[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5212246B2 - Solid-state imaging device and manufacturing method of solid-state imaging device - Google Patents

Solid-state imaging device and manufacturing method of solid-state imaging device Download PDF

Info

Publication number
JP5212246B2
JP5212246B2 JP2009105910A JP2009105910A JP5212246B2 JP 5212246 B2 JP5212246 B2 JP 5212246B2 JP 2009105910 A JP2009105910 A JP 2009105910A JP 2009105910 A JP2009105910 A JP 2009105910A JP 5212246 B2 JP5212246 B2 JP 5212246B2
Authority
JP
Japan
Prior art keywords
film
insulating film
light receiving
layer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009105910A
Other languages
Japanese (ja)
Other versions
JP2009170937A (en
Inventor
慎也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009105910A priority Critical patent/JP5212246B2/en
Publication of JP2009170937A publication Critical patent/JP2009170937A/en
Application granted granted Critical
Publication of JP5212246B2 publication Critical patent/JP5212246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は固体撮像素子及び固体撮像素子の製造方法に関する。詳しくは、平坦化処理を施すことによって残留する金属元素の拡散を抑制し、感度や画質の劣化を抑制しようとした固体撮像素子及びその製造方法に係るものである。   The present invention relates to a solid-state imaging device and a method for manufacturing the solid-state imaging device. More specifically, the present invention relates to a solid-state imaging device and a method for manufacturing the same, in which diffusion of a remaining metal element is suppressed by performing a planarization process, and deterioration in sensitivity and image quality is suppressed.

近年、固体撮像素子を用いた製品の小型化、軽量化、低消費電力化に関する要求に伴って、信号処理用素子に設けていた処理回路も固体撮像素子の受光部周辺に形成し、1つの固体撮像素子で全ての処理を可能とし、信号処理素子を不要とすることが行なわれている。   In recent years, with the demand for miniaturization, weight reduction, and low power consumption of products using solid-state image sensors, a processing circuit provided in the signal processing element is also formed around the light receiving portion of the solid-state image sensor. It has been practiced that all processing is possible with a solid-state imaging device and no signal processing device is required.

この様な固体撮像素子としては、特にCMOS(Complementary Metal Oxide Semiconductor)型固体撮像素子が小型化、軽量化、低コスト化、更に低消費電力化に有利であることが知られており、CMOS構造を有する光電変換素子を形成した受光部の周辺に所要の回路からなる周辺回路を設けることにより、1つの固体撮像素子を形成している。   As such a solid-state imaging device, a CMOS (Complementary Metal Oxide Semiconductor) type solid-state imaging device is known to be advantageous in reducing the size, weight, cost, and power consumption. A single solid-state imaging device is formed by providing a peripheral circuit including a required circuit around the light-receiving portion in which the photoelectric conversion element having the above is formed.

また、MOSプロセスの微細化技術の進展に伴い、光電変換素子の微細化及び多画素化が容易に実現できることに加えて周辺回路の高集積化も可能となり、CMOS型固体撮像素子としては益々小型化、多画素化及び高機能化が進んでいる。   In addition, along with the progress of miniaturization technology of MOS process, it is possible to easily realize miniaturization of photoelectric conversion elements and increase in the number of pixels, as well as high integration of peripheral circuits. The number of pixels and the number of functions are increasing.

例えば、最近の微細化技術の一つとして素子の配線を従来のアルミニウム配線に代えて銅配線を用いることが提案されている。即ち、銅はアルミニウムより抵抗値が低く配線ピッチを小さくでき、配線厚も薄く形成することが可能であるために、微細化技術の一つとして銅配線を用いることが提案されているのである。但し、銅のエッチング技術が確立していない現在では、配線溝を形成した後に金属(例えば銅)等の導電体を埋め込み、CMP(Chemical Mechanical Polishing:化学機械研磨)法による研磨で配線及び接続部を同時に形成するデュアルダマシン技術を採用している(例えば、特許文献1参照。)。   For example, as one of the recent miniaturization techniques, it has been proposed to use copper wiring instead of conventional aluminum wiring for element wiring. That is, copper has a resistance value lower than that of aluminum and can reduce the wiring pitch and can be formed with a thinner wiring thickness. Therefore, it has been proposed to use copper wiring as one of the miniaturization techniques. However, at present, copper etching technology has not been established. After forming a wiring trench, a conductor such as metal (for example, copper) is embedded, and wiring and connection portions are polished by CMP (Chemical Mechanical Polishing). Dual damascene technology is used to simultaneously form the two (see, for example, Patent Document 1).

一方、撮像素子としての画質性能を損なわず、いかにして多機能の回路を混載していくかが課題となっている。   On the other hand, there is a problem of how to incorporate a multifunctional circuit without impairing image quality performance as an image sensor.

撮像素子としては、再生画像の画質劣化(例えば、白点欠陥や暗電流などによる所謂出力値の浮き)を抑制する必要があるが、配線材料として銅を用い、この銅配線から銅が層間絶縁膜及びシリコン基板中を拡散して光電変換素子の受光部に達すると、不純物汚染として白点欠陥などの画質劣化に繋がる。従って、画質劣化や周辺回路のMOSトランジスタの閾値変動の要因を抑制するためには、デュアルダマシン技術にて銅配線を形成した後、銅配線の上面を覆う様に拡散防止膜を形成する必要がある。   As an image sensor, it is necessary to suppress degradation in the image quality of the reproduced image (for example, so-called floating of the output value due to white spot defects, dark current, etc.). When the light diffuses through the film and the silicon substrate and reaches the light receiving portion of the photoelectric conversion element, it leads to image quality deterioration such as white spot defect as impurity contamination. Therefore, in order to suppress the factors of image quality deterioration and threshold fluctuation of the MOS transistor in the peripheral circuit, it is necessary to form a diffusion prevention film so as to cover the upper surface of the copper wiring after the copper wiring is formed by the dual damascene technology. is there.

以下、図面を参照して、デュアルダマシン技術によって銅配線を形成したCMOS型固体撮像素子の製造方法について説明する。   Hereinafter, with reference to the drawings, a method of manufacturing a CMOS solid-state imaging device in which copper wiring is formed by dual damascene technology will be described.

デュアルダマシン技術によって銅配線を形成するCMOS型固体撮像素子の製造方法では、先ず、図5(a)で示す様に、N型シリコン基板101にSTI(Shallow Trench Isolation)によって素子分離膜102を形成する。また、ウエル領域(図示せず)を形成し、N型MOSトランジスタ若しくはP型MOSトランジスタとなる領域に不純物であるリン(P)やヒ素(As)、ホウ素(B)や二フッ化ホウ素(BF)を選択的に注入し、次いでトランジスタのゲート酸化膜103を熱酸化技術で形成し、その後にトランジスタのゲート電極104を形成する。 In the manufacturing method of the CMOS type solid-state imaging device in which the copper wiring is formed by the dual damascene technique, first, as shown in FIG. 5A, the element isolation film 102 is formed on the N-type silicon substrate 101 by STI (Shallow Trench Isolation). To do. Also, a well region (not shown) is formed, and phosphorus (P), arsenic (As), boron (B), and boron difluoride (BF) as impurities are formed in a region that becomes an N-type MOS transistor or a P-type MOS transistor. 2 ) is selectively implanted, and then a gate oxide film 103 of the transistor is formed by a thermal oxidation technique, and then a gate electrode 104 of the transistor is formed.

次に、イオン注入と熱処理により、サイドウォール105やLDD(Lightly Doped Drain)構造を有する高濃度拡散層領域106を形成すると共に、不純物を注入して受光部107を形成する。   Next, a high concentration diffusion layer region 106 having a sidewall 105 and an LDD (Lightly Doped Drain) structure is formed by ion implantation and heat treatment, and impurities are implanted to form a light receiving portion 107.

また、ストッパー層となるシリコン窒化膜108をシリコン基板表面に減圧CVD法により成膜する。続いて、白点欠陥を改善したり、MOSトランジスタの駆動能力を向上させたりするため、汎用のフォトリソグラフィー技術とエッチング技術によってシリコン窒化膜の一部に開口部150を形成する。その後、シリコン窒化膜の上層に層間絶縁膜109を形成する(図5(a)参照。)。   Further, a silicon nitride film 108 serving as a stopper layer is formed on the silicon substrate surface by a low pressure CVD method. Subsequently, in order to improve white spot defects or improve the driving capability of the MOS transistor, an opening 150 is formed in a part of the silicon nitride film by a general-purpose photolithography technique and etching technique. Thereafter, an interlayer insulating film 109 is formed on the silicon nitride film (see FIG. 5A).

次に、図5(b)で示す様に、シリコン窒化膜108及び層間絶縁膜109に、高濃度拡散層領域106と後述する第1の配線層を接続する第1の接続孔を開口し、この第1の接続孔に窒化タンタルを含むバリアメタル層110A及びタングステン電極層110Bを埋め込んだ後、CMP技術にて研磨を行って第1の接続部110を形成する。   Next, as shown in FIG. 5B, a first connection hole that connects the high-concentration diffusion layer region 106 and a first wiring layer described later is opened in the silicon nitride film 108 and the interlayer insulating film 109. After the barrier metal layer 110A containing tantalum nitride and the tungsten electrode layer 110B are buried in the first connection hole, the first connection portion 110 is formed by polishing using a CMP technique.

また、第1の配線間絶縁膜111を成膜し、この第1の配線間絶縁膜を汎用のフォトリソグラフィー技術とエッチング技術により加工を施すことによって、後述する銅配線となる領域に第1の配線溝を開口する。続いて、バリアメタル112A及び銅112Bを第1の配線溝に埋め込み、CMP技術により余剰な銅及びバリアメタルを研磨することで第1の配線層112を形成する。更に、第1の配線層112の上層に銅配線を保護するための第1の拡散防止膜(例えば、炭化シリコン膜)113を成膜する(図5(b)参照。)。   Also, a first inter-wiring insulating film 111 is formed, and this first inter-wiring insulating film is processed by a general-purpose photolithography technique and an etching technique, whereby the first inter-wiring insulating film 111 is formed in a region to be a copper wiring described later. Open the wiring trench. Subsequently, the barrier metal 112A and the copper 112B are embedded in the first wiring groove, and the first wiring layer 112 is formed by polishing excess copper and the barrier metal by a CMP technique. Further, a first diffusion prevention film (for example, a silicon carbide film) 113 for protecting the copper wiring is formed on the first wiring layer 112 (see FIG. 5B).

続いて、図5(c)で示す様に、第1の拡散防止膜113の上層に第2の配線間絶縁膜114を成膜し、次いで第2の接続部と第2の配線層となる領域を汎用のフォトリソグラフィー技術とエッチング技術によって加工し、バリアメタル115A、116Aと銅115B、116Bを埋め込み、CMP技術により余剰な銅及びバリアメタルを研磨することで第2の接続部115及び第2の配線層116を形成する。更に、第2の配線層116の上層に銅配線を保護するための第2の拡散防止膜(例えば、炭化シリコン膜)117を成膜する(図5(c)参照。)。   Subsequently, as shown in FIG. 5C, a second inter-wiring insulating film 114 is formed on the first diffusion prevention film 113, and then becomes a second connection portion and a second wiring layer. The region is processed by general-purpose photolithography technology and etching technology, barrier metal 115A, 116A and copper 115B, 116B are embedded, and excess copper and barrier metal are polished by CMP technology to thereby form the second connection portion 115 and the second connection portion 115. The wiring layer 116 is formed. Further, a second diffusion preventing film (for example, silicon carbide film) 117 for protecting the copper wiring is formed on the second wiring layer 116 (see FIG. 5C).

その後、カラーレジスト118及びオンチップレンズ119を形成することによって、CMOS型固体撮像素子を得ることができる(図5(d)参照。)。   Thereafter, a color resist 118 and an on-chip lens 119 are formed, whereby a CMOS solid-state imaging device can be obtained (see FIG. 5D).

なお、図5に示すCMOS型固体撮像素子では、受光部107上に屈折率や吸収率の異なる層が積層されており、光の減衰や干渉により光電変換素子への受光効率が悪化してしまうことが考えられる。そこで最近では、光電変換素子の上部領域の所定の範囲で拡散防止膜を開口する技術が提案されている。   In the CMOS type solid-state imaging device shown in FIG. 5, layers having different refractive indexes and absorptances are stacked on the light receiving unit 107, and the light receiving efficiency to the photoelectric conversion device is deteriorated due to light attenuation and interference. It is possible. Therefore, recently, a technique for opening a diffusion prevention film in a predetermined range in the upper region of the photoelectric conversion element has been proposed.

即ち、光電変換素子の受光部の上部を選択的に開口することで、配線材料からの拡散防止を目的とした拡散防止膜に透過光の屈折率や吸収率が異なる材料を用いたとしても、受光部への光が良好に入射でき、光の減衰や干渉による受光効率の悪化を抑制する技術が提案されている。   That is, by selectively opening the upper part of the light receiving portion of the photoelectric conversion element, even if a material having a different refractive index or absorption rate of transmitted light is used for the diffusion prevention film for the purpose of preventing diffusion from the wiring material, A technique has been proposed in which light can be favorably incident on the light receiving portion and the deterioration of light receiving efficiency due to light attenuation and interference is suppressed.

具体的には、図5(c)で示す様に、第2の配線層の銅配線を保護するために拡散防止膜117を成膜した後、汎用のフォトリソグラフィー技術及びエッチング技術によって光電変換素子の受光部領域を開口し、開口領域120Aを形成する。次に、CVD酸化膜121で開口領域120Aを埋め込み、CMP技術により余剰なCVD酸化膜121を除去することによって光電変換素子の受光部上部の開口部120を形成する(図6(a)参照。)。その後、カラーレジスト118及びオンチップレンズ119を形成することによって、CMOS型固体撮像素子を得ることができる(図6(b)参照。)。   Specifically, as shown in FIG. 5C, after the diffusion prevention film 117 is formed to protect the copper wiring of the second wiring layer, the photoelectric conversion element is formed by a general-purpose photolithography technique and etching technique. The light receiving portion area is opened to form an opening area 120A. Next, the opening region 120A is filled with the CVD oxide film 121, and the excess CVD oxide film 121 is removed by a CMP technique to form the opening 120 above the light receiving portion of the photoelectric conversion element (see FIG. 6A). ). Thereafter, by forming the color resist 118 and the on-chip lens 119, a CMOS type solid-state imaging device can be obtained (see FIG. 6B).

特開2003−324189号公報JP 2003-324189 A

ところで、上記した従来のCMOS型撮像素子では、配線層(第1の配線層112及び第2の配線層116)の上層に拡散防止膜(第1の拡散防止膜113及び第2の拡散防止膜117)を成膜しているために、配線材料である銅の拡散を抑制することはできるものの、配線層を形成する際に行なうCMP処理で使用するスラリー(水酸化カリウムが主成分)に含まれるカリウムの拡散を回避することができない。
即ち、第1の配線間絶縁膜111と第1の拡散防止膜113との間及び第2の配線間絶縁膜114と第2の拡散防止膜117との間で、配線材料である銅やバリアメタルをCMP研磨する際に研磨剤として使用されるスラリーに多く含有するカリウムが残留し、このカリウムが酸化膜やシリコン基板の中を拡散することとなる。
そして、拡散したカリウムが光電変換素子の受光部に達すると不純物汚染として白点欠陥等の画質劣化に繋がる。
By the way, in the above-described conventional CMOS type image pickup device, the diffusion prevention film (the first diffusion prevention film 113 and the second diffusion prevention film) is formed on the upper layer of the wiring layer (the first wiring layer 112 and the second wiring layer 116). 117) is formed, so that it is possible to suppress the diffusion of copper, which is a wiring material, but it is included in the slurry (mainly potassium hydroxide) used in the CMP process performed when forming the wiring layer. Diffusion of potassium cannot be avoided.
That is, between the first inter-wiring insulating film 111 and the first diffusion preventing film 113 and between the second inter-wiring insulating film 114 and the second diffusion preventing film 117, copper or barrier that is a wiring material is used. A large amount of potassium remains in the slurry used as an abrasive when CMP polishing the metal, and this potassium diffuses in the oxide film and the silicon substrate.
When the diffused potassium reaches the light receiving portion of the photoelectric conversion element, it leads to image quality deterioration such as white spot defects as impurity contamination.

なお、CMPが終了した後にスラリー除去を行えば良いとも考えられるが、酸化膜のCMP研磨において一般的に行われているフッ化水素水等での処理を行うと、配線材料である銅やバリアメタルをも溶解してしまい、物理的欠陥や配線の諸特性に悪影響を及ぼしてしまうこととなる。従って、現状の銅配線のCMP技術では研磨後にフッ化水素水等によるスラリーの除去は行っておらず、CMP研磨終了時点で被研磨層の表面に多量のカリウムが残留しているものと考えられる。   Although it is considered that the slurry may be removed after the CMP is completed, if the treatment with the hydrogen fluoride water or the like generally performed in the CMP polishing of the oxide film is performed, the wiring material such as copper and barrier The metal is also melted, which adversely affects physical defects and wiring characteristics. Therefore, it is considered that the current copper wiring CMP technology does not remove the slurry with hydrogen fluoride water or the like after polishing, and a large amount of potassium remains on the surface of the layer to be polished at the end of CMP polishing. .

本発明は以上の点に鑑みて創案されたものであって、平坦化処理を行うことによって残留する金属元素の拡散を抑制し、感度や画質の劣化を抑制することができる固体撮像素子及びこうした固体撮像素子の製造方法を提供することを目的とするものである。   The present invention was devised in view of the above points, and a solid-state imaging device capable of suppressing diffusion of remaining metal elements by performing a flattening process and suppressing deterioration of sensitivity and image quality, and such An object of the present invention is to provide a method for manufacturing a solid-state imaging device.

上記の目的を達成するために、本発明に係る固体撮像素子は、受光部を有する撮像領域が形成された半導体基板と、該半導体基板の上層に形成されると共に、絶縁膜に設けられた孔部に導電体が埋め込まれた後に金属元素を含む液体を用いた平坦化処理を行うことによって形成された金属配線層と、前記半導体基板と最下層の前記金属配線層との間に形成され、前記半導体基板と前記最下層の金属配線層とを接続する接続部を有する層間絶縁膜と、前記層間絶縁膜と前記最下層の金属配線層との間に前記受光部を被覆して形成され、炭化シリコン若しくは窒化シリコンから成る拡散防止膜と、該拡散防止膜の上層に形成されると共に、前記受光部に入射光を導く開口部とを備える。 In order to achieve the above object, a solid-state imaging device according to the present invention includes a semiconductor substrate on which an imaging region having a light receiving portion is formed, and a hole formed in an upper layer of the semiconductor substrate and provided in an insulating film. Formed between a metal wiring layer formed by performing a planarization process using a liquid containing a metal element after a conductor is embedded in the portion, and the semiconductor wiring layer on the lowermost layer, An interlayer insulating film having a connection portion connecting the semiconductor substrate and the lowermost metal wiring layer, and the light receiving portion is formed between the interlayer insulating film and the lowermost metal wiring layer , A diffusion prevention film made of silicon carbide or silicon nitride, and an opening for guiding incident light to the light receiving part are formed on the diffusion prevention film.

ここで、層間絶縁膜と最下層金属配線層との間に受光部を被覆して形成され、炭化シリコン若しくは窒化シリコンから成る拡散防止膜によって、金属元素を含む液体を用いた平坦化処理を施すことにより残留する金属元素の半導体基板側への拡散を抑制することができる。 Here, formed by covering the light receiving portion between the interlayer insulating film and the lowermost metal wiring layer, the diffusion barrier layer made of silicon carbide or silicon nitride, a flattening treatment using a liquid containing a metal element By applying, diffusion of the remaining metal element to the semiconductor substrate side can be suppressed.

また、上記の目的を達成するために、本発明に係る固体撮像素子の製造方法は、半導体基板に受光部を有する撮像領域を形成する工程と、前記半導体基板の上層に層間絶縁膜を形成する工程と、前記層間絶縁膜に、前記半導体基板と最下層の金属配線層とを接続する接続部を形成する工程と、前記層間絶縁膜上に前記受光部を被覆する炭化シリコン若しくは窒化シリコンから成る拡散防止膜を形成する工程と、絶縁膜に設けられた孔部に導電体を埋め込んだ後に金属元素を含む液体を用いた平坦化処理を行うことによって構成される前記最下層の金属配線層を前記拡散防止膜の上層に形成する工程と、エッチング処理によって前記受光部に入射光を導く開口部を前記拡散防止膜の上層に形成する工程とを備える。 In order to achieve the above object, a method for manufacturing a solid-state imaging device according to the present invention includes a step of forming an imaging region having a light receiving portion on a semiconductor substrate, and an interlayer insulating film is formed on the semiconductor substrate. Forming a connecting portion for connecting the semiconductor substrate and the lowermost metal wiring layer to the interlayer insulating film; and silicon carbide or silicon nitride covering the light receiving portion on the interlayer insulating film. forming a diffusion preventing layer, the lowermost layer of the metal wiring layer that consists by performing the flattening processing using a liquid containing a metal element after embedding the conductor into a hole portion formed in the insulating film And a step of forming in the upper layer of the diffusion prevention film and a step of forming an opening for guiding incident light to the light receiving portion in the upper layer of the diffusion prevention film by an etching process.

ここで、絶縁膜に設けられた孔部に導電体を埋め込んだ後に金属元素を含む液体を用いた平坦化処理を行うことによって構成される最下層の金属配線層を拡散防止膜の上層に形成することによって、拡散防止膜の上層に形成された層に金属元素を含む液体を用いた平坦化処理を施すことにより残留する金属元素の半導体基板側への拡散を抑制することができる。 Here, forming a lowermost metal wiring layer that is configured on the upper layer of the diffusion barrier layer by performing flattening processing using a liquid containing a metal element after embedding the conductor into a hole portion formed in the insulating film By doing so, it is possible to suppress the diffusion of the remaining metal element to the semiconductor substrate side by performing a planarization process using a liquid containing the metal element on the layer formed on the upper layer of the diffusion prevention film.

上記した本発明の固体撮像素子及び固体撮像素子の製造方法では、平坦化処理を施すことによって残留する金属元素の半導体基板側への拡散を抑制することができ、感度や画質の劣化を低減することができる。   In the solid-state imaging device and the manufacturing method of the solid-state imaging device of the present invention described above, diffusion of the remaining metal element to the semiconductor substrate side can be suppressed by performing the planarization process, and the deterioration of sensitivity and image quality is reduced. be able to.

本発明を適用した固体撮像素子の一例であるCMOS型固体撮像素子を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the CMOS type solid-state image sensor which is an example of the solid-state image sensor to which this invention is applied. 本発明を適用した固体撮像素子の製造方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the solid-state image sensor to which this invention is applied. 本発明を適用した固体撮像素子の製造方法の変形例(1)を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the modification (1) of the manufacturing method of the solid-state image sensor to which this invention is applied. 本発明を適用した固体撮像素子の製造方法の変形例(2)を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the modification (2) of the manufacturing method of the solid-state image sensor to which this invention is applied. 従来のCMOS型固体撮像素子の製造方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the conventional CMOS type solid-state image sensor. 従来のCMOS型固体撮像素子の変形例の製造方法を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the manufacturing method of the modification of the conventional CMOS type solid-state image sensor.

以下、本発明の実施の形態について図面を参照しながら説明し、本発明の理解に供する。
図1は本発明を適用した固体撮像素子の一例であるCMOS型固体撮像素子を説明するための模式的な断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings to facilitate understanding of the present invention.
FIG. 1 is a schematic cross-sectional view for explaining a CMOS type solid-state imaging device as an example of a solid-state imaging device to which the present invention is applied.

図1に示すCMOS型固体撮像素子100では、素子分離膜2が形成されると共に、LDD構造を有する高濃度拡散層領域6及び受光部7が形成されたN型シリコン基板1上にトランジスタのゲート酸化膜3、トランジスタのゲート電極4及びサイドウォール5が形成されている。   In the CMOS type solid-state imaging device 100 shown in FIG. 1, a transistor gate is formed on an N-type silicon substrate 1 on which an element isolation film 2 is formed and a high-concentration diffusion layer region 6 having an LDD structure and a light-receiving portion 7 are formed. An oxide film 3, a transistor gate electrode 4 and sidewalls 5 are formed.

また、N型シリコン基板上には順に開口部50を有するシリコン窒化膜8、層間絶縁膜9、第1の拡散防止膜30、第1の配線間絶縁膜11、第2の拡散防止膜13、第2の配線間絶縁膜14、第3の拡散防止膜17及びカラーレジスト18形成されている。なお、カラーレジストの受光部領域にはオンチップレンズ19が設けられている。   Further, on the N-type silicon substrate, a silicon nitride film 8 having an opening 50 in order, an interlayer insulating film 9, a first diffusion preventing film 30, a first inter-wiring insulating film 11, a second diffusion preventing film 13, A second inter-wiring insulating film 14, a third diffusion prevention film 17, and a color resist 18 are formed. An on-chip lens 19 is provided in the light receiving area of the color resist.

更に、シリコン窒化膜及び層間絶縁膜には高濃度拡散領域と電気的に接続された第1の接続部10が形成され、第1の拡散防止膜及び第1の配線間絶縁膜には第1の接続部と電気的に接続された第1の配線層12が形成され、第2の拡散防止膜及び第2の配線間絶縁膜には第1の配線層と電気的に接続された第2の接続部15及び第2の接続部と電気的に接続された第2の配線層16が形成されている。   Further, a first connection portion 10 electrically connected to the high concentration diffusion region is formed in the silicon nitride film and the interlayer insulating film, and the first diffusion preventing film and the first inter-wiring insulating film are provided with the first connection portion 10. The first wiring layer 12 electrically connected to the connection portion is formed, and the second diffusion prevention film and the second inter-wiring insulating film are electrically connected to the first wiring layer. The second wiring layer 16 electrically connected to the connecting portion 15 and the second connecting portion is formed.

以下、上記の様に構成されたCMOS型固体撮像素子の製造方法について説明する。即ち、本発明を適用した固体撮像素子の製造方法の一例について説明する。   Hereinafter, a manufacturing method of the CMOS type solid-state imaging device configured as described above will be described. That is, an example of a method for manufacturing a solid-state imaging device to which the present invention is applied will be described.

本発明を適用した固体撮像素子の製造方法では、先ず、図2(a)で示す様に、N型シリコン基板1にSTIによって素子分離膜2を形成する。また、ウエル領域(図示せず)を形成し、N型MOSトランジスタ若しくはP型MOSトランジスタとなる領域に不純物であるリン(P)やヒ素(As)、ホウ素(B)や二フッ化ホウ素(BF)を選択的に注入し、次いでトランジスタのゲート酸化膜3を熱酸化技術で形成し、その後にトランジスタのゲート電極4を形成する。 In the method for manufacturing a solid-state imaging device to which the present invention is applied, first, as shown in FIG. 2A, an element isolation film 2 is formed on an N-type silicon substrate 1 by STI. Also, a well region (not shown) is formed, and phosphorus (P), arsenic (As), boron (B), and boron difluoride (BF) as impurities are formed in a region that becomes an N-type MOS transistor or a P-type MOS transistor. 2 ) is selectively implanted, and then the gate oxide film 3 of the transistor is formed by a thermal oxidation technique, and then the gate electrode 4 of the transistor is formed.

次に、イオン注入と熱処理により、サイドウォール5やLDD構造を有する高濃度拡散層領域6を形成すると共に、不純物を注入して受光部7を形成する。   Next, the side wall 5 and the high-concentration diffusion layer region 6 having an LDD structure are formed by ion implantation and heat treatment, and impurities are implanted to form the light receiving portion 7.

また、ストッパー層となるシリコン窒化膜8をシリコン基板表面に減圧CVD法により成膜し、汎用のフォトリソグラフィー技術とエッチング技術によってシリコン窒化膜の一部に開口部50を形成する。その後、シリコン窒化膜の上層に層間絶縁膜9を形成する(図2(a)参照。)。   Further, a silicon nitride film 8 serving as a stopper layer is formed on the silicon substrate surface by a low pressure CVD method, and an opening 50 is formed in a part of the silicon nitride film by a general-purpose photolithography technique and an etching technique. Thereafter, an interlayer insulating film 9 is formed on the silicon nitride film (see FIG. 2A).

次に、図2(b)で示す様に、高濃度拡散層領域6と後述する第1の配線層を接続する第1の接続孔を開口し、この第1の接続孔に窒化タンタルを含むバリアメタル層10A及びタングステン電極層10Bを埋め込んだ後、CMP技術にて研磨を行って第1の接続部10を形成する。続いて、層間絶縁膜の上層に第1の拡散防止膜30としてシリコン窒化膜をCVD法により成膜する。   Next, as shown in FIG. 2B, a first connection hole connecting the high-concentration diffusion layer region 6 and a first wiring layer described later is opened, and the first connection hole contains tantalum nitride. After embedding the barrier metal layer 10A and the tungsten electrode layer 10B, the first connecting portion 10 is formed by polishing using a CMP technique. Subsequently, a silicon nitride film is formed as a first diffusion preventing film 30 on the interlayer insulating film by a CVD method.

また、第1の拡散防止膜30の上層に第1の配線間絶縁膜11を成膜し、この第1の配線間絶縁膜11及び第1の拡散防止膜30を汎用のフォトリソグラフィー技術とエッチング技術により加工を施すことによって、後述する銅配線となる領域に第1の配線溝を開口する。続いて、バリアメタル12A及び銅12Bを第1の配線溝に埋め込み、CMP技術により余剰な銅及びバリアメタルを研磨することで第1の配線層12を形成する。更に、第1の配線層12の上層に銅配線を保護するための第2の拡散防止膜(例えば、炭化シリコン膜)13を成膜する(図2(b)参照。)。   Also, a first inter-wiring insulating film 11 is formed on the upper layer of the first anti-diffusion film 30, and the first inter-wiring insulating film 11 and the first anti-diffusion film 30 are etched using a general-purpose photolithography technique and etching. The first wiring groove is opened in a region to be a copper wiring described later by processing with the technique. Subsequently, the barrier metal 12A and the copper 12B are embedded in the first wiring groove, and the first copper layer 12 is formed by polishing excess copper and the barrier metal by a CMP technique. Further, a second diffusion preventing film (for example, silicon carbide film) 13 for protecting the copper wiring is formed on the first wiring layer 12 (see FIG. 2B).

続いて、図2(c)で示す様に、第2の拡散防止膜13の上層に第2の配線間絶縁膜14を成膜し、次いで第2の接続部15と第2の配線層16となる領域を汎用のフォトリソグラフィー技術とエッチング技術によって加工し、バリアメタル15A、16Aと銅15B、16Bを埋め込み、CMP技術により余剰な銅及びバリアメタルを研磨することで第2の配線層16を形成する。更に、第2の配線層16の上層に銅配線を保護するための第3の拡散防止膜(例えば、炭化シリコン膜)17を成膜する(図2(c)参照。)。   Subsequently, as shown in FIG. 2C, a second inter-wiring insulating film 14 is formed on the second diffusion prevention film 13, and then the second connection portion 15 and the second wiring layer 16 are formed. The second wiring layer 16 is formed by processing a region to be a general photolithography technique and an etching technique, filling the barrier metal 15A, 16A and copper 15B, 16B, and polishing excess copper and the barrier metal by CMP technique. Form. Further, a third diffusion prevention film (for example, silicon carbide film) 17 for protecting the copper wiring is formed on the second wiring layer 16 (see FIG. 2C).

その後、カラーレジスト18及びオンチップレンズ19を形成することによって、上記したCMOS型固体撮像素子を得ることができる(図2(d)参照。)。   Thereafter, by forming the color resist 18 and the on-chip lens 19, the above-described CMOS type solid-state imaging device can be obtained (see FIG. 2D).

なお、本実施例では、層間絶縁膜に第1の接続部を形成した後に、第1の拡散防止膜を形成しているが、層間絶縁膜の上層に第1の拡散防止膜を形成し、その後に第1の接続部を形成しても良い。   In this embodiment, the first diffusion prevention film is formed after the first connection portion is formed in the interlayer insulation film. However, the first diffusion prevention film is formed on the interlayer insulation film, Thereafter, the first connection portion may be formed.

また、本実施例では第1の拡散防止膜としてシリコン窒化膜を採用しているが、シリコン基板側へのカリウムの拡散を抑制することができれば充分であって、必ずしもシリコン窒化膜である必要は無く、例えば炭化シリコン等であっても良い。   In this embodiment, a silicon nitride film is used as the first diffusion preventing film. However, it is sufficient if the diffusion of potassium to the silicon substrate side can be suppressed, and the silicon nitride film is not necessarily required. For example, silicon carbide may be used.

ここで、図1に示すCMOS型固体撮像素子では、受光部7上に屈折率や吸収率の異なる層が積層されていることに起因して、光の減衰や干渉により光電変換素子への受光効率の悪化が懸念される場合には、光電変換素子の上部領域の所定の範囲で第2の拡散防止膜及び第3の拡散防止膜を開口したCMOS型固体撮像素子としても良い。   Here, in the CMOS type solid-state imaging device shown in FIG. 1, light reception to the photoelectric conversion device is caused by light attenuation and interference due to the layers having different refractive indexes and absorption rates being stacked on the light receiving unit 7. If there is a concern about the deterioration of efficiency, a CMOS solid-state imaging device in which the second diffusion prevention film and the third diffusion prevention film are opened in a predetermined range in the upper region of the photoelectric conversion element may be used.

なお、光電変換素子の上部領域の所定の範囲で第2の拡散防止膜及び第3の拡散防止膜を開口したCMOS型固体撮像素子の具体的な製造方法(1)としては、図2(c)で示す様に、第2の配線層の銅配線を保護するために第3の拡散防止膜17を成膜した後、汎用のフォトリソグラフィー技術及びエッチング技術によって光電変換素子の受光部領域を開口し、開口領域20Aを形成する。次に、CVD酸化膜21で開口領域20Aを埋め込み、CMP技術により余剰なCVD酸化膜21を除去することによって光電変換素子の受光部上部の開口部20を形成する(図3(a)参照。)。その後、カラーレジスト18及びオンチップレンズ19を形成することによって、光電変換素子の上部領域の所定の範囲で第2の拡散防止膜及び第3の拡散防止膜を開口したCMOS型固体撮像素子を得ることができる(図3(b)参照。)。   In addition, as a specific manufacturing method (1) of the CMOS type solid-state imaging device in which the second diffusion prevention film and the third diffusion prevention film are opened in a predetermined range in the upper region of the photoelectric conversion element, FIG. ), A third diffusion prevention film 17 is formed to protect the copper wiring of the second wiring layer, and then the light receiving region of the photoelectric conversion element is opened by a general-purpose photolithography technique and etching technique. Then, the opening region 20A is formed. Next, the opening region 20A is filled with the CVD oxide film 21, and the excess CVD oxide film 21 is removed by CMP technique to form the opening 20 above the light receiving portion of the photoelectric conversion element (see FIG. 3A). ). Thereafter, the color resist 18 and the on-chip lens 19 are formed to obtain a CMOS solid-state imaging device having the second diffusion prevention film and the third diffusion prevention film opened in a predetermined range in the upper region of the photoelectric conversion element. (See FIG. 3 (b)).

また、光電変換素子の上部領域の所定の範囲で第2の拡散防止膜及び第3の拡散防止膜を開口したCMOS型固体撮像素子の具体的な製造方法(2)としては、図2(c)で示す様に、第2の配線層の銅配線を保護するために第3の拡散防止膜17を成膜した後、汎用のフォトリソグラフィー技術及びエッチング技術によって光電変換素子の受光部領域を開口し、開口領域20Aを形成する。この時に、第1の拡散防止膜をエッチングストッパー膜として適用し、第2の拡散防止膜及び第3の拡散防止膜や、第1の層間絶縁膜及び第2の層間絶縁膜を第1の拡散防止膜よりも選択比の高いエッチング条件でエッチングを行い、第1の拡散防止膜を所望の膜厚分だけ残す。続いて、CVD酸化膜21で開口領域20Aを埋め込み、CMP技術により余剰なCVD酸化膜21を除去することによって光電変換素子の受光部上部の開口部20を形成する(図4(a)参照。)。その後、カラーレジスト18及びオンチップレンズ19を形成することによって、光電変換素子の上部領域の所定の範囲で第2の拡散防止膜及び第3の拡散防止膜を開口したCMOS型固体撮像素子を得ることができる(図4(b)参照。)。   Further, as a specific manufacturing method (2) of the CMOS solid-state imaging device in which the second diffusion prevention film and the third diffusion prevention film are opened in a predetermined range of the upper region of the photoelectric conversion element, FIG. ), A third diffusion prevention film 17 is formed to protect the copper wiring of the second wiring layer, and then the light receiving region of the photoelectric conversion element is opened by a general-purpose photolithography technique and etching technique. Then, the opening region 20A is formed. At this time, the first diffusion prevention film is applied as an etching stopper film, and the second diffusion prevention film and the third diffusion prevention film, or the first interlayer insulation film and the second interlayer insulation film are used as the first diffusion film. Etching is performed under etching conditions having a higher selection ratio than that of the prevention film, and the first diffusion prevention film is left in a desired thickness. Subsequently, the opening region 20A is filled with the CVD oxide film 21, and the excess CVD oxide film 21 is removed by a CMP technique to form the opening 20 above the light receiving portion of the photoelectric conversion element (see FIG. 4A). ). Thereafter, the color resist 18 and the on-chip lens 19 are formed to obtain a CMOS solid-state imaging device having the second diffusion prevention film and the third diffusion prevention film opened in a predetermined range in the upper region of the photoelectric conversion element. (See FIG. 4 (b)).

上記した本発明を適用したCMOS型固体撮像素子では、第1の拡散防止膜によって、CMP研磨を行う際に研磨剤として使用されるスラリーに含まれるカリウムの影響を抑制することができ、白点欠陥等の画質劣化を低減することができる。   In the CMOS solid-state imaging device to which the present invention described above is applied, the first diffusion prevention film can suppress the influence of potassium contained in the slurry used as an abrasive when performing CMP polishing. Degradation of image quality such as defects can be reduced.

また、第1の拡散防止膜の材料や膜厚を調整することによって、光の入射量や波長による入射量を調整することができ、感度等の撮像特性に対応することも可能である。   Further, by adjusting the material and film thickness of the first diffusion preventing film, it is possible to adjust the amount of incident light and the amount of incident light depending on the wavelength, and it is possible to cope with imaging characteristics such as sensitivity.

なお、光電変換素子の上部領域の所定の範囲で第2の拡散防止膜及び第3の拡散防止膜を開口することで、配線材料からの拡散防止のための拡散防止膜(第2の拡散防止膜及び第3の拡散防止膜)として透過光の屈折率や吸収率が異なる材料を用いたとしても、受光部への入射光が良好に入射可能となり、光の減衰や干渉による受光効率の悪化を抑制することができる。   A diffusion preventing film for preventing diffusion from the wiring material (second diffusion preventing film) is formed by opening the second diffusion preventing film and the third diffusion preventing film in a predetermined range of the upper region of the photoelectric conversion element. Even if materials having different refractive indexes and absorption rates of transmitted light are used as the film and the third diffusion prevention film), the incident light to the light receiving portion can be incident well, and the light receiving efficiency is deteriorated due to light attenuation and interference. Can be suppressed.

1 N型シリコン基板
2 素子分離膜
3 トランジスタのゲート酸化膜
4 トランジスタのゲート電極
5 サイドウォール
6 高濃度拡散層領域
7 受光部
8 シリコン窒化膜
9 層間絶縁膜
10 第1の接続部
10A バリアメタル層
10B タングステン電極層
11 第1の配線間絶縁膜
12 第1の配線層
12A バリアメタル
12B 銅
13 第2の拡散防止膜
14 第2の配線間絶縁膜
15 第2の接続部
15A バリアメタル
15B 銅
16 第2の配線層
17 第3の拡散防止膜
18 カラーレジスト
19 オンチップレンズ
20 開口部
20A 開口領域
21 CVD酸化膜
30 第1の拡散防止膜
50 開口部
100 CMOS型固体撮像素子
DESCRIPTION OF SYMBOLS 1 N type silicon substrate 2 Element isolation film 3 Transistor gate oxide film 4 Transistor gate electrode 5 Side wall 6 High concentration diffused layer area | region 7 Light-receiving part 8 Silicon nitride film 9 Interlayer insulating film 10 1st connection part 10A Barrier metal layer 10B Tungsten electrode layer 11 First inter-wiring insulating film 12 First wiring layer 12A Barrier metal 12B Copper 13 Second diffusion prevention film 14 Second inter-wiring insulating film 15 Second connecting portion 15A Barrier metal 15B Copper 16 Second wiring layer 17 Third diffusion prevention film 18 Color resist 19 On-chip lens 20 Opening 20A Opening area 21 CVD oxide film 30 First diffusion prevention film 50 Opening 100 CMOS solid-state imaging device

Claims (2)

受光部を有する撮像領域が形成された半導体基板と、
該半導体基板の上層に形成されると共に、絶縁膜に設けられた孔部に導電体が埋め込まれた後に金属元素を含む液体を用いた平坦化処理を行うことによって形成された金属配線層と、
前記半導体基板と最下層の前記金属配線層との間に形成され、前記半導体基板と前記最下層の金属配線層とを接続する接続部を有する層間絶縁膜と、
前記層間絶縁膜と前記最下層の金属配線層との間に前記受光部を被覆して形成され、炭化シリコン若しくは窒化シリコンから成る拡散防止膜と、
該拡散防止膜の上層に形成されると共に、前記受光部に入射光を導く開口部とを備える
固体撮像素子。
A semiconductor substrate on which an imaging region having a light receiving portion is formed;
A metal wiring layer formed on the semiconductor substrate and formed by performing planarization using a liquid containing a metal element after a conductor is embedded in a hole provided in the insulating film;
An interlayer insulating film formed between the semiconductor substrate and the lowermost metal wiring layer, and having a connecting portion connecting the semiconductor substrate and the lowermost metal wiring layer;
A diffusion prevention film formed of silicon carbide or silicon nitride, formed by covering the light receiving portion between the interlayer insulating film and the lowermost metal wiring layer ;
A solid-state imaging device, comprising: an opening formed on an upper layer of the diffusion prevention film, and an opening that guides incident light to the light receiving unit.
半導体基板に受光部を有する撮像領域を形成する工程と、
前記半導体基板の上層に層間絶縁膜を形成する工程と、
前記層間絶縁膜に、前記半導体基板と最下層の金属配線層とを接続する接続部を形成する工程と、
前記層間絶縁膜上に前記受光部を被覆する炭化シリコン若しくは窒化シリコンから成る拡散防止膜を形成する工程と、
絶縁膜に設けられた孔部に導電体を埋め込んだ後に金属元素を含む液体を用いた平坦化処理を行うことによって構成される前記最下層の金属配線層を前記拡散防止膜の上層に形成する工程と、
エッチング処理によって前記受光部に入射光を導く開口部を前記拡散防止膜の上層に形成する工程とを備える
固体撮像素子の製造方法。
Forming an imaging region having a light receiving portion on a semiconductor substrate;
Forming an interlayer insulating film on an upper layer of the semiconductor substrate;
Forming a connection portion connecting the semiconductor substrate and the lowermost metal wiring layer in the interlayer insulating film;
Forming a diffusion prevention film made of silicon carbide or silicon nitride covering the light receiving portion on the interlayer insulating film;
The lowermost layer of the metal wiring layer that consists by performing the flattening processing using a liquid containing a metal element after embedding the conductor into a hole portion formed in the insulating film, formed on the upper layer of the diffusion barrier layer And a process of
And a step of forming an opening for guiding incident light to the light receiving portion in the upper layer of the diffusion prevention film by an etching process.
JP2009105910A 2009-04-24 2009-04-24 Solid-state imaging device and manufacturing method of solid-state imaging device Expired - Fee Related JP5212246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105910A JP5212246B2 (en) 2009-04-24 2009-04-24 Solid-state imaging device and manufacturing method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105910A JP5212246B2 (en) 2009-04-24 2009-04-24 Solid-state imaging device and manufacturing method of solid-state imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005002772A Division JP4938238B2 (en) 2005-01-07 2005-01-07 Solid-state imaging device and manufacturing method of solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2009170937A JP2009170937A (en) 2009-07-30
JP5212246B2 true JP5212246B2 (en) 2013-06-19

Family

ID=40971698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105910A Expired - Fee Related JP5212246B2 (en) 2009-04-24 2009-04-24 Solid-state imaging device and manufacturing method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP5212246B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6021439B2 (en) * 2012-05-25 2016-11-09 キヤノン株式会社 Solid-state imaging device
JP6190175B2 (en) 2013-06-19 2017-08-30 キヤノン株式会社 Method for manufacturing solid-state imaging device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176162A (en) * 2000-08-10 2002-06-21 Semiconductor Energy Lab Co Ltd Area sensor and display device provided with area sensor
JP4120543B2 (en) * 2002-12-25 2008-07-16 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
JP3959389B2 (en) * 2003-01-07 2007-08-15 株式会社東芝 Semiconductor device
US6861686B2 (en) * 2003-01-16 2005-03-01 Samsung Electronics Co., Ltd. Structure of a CMOS image sensor and method for fabricating the same
JP4123060B2 (en) * 2003-06-11 2008-07-23 ソニー株式会社 Solid-state imaging device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009170937A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
KR101217364B1 (en) Solid-state imaging device and method of manufacturing the same
JP5369441B2 (en) Solid-state image sensor
TWI445166B (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP4130211B2 (en) Imaging device
US11329093B2 (en) Photoelectric conversion apparatus, equipment including photoelectric conversion apparatus, and manufacturing method of photoelectric conversion apparatus
US9099365B2 (en) Method for manufacturing solid-state imaging device
US8710563B2 (en) Image sensor and method for fabricating the same
JP2012182426A (en) Solid state image pickup device, image pickup system using solid state image pickup device and solis state image pickup device manufacturing method
US20060199295A1 (en) Image sensor and methods of forming the same
US10777596B2 (en) Imaging apparatus, method of manufacturing the same, and device
JP5110060B2 (en) Solid-state imaging device and manufacturing method of solid-state imaging device
JP6325904B2 (en) Solid-state imaging device manufacturing method, solid-state imaging device, and camera
JP2007329336A (en) Solid-state imaging element, and its manufacturing method
JP5212246B2 (en) Solid-state imaging device and manufacturing method of solid-state imaging device
JP2009295799A (en) Method of manufacturing solid-state imaging apparatus
JP5885721B2 (en) Method for manufacturing solid-state imaging device
JP2019029448A (en) Imaging device, camera, and manufacturing method of imaging device
WO2008018329A1 (en) Solid-state imaging apparatus and method for manufacturing same, and electronic information apparatus
US9165976B2 (en) Method of manufacturing semiconductor device
JP2008199059A (en) Solid-state image pickup device and manufacturing method therefor
JP6781745B2 (en) Manufacturing method of imaging device
KR20100045239A (en) Cmos image sensor having different refraction index insulation layer for prevention crosstalk and method for manufacturing the same
CN115207007A (en) Image sensor integrated chip and forming method thereof
JP2020098936A (en) Photoelectric conversion device, equipment having the same, and method for manufacturing photoelectric conversion device
KR20070036532A (en) Method for manufacturing cmos image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees