[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5299989B2 - Ionizer - Google Patents

Ionizer Download PDF

Info

Publication number
JP5299989B2
JP5299989B2 JP2007315631A JP2007315631A JP5299989B2 JP 5299989 B2 JP5299989 B2 JP 5299989B2 JP 2007315631 A JP2007315631 A JP 2007315631A JP 2007315631 A JP2007315631 A JP 2007315631A JP 5299989 B2 JP5299989 B2 JP 5299989B2
Authority
JP
Japan
Prior art keywords
discharge electrode
distance
voltage
pulse
static elimination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007315631A
Other languages
Japanese (ja)
Other versions
JP2009140742A (en
Inventor
正義 印南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hugle Electronics Inc
Original Assignee
Hugle Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hugle Electronics Inc filed Critical Hugle Electronics Inc
Priority to JP2007315631A priority Critical patent/JP5299989B2/en
Priority to TW097129014A priority patent/TWI389601B/en
Priority to CNA2008101310156A priority patent/CN101453819A/en
Priority to KR1020080094178A priority patent/KR101460995B1/en
Publication of JP2009140742A publication Critical patent/JP2009140742A/en
Application granted granted Critical
Publication of JP5299989B2 publication Critical patent/JP5299989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Elimination Of Static Electricity (AREA)
  • Plasma Technology (AREA)

Description

本発明は、放電電極と除電対象物との間の距離を検出する距離センサを備えたイオナイザに関するものである。   The present invention relates to an ionizer including a distance sensor that detects a distance between a discharge electrode and a charge removal object.

図4は、特許文献1に記載されたパルスAC方式のイオナイザの構成図である。
図4において、21は交流電源、22はスイッチ、30は昇圧整流回路、31はトランス、32は倍電圧整流回路、41,43,44は抵抗、42はコンデンサ、50は放電電極、60はスイッチ22を開閉制御する制御回路、61はメモリ、70はコンソール、Aは除電対象物を示している。
FIG. 4 is a configuration diagram of the pulse AC type ionizer described in Patent Document 1. In FIG.
In FIG. 4, 21 is an AC power source, 22 is a switch, 30 is a boost rectifier circuit, 31 is a transformer, 32 is a voltage doubler rectifier circuit, 41, 43 and 44 are resistors, 42 is a capacitor, 50 is a discharge electrode, and 60 is a switch. 22 is a control circuit for controlling the opening and closing of the circuit 22, 61 is a memory, 70 is a console, and A is a static elimination object.

この従来技術の基本的な動作は、次の通りである。
すなわち、除電対象物Aが正負どちらに帯電しているかによって放電電極50から生成、放出される正負イオンの量が影響を受けるため、正負イオン量の差を抵抗44の両端電圧により検出し、この電圧検出値を制御回路60に入力する。制御回路60内のメモリ61には、前記電圧検出値に応じた電圧調整レベルが予め記憶されており、制御回路60はこの電圧調整レベルに応じたデューティ比でスイッチ22をオン・オフ制御する。
これにより、例えば除電対象物Aが正に帯電している場合には負イオンをより多く生成するような制御が行われることになり、その結果、除電対象物Aの速やかな除電が行われるものである。
The basic operation of this prior art is as follows.
That is, since the amount of positive and negative ions generated and released from the discharge electrode 50 is affected depending on whether the object A to be neutralized is positive or negative, the difference between the positive and negative ions is detected by the voltage across the resistor 44. The detected voltage value is input to the control circuit 60. The memory 61 in the control circuit 60 stores in advance a voltage adjustment level corresponding to the detected voltage value, and the control circuit 60 performs on / off control of the switch 22 with a duty ratio corresponding to the voltage adjustment level.
Thereby, for example, when the static elimination object A is positively charged, control is performed so as to generate more negative ions, and as a result, the static elimination object A is promptly eliminated. It is.

ここで、図4の従来技術では、放電電極50と除電対象物Aとの間の距離をコンソール70から入力できるようになっている。
つまり、放電電極50と除電対象物Aとの間の距離に関係なく放電電極50への印加電圧を一律に決定する場合には、除電対象物Aの表面に到達する正イオンまたは負イオンが不足したり、過剰になるおそれがある。
従って、上記従来技術においては、抵抗44による電圧検出値だけでなく、コンソール70により入力された放電電極50と除電対象物Aとの間の距離も加味しつつ、メモリ61から適切な電圧調整レベルを読み出して制御回路60がスイッチ22をオン・オフ制御することにより、除電対象物Aまでの距離にかかわらず確実に除電できるように考慮している。
Here, in the prior art of FIG. 4, the distance between the discharge electrode 50 and the static elimination object A can be input from the console 70.
That is, when the voltage applied to the discharge electrode 50 is uniformly determined regardless of the distance between the discharge electrode 50 and the static elimination object A, there is a shortage of positive ions or negative ions reaching the surface of the static elimination object A. Or it may become excessive.
Therefore, in the above-described conventional technology, not only the voltage detection value by the resistor 44 but also the distance between the discharge electrode 50 input by the console 70 and the static elimination object A is taken into account from the memory 61 to an appropriate voltage adjustment level. , And the control circuit 60 performs on / off control of the switch 22 so that the charge can be reliably removed regardless of the distance to the charge removal object A.

特開2004−207150号公報([0028]〜[0036],図1,図2等)Japanese Unexamined Patent Publication No. 2004-207150 ([0028] to [0036], FIG. 1, FIG. 2, etc.)

図4の従来技術によれば、放電電極50と除電対象物Aとの間の距離を加味して放電電極50への印加電圧を制御することにより除電時間の短縮を可能にしているが、距離情報を使用者自身がコンソール70から入力しなくてはならないため、その入力作業が面倒である。
特に、距離を目測して入力する場合には正確な制御を望むことができず、また、正確を期すために距離を実測すると、作業が一層煩雑になって多くの時間がかかるという問題があった。
更に、従来のイオナイザでは、除電対象物が存在しない場合にもイオンを発生し続けている場合があり、このような状態を極力無くしてエネルギーの浪費を回避したいという要請もあった。
According to the prior art of FIG. 4, the discharge time can be shortened by controlling the voltage applied to the discharge electrode 50 in consideration of the distance between the discharge electrode 50 and the charge removal object A. Since the user has to input information from the console 70, the input operation is troublesome.
In particular, when the distance is measured and input, accurate control cannot be desired, and when the distance is measured for accuracy, the operation becomes more complicated and takes a lot of time. It was.
Furthermore, in conventional ionizers, ions may continue to be generated even when there are no static elimination objects, and there has been a demand to avoid wasting energy and avoid wasting energy.

そこで、本発明の解決課題は、人為的に距離を入力する等の煩雑な手間を必要とせず、任意の距離にある除電対象物を短時間で効率的に除電すると共に、省エネルギーにも寄与することができるイオナイザを提供することにある。   Therefore, the problem to be solved by the present invention is that it does not require a complicated work such as manually inputting a distance, and efficiently eliminates a static elimination object at an arbitrary distance in a short time, and also contributes to energy saving. It is to provide an ionizer that can.

上記課題を解決するため、請求項1に記載した発明は、放電電極に高電圧を印加してコロナ放電を生じさせ、放電電極の周囲に発生したイオンにより除電対象物を除電するイオナイザにおいて、
放電電極と除電対象物との間の距離を測定する距離センサと、
この距離センサにより測定した距離に応じて放電電極に印加する電圧パルスのパルス幅を変化させることで電圧を変化させるための制御手段と、
を備え、
前記制御手段は、前記距離センサにより測定した距離が長いほど前記放電電極に印加する電圧パルスのパルス幅を大きくして電圧を大きくするように制御すると共に、
前記距離センサが測定可能な距離の範囲内に前記除電対象物が存在しない場合には、前記距離センサから、除電対象物なし、または測定不能を意味する信号を前記制御手段に送って前記制御手段による前記放電電極への高電圧印加を停止するものである。
In order to solve the above problems, the invention described in claim 1 is an ionizer that applies a high voltage to a discharge electrode to cause a corona discharge, and discharges an object to be neutralized by ions generated around the discharge electrode.
A distance sensor for measuring the distance between the discharge electrode and the static elimination object;
Control means for changing the voltage by changing the pulse width of the voltage pulse applied to the discharge electrode according to the distance measured by the distance sensor;
With
The control means controls to increase the voltage by increasing the pulse width of the voltage pulse applied to the discharge electrode as the distance measured by the distance sensor is longer,
When the object to be neutralized does not exist within the range of the distance that can be measured by the distance sensor, a signal indicating that there is no object to be neutralized or measurement is impossible is sent from the distance sensor to the control unit. The high voltage application to the discharge electrode is stopped.

本発明によれば、距離センサが放電電極と除電対象物との間の距離を測定し、その距離に応じて、制御手段が高電圧発生回路を介して放電電極への印加電圧を変化させる。
これにより、除電対象物までの距離が短いほど上記印加電圧を小さくし、距離が長いほど印加電圧を大きくするような制御を自動的に行うことができ、除電対象物へ到達するイオン量を距離にかかわらずほぼ一定にすることができる。従って、印加電圧を一定にした場合に比べて、遠くにある除電対象物の除電時間を短縮することが可能である。
また、距離センサが測定可能な距離の範囲内に除電対象物が存在しない場合には、除電対象物なし、または測定不能を意味する信号を制御手段に送って放電電極への高電圧印加を停止し、消費電力を削減することができる。
According to the present invention, the distance sensor measures the distance between the discharge electrode and the static elimination object, and the control means changes the voltage applied to the discharge electrode via the high voltage generation circuit according to the distance.
As a result, it is possible to automatically perform control such that the applied voltage is reduced as the distance to the static elimination object is short and the applied voltage is increased as the distance is long. Regardless, it can be almost constant. Therefore, it is possible to shorten the static elimination time of the static elimination object located far away compared to the case where the applied voltage is constant.
In addition, when there is no static elimination object within the distance range that can be measured by the distance sensor, a signal indicating that there is no static elimination object or measurement is impossible is sent to the control means to stop high voltage application to the discharge electrode. In addition, power consumption can be reduced.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態に係るイオナイザの概略的な構成図である。このイオナイザは、周知のように、放電電極に正または負の高電圧を印加することによりコロナ放電を生じさせて放電電極周囲に正イオンまたは負イオンを発生させ、これらのイオンをエアにより除電対象物方向へ供給するように構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an ionizer according to this embodiment. As is well known, this ionizer generates corona discharge by applying a positive or negative high voltage to the discharge electrode to generate positive ions or negative ions around the discharge electrode, and these ions are subject to charge removal by air. It is configured to supply in the physical direction.

図1において、10はイオナイザ本体であり、正負の高電圧を発生させるための制御信号を出力するCPU等の制御部11を備えている。
12は正の高電圧パルス(正電圧パルス)を発生する高電圧発生回路、13は負の高電圧パルス(負電圧パルス)を発生する高電圧発生回路である。これらの高電圧発生回路12,13は、例えば前述した特許文献1に示されるように、交流電源電圧が一次側に印加されるトランスとその二次側に接続される倍電圧整流回路等によって構成されているが、その回路構成は本発明の要旨ではないため、ここでは説明を省略する。
In FIG. 1, reference numeral 10 denotes an ionizer body, which includes a control unit 11 such as a CPU that outputs a control signal for generating positive and negative high voltages.
Reference numeral 12 denotes a high voltage generation circuit that generates a positive high voltage pulse (positive voltage pulse), and reference numeral 13 denotes a high voltage generation circuit that generates a negative high voltage pulse (negative voltage pulse). These high voltage generation circuits 12 and 13 are configured by, for example, a transformer to which an AC power supply voltage is applied to the primary side and a voltage doubler rectifier circuit connected to the secondary side as disclosed in Patent Document 1 described above. However, since the circuit configuration is not the gist of the present invention, the description is omitted here.

また、14は上記高電圧発生回路12,13の出力電圧(正電圧パルス及び負電圧パルスの合成電圧)が印加される放電電極であり、このイオナイザをいわゆるパルスAC方式のイオナイザとして使用する場合に用いられる。図2(a)は、パルスAC方式による放電電極14への印加電圧波形である。   Reference numeral 14 denotes a discharge electrode to which the output voltage (the combined voltage of the positive voltage pulse and the negative voltage pulse) of the high voltage generation circuits 12 and 13 is applied. When this ionizer is used as a so-called pulse AC type ionizer. Used. FIG. 2A shows a voltage waveform applied to the discharge electrode 14 by the pulse AC method.

一方、15は高電圧発生回路12からの正電圧パルスが印加される放電電極、16は高電圧発生回路13からの負電圧パルスが印加される放電電極であり、これらの放電電極15,16は、このイオナイザをいわゆるパルスDC方式のイオナイザとして使用する場合に用いられる。図2(b)は、パルスDC方式による放電電極15,16への印加電圧波形である。   On the other hand, 15 is a discharge electrode to which a positive voltage pulse is applied from the high voltage generation circuit 12, 16 is a discharge electrode to which a negative voltage pulse is applied from the high voltage generation circuit 13, and these discharge electrodes 15 and 16 are The ionizer is used when used as a so-called pulse DC type ionizer. FIG. 2B shows a voltage waveform applied to the discharge electrodes 15 and 16 by the pulse DC method.

通常、パルス駆動されるイオナイザでは、パルスAC方式またはパルスDC方式の何れかの方式が採られるため、実際には放電電極14のみ、または、放電電極15,16のみが設けられる。図1の例は、便宜的に両方式で用いる放電電極をすべて示したものである。   Usually, an ionizer driven by a pulse employs either a pulse AC method or a pulse DC method, so that only the discharge electrode 14 or only the discharge electrodes 15 and 16 are actually provided. The example of FIG. 1 shows all discharge electrodes used in both systems for convenience.

本実施形態では、放電電極14または15,16と除電対象物Aとの間の距離を測定するための距離センサ17が、イオナイザ本体10に取り付けられている。
この距離センサ17は、例えば除電対象物Aに向けて送った超音波の送受信に要する時間を計測して除電対象物Aまでの距離を測定する超音波式の距離センサによって構成されている。なお、超音波式だけでなく、LEDや半導体レーザを用いた光学式の距離センサを使用しても良い。
この距離センサ17から出力される距離測定値は、前記制御部11に入力されており、制御部11では、距離測定値に応じたパルス幅を有する正電圧パルスまたは負電圧パルスを高電圧発生回路12,13からそれぞれ出力させるように、所定の制御信号を生成する。
In the present embodiment, a distance sensor 17 for measuring the distance between the discharge electrode 14 or 15, 16 and the static elimination object A is attached to the ionizer body 10.
The distance sensor 17 is configured by an ultrasonic distance sensor that measures the distance to the static elimination target A by measuring the time required to transmit and receive the ultrasonic wave sent toward the static elimination target A, for example. In addition to the ultrasonic type, an optical distance sensor using an LED or a semiconductor laser may be used.
The distance measurement value output from the distance sensor 17 is input to the control unit 11, and the control unit 11 generates a positive voltage pulse or a negative voltage pulse having a pulse width corresponding to the distance measurement value as a high voltage generation circuit. A predetermined control signal is generated so as to be output from 12 and 13 respectively.

ここで、図3は、イオナイザの放電電極(例えば、パルスDC方式のイオナイザにおける正側の放電電極15)と除電対象物Aとの間の距離と、放電電極15に印加される正電圧パルスとの関係を示した概念図である。
イオナイザの出力が一定の場合、上記の距離が長くなるほど除電対象物Aの表面に到達するイオンの量が減少するので、本実施形態では、距離センサ17により計測した距離(L1<L2<L3)に応じて、制御部11からの制御信号により、放電電極15に印加する正電圧パルスのパルス幅を変化させている。すなわち、距離が長くなるほどパルス幅を増加させている。
図示しないが、パルスDC方式において負側の放電電極16に印加される負電圧パルスや、パルスAC方式において放電電極14に印加される正負の電圧パルスについても同様であり、距離が長くなるほどパルス幅を増加させれば良い。
Here, FIG. 3 shows the distance between the discharge electrode of the ionizer (for example, the positive discharge electrode 15 in the pulse DC type ionizer) and the static elimination object A, and the positive voltage pulse applied to the discharge electrode 15. It is the conceptual diagram which showed the relationship.
When the output of the ionizer is constant, the amount of ions that reach the surface of the static elimination object A decreases as the distance increases. In this embodiment, the distance measured by the distance sensor 17 (L1 <L2 <L3) Accordingly, the pulse width of the positive voltage pulse applied to the discharge electrode 15 is changed by a control signal from the control unit 11. That is, the pulse width is increased as the distance becomes longer.
Although not shown, the same applies to a negative voltage pulse applied to the discharge electrode 16 on the negative side in the pulse DC method and a positive voltage pulse applied to the discharge electrode 14 in the pulse AC method, and the pulse width increases as the distance increases. Can be increased.

なお、上述のように放電電極への印加電圧のパルス幅を制御する以外に、パルスの振幅や周波数を変化させてイオン発生量を制御しても良い。すなわち、本発明において、制御部11によるイオン発生量の制御方法は、特に限定されるものではない。   In addition to controlling the pulse width of the voltage applied to the discharge electrode as described above, the ion generation amount may be controlled by changing the amplitude and frequency of the pulse. That is, in the present invention, the method for controlling the amount of ion generation by the controller 11 is not particularly limited.

以上のように本実施形態では、距離センサ17によって放電電極と除電対象物Aとの間の距離を検出し、この距離が長くなるほどイオン発生量が多くなるように、制御部11が放電電極への印加電圧を自動的に制御している。
このため、人為的に距離を測定して入力する等の煩雑な作業を行わなくても、距離に応じた適切な量のイオンを発生させることができ、放電電極から遠くにある除電対象物Aに対しても効率よく短時間で除電を行うことができる。
As described above, in the present embodiment, the distance between the discharge electrode and the static elimination object A is detected by the distance sensor 17, and the control unit 11 moves to the discharge electrode so that the ion generation amount increases as the distance increases. The applied voltage is automatically controlled.
For this reason, even if it does not perform complicated work, such as measuring and inputting distance artificially, an appropriate quantity of ion according to distance can be generated, and static elimination object A which is far from a discharge electrode In addition, it is possible to perform static elimination efficiently in a short time.

特に、除電対象物Aがロボット搬送される液晶パネル等である場合には、放電電極から除電対象物Aまでの距離が必ずしも一定ではないことが多いが、本発明によれば、このような場合に有効である。
また、距離センサ17が測定可能な距離の範囲内に除電対象物Aが存在しない場合には、距離センサ17から、除電対象物なし、または測定不能を意味する信号を制御部11に送ることで、制御部11が放電電極への高電圧印加を停止することも可能である。これにより、消費電力を削減して省エネルギーに寄与することができる。
In particular, when the static elimination target A is a liquid crystal panel or the like that is transported by a robot, the distance from the discharge electrode to the static elimination target A is often not always constant. It is effective for.
Further, when the static elimination object A does not exist within the distance range that can be measured by the distance sensor 17, a signal indicating that there is no static elimination object or measurement is impossible is sent from the distance sensor 17 to the control unit 11. It is also possible for the control unit 11 to stop applying a high voltage to the discharge electrode. Thereby, power consumption can be reduced and it can contribute to energy saving.

本発明の実施形態に係るイオナイザの概略的な構成図である。1 is a schematic configuration diagram of an ionizer according to an embodiment of the present invention. 図2(a)はパルスAC方式による放電電極への印加電圧波形、図2(b)はパルスDC方式による放電電極への印加電圧波形である。FIG. 2A shows a voltage waveform applied to the discharge electrode by the pulse AC method, and FIG. 2B shows a voltage waveform applied to the discharge electrode by the pulse DC method. 実施形態における、放電電極と除電対象物との間の距離と、放電電極に印加される正電圧パルスとの関係を示した概念図である。It is the conceptual diagram which showed the relationship between the distance between a discharge electrode and the static elimination object in embodiment, and the positive voltage pulse applied to a discharge electrode. 従来技術を示す構成図である。It is a block diagram which shows a prior art.

符号の説明Explanation of symbols

10:イオナイザ本体
11:制御部
12,13:高電圧発生回路
14:放電電極(パルスAC用)
15,16:放電電極(パルスDC用)
17:距離センサ
21:交流電源
22:スイッチ
30:昇圧整流回路
31:トランス
32:倍電圧整流回路
41,43,44:抵抗
42:コンデンサ
50:放電電極
60:制御回路
61:メモリ
70:コンソール
A:除電対象物
10: Ionizer body 11: Control unit 12, 13: High voltage generation circuit 14: Discharge electrode (for pulse AC)
15, 16: Discharge electrode (for pulse DC)
17: Distance sensor 21: AC power supply 22: Switch 30: Boost rectifier circuit 31: Transformer 32: Voltage doubler rectifier circuit 41, 43, 44: Resistor 42: Capacitor 50: Discharge electrode 60: Control circuit 61: Memory 70: Console A : Object to be neutralized

Claims (1)

放電電極に高電圧を印加してコロナ放電を生じさせ、放電電極の周囲に発生したイオンにより除電対象物を除電するイオナイザにおいて、
放電電極と除電対象物との間の距離を測定する距離センサと、
この距離センサにより測定した距離に応じて放電電極に印加する電圧パルスのパルス幅を変化させることで電圧を変化させるための制御手段と、
を備え、
前記制御手段は、前記距離センサにより測定した距離が長いほど前記放電電極に印加する電圧パルスのパルス幅を大きくして電圧を大きくするように制御すると共に、
前記距離センサが測定可能な距離の範囲内に前記除電対象物が存在しない場合には、前記距離センサから、除電対象物なし、または測定不能を意味する信号を前記制御手段に送って前記制御手段による前記放電電極への高電圧印加を停止することを特徴とするイオナイザ
In an ionizer that applies a high voltage to the discharge electrode to cause corona discharge, and neutralizes the object to be neutralized by ions generated around the discharge electrode.
A distance sensor for measuring the distance between the discharge electrode and the static elimination object;
Control means for changing the voltage by changing the pulse width of the voltage pulse applied to the discharge electrode according to the distance measured by the distance sensor;
With
The control means controls to increase the voltage by increasing the pulse width of the voltage pulse applied to the discharge electrode as the distance measured by the distance sensor is longer,
When the object to be neutralized does not exist within the range of the distance that can be measured by the distance sensor, a signal indicating that there is no object to be neutralized or measurement is impossible is sent from the distance sensor to the control unit. An ionizer characterized by stopping application of a high voltage to the discharge electrode .
JP2007315631A 2007-12-06 2007-12-06 Ionizer Active JP5299989B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007315631A JP5299989B2 (en) 2007-12-06 2007-12-06 Ionizer
TW097129014A TWI389601B (en) 2007-12-06 2008-07-31 Ion generator
CNA2008101310156A CN101453819A (en) 2007-12-06 2008-08-19 Ion generator
KR1020080094178A KR101460995B1 (en) 2007-12-06 2008-09-25 Ionizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315631A JP5299989B2 (en) 2007-12-06 2007-12-06 Ionizer

Publications (2)

Publication Number Publication Date
JP2009140742A JP2009140742A (en) 2009-06-25
JP5299989B2 true JP5299989B2 (en) 2013-09-25

Family

ID=40735765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315631A Active JP5299989B2 (en) 2007-12-06 2007-12-06 Ionizer

Country Status (4)

Country Link
JP (1) JP5299989B2 (en)
KR (1) KR101460995B1 (en)
CN (1) CN101453819A (en)
TW (1) TWI389601B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650768B2 (en) * 2013-01-11 2015-01-07 シシド静電気株式会社 Ion generator
US11259393B2 (en) 2018-03-13 2022-02-22 A&D Company, Limited Electric neutralizer, electronic scale equipped with electric neutralizer, and neutralization method
CN109458679B (en) * 2018-10-18 2021-06-22 广东美的制冷设备有限公司 Control method of anion emitter, microclimate regulator and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594896A (en) * 1991-04-26 1993-04-16 Kyocera Corp Room ionizer
JPH0741120Y2 (en) * 1992-07-09 1995-09-20 春日電機株式会社 Ion jet static eliminator
JP2004207150A (en) * 2002-12-26 2004-07-22 Sunx Ltd Destaticizing device
JP4910207B2 (en) * 2005-11-25 2012-04-04 Smc株式会社 Ion balance adjustment method and work static elimination method using the same
WO2007102426A1 (en) * 2006-03-06 2007-09-13 Hitachi Kokusai Electric Inc. Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
CN101453819A (en) 2009-06-10
KR101460995B1 (en) 2014-11-13
TW200926904A (en) 2009-06-16
TWI389601B (en) 2013-03-11
JP2009140742A (en) 2009-06-25
KR20090060127A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
TWI580312B (en) Static eliminator and static elimination control method
JP4480680B2 (en) Charging device for image forming apparatus
EP1647776A2 (en) Apparatus and method for controlling air cleaning
JP2010102289A (en) Power source control device for image forming apparatus and method therefor
EP2223764B1 (en) Wire electric discharge machine
JP5299989B2 (en) Ionizer
JP4931192B2 (en) Static eliminator
EP1647777A2 (en) Apparatus and method for controlling air cleaning in an air conditioner
KR101937755B1 (en) Ionizer
JP4496206B2 (en) LCC of digital inverter for LCD backlight
JP6448305B2 (en) Power supply device and image forming apparatus
JP4900323B2 (en) Power supply device and image forming apparatus
JP4060577B2 (en) Static elimination method and static elimination device for static elimination object
JP5350097B2 (en) Pulse control power supply for static eliminator
JP2013257952A (en) Static eliminator
JPH11122914A (en) Regulated power unit
JP2011034748A (en) Static eliminator
JP2004207150A (en) Destaticizing device
JP6942416B2 (en) Power supply voltage monitoring device for inverter control of motor
JP2010025668A (en) Constant resistance control circuit
JP2002244405A (en) High voltage power source device for electrophotographic device
JP2005160259A (en) High-voltage power circuit
KR20170041214A (en) Active ionization control with closed loop feedback and interleaved sampling
JP4770806B2 (en) Image forming apparatus
JPH0228670A (en) Corona discharge device for electrophotographic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Ref document number: 5299989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250