[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5211453B2 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP5211453B2
JP5211453B2 JP2006233381A JP2006233381A JP5211453B2 JP 5211453 B2 JP5211453 B2 JP 5211453B2 JP 2006233381 A JP2006233381 A JP 2006233381A JP 2006233381 A JP2006233381 A JP 2006233381A JP 5211453 B2 JP5211453 B2 JP 5211453B2
Authority
JP
Japan
Prior art keywords
rolling
mass
life
amount
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006233381A
Other languages
Japanese (ja)
Other versions
JP2008056969A (en
Inventor
秀幸 飛鷹
大輔 渡貫
徹 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006233381A priority Critical patent/JP5211453B2/en
Publication of JP2008056969A publication Critical patent/JP2008056969A/en
Application granted granted Critical
Publication of JP5211453B2 publication Critical patent/JP5211453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は転がり軸受に関するものであり、特に自動車、農業機械、建設機械、鉄鋼機械等のトランスミッション、エンジンなどに使用される転がり軸受に関するものである。   The present invention relates to a rolling bearing, and more particularly to a rolling bearing used for transmissions, engines, etc. of automobiles, agricultural machines, construction machines, steel machines and the like.

軸受潤滑油中に混入している金属の切粉、削り屑、バリ、摩耗粉などの異物が転がり軸受の軌道輪や転動体に損傷を与え、転がり軸受の寿命の大幅な低下をもたらすことはよく知られている。そこで、下記特許文献1では、異物が混入している潤滑環境下で転がり軸受を使用する場合でも、軸受の転がり表面層のCの含有量、残留オーステナイト量、及び炭窒化物の含有量を適正値にすることで、異物により生じる圧痕縁の応力集中を緩和し、クラックの発生を抑えて、転がり軸受の寿命を向上することが開示されている。これによれば、適当量の残留オーステナイトにより異物混入潤滑環境下での寿命向上を図ることができる。
特開昭64−55423号公報
Foreign materials such as metal chips, shavings, burrs, and abrasion powder mixed in the bearing lubricant can damage the bearing rings and rolling elements of the rolling bearing, resulting in a significant decrease in the life of the rolling bearing. well known. Therefore, in the following Patent Document 1, even when a rolling bearing is used in a lubrication environment in which foreign matter is mixed, the content of C in the rolling surface layer of the bearing, the amount of retained austenite, and the content of carbonitride are appropriate. It is disclosed that, by setting the value, stress concentration at the indentation edge caused by the foreign matter is alleviated, crack generation is suppressed, and the life of the rolling bearing is improved. According to this, it is possible to improve the life in a lubricating environment containing foreign matters by an appropriate amount of retained austenite.
Japanese Patent Laid-Open No. 64-55423

前記特許文献1にも記載されているように、異物混入潤滑環境下で生じる早期剥離は、転動体と軌道輪間に異物を噛み込むことによって形成された圧痕を起点として生じており、圧痕が形成されることによって生じる応力集中が原因であるとこれまではいわれてきている。しかしながら、本発明者らは、圧痕起点型剥離は、圧痕縁の応力集中だけが原因ではなく、転動体と軌道輪間に作用する接線力が影響していることを明らかにした。接線力に影響を及ぼす因子としては、滑り速度や面圧の他に、表面粗さや表面形状が挙げられる。表面粗さが小さく、表面形状が良好なほど、転動体と軌道輪に作用する接線力は小さくなり、異物混入潤滑環境下における軸受寿命は長くなる。   As described in Patent Document 1, the early separation that occurs in a foreign matter-mixed lubrication environment is caused by an indentation formed by biting foreign matter between the rolling elements and the raceway, and the indentation is It has been said so far that the stress concentration caused by the formation is the cause. However, the present inventors have clarified that the indentation origin type separation is not only caused by the stress concentration at the indentation edge but also by the tangential force acting between the rolling elements and the raceway. Factors affecting the tangential force include surface roughness and surface shape in addition to sliding speed and surface pressure. The smaller the surface roughness and the better the surface shape, the smaller the tangential force acting on the rolling elements and the bearing ring, and the longer the bearing life in a foreign matter-mixed lubrication environment.

一方、前記特許文献1に記載されるように転動面の残留オーステナイト量を増加させると、表面硬さが低下し、耐摩耗性が低下するだけでなく、耐圧痕性が低下する。そのため、転動面の残留オーステナイト量が多い場合には、異物の影響によって転動面に圧痕が形成されやすくなる。圧痕が形成された転動面は、形状崩れや表面粗さの増大を起こす。圧痕の大きさが大きく、数が多いほど、形状崩れや表面粗さの増大は顕著である。即ち、異物混入潤滑環境下では、転動面表面の残留オーステナイト量が多いほど、圧痕が形成され安いため、転動体と軌道輪間に作用する接線力は大きくなる。   On the other hand, when the amount of retained austenite on the rolling surface is increased as described in Patent Document 1, not only the surface hardness is lowered and the wear resistance is lowered, but also the pressure scar resistance is lowered. Therefore, when the amount of retained austenite on the rolling surface is large, indentations are easily formed on the rolling surface due to the influence of foreign matter. The rolling surface on which the indentation is formed causes shape collapse and an increase in surface roughness. As the size of the indentation is larger and the number is larger, the shape collapse and the increase in surface roughness are more remarkable. That is, in a foreign matter mixed lubrication environment, as the amount of retained austenite on the surface of the rolling surface increases, an indentation is formed and the tangential force acting between the rolling element and the raceway increases.

異物混入潤滑環境下で転動面の残留オーステナイトが多い場合には、接線力が大きくなったとしても、前記特許文献1に記載されるように残留オーステナイトの影響による応力集中緩和効果により残留オーステナイトが多い部材自身の寿命は低下しない。しかし、接触する2物体には同じ大きさの接線力が作用するため、表面の残留オーステナイトが多い部材の相手部材の寿命は低下してしまう。例えば、軌道輪表面の残留オーステナイトを多くした場合には、応力集中緩和効果によって軌道輪の寿命は延長するが、相手部材である転動体の寿命は、接線力増加のために低下してしまう。   When there is a lot of retained austenite on the rolling surface in a foreign matter-contaminated lubrication environment, even if the tangential force increases, the residual austenite is caused by the stress concentration relaxation effect due to the effect of retained austenite as described in Patent Document 1. The life of many members themselves does not decrease. However, since the tangential force of the same magnitude acts on the two objects in contact with each other, the life of the mating member of the member having a large amount of retained austenite on the surface is reduced. For example, when the retained austenite on the surface of the raceway is increased, the life of the raceway is extended due to the stress concentration relaxation effect, but the life of the rolling element as the counterpart member is reduced due to an increase in tangential force.

転動体が剥離した場合でも、軌道輪が剥離した場合でも、軸受の寿命となるので、軸受全体の寿命を延ばすには、転動体と軌道輪双方の寿命を延ばす必要がある。即ち、単に転動面の残留オーステナイトを増加させる手法だけでは十分な寿命延長効果は得られない。また、軸受の使用条件によっては残留オーステナイトを増加させて長寿命化を図る手法が採用できない場合もある。例えば、高温で使用される場合には残留オーステナイトは寸法安定性を悪化させるため、残留オーステナイト量は少ない方が好ましい。   Even if the rolling element is peeled off or the raceway ring is peeled off, the life of the bearing is reached. Therefore, in order to extend the life of the entire bearing, it is necessary to extend the life of both the rolling element and the raceway. That is, it is not possible to obtain a sufficient life extension effect by simply increasing the retained austenite on the rolling surface. Further, depending on the use conditions of the bearing, there may be a case where a technique for increasing the retained austenite to extend the life cannot be adopted. For example, when used at a high temperature, the retained austenite deteriorates the dimensional stability, so that the amount of retained austenite is preferably small.

