、ポリスチレン換算で重量平均分子量8,300および数平均分子量4,800(分散度1.7)であった。ガラス転移温度は167℃を示した。 Moreover, as a result of analyzing the obtained polymer by THF type | system | group GPC (Tosoh Co., Ltd. product: HLC-8220; Column: G5000H XL- G3000H XL (all are Tosoh Co., Ltd. product)), it is a weight average molecular weight in polystyrene conversion. It was 8,300 and the number average molecular weight 4,800 (dispersion degree 1.7). The glass transition temperature was 167 ° C.

実験例1(2−アミノ−9,9−ジ−n−ブチルフルオレン(1−C)の合成)   Experimental Example 1 (Synthesis of 2-amino-9,9-di-n-butylfluorene (1-C))

冷却管、温度計を装着した300ml四つ口丸底フラスコに、室温下、フルオレン8.3g(50mmol)、テトラブチルアンモニウムクロリド13.9g(50mmol)、1−ヨードブタン 22.1(120mmol)およびジメチルスルホキシド100mlを仕込んだ。60℃に昇温後、50%水酸化ナトリウム水溶液75mlを加え、24時間攪拌した。反応終了後、この反応混合物を室温まで冷却し、1M塩酸を用いて酸洗した後、トルエンを用いて有機層を抽出した。硫酸マグネシウムで乾燥、溶媒を減圧留去後、シクロヘキサン溶媒によるカラムクロマトグラフィーを実施し、淡黄色油状物として13.0g得た。さらにメタノールを用いた再結晶を実施し、無色結晶として10.1g得た(収率72%)。NMR測定から目的物1−Aであることを確認した。   In a 300 ml four-necked round bottom flask equipped with a condenser and a thermometer, 8.3 g (50 mmol) of fluorene, 13.9 g (50 mmol) of tetrabutylammonium chloride, 22.1 (120 mmol) of 1-iodobutane and dimethyl at room temperature 100 ml of sulfoxide was charged. After raising the temperature to 60 ° C., 75 ml of 50% aqueous sodium hydroxide solution was added and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, pickled with 1M hydrochloric acid, and the organic layer was extracted with toluene. After drying over magnesium sulfate and distilling off the solvent under reduced pressure, column chromatography with a cyclohexane solvent was performed to obtain 13.0 g of a pale yellow oil. Further, recrystallization using methanol was performed to obtain 10.1 g of colorless crystals (yield 72%). From NMR measurement, it was confirmed to be the target product 1-A.

H−NMR(CDCl):7.5−7.8(2H,m),7.2−7.7(6H,m),1.97(4H,m),1.05(4H,m),0.67(6H,t,7.4Hz),0.5−0.7(4H,m)
13C−NMR(CDCl):150.56, 141.02, 126.90, 126.61, 122.78, 119.56, 54.93, 40.23, 25.98, 23.13, 13.86
1 H-NMR (CDCl 3 ): 7.5-7.8 (2H, m), 7.2-7.7 (6H, m), 1.97 (4H, m), 1.05 (4H, m), 0.67 (6H, t, 7.4 Hz), 0.5-0.7 (4H, m)
13 C-NMR (CDCl 3 ): 150.56, 141.02, 126.90, 126.61, 122.78, 119.56, 54.93, 40.23, 25.98, 23.13, 13 .86

200ml丸底フラスコに、室温下、1−A 13.9g(50mmol)および酢酸150mlを仕込んだ。50℃に昇温後、濃硝酸13.7g(150mmol)をゆっくり滴下した。さらに80℃まで昇温し、3時間熟成した。反応終了後、この反応混合物を室温まで冷却し、1.5lの氷水中へゆっくり添加した。得られた沈殿物をデカンテーションおよびろ過操作により分離した。トルエンで再度溶解させ、純水、飽和食塩水を用いて洗浄した後、硫酸マグネシウムで乾燥、溶媒を減圧留去し、黄色油状物として17.4g得た。さらにヘキサン溶媒によるカラムクロマトグラフィーを実施後、メタノールを用いた再結晶を実施し、黄色結晶として13.1g得た(収率81%)。NMR測定およびFD−MSから目的物1−Bであることを確認した。   A 200 ml round bottom flask was charged with 13.9 g (50 mmol) of 1-A and 150 ml of acetic acid at room temperature. After raising the temperature to 50 ° C., 13.7 g (150 mmol) of concentrated nitric acid was slowly added dropwise. Further, the temperature was raised to 80 ° C. and aged for 3 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and slowly added to 1.5 l of ice water. The resulting precipitate was separated by decantation and filtration. It was dissolved again with toluene, washed with pure water and saturated saline, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 17.4 g as a yellow oil. Further, column chromatography using a hexane solvent was performed, followed by recrystallization using methanol to obtain 13.1 g as a yellow crystal (yield 81%). From NMR measurement and FD-MS, it was confirmed to be the target 1-B.

H−NMR(CDCl):8.26(1H,dd,8.0,2.2Hz),8.20(1H,d,2.2Hz),7.80(2H,d,8.4Hz),7.5−7.8(2H,m),7.3−7.5(3H,m),2.03(4H,m),0.9−1.2(4H,m),0.67(6H,t,7.4Hz),0.4−0.7(4H,m)
13C−NMR(CDCl):152.21, 151.84, 138.64, 129.19, 127.32, 123.20, 123.15, 121.11, 119.72, 118.18, 55.61, 39.90, 25.97, 22.98, 13.83
FD−MS=323
1 H-NMR (CDCl 3 ): 8.26 (1H, dd, 8.0, 2.2 Hz), 8.20 (1H, d, 2.2 Hz), 7.80 (2H, d, 8.4 Hz) ), 7.5-7.8 (2H, m), 7.3-7.5 (3H, m), 2.03 (4H, m), 0.9-1.2 (4H, m), 0.67 (6H, t, 7.4Hz), 0.4-0.7 (4H, m)
13 C-NMR (CDCl 3 ): 152.21, 151.84, 138.64, 129.19, 127.32, 123.20, 123.15, 121.11, 119.72, 118.18, 55 61, 39.90, 25.97, 22.98, 13.83
FD-MS = 323

50ml丸底フラスコに、室温下、1−B 10.97g(32.8mmol)および水硫化ナトリウム13.1g(164mmol)、n−ブタノール 120mlおよび水12mlを仕込み、110℃で24時間熟成した。この反応混合物を室温まで冷却し、濃縮後、トルエンを用いて有機層を抽出した。飽和食塩水を用いて洗浄した後、硫酸マグネシウムで乾燥、溶媒を減圧留去し、ヘキサンを用いた再結晶により淡黄色固体として6.1g得た(収率63%)。NMR測定およびFD−MSから目的物1−Cであることを確認した。   A 50 ml round bottom flask was charged with 10.97 g (32.8 mmol) of 1-B, 13.1 g (164 mmol) of sodium hydrosulfide, 120 ml of n-butanol and 12 ml of water at room temperature and aged at 110 ° C. for 24 hours. The reaction mixture was cooled to room temperature, concentrated, and the organic layer was extracted with toluene. After washing with saturated brine, drying over magnesium sulfate, the solvent was distilled off under reduced pressure, and recrystallization with hexane gave 6.1 g as a pale yellow solid (yield 63%). From NMR measurement and FD-MS, it was confirmed to be the target product 1-C.

H−NMR(CDCl):7.54(1H,d,8.8Hz),7.47(1H,d,8.8Hz),7.1−7.3(3H,m),6.6−6.7(2H,m),3.73(2H,br s),1.75−2.05(4H,m),0.95−1.2(4H,m),0.67(6H,t,7.4Hz),0.45−0.8(4H,m)
13C−NMR(CDCl):152.52, 149.68, 145.80, 141.50, 132.45, 126.52, 125.27, 122.53, 120.39, 118.28, 113.88, 109.78, 54.74, 40.53, 25.97, 23.22, 13.94
FD−MS=293
1 H-NMR (CDCl 3 ): 7.54 (1H, d, 8.8 Hz), 7.47 (1 H, d, 8.8 Hz), 7.1-7.3 (3H, m), 6. 6-6.7 (2H, m), 3.73 (2H, brs), 1.75-2.05 (4H, m), 0.95-1.2 (4H, m), 0.67 (6H, t, 7.4Hz), 0.45-0.8 (4H, m)
13 C-NMR (CDCl 3 ): 152.52, 149.68, 145.80, 141.50, 132.45, 126.52, 125.27, 122.53, 120.39, 118.28, 113 .88, 109.78, 54.74, 40.53, 25.97, 23.22, 13.94
FD-MS = 293

合成例2(化合物11の合成)
合成例1において、4−n−ブチルアニリン 1.79g(12mmol)の代わりに1−C 3.23g(11mmol)を用いた以外は、合成例1に記載した方法に従い実施し、淡黄色粉体を得た(収率83%)。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(11)で表されるトリアリールアミンポリマーであることが確認された。また、得られたポリマーは、ポリスチレン換算で重量平均分子量24,200および数平均分子量15,400(分散度1.6)であった。ガラス転移温度は201℃を示した。
Synthesis Example 2 (Synthesis of Compound 11)
A pale yellow powder was prepared according to the method described in Synthesis Example 1 except that 1-C 3.23 g (11 mmol) was used instead of 1.79 g (12 mmol) of 4-n-butylaniline in Synthesis Example 1. Was obtained (yield 83%). When the obtained powder was measured by elemental analysis and infrared spectroscopic analysis, it was confirmed to be a triarylamine polymer represented by the following general formula (11). Moreover, the obtained polymer was the weight average molecular weight 24,200 and the number average molecular weight 15,400 (dispersion degree 1.6) in polystyrene conversion. The glass transition temperature was 201 ° C.

実験例2(ナフタレン誘導体(2−B)の合成)   Experimental Example 2 (Synthesis of naphthalene derivative (2-B))

窒素気流下、冷却管、温度計を装着した200ml丸底フラスコに、室温下、2,6−ジヒドロキシナフタレン 4.8g(30mmol)、ピリジン38mlおよびトルエン60mlを仕込んだ。氷浴下で冷却した後、トリフルオロメタンスルホン酸無水物22g(78mmol)をゆっくり加え、終夜攪拌した。純水を加え、反応を停止した後、トルエンで有機層を抽出した。10%塩酸、水、飽和食塩水の順で有機層を洗浄した後、硫酸マグネシウムで乾燥、溶媒を減圧留去し、褐色固体として12.9g得た。さらにヘキサンを用いた洗浄を実施し、淡褐色粉体として10.7g得た(収率84%)。NMR測定から目的物2−Aであることを確認した。   Under a nitrogen stream, a 200 ml round bottom flask equipped with a condenser and a thermometer was charged with 4.8 g (30 mmol) of 2,6-dihydroxynaphthalene, 38 ml of pyridine and 60 ml of toluene at room temperature. After cooling in an ice bath, 22 g (78 mmol) of trifluoromethanesulfonic anhydride was slowly added and stirred overnight. After adding pure water to stop the reaction, the organic layer was extracted with toluene. The organic layer was washed with 10% hydrochloric acid, water and saturated brine in that order, then dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 12.9 g as a brown solid. Further, washing with hexane was performed to obtain 10.7 g as a light brown powder (yield 84%). From NMR measurement, it was confirmed to be the desired product 2-A.

H−NMR(CDCl):7.99(2H,d,9.2Hz),7.83(2H,d,2.6Hz),7.50(2H,dd,8.8Hz,2.2Hz)
13C−NMR(CDCl):147.78, 132.30, 130.75, 121.46, 119.41, 115.51
1 H-NMR (CDCl 3 ): 7.9 (2H, d, 9.2 Hz), 7.83 (2H, d, 2.6 Hz), 7.50 (2H, dd, 8.8 Hz, 2.2 Hz) )
13 C-NMR (CDCl 3 ): 147.78, 132.30, 130.75, 121.46, 119.41, 115.51

窒素気流下、冷却管、温度計を装着した200ml丸底フラスコに、2−A 4.33g(10mmol)、4−クロロフェニルボロン酸 3.46g(21mmol)、テトラヒドロフラン80mlおよび20%炭酸水素ナトリウム水溶液42.5g(80mmol)を仕込んだ。その後、窒素雰囲気下、テトラキストリフェニルホスフィンパラジウム462mg(0.4mmol)を加え、65℃で終夜攪拌した。反応終了後、この反応混合物を室温まで冷却し、酢酸エチルで有機層を抽出後、溶媒を減圧留去し、析出した固体をジクロロメタンを用いて洗浄し、淡褐色粉体として2.1g得た(収率61%)。NMR測定およびFD−MSから目的物2−Bであることを確認した。   Under a nitrogen stream, in a 200 ml round bottom flask equipped with a condenser and a thermometer, 4.33 g (10 mmol) of 2-A, 3.46 g (21 mmol) of 4-chlorophenylboronic acid, 80 ml of tetrahydrofuran and 20% aqueous sodium hydrogen carbonate solution 42. .5 g (80 mmol) was charged. Thereafter, 462 mg (0.4 mmol) of tetrakistriphenylphosphine palladium was added under a nitrogen atmosphere, and the mixture was stirred at 65 ° C. overnight. After completion of the reaction, this reaction mixture was cooled to room temperature, the organic layer was extracted with ethyl acetate, the solvent was distilled off under reduced pressure, and the precipitated solid was washed with dichloromethane to obtain 2.1 g as a light brown powder. (Yield 61%). From NMR measurement and FD-MS, it was confirmed to be the target 2-B.

H−NMR(dTHF):8.15(2H,s),8.01(2H,d,8.4Hz),7.82(2H,d,8.0Hz),7.79(4H,d,8.0Hz),7.49(4H,d,8.4Hz)
FD−MS=348
1 H-NMR (dTHF): 8.15 (2H, s), 8.01 (2H, d, 8.4 Hz), 7.82 (2H, d, 8.0 Hz), 7.79 (4H, d , 8.0 Hz), 7.49 (4H, d, 8.4 Hz)
FD-MS = 348

合成例3(化合物12の合成)
合成例1において、4,4”−ジヨード−p−ターフェニル 4.34g(10mmol)の代わりに2−B 3.49g(10mmol)、4−n−ブチルアニリン 1.79g(12mmol)の代わりに4−n−オクチルアニリン 2.26g(11mmol)を使用し、反応温度を150℃、熟成時間を16時間とした以外は、合成例1に記載した方法に従い実施し、淡黄色粉体を得た(収率88%)。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(12)で表されるトリアリールアミンポリマーであることが確認された。また、得られたポリマーは、ポリスチレン換算で重量平均分子量20,900および数平均分子量13,500(分散度1.6)であった。ガラス転移温度は119℃を示した。
Synthesis Example 3 (Synthesis of Compound 12)
In Synthesis Example 1, instead of 4.34 g (10 mmol) of 4,4 ″ -diiodo-p-terphenyl, 3.49 g (10 mmol) of 2-B, instead of 1.79 g (12 mmol) of 4-n-butylaniline A pale yellow powder was obtained by carrying out according to the method described in Synthesis Example 1 except that 2.26 g (11 mmol) of 4-n-octylaniline was used, the reaction temperature was 150 ° C., and the aging time was 16 hours. (Yield 88%) When the obtained powder was measured by elemental analysis and infrared spectroscopic analysis, it was confirmed to be a triarylamine polymer represented by the following general formula (12). The obtained polymer had a weight average molecular weight of 20,900 and a number average molecular weight of 13,500 (dispersity of 1.6) in terms of polystyrene, and a glass transition temperature of 119 ° C.

実験例3(アントラセン誘導体(3−A)の合成)   Experimental Example 3 (Synthesis of anthracene derivative (3-A))

窒素気流下、冷却管、温度計を装着した200ml丸底フラスコに、9,10−ジブロモアントラセン 5.14g(15mmol)、4−クロロフェニルボロン酸 7.41g(45mmol)、テトラヒドロフラン80mlおよび20%炭酸水素ナトリウム水溶液47.5g(90mmol)を仕込んだ。その後、窒素雰囲気下、テトラキストリフェニルホスフィンパラジウム693mg(0.6mmol)を加え、70℃で30時間攪拌した。反応終了後、この反応混合物を室温まで冷却し、混合物中に析出した固体をろ過し、ヘキサン、純水、エタノールの順に洗浄し、淡黄色粉体として5.15g得た(収率86%)。GC−MSおよびNMR測定から目的物3−Aであることを確認した。   Under a nitrogen stream, a 200 ml round bottom flask equipped with a condenser and a thermometer was charged with 5.14 g (15 mmol) of 9,10-dibromoanthracene, 7.41 g (45 mmol) of 4-chlorophenylboronic acid, 80 ml of tetrahydrofuran and 20% hydrogen carbonate. A sodium aqueous solution (47.5 g, 90 mmol) was charged. Thereafter, 693 mg (0.6 mmol) of tetrakistriphenylphosphine palladium was added under a nitrogen atmosphere, and the mixture was stirred at 70 ° C. for 30 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the solid precipitated in the mixture was filtered and washed with hexane, pure water and ethanol in this order to obtain 5.15 g as a pale yellow powder (yield 86%). . It was confirmed to be the intended product 3-A from GC-MS and NMR measurement.

H−NMR(dTHF):7.6−7.9(8H,m),7.3−7.5(8H,m)
GC−MS=398
1 H-NMR (dTHF): 7.6-7.9 (8H, m), 7.3-7.5 (8H, m)
GC-MS = 398

合成例4(化合物13の合成)
合成例3において、2−B 3.49g(10mmol)の代わりに3−A 3.99g(10mmol)を用いた以外は、合成例3に記載した方法に従い実施し、黄色粉体を得た(収率91%)。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(13)で表されるトリアリールアミンポリマーであることが確認された。また、得られたポリマーは、ポリスチレン換算で重量平均分子量19,200および数平均分子量12,300(分散度1.6)であった。ガラス転移温度は177℃を示した。
Synthesis Example 4 (Synthesis of Compound 13)
The synthesis was performed according to the method described in Synthesis Example 3, except that 3.99 g (10 mmol) of 3-A was used instead of 3.49 g (10 mmol) of 2-B, to obtain a yellow powder ( Yield 91%). When the obtained powder was measured by elemental analysis and infrared spectroscopic analysis, it was confirmed to be a triarylamine polymer represented by the following general formula (13). Moreover, the obtained polymer was the weight average molecular weight 19,200 and the number average molecular weight 12,300 (dispersion degree 1.6) in polystyrene conversion. The glass transition temperature was 177 ° C.

合成例5(化合物15の合成)
合成例3において、2−B 3.49g(10mmol)の代わりに下記式(14)
Synthesis Example 5 (Synthesis of Compound 15)
In Synthesis Example 3, instead of 3.49 g (10 mmol) of 2-B, the following formula (14)

を4.49g(10mmol)用いた以外は、合成例3に記載した方法に従い実施し、淡黄色粉体を得た(収率88%)。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(15)で表されるトリアリールアミンポリマーであることが確認された。また、得られたポリマーは、ポリスチレン換算で重量平均分子量15,600および数平均分子量9,900(分散度1.6)であった。 Was used according to the method described in Synthesis Example 3 except that 4.49 g (10 mmol) was used to obtain a pale yellow powder (yield 88%). When the obtained powder was measured by elemental analysis and infrared spectroscopic analysis, it was confirmed to be a triarylamine polymer represented by the following general formula (15). Moreover, the obtained polymer was the weight average molecular weight 15,600 and the number average molecular weight 9,900 (dispersion degree 1.6) in polystyrene conversion.

比較合成例1(化合物16の合成)
合成例1において、4,4”−ジヨード−p−ターフェニル 4.34g(10mmol)の代わりに1,4−ジブロモ−1,5−ジメチルベンゼン 2.64g(10mmol)および4−n−ブチルアニリン 1.49g(10mmol)を用いた以外は、合成例1に記載した方法に従い実施し、淡黄色粉体を得た(収率87%)。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(16)で表されるトリアリールアミンポリマーであることが確認された。また、得られたポリマーは、ポリスチレン換算で重量平均分子量7,300および数平均分子量4,500(分散度1.6)であった。ガラス転移温度は183℃を示した。
Comparative Synthesis Example 1 (Synthesis of Compound 16)
In Synthesis Example 1, 2.64 g (10 mmol) of 1,4-dibromo-1,5-dimethylbenzene and 4-n-butylaniline instead of 4.34 g (10 mmol) of 4,4 ″ -diiodo-p-terphenyl Except that 1.49 g (10 mmol) was used, a light yellow powder was obtained (yield 87%) according to the method described in Synthesis Example 1. Elemental analysis and infrared spectroscopic analysis were performed on the obtained powder. Was measured to be a triarylamine polymer represented by the following general formula (16), and the obtained polymer had a weight average molecular weight of 7,300 and a number average molecular weight of 4, in terms of polystyrene. 500 (dispersion degree 1.6) The glass transition temperature was 183 ° C.

比較合成例2(化合物17の合成)
合成例1において、4,4”−ジヨード−p−ターフェニル 4.34g(10mmol)の代わりに4,4’−ジヨードビフェニル 2.03g(5mmol)を用いた以外は、合成例1に記載した方法に従い実施し、淡黄色粉体を得た(収率90%)。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(17)で表されるトリアリールアミンポリマーであることが確認された。また、得られたポリマーは、ポリスチレン換算で重量平均分子量9,700および数平均分子量6,000(分散度1.6)であった。ガラス転移温度は171℃を示した。
Comparative Synthesis Example 2 (Synthesis of Compound 17)
As described in Synthesis Example 1, except that 2.04 g (5 mmol) of 4,4′-diiodobiphenyl was used instead of 4.34 g (10 mmol) of 4,4 ″ -diiodo-p-terphenyl. A light yellow powder was obtained (yield 90%), and the obtained powder was measured by elemental analysis and infrared spectroscopic analysis, and the triaryl represented by the following general formula (17) was obtained. The polymer was confirmed to be an amine polymer and had a weight average molecular weight of 9,700 and a number average molecular weight of 6,000 (dispersity of 1.6) in terms of polystyrene, and a glass transition temperature of 171. ° C.

比較実験例1(N,N−ビス{4−(4’,4’,5’,5’−テトラメチル−1’,3’,2’−ジオキサボラニル)フェニル−4−オクチルアニリン(4−C)の合成)   Comparative Experimental Example 1 (N, N-bis {4- (4 ′, 4 ′, 5 ′, 5′-tetramethyl-1 ′, 3 ′, 2′-dioxaboranyl) phenyl-4-octylaniline (4-C )

冷却管、温度計を装着した300ml四つ口丸底フラスコに、室温下、ブロモベンゼン17.3g(110mmol)、4−n−オクチルアニリン 10.3g(50mmol)、ナトリウム−tert−ブトキシド 12.7g(132mmol)およびo−キシレン 170mlを仕込んだ。この混合液に、予め窒素雰囲気下で調製したトリス(ジベンジリデンアセトン)二パラジウムクロロホルム錯体229mg(0.25mmol)およびトリ−tert−ブチルホスフィン 2.2mlのo−キシレン溶液(5ml,0.2mg/ml)を添加した。その後、窒素雰囲気下、温度を120℃まで昇温し、120℃で加熱攪拌しながら4時間熟成した。反応終了後、この反応混合物を室温まで冷却し、トルエンを用いて有機層を抽出した。硫酸マグネシウムで乾燥、溶媒を減圧留去後、ヘキサン溶媒によるカラムクロマトグラフィーを実施し、淡黄色油状物として14.1g得た(収率78%)。   In a 300 ml four-necked round bottom flask equipped with a condenser and a thermometer, 17.3 g (110 mmol) of bromobenzene, 10.3 g (50 mmol) of 4-n-octylaniline, 12.7 g of sodium tert-butoxide at room temperature. (132 mmol) and 170 ml of o-xylene were charged. To this mixed solution, 229 mg (0.25 mmol) of tris (dibenzylideneacetone) dipalladium chloroform complex prepared in advance in a nitrogen atmosphere and an o-xylene solution (5 ml, 0.2 mg / 0.2 mg) of tri-tert-butylphosphine 2.2 ml were prepared. ml) was added. Thereafter, the temperature was raised to 120 ° C. in a nitrogen atmosphere, and the mixture was aged for 4 hours while heating and stirring at 120 ° C. After completion of the reaction, the reaction mixture was cooled to room temperature, and the organic layer was extracted with toluene. After drying over magnesium sulfate and distilling off the solvent under reduced pressure, column chromatography with a hexane solvent was performed to obtain 14.1 g as a pale yellow oil (yield 78%).

300ml四つ口丸底フラスコに、室温下、4−A 14.1g(39mmol)およびN,N−ジメチルホルムアミド 150mlを仕込んだ。この混合液に、N,N−ジメチルホルムアミド 50mlにN−ブロモスクシンイミド 9.8g(55mmol)を溶解させた溶液をゆっくり滴下し、滴下終了後から室温で3時間反応させた。反応終了後、この反応混合物をトルエンを用いて有機層を抽出し、硫酸マグネシウムで乾燥、溶媒を減圧留去後、ヘキサン溶媒によるカラムクロマトグラフィーを実施し、淡黄色油状物として17.8g得た(収率87%)。NMR測定から目的物4−Bであることを確認した。   A 300 ml four-necked round bottom flask was charged with 14.1 g (39 mmol) of 4-A and 150 ml of N, N-dimethylformamide at room temperature. A solution prepared by dissolving 9.8 g (55 mmol) of N-bromosuccinimide in 50 ml of N, N-dimethylformamide was slowly added dropwise to this mixed solution, and the mixture was reacted at room temperature for 3 hours after the completion of the addition. After completion of the reaction, the organic layer was extracted from this reaction mixture with toluene, dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and column chromatography with a hexane solvent was carried out to obtain 17.8 g as a pale yellow oil. (Yield 87%). From NMR measurement, it was confirmed to be the desired product 4-B.

H−NMR(CDCl):6.8−7.7(12H,m),2.57(2H,t,7.6Hz),1.45−1.70(2H,m),1.15−1.45(10H,m),0.90(3H,t,6.6Hz)
13C−NMR(CDCl):143.63, 144.28, 138.86, 132.14, 129.43, 124.93, 114.91, 35.46, 31.96, 31.52, 29.54, 29.45, 29.32, 22.75, 14.20
1 H-NMR (CDCl 3 ): 6.8-7.7 (12H, m), 2.57 (2H, t, 7.6 Hz), 1.45-1.70 (2H, m), 1. 15-1.45 (10H, m), 0.90 (3H, t, 6.6Hz)
13 C-NMR (CDCl 3 ): 143.63, 144.28, 138.86, 132.14, 129.43, 124.93, 114.91, 35.46, 31.96, 31.52, 29 .54, 29.45, 29.32, 22.75, 14.20

300ml四つ口丸底フラスコに、室温、窒素雰囲気下、1−B 5.2g(10mmol)およびテトラヒドロフラン100mlを仕込んだ。この混合液を−78℃まで冷却した後、n−ブチルリチウムのヘキサン溶液 8.3ml(122mmol)を約15分かけて滴下し、2時間攪拌した。その後、トリイソプロポキシボラン7.1ml(30mmol)を約15分かけて滴下し、ゆっくり室温まで昇温させながら終夜攪拌した。反応終了後、この反応混合物を0℃に冷却し、純水10mlを加えた後、10%塩酸水溶液20mlをゆっくり加え、さらに30分攪拌した。攪拌終了後、酢酸エチルを用いて有機層を抽出し、硫酸マグネシウムで乾燥した。ここで1,3−プロパンジオール 1.7g(22mmol)を加え、混合物を減圧濃縮し、溶媒を留去した後、トルエン/酢酸エチル(1/1体積%)混合溶媒によるカラムクロマトグラフィーを実施し、白色固体として5.0g得た(収率95%)。NMR測定から目的物4−Cであることを確認した。   A 300 ml four-necked round bottom flask was charged with 5.2 g (10 mmol) of 1-B and 100 ml of tetrahydrofuran under a nitrogen atmosphere at room temperature. After cooling this mixed liquid to −78 ° C., 8.3 ml (122 mmol) of a hexane solution of n-butyllithium was added dropwise over about 15 minutes, followed by stirring for 2 hours. Thereafter, 7.1 ml (30 mmol) of triisopropoxyborane was added dropwise over about 15 minutes, and the mixture was stirred overnight while slowly warming to room temperature. After completion of the reaction, the reaction mixture was cooled to 0 ° C., 10 ml of pure water was added, 20 ml of 10% aqueous hydrochloric acid was slowly added, and the mixture was further stirred for 30 minutes. After completion of stirring, the organic layer was extracted with ethyl acetate and dried over magnesium sulfate. Here, 1.7 g (22 mmol) of 1,3-propanediol was added, the mixture was concentrated under reduced pressure, and the solvent was distilled off, followed by column chromatography using a toluene / ethyl acetate (1/1 vol%) mixed solvent. As a white solid, 5.0 g was obtained (yield 95%). From NMR measurement, it was confirmed to be the desired product 4-C.

H−NMR(CDCl):7.61(4H,d,8.4Hz),6.8−7.4(8H,m),4.13(8H,m),2.57(2H,t,7.6Hz),2.03(4H,m),1.45−1.70(2H,m),1.15−1.45(10H,m),0.89(3H,t,6.6Hz) 1 H-NMR (CDCl 3 ): 7.61 (4H, d, 8.4 Hz), 6.8-7.4 (8H, m), 4.13 (8H, m), 2.57 (2H, t, 7.6 Hz), 2.03 (4H, m), 1.45-1.70 (2H, m), 1.15-1.45 (10H, m), 0.89 (3H, t, (6.6 Hz)

比較合成例3(化合物18の合成)
冷却管、温度計を装着した100ml四つ口丸底フラスコに、室温下、4,4’−ジヨードビフェニル 796mg(1.96mmol)、1−C 1.05g(2mmol)、トリオクチルメチルアンモニウムクロリド(「Aliquat336」登録商標、ヘンケル社製) 80.8mg(0.2mmol)、炭酸カリウム4.4g(32mmol)、純水16mlおよびトルエン24mlを仕込んだ。この混合液を20分間窒素バブリングした後、テトラキストリフェニルホスフィンパラジウム46mg(0.04mmol)を添加し、温度を85℃まで昇温し、加熱攪拌しながら約1日熟成した。その後、ブロモベンゼンを加え、さらに1日加熱攪拌した。反応終了後、この反応混合物を室温まで冷却した後、90%アセトン水溶液(300ml)の攪拌溶液へゆっくり加えた。ろ過により固体をろ別回収し、アセトン、水、アセトンの順番で洗浄した後、減圧乾燥した。さらにトルエン溶媒によるカラムクロマトグラフィーを実施し、濃縮溶液を再度アセトン中へゆっくり加えて析出させ、乾燥させることで淡黄色粉体を得た。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(18)で表されるトリアリールアミンポリマーであることが確認された。また、得られたポリマーは、ポリスチレン換算で重量平均分子量19,400および数平均分子量11,300(分散度1.7)であった。
Comparative Synthesis Example 3 (Synthesis of Compound 18)
To a 100 ml four-necked round bottom flask equipped with a condenser and a thermometer, 796 mg (1.96 mmol) of 4,4′-diiodobiphenyl, 1.05 g (2 mmol) of 1-C, trioctylmethylammonium chloride at room temperature. ("Aliquat 336" registered trademark, manufactured by Henkel) 80.8 mg (0.2 mmol), 4.4 g (32 mmol) of potassium carbonate, 16 ml of pure water and 24 ml of toluene were charged. The mixture was bubbled with nitrogen for 20 minutes, 46 mg (0.04 mmol) of tetrakistriphenylphosphine palladium was added, the temperature was raised to 85 ° C., and the mixture was aged for about 1 day with heating and stirring. Thereafter, bromobenzene was added, and the mixture was further heated and stirred for 1 day. After completion of the reaction, the reaction mixture was cooled to room temperature and then slowly added to a stirred solution of 90% aqueous acetone (300 ml). The solid was collected by filtration, washed in the order of acetone, water, and acetone, and then dried under reduced pressure. Further, column chromatography with a toluene solvent was carried out, and the concentrated solution was slowly added again into acetone to precipitate it, followed by drying to obtain a pale yellow powder. When the obtained powder was measured by elemental analysis and infrared spectroscopic analysis, it was confirmed to be a triarylamine polymer represented by the following general formula (18). Moreover, the obtained polymer was the weight average molecular weight 19,400 and the number average molecular weight 11,300 (dispersion degree 1.7) in polystyrene conversion.

比較合成例4(化合物19の合成)
合成例2において、4,4’−ジヨードビフェニル 796mg(1.96mmol)の代わりに4,4”−ジヨード−p−ターフェニル 964mg(2mmol)および1−Cを 1.10g(2.1mmol)用いた以外は、合成例2に記載した方法に従い実施し、淡黄色粉体を得た。得られた粉体を元素分析および赤外分光分析により測定したところ、下記一般式(19)で表されるトリアリールアミンポリマーであることが確認された。また、得られたポリマーは、ポリスチレン換算で重量平均分子量7,600および数平均分子量5,300(分散度1.4)であった。
Comparative Synthesis Example 4 (Synthesis of Compound 19)
In Synthesis Example 2, instead of 796 mg (1.96 mmol) of 4,4′-diiodobiphenyl, 964 mg (2 mmol) of 4,4 ″ -diiodo-p-terphenyl and 1.10 g (2.1 mmol) of 1-C were used. A pale yellow powder was obtained according to the method described in Synthesis Example 2 except that it was used, and the obtained powder was measured by elemental analysis and infrared spectroscopic analysis, and represented by the following general formula (19). The obtained polymer was confirmed to have a weight average molecular weight of 7,600 and a number average molecular weight of 5,300 (dispersity of 1.4) in terms of polystyrene.

実施例1
以下の手順により、図1(D)に示す構成の電界効果トランジスタを作製した。
Example 1
A field effect transistor having the structure shown in FIG. 1D was manufactured by the following procedure.

ガラス基板上に、電極のパターンのマスクを介して金を真空蒸着法により厚さ30nm、5mm幅のゲート金電極を作製した。このガラス基板を化学蒸着装置へ移し、減圧下でキシリレンダイマー(商品名パリレンC、日本パリレン(株)製)を180℃で加熱蒸発させ、680℃に加熱した加熱管を通して熱分解して、ジラジカルモノマーを発生させた。室温に保持した当該基板上へ発生させたジラジカルモノマーを導入し、厚さ860nmのポリパラキシリレン薄膜を作製した。続いてアリールアミンポリマー(10)の0.6wt%トルエン溶液を用い1000rpmでスピンコートすることにより、50nmの膜厚の有機半導体層を形成した。ソース電極とドレイン電極を形成するためのメタルマスクパターンを設けて、真空蒸着により厚さ40nmの金電極を形成した。これにより、チャンネル長が75μmでチャンネル幅が5mmのソース・ドレイン電極が形成された。作製した素子を測定容器に移し、容器を真空にした後、素子特性の測定を行った。素子のソース電極を接地し、ドレイン電極にマイナス電圧、ゲート電極にマイナス電圧を印加して、それぞれの電圧を増加させると、ドレイン電流の増加が観測された。図3にドレイン電流のゲート電圧依存性を示す。飽和電流より求めた正孔移動度は2.4×10−4cm−1−1で、しきい値電圧−54V、オン/オフ電流比は2.1×10であった。測定後の素子を窒素雰囲気グローブボックスで、100℃で12時間アニールを行い、再び測定容器に移し、容器を真空にした後、素子特性の測定を行った。その結果、正孔移動度は1.3×10−3cm−1−1、しきい値電圧−56V、オン/オフ電流比5.6×10となり、トランジスタ特性が向上した。 On a glass substrate, a gold gate electrode having a thickness of 30 nm and a width of 5 mm was produced by vacuum deposition of gold through an electrode pattern mask. This glass substrate is transferred to a chemical vapor deposition apparatus, xylylene dimer (trade name Parylene C, manufactured by Japan Parylene Co., Ltd.) is evaporated by heating at 180 ° C. under reduced pressure, and pyrolyzed through a heating tube heated to 680 ° C., Diradical monomers were generated. The diradical monomer generated on the substrate kept at room temperature was introduced to prepare a polyparaxylylene thin film having a thickness of 860 nm. Subsequently, an organic semiconductor layer having a film thickness of 50 nm was formed by spin coating at 1000 rpm using a 0.6 wt% toluene solution of the arylamine polymer (10). A metal mask pattern for forming a source electrode and a drain electrode was provided, and a gold electrode having a thickness of 40 nm was formed by vacuum deposition. As a result, source / drain electrodes having a channel length of 75 μm and a channel width of 5 mm were formed. The produced element was transferred to a measurement container, and after the container was evacuated, element characteristics were measured. When the source electrode of the device was grounded, a negative voltage was applied to the drain electrode and a negative voltage was applied to the gate electrode, and the respective voltages were increased, an increase in the drain current was observed. FIG. 3 shows the gate voltage dependence of the drain current. The hole mobility determined from the saturation current was 2.4 × 10 −4 cm 2 V −1 s −1 , the threshold voltage was −54 V, and the on / off current ratio was 2.1 × 10 3 . The element after the measurement was annealed at 100 ° C. for 12 hours in a nitrogen atmosphere glove box, transferred again to the measurement container, the container was evacuated, and the element characteristics were measured. As a result, the hole mobility was 1.3 × 10 −3 cm 2 V −1 s −1 , the threshold voltage was −56 V, and the on / off current ratio was 5.6 × 10 3 , and the transistor characteristics were improved.

実施例2〜5
実施例1において、有機半導体層として、アリールアミンポリマー(10)の代わりにアリールアミンポリマー(11)〜(13)および(15)をそれぞれ用いた以外は、実施例1と同様の手順によって電界効果トランジスタを作製した。得られた電界効果トランジスタについて、実施例と同様の手順で素子特性の測定を行った。結果を表2に示す。
Examples 2-5
In Example 1, the field effect was obtained by the same procedure as in Example 1 except that the arylamine polymers (11) to (13) and (15) were used instead of the arylamine polymer (10) as the organic semiconductor layer. A transistor was manufactured. About the obtained field effect transistor, the element characteristic was measured in the procedure similar to an Example. The results are shown in Table 2.

比較実施例1〜4
実施例1において、有機半導体層として、アリールアミンポリマー(10)の代わりにアリールアミンポリマー(16)〜(19)をそれぞれ用いた以外は、実施例1と同様の手順によって電界効果トランジスタを作製した。得られた電界効果トランジスタについて、実施例と同様の手順で素子特性の測定を行った。結果を実施例の結果と合わせて表2に示す。
Comparative Examples 1-4
In Example 1, a field effect transistor was produced by the same procedure as in Example 1 except that each of the arylamine polymers (16) to (19) was used instead of the arylamine polymer (10) as the organic semiconductor layer. . About the obtained field effect transistor, the element characteristic was measured in the procedure similar to an Example. The results are shown in Table 2 together with the results of the examples.

本発明に用いる有機半導体材料は、高純度であり、電荷輸送材料としてキャリア移動度が高いため、有機薄膜トランジスタに用いた場合、オン/オフ比が大きく、しかも応答速度が高速化されており、電界効果トランジスタとして極めて有用である。   Since the organic semiconductor material used in the present invention has high purity and high carrier mobility as a charge transport material, when used in an organic thin film transistor, the on / off ratio is large and the response speed is increased. It is extremely useful as an effect transistor.

電界効果トランジスタ素子の主な概略構成図を示す。The main schematic block diagram of a field effect transistor element is shown. 合成例1で得られた化合物(10)の赤外分光分析の測定結果を示す。The measurement result of the infrared spectroscopy analysis of the compound (10) obtained by the synthesis example 1 is shown. 実施例1で得られた化合物(10)を用いて作製した電界効果トランジスタ素子のゲート電圧−ドレイン電流曲線を示す。The gate voltage-drain current curve of the field effect transistor element produced using the compound (10) obtained in Example 1 is shown.

Claims (4)

少なくともp型有機半導体、ソース電極、ドレイン電極およびゲート電極を備える電界効果トランジスタにおいて、該p型有機半導体成分が、下記一般式(1)で表される繰り返し単位を有する重量平均分子量3,000〜50,000の高分子化合物を含んでなることを特徴とする電界効果トランジスタ。
[式中、Arは置換若しくは無置換の炭素数6〜60のアリール基である。RおよびRは各々独立して水素原子、炭素数1〜18のアルキル基若しくはアルコキシ基、または炭素数6〜18のアリール基であり、隣り合う炭素原子と縮合環を形成しても良い。mは〜5の整数、aは0〜4の整数、bは0≦b≦2m+4の整数である。]
In a field effect transistor comprising at least a p-type organic semiconductor, a source electrode, a drain electrode, and a gate electrode, the p-type organic semiconductor component has a weight average molecular weight of 3,000 to 3,000 having a repeating unit represented by the following general formula (1) A field effect transistor comprising 50,000 polymer compounds.
[Wherein Ar 1 represents a substituted or unsubstituted aryl group having 6 to 60 carbon atoms. R 1 and R 2 are each independently a hydrogen atom, an alkyl or alkoxy group having 1 to 18 carbon atoms, or an aryl group having 6 to 18 carbon atoms, and may form a condensed ring with adjacent carbon atoms. . m is an integer of 1 to 5, a is an integer of 0 to 4, and b is an integer of 0 ≦ b ≦ 2m + 4. ]
一般式(1)において、Arが下記一般式(2)または(3)で表されることを特徴とする請求項1に記載の電界効果トランジスタ。
[式中、R、RおよびRは各々独立して水素原子、炭素数1〜18のアルキル基若しくはアルコキシ基、または炭素数6〜18のアリール基である。cは0〜4の整数である。]
The field effect transistor according to claim 1, wherein Ar 1 is represented by the following general formula (2) or (3) in the general formula (1).
[Wherein, R 3 , R 4 and R 5 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms or an alkoxy group, or an aryl group having 6 to 18 carbon atoms. c is an integer of 0-4. ]
前記一般式(1)が、下記一般式()〜(8)のいずれかで表されることを特徴とする請求項1に記載の電界効果トランジスタ。
[式中、R 、R、R、R10およびR11は各々独立して炭素数4〜18の直鎖、分鎖若しくは環状のアルキル基、または炭素数6〜60のアリール基である。]
The field effect transistor according to claim 1, wherein the general formula (1) is represented by any one of the following general formulas ( 5 ) to (8).
[ Wherein R 7 , R 8 , R 9 , R 10 and R 11 are each independently a linear, branched or cyclic alkyl group having 4 to 18 carbon atoms, or an aryl group having 6 to 60 carbon atoms. is there. ]
p型有機半導体に用いる前記一般式(1)で表される繰り返し単位を有する高分子化合物をアニール処理することを特徴とする請求項1に記載の電界効果トランジスタ。   2. The field effect transistor according to claim 1, wherein the polymer compound having a repeating unit represented by the general formula (1) used for the p-type organic semiconductor is annealed.
JP2007139959A 2007-05-28 2007-05-28 Field effect transistor Active JP5214910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139959A JP5214910B2 (en) 2007-05-28 2007-05-28 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139959A JP5214910B2 (en) 2007-05-28 2007-05-28 Field effect transistor

Publications (2)

Publication Number Publication Date
JP2008294321A JP2008294321A (en) 2008-12-04
JP5214910B2 true JP5214910B2 (en) 2013-06-19

Family

ID=40168714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139959A Active JP5214910B2 (en) 2007-05-28 2007-05-28 Field effect transistor

Country Status (1)

Country Link
JP (1) JP5214910B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343832B2 (en) * 2008-12-04 2013-11-13 三菱化学株式会社 Arylamine polymer, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display and organic EL lighting
CN109851762B (en) * 2018-12-28 2021-04-13 南阳师范学院 Organic semiconductor material and preparation method thereof
JPWO2022244822A1 (en) * 2021-05-21 2022-11-24

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0028867D0 (en) * 2000-11-28 2001-01-10 Avecia Ltd Field effect translators,methods for the manufacture thereof and materials therefor
CN1176180C (en) * 2002-04-28 2004-11-17 中国科学院长春应用化学研究所 High-molecular luminous material with energy-transfer main chain and its preparing process
KR20050032114A (en) * 2002-08-06 2005-04-06 아베시아 리미티드 Organic electronic devices
JP2005166651A (en) * 2003-11-14 2005-06-23 Fuji Xerox Co Ltd Method of manufacture for organic electroluminescent element, and the organic electroluminescent element
JP2006307052A (en) * 2005-04-28 2006-11-09 Nippon Shokubai Co Ltd Copolymer and electroluminescent device
CN1827666B (en) * 2006-02-10 2010-04-14 华南理工大学 Conjugated polymer containing sulfonic group substituted triarylamine and use thereof

Also Published As

Publication number Publication date
JP2008294321A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5454139B2 (en) Carbon nanotube composite, organic semiconductor composite, and field effect transistor
US9133211B2 (en) Dithienobenzodithiophene semiconductive material and electronic device using the same
US8110690B2 (en) Substituted indolocarbazoles
JP5220005B2 (en) Thiazolothiazole derivatives and organic electronic devices using the same
US8952181B2 (en) Organic semiconductive material precursor containing dithienobenzodithiophene derivative, ink, insulating member, charge-transporting member, and organic electronic device
JP2003261655A (en) Polythiophenes and device using these
US20100270542A1 (en) Solution Processable Organic Semiconductors
JP2003292588A (en) Polythiophenes and device using the same
TWI549327B (en) Organic field effect transistor and organic semiconductor material
WO2009101823A1 (en) Branched compounds, organic thin films made by using the same, and organic thin film devices
JP2011079827A (en) Method for producing benzodithiophene, and method for producing semiconductive polymer
EP2213692A1 (en) Polymer Semiconductors with High Mobility
JP2009197218A (en) Polymer, organic film containing it, and transistor
US20120053352A1 (en) Branched compound, and organic thin film and organic thin film element each comprising same
US20090159876A1 (en) Organic semiconductor material and organic field effect transistor
US20110079775A1 (en) Solution Processable Organic Semiconductors
JPWO2012115218A1 (en) Process for producing diantra [2,3-b: 2 ', 3'-f] thieno [3,2-b] thiophene and use thereof
JP5214910B2 (en) Field effect transistor
JP5453869B2 (en) Organic semiconductor composite and organic field effect transistor using the same
JP2010083785A (en) Compound having molecular structure high in planarity and organic transistor using the same
WO2021117622A1 (en) Condensed polycyclic aromatic compound
JP5637985B2 (en) Diazaborol compound and field effect transistor containing the same
JP5252508B2 (en) ORGANIC SEMICONDUCTOR MATERIAL, ITS MANUFACTURING METHOD, AND USE OF ORGANIC SEMICONDUCTOR MATERIAL
TW201529580A (en) Novel condensed polycycloaromatic compound and use thereof
KR101198905B1 (en) Organic field effect transistor including organic semiconductor layer containing thienylenevinylene compound and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130228

R150 Certificate of patent or registration of utility model

Ref document number: 5214910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250