これに対して、本発明者らは鋭意研究を行い、自身(例えば転動体)の圧痕起点型剥離寿命を十分に確保し、且つ自身の耐圧痕性、耐摩耗性を向上させ、表面粗さ、表面形状の悪化を抑制し、2物体間(転動体と軌道輪間)に作用する接線力を抑制して、相手部材(例えば軌道輪)の寿命を延長させる材料因子がないか、検討を行った。その結果、耐圧痕性、耐摩耗性を向上させる材料因子としては、表面硬さの他に、前述した残留オーステナイト、表面窒素濃度、表面に析出したSi及びMnを含有する窒化物(以下、Si・Mn系窒化物)の面積率が関係していることが明らかになった。   On the other hand, the present inventors have conducted intensive research to ensure a sufficient indentation-initiated peeling life of themselves (for example, rolling elements), improve their own indentation resistance and wear resistance, and improve surface roughness. Investigate whether there is a material factor that suppresses the deterioration of the surface shape, suppresses the tangential force acting between the two objects (between the rolling element and the race), and extends the life of the mating member (eg, the race). went. As a result, as a material factor for improving the pressure scar resistance and wear resistance, in addition to the surface hardness, the above-mentioned residual austenite, surface nitrogen concentration, nitride containing Si and Mn deposited on the surface (hereinafter referred to as Si・ It was revealed that the area ratio of (Mn nitride) is related.

また、本発明者らは、転動体と軌道輪の表面粗さを夫々小さくすると、軌道輪の表面粗さを小さくした場合と比較して、転動体の表面粗さを小さくした場合(表面粗さ、表面形状の悪化を抑制した場合)に、効果的に表面起点型剥離を抑制できることを明らかにした。即ち、軌道輪よりむしろ転動体の表面粗さや表面系序の悪化を抑制することで、効果的に軸受全体の寿命を延長させることができる。   In addition, the inventors have reduced the surface roughness of the rolling elements and the raceway rings when the surface roughness of the rolling elements is reduced compared to the case where the surface roughness of the raceway rings is reduced (surface roughness). Now, it was clarified that surface-origin-type peeling can be effectively suppressed when the deterioration of the surface shape is suppressed. That is, the life of the entire bearing can be effectively extended by suppressing the deterioration of the surface roughness and surface system of the rolling elements rather than the race.

従って、具体的な数値限定については後述するが、内外輪、転動体の少なくとも1つ、好ましくは転動体の表面硬さ、表面残留オーステナイト量と表面窒素濃度、Si・Mn系窒化物の面積率を規定することによって、耐圧痕性、耐摩耗性が向上し、軸受使用中に生じる転動体と軌道面間の接線力の増大を抑制するだけでなく、耐剥離性も向上し、異物混入潤滑環境下で生じる圧痕起点型剥離に対して長寿命は転がり軸受を提供することが可能である。   Therefore, although specific numerical limitations will be described later, at least one of the inner and outer rings and rolling elements, preferably the surface hardness of the rolling elements, the amount of surface retained austenite and the surface nitrogen concentration, the area ratio of the Si / Mn nitride By improving the pressure resistance and wear resistance, not only the increase in the tangential force between the rolling element and the raceway surface that occurs during the use of the bearing is suppressed, but also the anti-peeling property is improved and foreign matter contamination lubrication is achieved. It is possible to provide a rolling bearing with a long life against indentation-initiated delamination that occurs in the environment.

一方、このような高窒素浸炭処理を大型の転がり軸受に適用することを考えた場合、焼入れ性向上のために添加されているSiやMnが窒化物として基地より抽出されてしまうため、長寿命作用をもたらすSi・Mn系窒化物が析出している表面近傍において局所的に焼入れ性が低下し、パーライトやベイナイトといった不完全焼入れ層が形成され、寿命低下の要因となり得るという課題も残されている。   On the other hand, when considering applying such a high nitrogen carburizing treatment to a large-sized rolling bearing, since Si and Mn added for improving hardenability are extracted from the base as nitrides, long life In the vicinity of the surface where the Si / Mn-based nitride that brings about the action is deposited, the hardenability is locally reduced, and an incompletely hardened layer such as pearlite and bainite is formed, which may cause a decrease in life. Yes.

そこで、本発明者らは、大型の転がり軸受にも適用できるように、窒化物を形成するSiとMnを除いた他の元素により焼入れ性を確保した鋼種を求めて開発を行った。本発明では、後述するように、SiとMnは窒化物形成のため、その他のMoやNiなどの合金元素は焼入れ性を確保するため、といったように軸受中の合金元素の存在状態に対応して添加することによって大型の軸受についても長寿命効果を発現させることを可能とした。
本発明は、上記のような問題点に着目してなされたものであり、鋼の成分、表面窒素濃度、Si・Mn系窒化物の適正化を図ることで、より長寿命で、耐圧痕性、耐摩耗性に優れる転がり軸受を提供することを目的とするものである。
Accordingly, the present inventors have developed and developed a steel type that ensures hardenability with other elements excluding Si and Mn that form nitrides so that they can be applied to large-sized rolling bearings. In the present invention, as will be described later, Si and Mn correspond to the presence of alloy elements in the bearing, for example, to form nitrides and other alloy elements such as Mo and Ni to ensure hardenability. This makes it possible to produce a long life effect even for large bearings.
The present invention has been made paying attention to the above-mentioned problems. By optimizing the composition of the steel, the surface nitrogen concentration, and the Si / Mn-based nitride, the life is longer and the pressure scar resistance is improved. An object of the present invention is to provide a rolling bearing having excellent wear resistance.

上記課題を解決するために、本発明のうち請求項1に係る転がり軸受は、内周面に転動面を有する外方部材と、外周面に転動面を有する内方部材と、外方部材の転動面と内方部材の転動面との間に転動自在に配設された複数の転動体とを備えた転がり軸受において、前記外方部材及び内方部材及び転動体の少なくとも1つの構成部材が、C:0.95〜1.1質量%、Si:0.3〜0.7質量%、Mn:0.2〜1.15質量%、Cr:0.9〜1.80質量%を含有し且つMo:2質量%以下、Ni:質量%以下の何れか1種類以上の合金元素を含有し、残部がFe及び不可避的不純物からなる鋼に浸炭窒化処理を施してなり、当該構成部材の表面層の窒化濃度を0.2〜2.0質量%、当該構成部材の表面層のSi・Mn系窒化物の面積率を1%以上20%以下としたことを特徴とするものである。 In order to solve the above problems, a rolling bearing according to claim 1 of the present invention includes an outer member having a rolling surface on an inner peripheral surface, an inner member having a rolling surface on an outer peripheral surface, and an outer side. In a rolling bearing comprising a plurality of rolling elements that are freely rollable between a rolling surface of the member and a rolling surface of the inner member, at least the outer member, the inner member, and the rolling element. One component member is C: 0.95-1.1 mass%, Si: 0.3-0.7 mass%, Mn: 0.2-1.15 mass%, Cr: 0.9-1 . Carbon steel containing 80 % by mass, Mo: 2% by mass or less, Ni: 2 % by mass or less, containing one or more alloy elements, the balance being Fe and inevitable impurities is subjected to carbonitriding The nitriding concentration of the surface layer of the constituent member is 0.2 to 2.0% by mass, and the Si / Mn nitride of the surface layer of the constituent member It is characterized in that the area ratio was 20% or less than 1%.

また、前記外方部材の転動面及び内方部材の転動面の残留オーステナイト量をγrAB、前記転動体表面の残留オーステナイト量をγrCとした場合に、γrAB−15≦γrC≦γrAB+15、γrAB≦50、γrC≦50であることを特徴とするものである。 The front Kigaikata member rolling surface and the inner member of the rolling surface of the amount of residual austenite gamma rAB, the amount of retained austenite of the surface of the rolling element in case of a γ rC, γ rAB -15 ≦ γ rC ≦ γ rAB +15, γ rAB ≦ 50, γ rC ≦ 50.

[転動体表面の窒素濃度が0.2〜2.0質量%、Si・Mn系窒化物の面積率が1%以上20%以下]
本発明では、軌道輪(外方部材及び内方部材)又は転動体の表面層に所定の窒素を富化させるために浸炭窒化処理を行う。窒素は、炭素と同じように、マルテンサイトの固溶強化及び残留オーステナイトの安定確保に作用するだけでなく、窒化物又は炭窒化物を形成して耐圧痕性、耐摩耗性を向上させる作用がある。図1には耐圧痕性試験の様子を、図2には2円筒摩耗試験の様子を示す。耐圧痕性試験は、直径2mmの鋼球を試料に5GPaで押付けた後、圧痕の深さを測定する方法で行った。2円筒摩耗試験は、モータ12で直接駆動する高速側(駆動側)円筒試験片11を周速10min−1で回転し、低速側(従動側)円筒試験片13とモータ12との間には減速ギヤ14を介装して周速7min−1で回転することで強制的に滑りを与え、両試験片のトルクをトルク計15で検出しながら、試験開始から20時間後の駆動側、従動側円筒試験片の摩耗量の平均値を測定した。
[Nitrogen concentration on rolling element surface is 0.2 to 2.0 mass%, and area ratio of Si / Mn nitride is 1% to 20%]
In the present invention, carbonitriding is performed in order to enrich the predetermined surface nitrogen of the raceway (outer member and inner member) or the surface layer of the rolling element. Nitrogen, like carbon, not only works to strengthen the solid solution strengthening of martensite and ensure the stability of retained austenite, but also forms nitrides or carbonitrides to improve the pressure scar resistance and wear resistance. is there. FIG. 1 shows a state of a pressure scar test, and FIG. 2 shows a state of a two-cylinder wear test. The pressure dent test was performed by pressing a steel ball having a diameter of 2 mm against a sample at 5 GPa and then measuring the depth of the dent. In the two-cylindrical wear test, a high-speed (driving side) cylindrical test piece 11 that is directly driven by the motor 12 is rotated at a peripheral speed of 10 min −1 , A slippage is forcibly applied by rotating at a peripheral speed of 7 min −1 through a reduction gear 14, and the torque on both test pieces is detected by a torque meter 15, while the drive side and driven 20 hours after the start of the test. The average amount of wear of the side cylindrical specimen was measured.

図3aには表面窒素濃度と耐圧痕性試験結果の圧痕深さとの関係を、図3bには表面窒素濃度と2円筒摩耗試験結果の摩耗量との関係を示す。表面窒素量の測定は、電子線マイクロアナライザー(EPMA)を用いた。また、窒素濃度の効果のみを調査するため、表面窒素濃度以外の硬さや残留オーステナイト量については一定とした。図3から明らかなように、表面窒素濃度が高いほど、耐圧痕性、耐摩耗性に優れており、表面窒素濃度が0.2質量%を超えると顕著に効果が現れるが、より好ましくは0.45質量%以上とする。   FIG. 3a shows the relationship between the surface nitrogen concentration and the indentation depth of the pressure dent test result, and FIG. 3b shows the relationship between the surface nitrogen concentration and the wear amount of the two-cylinder wear test result. The surface nitrogen amount was measured using an electron beam microanalyzer (EPMA). Moreover, in order to investigate only the effect of the nitrogen concentration, the hardness other than the surface nitrogen concentration and the amount of retained austenite were made constant. As can be seen from FIG. 3, the higher the surface nitrogen concentration, the better the pressure scar resistance and wear resistance, and the effect appears remarkably when the surface nitrogen concentration exceeds 0.2% by mass, but more preferably 0. .45% by mass or more.

一方、窒素濃度が高すぎると靭性や静的強度が低下してしまう欠点がある。転がり軸受の転動体にとって靭性や静的強度は必要な性能であるため、窒素濃度が高すぎるのは好ましくない。図4にシャルピー衝撃試験の結果を示す。窒素濃度が2.0質量%を超えると空隙に靭性が低下することが分かる。従って、本発明の表面窒素濃度の上限を2.0質量%とした。   On the other hand, if the nitrogen concentration is too high, there is a drawback that toughness and static strength are lowered. Since the toughness and static strength are necessary performances for rolling elements of a rolling bearing, it is not preferable that the nitrogen concentration is too high. FIG. 4 shows the result of the Charpy impact test. It can be seen that when the nitrogen concentration exceeds 2.0 mass%, the toughness of the voids decreases. Therefore, the upper limit of the surface nitrogen concentration of the present invention is set to 2.0% by mass.

前述したように、表面の窒素濃度が高いほど、材料の耐圧痕性、耐摩耗性が向上することが明らかになった。しかし本発明者らは更に、窒素濃度が同じ場合でも、材料内部の窒素の存在状態によって、耐圧痕性、耐摩耗性が変わるという知見を得た。窒素は、材料内部に固溶して存在する場合と、窒化物として析出して存在する場合がある。詳細な数値については後述するが、Si、Mnを多く含む材料を浸炭窒化処理した場合には、同じ窒素濃度でも材料中に固溶して存在する窒素量より、表面にSi・Mn系の窒化物を析出して存在する窒素量が多くなる。図5aにはSi・Mn系窒化物の面積率と耐圧痕性試験結果の圧痕深さとの関係を、図5bにはSi・Mn系窒化物の面積率と2円筒摩耗試験結果の摩耗量との関係を示す。Si・Mn系窒化物の面積率の測定は、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、加速電圧10kVで転動面の観察を行い、倍率5000倍で最低3視野以上写真を撮影した後、写真を2値化してから画像解析装置を用いて、面積率を計算した。Si・Mn系窒化物の効果のみを調査するため、Si・Mn系窒化物の面積率以外の硬さや残留オーステナイト量、窒素濃度については一定にしてある。図5から明らかなように、Si・Mn系窒化物の面積率が高いほど、耐圧痕性、耐摩耗性に優れており、Si・Mn系窒化物の面積率が1%を超えると顕著に効果が現れるが、好ましくは2%以上とする。なお、図6にはSi・Mn系窒化物の観察写真を示す。図6の下は、エネルギー分散型X線分散型分析装置で分析した窒化物の元素分析結果を示している。分析結果から、Si、Mn、Nのピークが出現しており、表面の窒化物は、Si・Mn系窒化物であることが分かる。   As described above, it has been clarified that the higher the nitrogen concentration on the surface, the higher the pressure scar resistance and wear resistance of the material. However, the present inventors have further found that even when the nitrogen concentration is the same, the pressure scar resistance and wear resistance change depending on the presence of nitrogen inside the material. Nitrogen may be present as a solid solution inside the material, or may be precipitated as a nitride. Although detailed numerical values will be described later, when a carbon-nitriding material containing a large amount of Si and Mn is subjected to carbonitriding treatment, the surface of the Si / Mn-based nitridation is formed on the surface from the amount of nitrogen present in solid solution in the material even at the same nitrogen concentration. The amount of nitrogen present as a result of the precipitation of substances increases. FIG. 5a shows the relationship between the area ratio of the Si / Mn nitride and the indentation depth of the pressure dent test result, and FIG. 5b shows the area ratio of the Si / Mn nitride and the wear amount of the two-cylinder wear test result. The relationship is shown. The area ratio of Si / Mn nitride is measured using a field emission scanning electron microscope (FE-SEM) by observing the rolling surface at an acceleration voltage of 10 kV, and at least 3 fields of view at a magnification of 5000 times. After the image was taken, the area ratio was calculated using an image analyzer after binarizing the photograph. In order to investigate only the effect of the Si / Mn nitride, the hardness other than the area ratio of the Si / Mn nitride, the amount of retained austenite, and the nitrogen concentration are kept constant. As is clear from FIG. 5, the higher the area ratio of the Si · Mn nitride, the better the pressure scar resistance and wear resistance. When the area ratio of the Si · Mn nitride exceeds 1%, it is remarkable. Although an effect appears, it is preferably 2% or more. In addition, the observation photograph of Si * Mn type nitride is shown in FIG. The lower part of FIG. 6 shows the elemental analysis results of the nitride analyzed by the energy dispersive X-ray dispersive analyzer. From the analysis results, peaks of Si, Mn, and N appear, and it can be seen that the nitride on the surface is Si · Mn nitride.

また、Si・Mn系窒化物の面積率が圧痕起点型剥離寿命に及ぼす影響を調査するため、スラスト型寿命試験により、異物混入潤滑環境下での試験を行った。試験に用いた材料の成分を下記表1に示す。表中、鋼種1はJIS SUJ3、鋼種2はJIS SUJ2に相当する材料である。表1の材料を直径65mm厚さ6mmの円板に旋削加工し、820〜900℃で2〜10時間、RXガス、プロパンガス、アンモニアガスの混合ガス雰囲気中で浸炭窒化処理した後、油焼入れを施し、その後、160〜270℃で2時間の焼戻し処理を施した。処理温度、処理時間、アンモニアガス流量を変化させて、種々の窒素濃度の試験片を作製した。熱処理後、表面を研磨、ラッピングにより鏡面仕上げした。
試験条件は以下の通りである。
試験荷重:5880N
回転数:1000min−1
潤滑油:VG68
異物の硬さ:Hv870
異物の大きさ:74〜147μm
異物混入量:200ppm
In addition, in order to investigate the influence of the area ratio of the Si / Mn nitride on the indentation origin type peeling life, a test was performed in a lubrication environment mixed with foreign matters by a thrust type life test. The components of the materials used in the test are shown in Table 1 below. In the table, steel type 1 is a material corresponding to JIS SUJ3 and steel type 2 is a material corresponding to JIS SUJ2. The materials shown in Table 1 were turned into a disk having a diameter of 65 mm and a thickness of 6 mm. After carbonitriding in a mixed gas atmosphere of RX gas, propane gas and ammonia gas at 820 to 900 ° C. for 2 to 10 hours, oil quenching was performed. After that, tempering treatment was performed at 160 to 270 ° C. for 2 hours. Test pieces having various nitrogen concentrations were prepared by changing the treatment temperature, treatment time, and ammonia gas flow rate. After the heat treatment, the surface was mirror finished by polishing and lapping.
The test conditions are as follows.
Test load: 5880N
Rotational speed: 1000min -1
Lubricating oil: VG68
Hardness of foreign matter: Hv870
Foreign material size: 74 to 147 μm
Foreign matter contamination: 200ppm

Figure 0005211453
Figure 0005211453

下記表2には、窒素濃度、Si・Mn系窒化物の面積率と異物混入寿命との関係を示す。また、図7には鋼種1,2の窒素濃度とSi・Mn系窒化物の面積率との関係を、図8にはSi・Mn系窒化物の面積率と圧痕起点型剥離寿命との関係を示す。なお、寿命試験結果は、比較例1のL10寿命を1とした場合の比率で示した。   Table 2 below shows the relationship between the nitrogen concentration, the area ratio of the Si / Mn nitride and the lifetime of contamination. FIG. 7 shows the relationship between the nitrogen concentration of steel types 1 and 2 and the area ratio of the Si / Mn nitride, and FIG. 8 shows the relationship between the area ratio of the Si / Mn nitride and the indentation origin peeling life. Indicates. In addition, the life test result was shown by the ratio when the L10 life of Comparative Example 1 is 1.

Figure 0005211453
Figure 0005211453

これらから、窒化物の析出量は、窒素濃度に比例して増大することが分かる。詳細は後述するが、Si、Mn添加量の多い鋼の方が、同一窒素量で比較した場合に、Si・Mn系窒化物の析出量が多く、寿命が長いことが分かる。耐圧痕性、耐摩耗性と同様に、Si・Mn系窒化物の面積率が1%以上、窒素濃度が0.2質量%以上になると寿命が著しく向上する。   From these, it can be seen that the precipitation amount of nitride increases in proportion to the nitrogen concentration. As will be described in detail later, it can be seen that the steel with a larger amount of Si and Mn added has a larger amount of Si · Mn nitride precipitation and a longer life when compared with the same amount of nitrogen. Similarly to the scratch resistance and wear resistance, when the area ratio of the Si · Mn nitride is 1% or more and the nitrogen concentration is 0.2% by mass or more, the life is remarkably improved.

一方で、窒素濃度と同様に、Si・Mn系窒化物の析出量が多くなりすぎると靭性や静的強度が低下してしまう欠点がある。転がり軸受の転動体にとって靭性や静的強度は必要な性能であるため、Si・Mn系窒化物の析出量が多くなりすぎるのは好ましくない。図9には、シャルピー衝撃試験の結果を示す。同図から明らかなように、Si・Mn系窒化物の面積率が20%を超えると急激に靭性が低下することが分かる。従って、本発明のSi・Mn系窒化物の面積率の上限を20%としたが、より好ましくは10%とする。   On the other hand, as with the nitrogen concentration, there is a drawback that the toughness and the static strength are lowered when the amount of Si / Mn nitride deposited becomes too large. Since the toughness and static strength are necessary performances for rolling elements of a rolling bearing, it is not preferable that the amount of Si / Mn nitride precipitates is excessive. FIG. 9 shows the result of the Charpy impact test. As is clear from the figure, it can be seen that when the area ratio of the Si · Mn nitride exceeds 20%, the toughness rapidly decreases. Therefore, the upper limit of the area ratio of the Si / Mn nitride of the present invention is set to 20%, more preferably 10%.

[転動体表面の面積375μm中における0.05μm以上1μm以下のSi・Mn系窒化物の個数が100個以上]
析出強化の理論において析出物粒子間距離の小さい方が強化能に優れるので、窒化物の面積率が同じであっても、面積375μmの範囲の、0.05μm以上1μm以下のSi・Mn系窒化物を100個以上とすることで、析出数を増やし、析出物粒子間距離を小さくして強化することが好ましい。また、0.05μm以上のSi・Mn系窒化物のうち、0.05μm〜0.50μmのSi・Mn系窒化物の個数比率を20%以上にすることにより、更に強化することが可能になる。
[The number of Si · Mn nitrides of 0.05 μm or more and 1 μm or less in the surface of the rolling element surface of 375 μm 2 is 100 or more]
In the theory of precipitation strengthening, the smaller the distance between the precipitate particles, the better the strengthening ability. Therefore, even if the area ratio of the nitride is the same, the Si · Mn system having an area of 375 μm 2 and 0.05 μm or more and 1 μm or less By increasing the number of nitrides to 100 or more, it is preferable to increase the number of precipitates and reduce the distance between the precipitate particles for strengthening. Further, it is possible to further strengthen by setting the number ratio of 0.05 μm to 0.50 μm Si / Mn nitride out of Si / Mn nitride of 0.05 μm or more to 20% or more. .

[C:0.3〜1.2質量%以下]
Cは、鋼に必要な強度と寿命を得るために重要な元素である。Cが少なすぎると十分な強度が得られないだけでなく、後述する浸炭窒化の際に必要な硬化層深さを得るための熱処理時間が長くなり、熱処理コストの増大につながる。そのため、C含有量は、0.3質量%以上、好ましくは0.5質量%以上とする。また、C含有量が多すぎると製鋼時に巨大炭化物が生成され、その後の焼入れ特性や転動疲労寿命に悪影響を与えるほか、ヘッダー性が低下してコストの上昇を招く恐れがあるため、上限を1.2質量%とした。より好ましくは0.95〜1.10質量%とする。
[C: 0.3 to 1.2% by mass or less]
C is an important element for obtaining the strength and life required for steel. When C is too small, not only a sufficient strength cannot be obtained, but also a heat treatment time for obtaining a hardened layer depth necessary for carbonitriding described later becomes long, leading to an increase in heat treatment cost. Therefore, the C content is 0.3% by mass or more, preferably 0.5% by mass or more. In addition, if the C content is too large, giant carbides are produced during steelmaking, which adversely affects the subsequent quenching characteristics and rolling fatigue life, and the header properties may decrease, leading to an increase in cost. The content was 1.2% by mass. More preferably, the content is 0.95 to 1.10% by mass.

[Si:0.3〜2.2質量%、Mn:0.2〜2.0質量%]
前述したように、Si・Mn系窒化物を十分に析出させるためには、Si及びMnを多く含有した鋼を用いる必要がある(SUJ2(Si含有量0.25質量%、Mn含有量0.4質量%)では、浸炭窒化などで窒素を過剰に付与しても、Si・Mn系窒化物量が少ない)。このため、Si及びMnの含有量は以下の値を臨界値とする。
[Si:0.3〜2.2質量%]
本発明に係る窒化物の析出に必要な元素であり、Mnの存在によって、0.3質量%以上の添加で、窒素と効果的に反応して顕著に析出する。また、靭性の低下や深部への窒素の拡散を抑制するためには2.2質量%以下が好ましく、より好ましくは0.70質量%以下とする。
[Si: 0.3-2.2% by mass, Mn: 0.2-2.0% by mass]
As described above, in order to sufficiently precipitate the Si · Mn nitride, it is necessary to use a steel containing a large amount of Si and Mn (SUJ2 (Si content 0.25 mass%, Mn content 0. 4 mass%), even if nitrogen is added excessively by carbonitriding or the like, the amount of Si · Mn nitride is small). For this reason, content of Si and Mn makes the following values critical values.
[Si: 0.3 to 2.2% by mass]
It is an element necessary for the precipitation of the nitride according to the present invention, and due to the presence of Mn, it effectively reacts with nitrogen and precipitates significantly when added in an amount of 0.3% by mass or more. Moreover, in order to suppress the fall of toughness and the spreading | diffusion of nitrogen to a deep part, 2.2 mass% or less is preferable, More preferably, you may be 0.70 mass% or less.

[Mn:0.2〜2.0質量%]
本発明に係る窒化物の析出に必要な元素であり、Siとの共存によって、0.2質量%以上の添加でSi・Mn系窒化物の析出を促進させる作用がある。また、Mnはオーステナイトを安定化する働きがあるので、硬化熱処理後に残留オーステナイトが必要以上に増加するといった問題を防止するため、2.0質量%以下、より好ましくは1.15質量%以下とする。
[Mo:2.0質量%以下]
Moは、焼入れ性を増加させる元素であり、なおかつ前述したSi・Mn系窒化物やセメンタイトに顕著に濃化しないので、浸炭窒化処理後にも焼入れ性を確保させるために有効である。この効果を更に得るためにMoを0.05質量%以上とすることが好ましい。
一方、Moの過剰な添加は、残留オーステナイトが必要以上に増加することや鋼材コストが上昇するといった問題を生じるため、2.0質量%以下とする。
[Mn: 0.2 to 2.0% by mass]
It is an element necessary for precipitation of nitride according to the present invention, and has the effect of promoting the precipitation of Si / Mn nitride by addition of 0.2% by mass or more by coexistence with Si. Further, since Mn has a function of stabilizing austenite, it is 2.0% by mass or less, more preferably 1.15% by mass or less in order to prevent a problem that residual austenite increases more than necessary after the heat treatment for curing. .
[Mo: 2.0% by mass or less]
Mo is an element that increases the hardenability, and does not remarkably concentrate in the above-described Si · Mn nitride or cementite, so it is effective for ensuring the hardenability even after carbonitriding. In order to further obtain this effect, the Mo content is preferably 0.05% by mass or more.
On the other hand, excessive addition of Mo causes problems such as an increase in residual austenite more than necessary and an increase in steel material cost.

[Ni:2.0質量%以下]
Niは、焼入れ性を増加させる元素であり、なおかつ前述したSi・Mn系窒化物やセメンタイトに顕著に濃化しないので、浸炭窒化処理後にも焼入れ性を確保させるために有効である。この効果を更に得るためにNiを0.2質量%以上とすることが好ましい。一方、Niの過剰な添加は、残留オーステナイトが必要以上に増加することや鋼材コストが上昇するといった問題を生じるため、2.0質量%以下とする。
また、Crは、焼入れ性を向上させ、結晶の粗大化を防ぎ、化合物の球状化を向上させるものであり、この効果を得るためには0.9質量%以上が好ましく、加工性とコストのために1.8質量%以下が好ましく、1.6質量%以下がより好ましい。
[Ni: 2.0% by mass or less]
Ni is an element that increases the hardenability and does not remarkably concentrate in the above-described Si · Mn nitride or cementite, so it is effective for ensuring the hardenability even after carbonitriding. In order to further obtain this effect, Ni is preferably 0.2% by mass or more. On the other hand, excessive addition of Ni causes problems such as an increase in residual austenite more than necessary and an increase in steel material cost.
Further, Cr improves hardenability, prevents crystal coarsening, and improves the spheroidization of the compound. In order to obtain this effect, 0.9% by mass or more is preferable, and workability and cost are reduced. Therefore, 1.8 mass% or less is preferable and 1.6 mass% or less is more preferable.

[内外輪軌道面の残留オーステナイト量をγrAB、転動体表面の残留オーステナイト量をγrCとした場合に、γrAB−15≦γrC≦γrAB+15、γrAB≦50、γrC≦50]
前述したように、残留オーステナイト量が少なくなると、耐圧痕性、耐摩耗性が向上する一方で、表面の残留オーステナイト量が多いほど剥離寿命が延長する。即ち、転動体を中心に考えると、転動体表面のオーステナイト量が少ないほど転動体の耐圧痕性、耐摩耗性が向上し、軌道輪の寿命は延長するが、転動体自身の寿命は低下する。従って、最長軸受寿命に最適な転動体の残留オーステナイト量が存在するが、その最適な範囲は軌道輪の残留オーステナイト量によって異なる。軌道輪の残留オーステナイト量が多い場合には、軌道輪の寿命が長くなり、軌道輪の耐圧痕性が低下して軌道輪と転動体との接線力も大きくなるため、転動体の耐圧痕性、耐摩耗性をあげるより、転動体の寿命を延ばす必要がある。そのため、軌道輪の残留オーステナイト量が多い場合には、転動体の残留オーステナイト量も多くしなければならない。即ち、最長軸受寿命を達成する転動体の残留オーステナイト量(γrC)の範囲は、軌道輪の残留オーステナイト量(γrAB)によって変化するため、γrAB−15≦γrC≦γrAB+15、γrAB≦50(但し、γrAB≦50、γrC≦50)の形をとる(数値限定理由は後述する)。また、残留オーステナイト量が多すぎると硬さが下がり、耐圧痕性、耐摩耗性が低下するだけでなく、高温で使用される場合の寸法安定性も悪化するため上限値を50%とした。
[The amount of retained austenite of the inner and outer raceway surfaces gamma rAB, the amount of retained austenite of the rolling element surface when the γ rC, γ rAB -15 ≦ γ rC ≦ γ rAB + 15, γ rAB ≦ 50, γ rC ≦ 50]
As described above, when the amount of retained austenite decreases, the pressure resistance and wear resistance are improved. On the other hand, the larger the amount of retained austenite on the surface, the longer the peeling life. In other words, considering the rolling element as a center, the smaller the amount of austenite on the surface of the rolling element, the better the pressure resistance and wear resistance of the rolling element, and the life of the raceway is extended, but the life of the rolling element itself decreases. . Therefore, there is an optimum amount of retained austenite of the rolling elements for the longest bearing life, but the optimum range varies depending on the amount of retained austenite of the race. When the amount of retained austenite in the raceway is large, the life of the raceway is prolonged, the pressure resistance of the raceway is reduced, and the tangential force between the raceway and the rolling element is increased. It is necessary to extend the life of the rolling element rather than to increase the wear resistance. Therefore, when the amount of retained austenite of the race is large, the amount of retained austenite of the rolling elements must also be increased. That is, since the range of the retained austenite amount (γ rC ) of the rolling element that achieves the longest bearing life varies depending on the retained austenite amount (γ rAB ) of the raceway , γ rAB −15 ≦ γ rC ≦ γ rAB +15, γ It takes the form of rAB ≦ 50 (where γ rAB ≦ 50, γ rC ≦ 50) (the reason for numerical limitation will be described later). Further, when the amount of retained austenite is too large, not only the hardness is lowered and the pressure resistance and wear resistance are lowered, but also the dimensional stability when used at a high temperature is deteriorated, so the upper limit value was made 50%.

また、本発明では、好ましくは転動体表面の硬さをHv750以上とする。耐圧痕性、耐摩耗性を向上させる材料因子として最初に思いつくのが表面硬さである。耐圧痕性、耐摩耗性に及ぼす表面硬さの影響を調査するため、前述と同様に耐圧痕性試験及び2円筒摩耗試験を行った。図10aには表面硬さと耐圧痕性試験結果の圧痕深さとの関係を図10bには表面硬さと2円筒摩耗試験結果の摩耗量との関係を示す。同図から明らかなように、表面硬さが大きいほど、耐圧痕性、耐摩耗性に優れていることが分かる。特に耐圧痕性、耐摩耗性共に表面の硬さがHv750以上になると顕著に表面硬さの効果が得られる。また、硬さが硬いほど、疲労強度が上昇することが知られており、転動面の表面硬さをあげることで、耐圧痕性、耐摩耗性だけでなく、圧痕起点型剥離強度も向上することが可能である。   In the present invention, preferably, the hardness of the rolling element surface is set to Hv750 or more. Surface hardness is first conceived as a material factor for improving the pressure scar resistance and wear resistance. In order to investigate the influence of the surface hardness on the pressure scar resistance and wear resistance, the pressure scar resistance test and the two-cylinder wear test were performed in the same manner as described above. FIG. 10a shows the relationship between the surface hardness and the indentation depth of the indentation test result, and FIG. 10b shows the relationship between the surface hardness and the wear amount of the two-cylinder abrasion test result. As is apparent from the figure, it can be seen that the greater the surface hardness, the better the pressure scar resistance and wear resistance. In particular, when the hardness of the surface is Hv 750 or more for both the scratch resistance and the wear resistance, the effect of the surface hardness is remarkably obtained. In addition, it is known that the higher the hardness, the higher the fatigue strength. By increasing the surface hardness of the rolling surface, not only the indentation resistance and wear resistance, but also the indentation origin peel strength is improved. Is possible.

而して、本発明のうち請求項1に係る転がり軸受によれば、内周面に転動面を有する外方部材と、外周面に転動面を有する内方部材と、外方部材の転動面と内方部材の転動面との間に転動自在に配設された複数の転動体とを備えた転がり軸受において、外方部材及び内方部材及び転動体の少なくとも1つの構成部材が、C:0.95〜1.1質量%、Si:0.3〜0.7質量%、Mn:0.2〜1.15質量%、Cr:0.9〜1.80質量%を含有し且つMo:2質量%以下、Ni:質量%以下の何れか1種類以上の合金元素を含有し、残部がFe及び不可避的不純物からなる鋼に浸炭窒化処理を施してなり、当該構成部材の表面層の窒化濃度を0.2〜2.0質量%、当該構成部材の表面層のSi・Mn系窒化物の面積率を1%以上20%以下としたため、より長寿命で、耐圧痕性、耐摩耗性に優れる。 Thus, according to the rolling bearing according to claim 1 of the present invention, the outer member having the rolling surface on the inner peripheral surface, the inner member having the rolling surface on the outer peripheral surface, and the outer member In a rolling bearing provided with a plurality of rolling elements that are freely rollable between the rolling surface and the rolling surface of the inner member, at least one of the outer member, the inner member, and the rolling element member, C: .95 to 1.1 wt%, Si: 0.3 to 0.7 mass%, Mn: 0.2 to 1.15 mass%, Cr: 0.9 to 1.80 wt% And Mo: 2% by mass or less, Ni: 2 % by mass or less containing any one or more alloy elements, the balance being Fe and unavoidable impurities subjected to carbonitriding, The nitridation concentration of the surface layer of the constituent member is 0.2 to 2.0% by mass, and the area ratio of the Si / Mn nitride of the surface layer of the constituent member is 1% or less. Since it was 20% or less, with longer lifetime, indentation resistance, excellent wear resistance.

また、外方部材の転動面及び内方部材の転動面の残留オーステナイト量をγrAB、転動体表面の残留オーステナイト量をγrCとした場合に、γrAB−15≦γrC≦γrAB+15、γrAB≦50、γrC≦50であることとしたため、軸受全体としての長寿命を可能とする。 Further, the amount of retained austenite of the rolling surface of the rolling surface and the inner member the outer member gamma rAB, the amount of retained austenite of the rolling element surface when the γ rC, γ rAB -15 ≦ γ rC ≦ γ rAB Since +15, γ rAB ≦ 50, and γ rC ≦ 50, a long life of the entire bearing is possible.

次に、本発明の転がり軸受の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の転がり軸受の断面図である。この転がり軸受は、内方部材である内輪1、外方部材である外輪2、転動体3、保持器4を備えた、呼び番号L44649/610の円錐ころ軸受である。
この円錐ころ軸受を用い、異物混入潤滑環境下での寿命試験を行った。試験条件は以下の通りである。
試験荷重:ラジアル荷重Fr=12kN、アキシアル荷重Fa=3.5kN
回転数:3000min−1
潤滑油:VG68
異物の硬さ:Hv870
異物の大きさ:74〜134μm
異物混入量:0.1g
Next, an embodiment of the rolling bearing of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of the rolling bearing of this embodiment. This rolling bearing is a tapered roller bearing having a nominal number L44649 / 610, which includes an inner ring 1 that is an inner member, an outer ring 2 that is an outer member, a rolling element 3, and a cage 4.
Using this tapered roller bearing, a life test was conducted in a lubricating environment containing foreign matter. The test conditions are as follows.
Test load: radial load Fr = 12 kN, axial load Fa = 3.5 kN
Rotational speed: 3000 min -1
Lubricating oil: VG68
Hardness of foreign matter: Hv870
Foreign material size: 74-134 μm
Foreign matter contamination: 0.1g

寿命試験の実施例は、転動体に本発明を用いている。内外輪は鋼炭素クロム軸受鋼(SUJ2)を用い、830〜850℃のRXガス+プロパンガス+アンモニアガス雰囲気中で1〜3時間の浸炭窒化処理を施した後、180〜240℃の焼戻しを施して、内外輪軌道面の残留オーステナイト量が約10,20、30%の3種類の軌道輪を作製した。   The embodiment of the life test uses the present invention for the rolling element. The inner and outer rings are made of steel carbon chromium bearing steel (SUJ2). After carbonitriding for 1 to 3 hours in RX gas + propane gas + ammonia gas atmosphere at 830 to 850 ° C, tempering at 180 to 240 ° C is performed. As a result, three types of race rings were produced in which the amount of retained austenite on the inner and outer race surface was about 10, 20, and 30%.

下記表3には、実験に使用した転動体素材の成分及び完成転動体の品質を示す。転動体は、まず表3に示す成分の線材をヘッダー加工、粗研削加工によって作製し、浸炭窒化焼入れ(830℃×5〜20hr、RXガス+エンリッチガス+アンモニアガス雰囲気)、180〜270℃焼戻しの熱処理及び後工程を行った。転動体の表面窒素量の測定には電子線マイクロアナライザー(EPMA)を用い、定量分析を行った。また、表面層の残留オーステナイト量の測定は、X線解析法により測定した。何れも、転動体表面を直接分析測定した。更に、Si・Mn系窒化物の面積率の測定は、電界放射型走査型電子顕微鏡(FE−SEM)を用いて、加速電圧10kVで転動面の観察を行い、倍率5000倍で最低3視野以上写真を撮影した後、写真を2値化してから画像解析装置を用いて、面積率を計算した。また、寿命試験は各サンプルn=12行い、剥離が発生するまでの寿命時間を測定して、ワイブルプロットを作成し、ワイブル分布の結果からL10寿命を求め、寿命値とした。寿命は最も短寿命であって比較例11を1として比率で表した。   Table 3 below shows the components of the rolling element material used in the experiment and the quality of the completed rolling element. First, the rolling elements were prepared by header processing and rough grinding processing of wire materials having the components shown in Table 3, carbonitriding and quenching (830 ° C. × 5 to 20 hr, RX gas + enrich gas + ammonia gas atmosphere), and tempering at 180 to 270 ° C. The heat treatment and post-process were performed. For the measurement of the surface nitrogen amount of the rolling element, an electron beam microanalyzer (EPMA) was used for quantitative analysis. The amount of retained austenite in the surface layer was measured by an X-ray analysis method. In all cases, the rolling element surface was directly analyzed and measured. Furthermore, the area ratio of the Si / Mn nitride is measured by observing the rolling surface at an acceleration voltage of 10 kV using a field emission scanning electron microscope (FE-SEM), and at least 3 fields of view at a magnification of 5000 times. After taking a photograph as described above, the area ratio was calculated using an image analyzer after binarizing the photograph. In addition, the life test was performed for each sample n = 12, the life time until peeling occurred was measured, a Weibull plot was created, and the L10 life was obtained from the result of the Weibull distribution to obtain a life value. The lifetime was the shortest, and the ratio was expressed as a ratio with Comparative Example 11 as 1.

Figure 0005211453
Figure 0005211453

図12には、Si・Mn系窒化物の面積率と寿命比との関係を示す。図12から明らかなように、本発明範囲の成分の鋼を用い、表面窒素濃度0.2質量%以上2.0質量%以下、Si・Mn系窒化物面積率1%以上20%以下の本発明の実施例は、比較例に比べて寿命延長効果が大きい。
図13には、軌道輪軌道面の残留オーステナイト量が10、20、30%の夫々の場合の転動体転動面の残留オーステナイトと寿命比との関係を示す。軌道輪軌道面の残留オーステナイト量が多いほど長寿命の傾向を示すが、その寿命は転動体転動面の残留オーステナイト量に依存しており、転動体の残留オーステナイト量を本発明範囲に規定することにより、軸受全体としての長寿命を達成している。また、転動体の残留オーステナイト量が本発明範囲未満の場合は全て転動体が破損し、本発明範囲より多い場合には全て軌道輪が破損しており、本発明範囲内にすることにより、転動体と軌道輪の寿命をバランスよく延ばし、軸受全体として長寿命が達成されていることが分かる。
FIG. 12 shows the relationship between the area ratio of Si / Mn nitride and the life ratio. As is apparent from FIG. 12, steel having a component within the scope of the present invention is used, and the surface nitrogen concentration is 0.2% by mass or more and 2.0% by mass or less, and the Si / Mn nitride area ratio is 1% or more and 20% or less The embodiment of the invention has a greater life extension effect than the comparative example.
FIG. 13 shows the relationship between the retained austenite of the rolling element rolling surface and the life ratio when the amount of retained austenite on the raceway surface is 10, 20, and 30%. The larger the amount of retained austenite on the raceway surface, the longer the tendency of life, but the life depends on the amount of retained austenite on the rolling element rolling surface, and the amount of retained austenite of the rolling element is defined in the scope of the present invention. As a result, the long life of the entire bearing is achieved. In addition, when the amount of retained austenite of the rolling element is less than the range of the present invention, the rolling element is all damaged, and when it is more than the range of the present invention, all the raceways are damaged. It can be seen that the life of the moving body and the race is extended in a well-balanced manner, and a long life is achieved for the entire bearing.

例えば特開平5−25609号公報にも記載されているように、残留オーステナイト量が増えると、異物混入潤滑環境下で寿命が延びる結果は本試験結果でも得られている。しかし、単にそれだけでは不十分であり、相手材の残留オーステナイト量も規定することで、実施例に示すような長寿命化が可能である。また、本発明は、コスト的な理由や使用条件の問題から残留オーステナイト量を増やして長寿命化が行えない場合にも、効果的に寿命を延ばす範囲を規定し、寿命を延ばす手法を提案しているものであり、独創的な発明である。   For example, as described in Japanese Patent Application Laid-Open No. 5-25609, a result of extending the life in a foreign matter-containing lubrication environment when the amount of retained austenite increases is also obtained in this test result. However, that alone is not sufficient, and by defining the amount of retained austenite of the counterpart material, it is possible to extend the life as shown in the examples. In addition, the present invention proposes a method for effectively extending the service life by specifying a range to extend the service life effectively even when the amount of retained austenite cannot be increased by increasing the amount of retained austenite due to problems of cost and usage conditions. It is a creative invention.

なお、前記実施例は、転動体に本発明を適用した事例であるが、内外輪の何れか、又は内外輪及び転動体の全てに適用しても同様の効果が得られる。
一方、前記表3に示す鋼種1〜9について種々のサイズの転動体を作製し、これまでの実施例で良好な寿命特性が得られた浸炭窒化条件を適用して軸受を作製した。下記表4に、夫々の熱処理品質及び寿命試験結果の寿命比を示す。なお、寿命比は、比較例23の寿命を1として表している。この比較例23は、前記表2の比較例1と同じである。
In addition, although the said Example is an example which applied this invention to the rolling element, the same effect is acquired even if it applies to any of an inner / outer ring or all of an inner / outer ring and a rolling element.
On the other hand, rolling bodies of various sizes were produced for steel types 1 to 9 shown in Table 3 above, and bearings were produced by applying carbonitriding conditions in which good life characteristics were obtained in the examples so far. Table 4 below shows the life ratio of each heat treatment quality and life test result. In addition, the life ratio represents the life of Comparative Example 23 as 1. This Comparative Example 23 is the same as Comparative Example 1 in Table 2 above.

Figure 0005211453
Figure 0005211453

まず、熱処理品質について説明する。前述した図7に示すように、Si・Mn系窒化物の面積率はSi及びMnの含有量及び窒素濃度に依存する。鋼種1及び3〜9では、Si及びMnの含有量はほぼ同一であるので、窒化物の析出量は窒素濃度に依存し、浸炭窒化の条件が同一であることから、窒化物の析出量も2〜3%とほぼ一定となる。研削後の転動面に関して不完全焼入れ組織を調査した結果、直径10mmの転動体では観察されなかったが、直径20mm以上になると不完全焼入れ組織が生成する場合があることが確認された。不完全焼入れ組織の生成に伴って、鋼種1では炭窒化物による長寿命効果が低減することが分かるが、鋼種3〜9(実施例21〜41)では、何れの転動体サイズにおいても不完全焼入れ組織は生成せず、良好な寿命特性が確保できることが明らかになった。   First, heat treatment quality will be described. As shown in FIG. 7 described above, the area ratio of the Si · Mn nitride depends on the Si and Mn contents and the nitrogen concentration. In steel types 1 and 3 to 9, since the contents of Si and Mn are almost the same, the precipitation amount of nitride depends on the nitrogen concentration, and the conditions of carbonitriding are the same. It is almost constant at 2-3%. As a result of investigating the incompletely hardened structure on the rolling surface after grinding, it was confirmed that the incompletely hardened structure might be generated when the diameter was 20 mm or more, although it was not observed in the rolling element having a diameter of 10 mm. With the generation of incompletely quenched structure, it can be seen that the long-life effect due to carbonitride is reduced in steel type 1, but in steel types 3 to 9 (Examples 21 to 41), it is incomplete in any rolling element size. It was revealed that a hardened structure was not generated and good life characteristics could be secured.

このように炭窒化物の生成能と焼入れ性の確保といった合金元素の役割について、合金元素毎の特徴を把握し、夫々の合金元素に適した役割を付与することによって、炭窒化物による長寿命化と、不完全焼入れ組織による寿命劣化を低減した点が、本発明の独創的な点の一つであるといえる。
なお、この実施例では、主に転動体に関して記述しているが、大型の軌道輪に関しても同様に適用できる。
In this way, the role of alloy elements, such as the ability to generate carbonitrides and ensure hardenability, to understand the characteristics of each alloy element, and by providing a role suitable for each alloy element, long life by carbonitride It can be said that one of the original points of the present invention is that the deterioration of the life due to the incomplete hardening structure is reduced.
In this embodiment, the rolling elements are mainly described. However, the present invention can be similarly applied to large-sized races.

耐圧痕性試験の説明図である。It is explanatory drawing of a pressure | voltage resistant test. 2円筒摩耗試験の説明図である。It is explanatory drawing of a 2 cylinder abrasion test. (a)は表面窒素濃度と圧痕深さとの関係を示す説明図、(b)は表面窒素濃度と摩耗量との関係を示す説明図である。(A) is explanatory drawing which shows the relationship between surface nitrogen concentration and indentation depth, (b) is explanatory drawing which shows the relationship between surface nitrogen concentration and wear amount. 表面窒素濃度と吸収エネルギーとの関係を示す説明図である。It is explanatory drawing which shows the relationship between surface nitrogen concentration and absorbed energy. (a)はSi・Mn系窒化物の面積率と圧痕深さとの関係を示す説明図、(b)はSi・Mn系窒化物の面積率と摩耗量との関係を示す説明図である。(A) is explanatory drawing which shows the relationship between the area ratio of Si * Mn type nitride, and indentation depth, (b) is explanatory drawing which shows the relationship between the area ratio of Si * Mn type nitride, and the amount of wear. Si・Mn系窒化物の観察写真である。It is an observation photograph of Si.Mn nitride. 窒素濃度とSi・Mn系窒化物の面積率との関係を示す説明図である。It is explanatory drawing which shows the relationship between nitrogen concentration and the area ratio of Si * Mn type nitride. Si・Mn系窒化物の面積率と寿命比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the area ratio and lifetime ratio of Si * Mn type nitride. Si・Mn系窒化物の面積率と吸収エネルギーとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the area ratio of Si * Mn type nitride, and absorbed energy. (a)は表面硬さと圧痕深さとの関係を示す説明図、(b)は表面硬さと摩耗量との関係を示す説明図である。(A) is explanatory drawing which shows the relationship between surface hardness and indentation depth, (b) is explanatory drawing which shows the relationship between surface hardness and wear amount. 本発明の転がり軸受の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the rolling bearing of this invention. Si・Mn系窒化物の面積率と寿命比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the area ratio and lifetime ratio of Si * Mn type nitride. 軌道輪の残留オーステナイト量が変化したときの転動体の残留オーステナイト量と寿命比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the amount of retained austenite of a rolling element when the amount of retained austenite of a bearing ring changes, and a life ratio.

符号の説明Explanation of symbols

1は内輪(内方部材)
2は外輪(外方部材)
3は転動体
4は保持器
1 is the inner ring (inner member)
2 is the outer ring (outer member)
3 is a rolling element 4 is a cage

Claims (1)

内周面に転動面を有する外方部材と、外周面に転動面を有する内方部材と、外方部材の転動面と内方部材の転動面との間に転動自在に配設された複数の転動体とを備えた転がり軸受において、前記外方部材及び内方部材及び転動体の少なくとも1つの構成部材が、C:0.95〜1.1質量%、Si:0.3〜0.7質量%、Mn:0.2〜1.15質量%、Cr:0.9〜1.80質量%を含有し且つMo:2質量%以下、Ni:質量%以下の何れか1種類以上の合金元素を含有し、残部がFe及び不可避的不純物からなる鋼に浸炭窒化処理を施してなり、当該構成部材の表面層の窒化濃度を0.2〜2.0質量%、当該構成部材の表面層のSi・Mn系窒化物の面積率を1%以上20%以下とし、前記外方部材の転動面及び内方部材の転動面の残留オーステナイト量をγrAB、前記転動体表面の残留オーステナイト量をγrCとした場合に、γrAB−15≦γrC≦γrAB+15、γrAB≦50、γrC≦50であることを特徴とする転がり軸受。 An outer member having a rolling surface on the inner peripheral surface, an inner member having a rolling surface on the outer peripheral surface, and freely rollable between the rolling surface of the outer member and the rolling surface of the inner member. In a rolling bearing including a plurality of arranged rolling elements, at least one of the outer member, the inner member, and the rolling element is C: 0.95 to 1.1% by mass, Si: 0. 3 to 0.7% by mass, Mn: 0.2 to 1.15% by mass, Cr: 0.9 to 1.80 % by mass, Mo: 2% by mass or less, Ni: 2 % by mass or less Any one or more kinds of alloy elements is contained, and the balance is made of carbon and nitriding treatment on steel composed of Fe and inevitable impurities, and the nitriding concentration of the surface layer of the constituent member is 0.2 to 2.0 mass%. The area ratio of the Si / Mn nitride on the surface layer of the constituent member is 1% to 20%, and the rolling surface and the inner member of the outer member The amount of retained austenite of the rolling surface gamma rAB, the amount of retained austenite of the surface of the rolling element in case of a γ rC, γ rAB -15 ≦ γ rC ≦ γ rAB + 15, γ rAB ≦ 50, are gamma rC ≦ 50 A rolling bearing characterized by that.
JP2006233381A 2006-08-30 2006-08-30 Rolling bearing Expired - Fee Related JP5211453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233381A JP5211453B2 (en) 2006-08-30 2006-08-30 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233381A JP5211453B2 (en) 2006-08-30 2006-08-30 Rolling bearing

Publications (2)

Publication Number Publication Date
JP2008056969A JP2008056969A (en) 2008-03-13
JP5211453B2 true JP5211453B2 (en) 2013-06-12

Family

ID=39240066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233381A Expired - Fee Related JP5211453B2 (en) 2006-08-30 2006-08-30 Rolling bearing

Country Status (1)

Country Link
JP (1) JP5211453B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299759A (en) * 2008-06-12 2009-12-24 Nsk Ltd Wheel supporting rolling bearing unit
CN102758069B (en) * 2011-03-28 2013-10-30 大连国威轴承股份有限公司 Bearing propelled stirring quenching device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617225A (en) * 1992-07-01 1994-01-25 Kobe Steel Ltd Carburized bearing parts excellent in rolling fatigue property
JP2000212721A (en) * 1998-11-19 2000-08-02 Nsk Ltd Rolling member excellent in wear resistance
JP3725735B2 (en) * 1999-06-22 2005-12-14 Ntn株式会社 Tapered roller bearing and vehicle gear shaft support device
JP3873741B2 (en) * 2001-12-27 2007-01-24 日本精工株式会社 Rolling bearing
JP2004076823A (en) * 2002-08-13 2004-03-11 Nsk Ltd Rolling device
JP2005282854A (en) * 2004-03-03 2005-10-13 Nsk Ltd Rolling bearing
JP2005337362A (en) * 2004-05-26 2005-12-08 Nsk Ltd Full type roller bearing

Also Published As

Publication number Publication date
JP2008056969A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5194532B2 (en) Rolling bearing
WO2007135929A1 (en) Rolling bearing
JP4998054B2 (en) Rolling bearing
JP2009192071A (en) Roller bearing
JP5372316B2 (en) Rolling member
JP2008151236A (en) Rolling bearing
JP2008150672A (en) Rolling shaft
JP5211453B2 (en) Rolling bearing
JP2009222076A (en) Four-row tapered roller bearing
JP5070735B2 (en) Rolling bearing
JP2012201933A (en) Planetary gear device
JP5194538B2 (en) Rolling bearing
JP5853409B2 (en) Manufacturing method of rolling bearing
JP4857746B2 (en) Rolling support device
JP2008232212A (en) Rolling device
JP2009191942A (en) Rolling bearing
JP2005337361A (en) Roller bearing
JP2006045591A (en) Tapered roller bearing
JP2009191280A (en) Roller bearing and manufacturing method therefor
JP2006183845A (en) Rolling bearing
JP2007177897A (en) Roller bearing
JP7212100B2 (en) rolling bearing
JP7177883B2 (en) Rolling parts and rolling bearings
JP5233171B2 (en) Rolling bearing
JP2014020394A (en) Planetary gear device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees