[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5295738B2 - Adhesive composite containing metal alloy and method for producing the same - Google Patents

Adhesive composite containing metal alloy and method for producing the same Download PDF

Info

Publication number
JP5295738B2
JP5295738B2 JP2008308019A JP2008308019A JP5295738B2 JP 5295738 B2 JP5295738 B2 JP 5295738B2 JP 2008308019 A JP2008308019 A JP 2008308019A JP 2008308019 A JP2008308019 A JP 2008308019A JP 5295738 B2 JP5295738 B2 JP 5295738B2
Authority
JP
Japan
Prior art keywords
metal
adhesive
shape
alloy
adherend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008308019A
Other languages
Japanese (ja)
Other versions
JP2010131789A (en
Inventor
正徳 成富
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2008308019A priority Critical patent/JP5295738B2/en
Publication of JP2010131789A publication Critical patent/JP2010131789A/en
Application granted granted Critical
Publication of JP5295738B2 publication Critical patent/JP5295738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase an adhesive force at a temperature of 80-90&deg;C or above and to improve the heat resistance of an adhesive in an adhesion composite containing metal alloy. <P>SOLUTION: A metal shape object 21 obtained by NAT treatment in which the surface (1) has a roughness of micron order and (2) is covered with an ultra-fine unevenness of several tens nm order, and (3) an environmentally stable metal oxide or metal phosphate thin layer is formed on the surface and another similarly treated metal shape object or an FRP adherend 22 are adhered to each other by an epoxy adhesive 23, cured, and united. The epoxy adhesive contains inorganic powder having a center of particle size distribution of 5-20 &mu;m and 0.3-3 mass% of ultra-fine inorganic powder 100 nm or below in particle size as a filler. A fracturing dispersion method is used in order to dissolve the aggregation of the ultra-fine inorganic powder, and a fine powder type thermoplastic resin is added as a filler. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、金属合金を含む接着複合体とその製造方法に関し、より詳細には、移動機械、電気機器、医療機器、一般機械等において用いられる金属合金を含む接着複合体とその製造方法に関する。さらに詳細には、本発明は、新たな基礎的部品として、金属部品と金属部品とを一体化し、あるいは金属と繊維強化プラスチック(以下、「FRP(Fiber reinforced plasticsの略)」という)をエポキシ系接着剤にて強固に接着一体化した複合体とその製造技術に関する。特に、耐熱性が通常のエポキシ系接着剤を使用した場合よりも向上し、実用面で最も貢献度が期待される移動機械用に対応した複合体とその製造技術に関する。   The present invention relates to an adhesive composite including a metal alloy and a manufacturing method thereof, and more particularly to an adhesive composite including a metal alloy used in a mobile machine, an electric device, a medical device, a general machine, and the like, and a manufacturing method thereof. More specifically, in the present invention, as a new basic part, a metal part and a metal part are integrated, or metal and fiber reinforced plastic (hereinafter referred to as “FRP (abbreviation of Fiber reinforced plastics)”) are epoxy-based. The present invention relates to a composite that is firmly bonded and integrated with an adhesive and its manufacturing technology. In particular, the present invention relates to a composite for use in a mobile machine that has improved heat resistance compared to the case of using a normal epoxy adhesive and is expected to contribute most in practical use, and a manufacturing technique thereof.

金属と樹脂を一体化する技術は、航空機、自動車、家庭電化製品、産業機器等、あらゆる部品部材製造業において求められており、このために多くの接着剤が開発されている。この中には非常に優れた接着剤がある。例えば常温、または加熱により機能を発揮する接着剤は、金属と合成樹脂を一体化する接合に使用され、この方法は現在では一般的な接着技術である。   Technology for integrating metal and resin is required in all parts and materials manufacturing industries such as aircraft, automobiles, home appliances, and industrial equipment, and many adhesives have been developed for this purpose. Among these are very good adhesives. For example, an adhesive exhibiting a function at room temperature or by heating is used for joining to integrate a metal and a synthetic resin, and this method is now a common bonding technique.

一方、接着剤を使用しない接合方法も研究されてきた。マグネシウム、アルミニウムやその合金である軽金属類、また、ステンレスなど鉄合金類に対し、接着剤の介在なしで高強度の熱可塑性のエンジニアリング樹脂と一体化する方法がその例である。例えば、射出等の方法で樹脂成形と同時に接合をなす方法(以下、「射出接合」という)として、アルミニウム合金に対し熱可塑性樹脂であるポリブチレンテレフタレート樹脂(以下「PBT」という)またはポリフェニレンサルファイド樹脂(以下「PPS」という)を射出接合させる製造技術が開発されている(例えば特許文献1、2参照)。加えて、マグネシウム合金、銅合金、チタン合金、ステンレス鋼等も同系統の樹脂の使用で射出接合することが実証されている(特許文献4、5、6、7、8参照)。   On the other hand, bonding methods that do not use an adhesive have also been studied. An example is a method in which light metals such as magnesium, aluminum and alloys thereof, and iron alloys such as stainless steel are integrated with a high-strength thermoplastic engineering resin without an adhesive. For example, as a method of joining simultaneously with resin molding by a method such as injection (hereinafter referred to as “injection joining”), polybutylene terephthalate resin (hereinafter referred to as “PBT”) or polyphenylene sulfide resin which is a thermoplastic resin for an aluminum alloy Manufacturing techniques for injection joining (hereinafter referred to as “PPS”) have been developed (see, for example, Patent Documents 1 and 2). In addition, it has been demonstrated that magnesium alloy, copper alloy, titanium alloy, stainless steel, and the like are injection-bonded using the same type of resin (see Patent Documents 4, 5, 6, 7, and 8).

特許文献1における射出接合の原理は、以下のようであると言われている。アルミニウム合金を水溶性アミン系化合物の希薄水溶液に浸漬させ、アルミニウム合金を水溶液の弱い塩基性によって微細にエッチングさせるものである。また、この浸漬ではアルミニウム合金表面へのアミン系化合物分子の吸着が同時に起こる。この処理がなされたアルミニウム合金を射出成形金型にインサートし、溶融した熱可塑性樹脂を高圧で射出させる。   The principle of injection joining in Patent Document 1 is said to be as follows. The aluminum alloy is immersed in a dilute aqueous solution of a water-soluble amine compound, and the aluminum alloy is finely etched by the weak basicity of the aqueous solution. Further, in this immersion, adsorption of amine compound molecules on the surface of the aluminum alloy occurs simultaneously. The aluminum alloy thus treated is inserted into an injection mold, and the molten thermoplastic resin is injected at a high pressure.

このとき、熱可塑性樹脂と、アルミニウム合金表面に吸着していたアミン系化合物分子が遭遇することで化学反応する。この化学反応は、この熱可塑性樹脂が低温の金型温度に保たれたアルミニウム合金に接して急冷されて結晶化し固化せんとする物理反応を抑制する。その結果、樹脂は、結晶化や固化が遅れ、その間に超微細なアルミニウム合金面上の凹部に潜り込み得る。このことにより、熱可塑性樹脂は外力を受けてもアルミニウム合金表面から剥がれ難くなる。すなわち、アルミニウム合金と形成された樹脂成形物は強固に接合する。別の言い方で、化学反応と物理反応が競争反応の関係になり、この場合は化学反応が優先されるため強固な射出接合が生じる、と言える。   At this time, a chemical reaction occurs when the thermoplastic resin and the amine compound molecules adsorbed on the aluminum alloy surface are encountered. This chemical reaction suppresses a physical reaction in which the thermoplastic resin is rapidly cooled in contact with an aluminum alloy maintained at a low mold temperature to crystallize and solidify. As a result, the resin is delayed in crystallization and solidification, and in the meantime, it can sink into the recesses on the ultrafine aluminum alloy surface. This makes it difficult for the thermoplastic resin to peel off from the aluminum alloy surface even when subjected to external force. That is, the resin molded product formed with the aluminum alloy is firmly bonded. In other words, it can be said that the chemical reaction and the physical reaction are in a competitive relationship, and in this case, since the chemical reaction is given priority, strong injection joining occurs.

実際、アミン系化合物と化学反応できるPBTやPPSがこのアルミニウム合金と射出接合ができることを確認している。この射出接合のメカニズムを発明者らは「NMT(Nano molding technologyの略)」理論(仮説)と称した。   In fact, it has been confirmed that PBT and PPS that can chemically react with an amine compound can be injection-bonded with the aluminum alloy. The inventors called this injection joining mechanism the “NMT (Nano molding technology)” theory (hypothesis).

また、NMT理論ではないが他に、予めケミカルエッチングし、次に金属部品を射出成形機の金型にインサートして熱可塑性樹脂材料を用いて射出成形する技術が知られている(例えば、特許文献3参照)。この技術は接合法としては稚拙であり前記「NMT」による接合よりも不十分なものであったが、NMT理論はアルミニウム合金においてしか効果を示さないので、NMT理論の提唱者でもある本発明者らもアルミニウム合金以外の金属への射出接合に対して新規な接合技術の開発を行うべきと考えた。   In addition to the NMT theory, there is another known technique in which chemical etching is performed in advance, and then a metal part is inserted into a mold of an injection molding machine and injection molding is performed using a thermoplastic resin material (for example, patents). Reference 3). Although this technique is poor as a joining method and is insufficient as compared with the joining by the “NMT”, the present inventor who is also a proponent of the NMT theory because the NMT theory shows an effect only in an aluminum alloy. They also thought that new joint technology should be developed for injection joining to metals other than aluminum alloys.

そのような目的で開発を進めた結果、本発明者らは新たな技術「新NMT」理論に行き着いた。すなわち、アミン系化合物の金属合金表面への化学吸着なしに、要するに特段の発熱反応や何らかの化学反応の助力を得ることなしに、射出接合が可能な条件を思いついた。そしてこれは以下にのべるが多種の金属合金で実証できた。   As a result of proceeding with development for such a purpose, the present inventors have arrived at a new technology “new NMT” theory. That is, the present inventors have come up with conditions for injection joining without chemical adsorption of amine compounds on the metal alloy surface, in other words, without obtaining special exothermic reaction or assistance of any chemical reaction. This can be demonstrated with various metal alloys, as described below.

新NMT理論による射出接合理論では少なくとも以下の条件を必要とする。第1条件は、硬い高結晶性樹脂を使用すること、すなわちPPSやPBTやポリアミド樹脂を使うことである。しかもこれらを射出接合に合わせてさらに改良した組成物にすることが必要である。他の条件は、金型にインサートする金属部品の表層が丈夫で硬く、かつ特定の表面形状を有していることである。   The injection joining theory based on the new NMT theory requires at least the following conditions. The first condition is to use a hard highly crystalline resin, that is, to use PPS, PBT, or polyamide resin. In addition, it is necessary to make these compositions further improved for injection joining. Another condition is that the surface layer of the metal part inserted into the mold is strong and hard and has a specific surface shape.

例えば、マグネシウム合金を素材としてその形状物を使用する場合、自然酸化層で覆われたままのマグネシウム合金では耐食性が低いので、これを化成処理して表層を金属酸化物、金属炭酸化物、または金属リン酸化物にすることで、硬度の高いセラミックス質で覆われた表面とすることができる。これらセラミック質の表層を有し、かつ、ミクロンオーダーでの凹凸面を有するマグネシウム合金部品であれば前記条件に合致させることができた。   For example, when a magnesium alloy is used as a raw material and its shape is used, a magnesium alloy that is still covered with a natural oxide layer has low corrosion resistance. Therefore, the surface of the magnesium alloy is converted to metal oxide, metal carbonate, or metal. By using phosphorous oxide, a surface covered with a ceramic material having high hardness can be obtained. A magnesium alloy part having a ceramic surface layer and an uneven surface on the order of microns could meet the above conditions.

理論的には、これら表面処理されたマグネシウム合金形状物を射出成形金型にインサートした場合を設定して考えると以下のようになる。金型及びインサートしたマグネシウム合金形状物は射出する樹脂の融点より100℃以上低い温度に保たれているので、射出された樹脂は金型内の流路に入った途端に急冷されマグネシウム金属部品に接近した時点で融点以下になっている可能性が高い。   Theoretically, the case where these surface-treated magnesium alloy shaped articles are inserted into an injection mold is considered as follows. Since the mold and the inserted magnesium alloy shape are kept at a temperature 100 ° C. or more lower than the melting point of the resin to be injected, the injected resin is rapidly cooled as soon as it enters the flow path in the mold, and the magnesium metal part There is a high possibility that the temperature is below the melting point when approaching.

どのような結晶性樹脂でも溶融状態から急速に冷却されて融点以下になった場合、即時に結晶化固化するわけでなくわずかな時間であるが融点以下の溶融状態、すなわち、過冷却状態の時間がある。マグネシウム合金形状物上の凹部の径が1〜10μm程度と比較的大きい場合、過冷却から微結晶が生じる限られた時間内に樹脂は入り込み得る。また、生じた高分子微結晶群の数密度がまだ小さい場合も大きな凹部なら樹脂は入り込み得る。それは微結晶、すなわち不規則に運動していた分子鎖から分子鎖に何らかの整列状態が生じたときの形を有する微結晶の大きさは、分子モデルから推定すると数nm〜10nmの大きさとみられるからである。   If any crystalline resin is rapidly cooled from the molten state to below the melting point, it does not instantly crystallize and solidify, but it is a short time, but the molten state below the melting point, that is, the time for the supercooled state There is. When the diameter of the concave portion on the magnesium alloy shaped article is relatively large, such as about 1 to 10 μm, the resin can enter within a limited time during which microcrystals are generated from supercooling. Further, even if the number density of the generated polymer microcrystal group is still small, the resin can enter if it is a large recess. Since the size of a microcrystal, that is, a crystallite having a shape when an alignment state is generated from a molecular chain that has been moving irregularly to the molecular chain, is estimated to be several nanometers to 10 nm when estimated from a molecular model. It is.

それゆえ、微結晶は10nm径の超微細凹部に対し簡単に侵入できるとは言い難いが、数十nm周期の凹凸面の凹部なら若干は樹脂流の頭を突っ込める可能性がある。ただし、微結晶は同時発生的に無数に生じるので、射出樹脂の先端や金型金属面に接している箇所では樹脂流の粘度が急上昇する。結果的に言って、急冷時の結晶化速度を特殊なコンパウンドで遅くした樹脂を使用した場合、1〜10μm周期で深さがその周期の半分の0.5〜5μm程度の凹部までであれば溶融樹脂はその凹部奥底まで侵入でき、もしその凹部内壁面にさらに10〜100nm周期程度の超微細凹凸がさらにあった場合、その超微細凹凸の隙間の凹部に若干は樹脂流の頭を突っ込むことができるとみられた。   Therefore, it is difficult to say that microcrystals can easily penetrate into ultrafine concave portions having a diameter of 10 nm, but if the concave portion has a concave and convex surface with a period of several tens of nanometers, there is a possibility that the head of the resin flow is slightly pushed. However, since innumerable microcrystals are generated at the same time, the viscosity of the resin flow rapidly rises at the point where it is in contact with the tip of the injection resin or the metal mold surface. As a result, if a resin whose crystallization speed during quenching is slowed down with a special compound is used, if the depth is 1 to 10 μm and the depth is about 0.5 to 5 μm, which is half the period, The molten resin can penetrate to the bottom of the recess, and if there are further ultrafine irregularities with a period of about 10 to 100 nm on the inner wall surface of the recess, the resin flow head should be slightly inserted into the recesses of the gaps of the ultrafine irregularities. It seemed to be possible.

偶然にも、化成処理をしたマグネシウム合金表面を電子顕微鏡で観察すると10〜50nm周期の超微細な凹凸面が観察され、上記するような超微細表面構造のあることが確認された。マグネシウム合金に限らず、同様な形の表面をなす金属部品がある場合に樹脂射出したとした場合、樹脂流はミクロンオーダーの大きな凹部(すなわち、1〜10μm周期の凹凸があり、その凹凸高低差が周期の半分程度までの物)の奥底まで侵入し得て、さらにその大きな凹部の中で硬い超微細凹凸部に引っ掛けられることがあれば、この大きな凹部の中で樹脂が結晶化固化した場合にこれを引き抜くのは結構難しいと推定できる。   Coincidentally, when the surface of the magnesium alloy subjected to the chemical conversion treatment was observed with an electron microscope, an ultrafine irregular surface with a period of 10 to 50 nm was observed, and it was confirmed that the ultrafine surface structure as described above was present. When resin injection is performed when there is a metal part having a surface of the same shape as well as a magnesium alloy, the resin flow has large concave portions of micron order (that is, unevenness with a period of 1 to 10 μm, and the uneven height difference thereof. If the resin crystallizes and solidifies in this large recess, if it can penetrate to the bottom of a thing (up to about half the cycle) and be caught in a hard ultrafine uneven portion in that large recess It can be estimated that it is quite difficult to pull this out.

実際、そのような形状を目指して銅、チタンや鋼材の合金部品をエッチング加工や化学処理をして製作し、改良PPS樹脂(急冷時のPPS分子結晶化速度を低下させ得たPPS樹脂コンパウンド)を射出接合すると相当強い接合力が生じた。合金形状物の表面は酸化や化成処理によって金属酸化物等のセラミックス質の微結晶群やアモルファス層となっており、硬く丈夫なスパイクになっていたのである。すなわち、超微細凹凸がミクロンオーダー凹部の中でスパイクのように働き、樹脂部に強い引き剥がし力がかかっても大きな凹部の中で固化した樹脂分は抜けることなく、結果的に合金形状物と樹脂間の強い接合を得たものである。   In fact, aiming at such a shape, alloy parts of copper, titanium and steel materials are manufactured by etching and chemical treatment, and improved PPS resin (PPS resin compound that can reduce the rate of PPS molecular crystallization during quenching) When injection bonding, a considerably strong bonding force was generated. The surface of the alloy-shaped product was a ceramic crystallite group such as a metal oxide or an amorphous layer by oxidation or chemical conversion treatment, and was a hard and durable spike. In other words, the ultra-fine irregularities work like spikes in the micron-order recesses, and even if a strong peeling force is applied to the resin part, the solidified resin part does not come out in the large recesses. A strong bond between the resins was obtained.

上記した改良PPS樹脂等について述べる。すなわち、射出成形に於いては、樹脂組成物は射出により溶融状態から融点以下の温度に急冷される。もし、急冷時の結晶化速度を遅くなるように仕組んだ樹脂組成物が手に入れば、金型にインサートした金属合金部品上の上記したような細かな凹部に侵入する時間が取れることになり、より強い接合力を生むことになる。これは射出接合に適する樹脂組成物の重要で必要な条件となる。   The improved PPS resin described above will be described. That is, in injection molding, the resin composition is rapidly cooled from the molten state to a temperature below the melting point by injection. If a resin composition prepared so as to slow down the crystallization rate during rapid cooling is available, it will take time to enter the fine recesses on the metal alloy part inserted into the mold. This will produce a stronger bonding force. This is an important and necessary condition for a resin composition suitable for injection joining.

本発明者らは、前記の考え方に基づき、前述のようにマグネシウム合金やその他の金属合金の形状物を化学エッチングし、さらに化成処理等の表面処理によって表層をセラミックス化硬化することで、これに特殊組成とした硬質の結晶性樹脂を射出接合させて高接合性を得ることを見出した(特許文献4〜8)。各文献では、各金属種毎に接合条件を詳述しているが、共通している考え方は前記した新NMT理論である。要するに、特許文献4〜8から新NMT理論は金属種に捉われない一般論として通じることがわかる。   Based on the above concept, the present inventors chemically etched the shape of magnesium alloy and other metal alloys as described above, and further ceramicized and hardened the surface layer by surface treatment such as chemical conversion treatment. It has been found that a hard crystalline resin having a special composition is injection-bonded to obtain high bondability (Patent Documents 4 to 8). In each document, the bonding conditions are described in detail for each metal type, but the common idea is the new NMT theory described above. In short, it can be seen from Patent Documents 4 to 8 that the new NMT theory is a general theory that is not trapped by metal species.

新NMT理論のほぼ最終的な条件について述べる。金属合金についてまず述べれば、その金属合金種に見合った化学処理をして以下の(1)〜(3)を備えた表面にすることが基本的な必要条件である。すなわち、
(1)1〜10μm周期で高低差がその周期の半分程度までの凹凸面とする、すなわちミクロンオーダーの粗度を有した表面とすること、
(2)前記の凹部内壁面は10〜500nm周期、最も好ましくは50〜100nm周期、の超微細凹凸面とすること、
(3)表面はセラミック質の硬質相の薄層で覆われたものにすること、具体的には、環境的に安定な金属酸化物や金属リン酸化物の薄層で覆われたものにすること、
である。これらを模式的に図にすると図16のようになる。このようにした金属合金に液状の樹脂組成物が侵入したとして侵入後に硬く硬化したとしたら金属合金基材と硬化した樹脂分は非常に強固に接合する、という簡潔な考え方である。
The almost final conditions of the new NMT theory are described. First of all, regarding a metal alloy, it is a basic requirement that the surface be provided with the following (1) to (3) by chemical treatment corresponding to the metal alloy type. That is,
(1) An uneven surface with a height difference of up to about half of the period in a period of 1 to 10 μm, that is, a surface having a micron-order roughness,
(2) The inner wall surface of the recess is an ultra fine uneven surface with a period of 10 to 500 nm, most preferably with a period of 50 to 100 nm,
(3) The surface should be covered with a thin layer of a ceramic hard phase. Specifically, the surface should be covered with a thin layer of an environmentally stable metal oxide or metal phosphate. about,
It is. These are schematically illustrated as shown in FIG. Assuming that the liquid resin composition has infiltrated into the metal alloy as described above and has been hardened after the intrusion, the metal alloy base material and the cured resin are bonded very firmly.

この新NMT理論で熱可塑性樹脂の射出接合を説明すると以下になる。急冷時の結晶化固化速度を遅くすることができた硬質で高結晶性の熱可塑性樹脂組成物を射出した場合、射出成形金型内に射出された樹脂組成物は融点以下の温度に冷やされてもしばらくの間は過冷却状態の液状である。   The injection joining of thermoplastic resin will be described below with this new NMT theory. When a hard and highly crystalline thermoplastic resin composition that can slow down the crystallization and solidification rate during rapid cooling is injected, the resin composition injected into the injection mold is cooled to a temperature below the melting point. Even for a while, it is in a supercooled liquid state.

それゆえに、射出成形金型内に前記の金属合金を前もってインサートしておけば、前記(1)のミクロンオーダーの粗度をなす凹部に容易に侵入し得る。さらに(2)の超微細凹凸の凹部にも完全ではないだろうがある程度侵入できるのである。その後に結晶化が高速で進み固化に至ったとして、ミクロンオーダーの粗度をなす凹部内に侵入固化した樹脂は(2)の超微細凹凸に引っ掛けられ、かつその超微細凹凸は(3)にて非常に硬質であるのでスパイクされたように強固に止められて凹部から抜け出すことができない。これが熱可塑性樹脂を使用した射出接合の技術である(特許文献4〜8)。   Therefore, if the metal alloy is inserted in advance into the injection mold, it can easily penetrate into the concave portion (1) having a micron-order roughness. Furthermore, although it is not perfect, it can penetrate to a certain extent into the recesses of the ultrafine irregularities of (2). After that, the crystallization progresses at a high speed and solidifies. As a result, the resin that has entered and solidified into the recesses having a roughness on the order of microns is caught by the ultrafine irregularities in (2), and the ultrafine irregularities in (3) Because it is very hard, it is firmly stopped as if it was spiked and cannot be pulled out from the recess. This is an injection joining technique using a thermoplastic resin (Patent Documents 4 to 8).

また、新NMT理論の接合メカニズムが正しいとすれば、無溶剤型の1液性熱硬化型接着剤を使った接着で強い接合を産むことが予期できる。すなわち、新NMT理論に従った表面処理済みの金属合金に対し液状樹脂が接近してミクロンオーダーの凹部に侵入し、かつ、その凹部内壁面にある超微細凹凸の凹部隙間にもそこそこ侵入しその後に硬く固化すれば、スパイク効果で固化樹脂は凹部から抜けられず強い接合が得られることが推測できる。ただし、液状樹脂がその環境(圧力、温度)においてどの程度の粘度であるかがどの程度まで超微細凹凸の隙間に侵入できるかを決めると考えられる。   If the bonding mechanism of the new NMT theory is correct, it can be expected that strong bonding will be produced by bonding using a solventless one-component thermosetting adhesive. In other words, the liquid resin approaches the surface-treated metal alloy according to the new NMT theory and enters the micron-order concave portion, and also enters the concave portion of the ultra-fine unevenness on the inner wall surface of the concave portion. If it is hardened, it can be inferred that the solidified resin cannot be pulled out of the recess due to the spike effect and a strong bond can be obtained. However, it is considered that the viscosity of the liquid resin in the environment (pressure and temperature) determines the extent to which the liquid resin can enter the gaps of the ultra-fine irregularities.

このように、未硬化時の液粘度はどの程度なのかが重要事項になると考えつつ、本発明者らは新NMT理論に基づく手法で金属合金片を表面処理し市販の汎用型1液性エポキシ系接着剤を使って前記金属合金片同士を接着した。その結果、せん断破断力や引っ張り破断力で50〜70MPaという強烈な接着の生じることを確認した。   Thus, while considering that the liquid viscosity when uncured is an important matter, the present inventors surface-treated metal alloy pieces by a method based on the new NMT theory, and commercially available general-purpose one-part epoxy. The metal alloy pieces were bonded to each other using a system adhesive. As a result, it was confirmed that the strong adhesion of 50 to 70 MPa was generated by the shear breaking force and the tensile breaking force.

ただし、接着剤塗布後に工夫をした。すなわち、接着剤塗布物をデシケータに入れてほぼ真空にし、その後に常圧に戻す処理を繰り返した。圧力差は1気圧以下だが液状の接着剤は金属表面上の凹部に侵入し易いと考えた。その後、塗布した金属合金同士をクリップ等で固定し、加熱して硬化したのである。この染込まし工程の追加で従来にみられぬ強固な金属合金同士の接着物が得られた。この技術を本発明者らは「NAT(Nano adhesion technologyの略)」と称し、射出成形を利用した技術と別物の接着剤接合技術であることがわかるようにした(特許文献9〜16)。   However, it was devised after applying the adhesive. That is, the process of putting the adhesive coated material into a desiccator and making it almost vacuum, and then returning to normal pressure was repeated. Although the pressure difference was 1 atm or less, the liquid adhesive was considered to easily enter the recesses on the metal surface. Thereafter, the applied metal alloys were fixed with clips or the like and heated to be cured. With the addition of this soaking step, a strong metal alloy bond that was not seen in the past was obtained. The present inventors have called this technique “NAT (abbreviation of Nano adhesion technology)”, and have made it clear that this is a technique for joining an adhesive different from the technique using injection molding (Patent Documents 9 to 16).

NATで1液性接着剤が好ましいのは、塗布やその後の染込まし操作など硬化前操作で接着剤分子のゲル化が進まず、金属上の(2)の超微細凹凸の隙間にも接着剤分子がある程度侵入できるからである。2液性熱硬化型接着剤でも本発明に従う表面処理をした金属合金を使用すると接合力が向上するが、多くの場合その接合力向上度が劇的ではない。2液性接着剤では主液に硬化剤成分を加えて混合した瞬間からゲル化が始まるものがほとんどであり、ゲル化が進むと(2)の超微細凹凸の隙間に樹脂成分の侵入が少なくなる。   The one-component adhesive is preferable in NAT because the gelation of the adhesive molecules does not progress in the pre-curing operation such as coating and subsequent dyeing operation, and it adheres to the gaps of (2) ultra fine irregularities on the metal. This is because agent molecules can penetrate to some extent. Even when a two-component thermosetting adhesive is used, the bonding strength is improved by using a metal alloy that has been surface-treated according to the present invention. However, in many cases, the improvement in bonding strength is not dramatic. Most two-component adhesives start to gel from the moment the hardener component is added to the main liquid and mixed. As the gelation progresses, there is little penetration of the resin component into the gaps between the ultra-fine irregularities in (2). Become.

要するに、2液性接着剤を使用した場合は、硬化剤を混合した後の経過時間によって接着力が変化することが多く、安定性や再現性に劣ることがある。ただ、2液性接着剤と一般には見られている酸無水物を硬化剤とするエポキシ樹脂接着剤であっても、これらはゲル化が始まるまでの時間が長く、手際よく作業を進めると高い接着力が得られた。一般に2液性とされる接着剤でもゲル化速度を遅くできるものであれば、1液性接着剤と同じ扱いができNATが有効であることがわかっている。
特開2004−216425号 WO2004−055248号 特開2001−225352号 特願2006−329410号 特願2006−281961号 特願2006−345273号 特願2006−354636号 特願2007−185547号 特願2007−62376号 特願2007−106454号 特願2007−100727号 特願2007−106455号 特願2007−114576号 特願2007−140072号 特願2007―325736号 特願2007―336378号 特願2007−325737号
In short, when a two-component adhesive is used, the adhesive force often changes depending on the elapsed time after mixing the curing agent, which may be inferior in stability and reproducibility. However, even epoxy resin adhesives that use two-component adhesives and generally known acid anhydrides as curing agents, these take a long time to start gelation and are expensive when proceeding skillfully. Adhesive strength was obtained. It is known that NAT can be effectively treated as a one-component adhesive as long as the two-component adhesive can reduce the gelation rate.
JP 2004-216425 A WO2004-055248 JP 2001-225352 A Japanese Patent Application No. 2006-329410 Japanese Patent Application No. 2006-281196 Japanese Patent Application No. 2006-345273 Japanese Patent Application No. 2006-354636 Japanese Patent Application No. 2007-185547 Japanese Patent Application No. 2007-62376 Japanese Patent Application No. 2007-106454 Japanese Patent Application No. 2007-100727 Japanese Patent Application No. 2007-106455 Japanese Patent Application No. 2007-114576 Japanese Patent Application No. 2007-140072 Japanese Patent Application No. 2007-325736 Japanese Patent Application No. 2007-336378 Japanese Patent Application No. 2007-325737

本発明者らは、市販の1液性熱硬化型エポキシ接着剤を使用しNATにて金属片同士や金属片と炭素繊維強化プラスチック(以下、「CFRP(Carbon-fiber reinforced plasticsの略)」という)を接着する実験を重ね、その実用化商業化に向かっていた中で解決すべき課題のあることに気付いた。大きくは二点あり、その一つは接着物の耐熱性であった。   The present inventors use commercially available one-component thermosetting epoxy adhesives and use NAT to identify metal pieces or metal pieces and carbon fiber reinforced plastics (hereinafter referred to as “CFRP (Carbon-fiber reinforced plastics)”). ), I realized that there was a problem to be solved in the process of commercialization and commercialization. There were two major points, one of which was the heat resistance of the adhesive.

すなわち、硬化したエポキシ接着剤の耐熱性に直接関係するのは硬化剤種であり、アミン系硬化剤の中で具体的に言えば、ジシアンジアミド、イミダゾール類、芳香族ジアミン類の順で接着力の耐熱性が上がることが知られている。ところが芳香族ジアミン類は固体であるため、でき上がった熱硬化性樹脂組成物は常温下においてはペースト状というよりも固体になる。これではNAT用接着剤としての使用が難しい。すなわち、NATでは液状接着剤を1気圧程度の低圧で金属表面上のミクロンオーダー凹部底まで侵入させる必要があり固体型では昇温溶融して使用するしかない。   In other words, it is the curing agent type that is directly related to the heat resistance of the cured epoxy adhesive. Specifically, among the amine-based curing agents, the adhesive strength in the order of dicyandiamide, imidazoles, and aromatic diamines. It is known to increase heat resistance. However, since aromatic diamines are solid, the resulting thermosetting resin composition is solid rather than pasty at room temperature. This makes it difficult to use as an adhesive for NAT. That is, in the case of NAT, it is necessary to allow the liquid adhesive to penetrate to the bottom of the micron-order concave portion on the metal surface at a low pressure of about 1 atm.

しかし、昇温する温度が高ければゲル化硬化も始まり作業時の温度調整が難しい。結局、芳香族ジアミン類使用の熱硬化性エポキシ樹脂組成物はNAT用接着剤に現状のところ、まずは適さないとした。耐熱性接着剤とすべく硬化剤に酸無水物(一般に液体である)を使用することも考えたが、本発明の目的の一つが金属合金とCFRPの共硬化接着(接着関係の業界では、通常の固体同士の接着剤接合を「コボンド」と言い、一方または双方がプリプレグのような未硬化物を接着剤接合する場合を「コキュア」型の接着と言うから、共硬化は「コキュア」の翻訳語である)にもあり、硬化剤系はCFRPに合わして、やはりアミン系化合物群から選ぶべきとして、酸無水物は除外した。結局、硬化剤として具体的に検討したのはジシアンジアミドとイミダゾール類となった。それゆえに、今回のNAT改良の目的の一つを「硬化剤に頼らずに充填材の工夫でできるだけ接着物の耐熱性を上げること」とした。   However, if the temperature to be raised is high, gelling and curing will start and it will be difficult to adjust the temperature during operation. In the end, thermosetting epoxy resin compositions using aromatic diamines are currently unsuitable for NAT adhesives. We considered using an acid anhydride (generally a liquid) as a curing agent to make it a heat-resistant adhesive, but one of the objects of the present invention is co-curing adhesion between a metal alloy and CFRP (in the industry related to adhesion, Normal solid-to-solid adhesive bonding is called “co-bond”, and one or both of them are adhesive-bonding uncured material such as prepreg is called “co-curing” type of adhesive, so co-curing is “co-curing” In addition, the curing agent system should be selected from the group of amine compounds according to CFRP, and acid anhydrides were excluded. In the end, dicyandiamide and imidazoles were specifically examined as curing agents. Therefore, one of the objectives of this NAT improvement was "to increase the heat resistance of the adhesive as much as possible by devising the filler without relying on a curing agent".

もう一つの課題は、金属合金とCFRPのコキュア接着でもコボンド接着でも、その接着力が金属合金同士の接着で得られる接着力より劣る点である。特に、コキュア接着で劣る点が気になった。使用する接着剤は同じであるから、接着剤と金属合金の間で破壊が起こる場合や接着剤硬化相内で破壊が起こるのであれば前記のような差異の発生はあり得ない。   Another problem is that the adhesive strength between the metal alloy and CFRP is inferior to the adhesive strength obtained by bonding metal alloys to each other. I was particularly worried about the inferiority of cocure adhesion. Since the adhesive to be used is the same, the above-described difference cannot occur if the breakage occurs between the adhesive and the metal alloy or the breakage occurs in the adhesive curing phase.

実際、金属合金片とCFRPのコキュア法による接着物をせん断破断して得た破断面を観察すると、両面ともに樹脂相が露出しており、それゆえ、本発明者らはエポキシ系接着剤硬化物相とCFRPマトリックス樹脂硬化相の間で破断したものと判断した。双方ともエポキシ樹脂であるし共硬化させているのにその接合面は意外に脆いと思い驚いたのである。この判断が正しいとして、両硬化物相間の接合力を高めるには、硬化物双方の物性差を縮めることだと本発明者らは推論した。   In fact, when the fracture surface obtained by shearing and breaking the metal alloy piece and the CFRP bonded material by the Cocure method is observed, the resin phase is exposed on both surfaces, and therefore the present inventors have cured the epoxy adhesive. It was judged that there was a break between the phase and the CFRP matrix resin cured phase. Both were both epoxy resins and co-cured, but I was surprised to find that their joints were unexpectedly brittle. Assuming that this judgment is correct, the present inventors have inferred that to increase the bonding force between the two cured product phases, the difference in physical properties between the cured products should be reduced.

すなわち、現行のCFRPマトリックス樹脂用エポキシ樹脂の組成的特徴は靱性の高いことである。CFRP材としての強度は炭素繊維が受け持つから、炭素繊維とマトリックス樹脂の接着性を高度にしておくことができれば、マトリックス樹脂に必要なのは強度や硬度ではなくむしろ柔軟性や耐衝撃性となる。   That is, the composition characteristic of the current epoxy resin for CFRP matrix resin is high toughness. Since carbon fiber is responsible for the strength of the CFRP material, if the adhesion between the carbon fiber and the matrix resin can be made high, the matrix resin requires flexibility and impact resistance rather than strength and hardness.

その考え方から、具体的には、ゴム粉体(例えば合成ゴムラテックスから作製された微粒子)や熱可塑性樹脂の粉体等を混合分散させたエポキシ樹脂系組成物が昨今は使用されている。これらから想定するに、接着相手が金属合金ではなくエラストマー粒子入りのエポキシ樹脂硬化物となれば、使用する接着剤も変わらねばならぬと本発明者らも考えた。従って、CFRPとの物性差を意識し、接着剤を改造することが第2の改良目標となる。   From this viewpoint, specifically, an epoxy resin composition in which rubber powder (for example, fine particles made from synthetic rubber latex), a powder of a thermoplastic resin, and the like are mixed and dispersed has recently been used. Assuming these, the present inventors also thought that if the bonding partner is not a metal alloy but a cured epoxy resin containing elastomer particles, the adhesive to be used must also be changed. Therefore, the second improvement target is to remodel the adhesive in consideration of the difference in physical properties with CFRP.

本発明は前述した課題を解決すべくなしたものであり、本発明の請求項1による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末と、0.02〜0.2質量%のカーボンナノチューブを含むものである。 The present invention has been made to solve the above-mentioned problems, and an adhesive composite containing a metal alloy according to claim 1 of the present invention has a surface with a roughness of micron order by chemical etching and 5 to 5. A metal shape having a shape covered with an ultrafine irregular surface with an irregular period of 500 nm and a thin layer of metal oxide or metal phosphate formed on the surface, and adhesion to the metal shape Adhering material to be joined and adhesive that is applied to an adhesive surface between the metal shaped article and the adherend is cured to integrally bond the metal shaped article and the adherend. An adhesive composite comprising a metal alloy comprising a hardened layer, wherein the adhesive is a thermosetting epoxy adhesive, and an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler. together comprise a particle size of 0.3 to 3 wt% 100 following the ultrafine inorganic powder m, it is intended to include carbon nanotubes 0.02-0.2 wt%.

本発明の請求項1を引用する請求項2による金属合金を含む接着複合体は、前記接着剤が充填材としてさらに、熱可塑性樹脂粉体1〜10質量%含むものである。   The adhesive composite containing the metal alloy according to claim 2 that cites claim 1 of the present invention is one in which the adhesive further contains 1 to 10% by mass of thermoplastic resin powder as a filler.

本発明の請求項2を引用する請求項3による金属合金を含む接着複合体は、前記熱可塑性樹脂粉体をポリエーテルスルホンとしたものである。 An adhesive composite containing a metal alloy according to claim 3 which refers to claim 2 of the present invention is such that the thermoplastic resin powder is polyethersulfone.

本発明の請求項1ないしのいずれか1項を引用する請求項による金属合金を含む接着複合体は、前記超微細無機粉末をヒュームドシリカとしたものである。 An adhesive composite containing a metal alloy according to claim 4 which refers to any one of claims 1 to 3 of the present invention is such that the ultrafine inorganic powder is fumed silica.

本発明の請求項1ないしのいずれか1項を引用する請求項による金属合金を含む接着複合体は、前記接着剤がサンドグラインドミル型湿式粉砕機を使用して充填材をエポキシ樹脂中に高品位分散させることにより作製されたものである。 An adhesive composite comprising a metal alloy according to claim 5 quoting any one of claims 1 to 4 according to the present invention is such that the adhesive is contained in an epoxy resin using a sand grind mill type wet pulverizer. It was produced by dispersing in high quality.

本発明の請求項1ないしのいずれか1項を引用する請求項による金属合金を含む接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに10〜100nm径で同等の深さまたは高さの凹部もしくは突起である不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面にナトリウムイオンを含まない厚さ2nm以上の酸化アルミニウム薄層が形成されているアルミニウム合金製の金属形状物であるようにしたものである。 In an adhesive composite including a metal alloy according to claim 6 which refers to any one of claims 1 to 5 of the present invention, the surface of the metal shape has a roughness of micron order by chemical etching. And a shape covered with an irregular micro-protrusion surface with an irregular period that is a recess or protrusion having a diameter of 10 to 100 nm and an equivalent depth or height, and the surface does not contain sodium ions and has a thickness of 2 nm or more It is a metal shape product made of an aluminum alloy in which an aluminum oxide thin layer is formed.

本発明の請求項による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜20nm径で20〜200nm長さの棒状物が無数に錯綜した形の超微細凹凸面で覆われた形状であり、かつ該表面にマンガン酸化物の薄層が形成されているマグネシウム合金製の金属形状物であるようにしたものである。 An adhesive composite containing a metal alloy according to claim 7 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can, The surface has a roughness on the order of microns by chemical etching, and is covered with an extremely fine irregular surface in a form in which rods having a diameter of 5 to 20 nm and a length of 20 to 200 nm are intricately complicated, and The metal shape is made of a magnesium alloy having a thin layer of manganese oxide formed on the surface.

本発明の請求項による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜20nm径で10〜30nm長さの棒状突起が無数に有する直径80〜100nmの球状物が不規則に積み重なった形状の超微細凹凸面で覆われた形状であり、かつ該表面にマンガン酸化物の薄層が形成されているマグネシウム合金製の金属形状物であるようにしたものである。 An adhesive composite containing a metal alloy according to claim 8 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can, The surface has a micron-order roughness due to chemical etching, and an ultrafine shape in which spherical objects having a diameter of 5 to 20 nm and a rod-like protrusion having a length of 10 to 30 nm and an infinite number of 80 to 100 nm in diameter are stacked irregularly. It is a metal shape made of magnesium alloy having a shape covered with an uneven surface and having a thin layer of manganese oxide formed on the surface.

本発明の請求項による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに20〜40nmの粒形物及び/または不定多角形状物が積み重なった形状の超微細凹凸面で覆われた形状であり、かつ該表面にマンガン酸化物の薄層が形成されているマグネシウム合金製の金属形状物であるようにしたものである。 The adhesive composite comprising a metal alloy according to claim 9 of the present invention has a shape in which the surface has a micron-order roughness by chemical etching and is covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can, The surface has a roughness on the order of microns by chemical etching and is covered with an ultrafine uneven surface having a shape in which 20 to 40 nm particles and / or indefinite polygonal shapes are stacked, and the surface The metal shape is made of a magnesium alloy in which a thin layer of manganese oxide is formed.

本発明の請求項10による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに直径または長径短径の平均が10〜150nmの孔開口部または凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸面でほぼ全面が覆われた形状であり、かつ該表面に主として酸化第2銅の薄層が形成されている銅合金製の金属形状物であるようにしたものである。 An adhesive composite containing a metal alloy according to claim 10 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can The surface has a roughness on the order of microns by chemical etching, and the fine or uneven surface has pore openings or recesses having an average diameter or major axis and minor axis of 10 to 150 nm at irregular intervals of 30 to 300 nm. This is a metal shape made of a copper alloy having a shape that is almost entirely covered with a surface, and in which a thin layer of cupric oxide is mainly formed on the surface.

本発明の請求項11による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに直径または長径短径の平均が10〜200nmの凸部が混在して全面に存在する超微細凹凸形状であり、かつ該表面に主として酸化第2銅の薄層が形成されている銅合金製の金属形状物であるようにしたものである。 An adhesive composite comprising a metal alloy according to claim 11 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can The surface has a roughness on the order of microns by chemical etching and is an ultrafine concavo-convex shape in which convex portions having an average diameter or major axis and minor axis of 10 to 200 nm are mixed and exist on the entire surface, and mainly on the surface The metal shape is made of a copper alloy in which a thin layer of cupric oxide is formed.

本発明の請求項12による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに直径または長径短径の平均が10〜150nmの粒形物または不定多角形状物連なり一部融け合って積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ該表面に主として酸化第2銅の薄層が形成されている銅合金製の金属形状物であるようにしたものである。 The adhesive composite containing a metal alloy according to claim 12 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can The surface has a roughness on the order of microns by chemical etching, and has an average of 10 to 150 nm in diameter or major axis and minor axis. The metal shape is made of a copper alloy in which almost the entire surface is covered and a thin layer of cupric oxide is mainly formed on the surface.

本発明の請求項13による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに直径10〜20nmの粒形物及び50〜150nm径の不定多角形状物が混在して積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ該表面に主として酸化第2銅の薄層が形成されている銅合金製の金属形状物であるようにしものである。 The adhesive composite containing a metal alloy according to claim 13 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can The surface has a roughness on the order of microns by chemical etching, and has an ultra-fine uneven shape with a shape in which particles with a diameter of 10 to 20 nm and an indefinite polygon with a diameter of 50 to 150 nm are mixed and stacked. The metal shape is made of a copper alloy that is covered and in which a thin layer of cupric oxide is mainly formed on the surface.

本発明の請求項14による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有するとともに直径20〜70nmの粒形物や不定多角形状物が積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ該表面に金属酸化物の薄層が形成されているステンレス鋼製の金属形状物であるようにしたものである。 The adhesive composite containing a metal alloy according to claim 14 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can The surface has a roughness on the order of microns by chemical etching and is almost entirely covered with an ultra-fine irregular shape in which particles having a diameter of 20 to 70 nm and irregular polygonal shapes are stacked, and the surface is oxidized by metal. It is a metal shape made of stainless steel in which a thin layer of the object is formed.

本発明の請求項15による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有するとともに高さ80〜150nm、奥行き80〜200nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ該表面にマンガン酸化物、クロム酸化物、亜鉛リン酸化物、または亜鉛とカルシウムのリン酸化物のいずれかの薄層が形成されている鋼材製の金属形状物であるようにしたものである。 The adhesive composite containing a metal alloy according to claim 15 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a surface roughness of micron order by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can The surface has a roughness on the order of microns by chemical etching, and is almost entirely covered with an ultra-fine irregular shape with a height of 80 to 150 nm, a depth of 80 to 200 nm, and a width of several hundred to several thousand nm that continues indefinitely. And a metal shape made of steel having a thin layer of either manganese oxide, chromium oxide, zinc phosphorous oxide, or zinc and calcium phosphorous oxide formed on the surface. It is a thing.

本発明の請求項16による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有するとともに高さ80〜150nm、奥行きが80〜500nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面にマンガン酸化物、クロム酸化物、亜鉛リン酸化物、または亜鉛とカルシウムのリン酸化物のいずれかの薄層が形成されている鋼材製の金属形状物であるようにしたものである。 The adhesive composite containing a metal alloy according to claim 16 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can The surface has a roughness on the order of microns by chemical etching, a height of 80 to 150 nm, a depth of 80 to 500 nm, a width of several hundred to several thousand nm, and an extremely fine uneven shape with an infinitely wide step. It is a metal shaped product made of steel that is covered and on which a thin layer of manganese oxide, chromium oxide, zinc phosphate, or zinc and calcium phosphate is formed. It is what I did.

本発明の請求項17による金属合金を含む接着複合体は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、該金属形状物と接着接合される被着材と、前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度を有するとともに高さ50〜100nm、奥行きが80〜200nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面にマンガン酸化物、クロム酸化物、亜鉛リン酸化物、または亜鉛とカルシウムのリン酸化物のいずれかの薄層が形成されている鋼材製の金属形状物であるようにしたものである。 An adhesive composite containing a metal alloy according to claim 17 of the present invention has a surface covered with an ultrafine irregular surface having an irregular period of 5 to 500 nm and having a roughness on the order of microns by chemical etching. And a metal shaped article having a thin layer of metal oxide or metal phosphate formed on the surface, an adherend that is adhesively bonded to the metal shaped article, the metal shaped article, and the deposition An adhesive composite comprising a metal alloy comprising: an adhesive cured layer that hardens an adhesive applied to an adhesive surface with a material and integrally bonds the metal shape and the adherend. The adhesive is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and a particle size of 0.3 to 3 mass% and a particle size of 100 nm or less. comprising ultrafine inorganic powder, wherein a shaped metal can The surface has a roughness on the order of microns by chemical etching, a height of 50 to 100 nm, a depth of 80 to 200 nm, a width of several hundred to several thousand nm, and an extremely fine uneven shape with an infinitely wide step. It is a metal shaped product made of steel that is covered and on which a thin layer of manganese oxide, chromium oxide, zinc phosphate, or zinc and calcium phosphate is formed. It is what I did.

本発明の請求項18による金属合金を含む接着複合体の製造方法は、同種または異種の複数の金属合金材を機械的加工によりそれぞれの所定形状を有する金属形状物を形成する工程と、前記所定形状を有する前記金属形状物の表面を5〜500nmの不定期な周期の超微細凹凸形状で覆われた超微細凹凸面としかつ該超微細凹凸面が山谷平均間隔RSmが1〜10μmで最大粗さ高さRzが0.2〜5μmの粗度のより大きな凹凸形状を有する面となるよう化学エッチング含む各種液処理を施す表面処理工程と、エポキシ樹脂、硬化剤、粒度分布の中心が5〜20μmの無機粉体及び粒子径100nm以下の無機微粉末と、0.02〜0.2質量%のカーボンナノチューブを少なくとも含む熱硬化型エポキシ系接着剤を作製しこれを前記金属形状物に塗布する工程と、前記の熱硬化型エポキシ系接着剤を塗布済みの同種または異種の金属合金からなる金属形状物同士を貼り合せ、固定し、加熱によって全未硬化樹脂をゲル化硬化させて両者を一体化させる工程と、を含むものである。 According to claim 18 of the present invention, there is provided a method of manufacturing an adhesive composite including a metal alloy, wherein a plurality of the same or different metal alloy materials are mechanically processed to form a metal shape having a predetermined shape, and the predetermined The surface of the metal shaped product having a shape is an ultrafine concavo-convex surface covered with an ultrafine concavo-convex shape having an irregular period of 5 to 500 nm, and the ultrafine concavo-convex surface has a maximum roughness with a mountain-valley average interval RSm of 1 to 10 μm. Surface treatment process for performing various liquid treatments including chemical etching so that the height Rz is a surface having a larger roughness with a roughness of 0.2 to 5 μm, and the center of epoxy resin, curing agent, particle size distribution is 5 and inorganic fine powder of less inorganic powder and the particle size 100nm of 20 [mu] m, to prepare at least comprising a thermosetting epoxy adhesive carbon nanotubes 0.02-0.2 wt% which the metal shaped The step of applying to the object and the metal shape object made of the same or different kind of metal alloy coated with the above-mentioned thermosetting epoxy adhesive are bonded together, fixed, and all uncured resin is gelled and cured by heating. And integrating the two.

本発明の請求項19による金属合金を含む接着複合体の製造方法は、金属合金材を機械的加工によりそれぞれの所定形状を有する金属形状物を形成する工程と、前記所定形状を有する前記金属形状物の表面を5〜500nmの不定期な周期の超微細凹凸形状で覆われた超微細凹凸面としかつ該超微細凹凸面が山谷平均間隔RSmが1〜10μmで最大粗さ高さRzが0.2〜5μmの粗度のより大きな凹凸形状を有する面となるように化学エッチング含む各種液処理を施す表面処理工程と、エポキシ樹脂、硬化剤、充填材としての粒度分布の中心が5〜20μmの無機粉体及び超微細充填材としての平均粒子径100nm以下の無機微粉末と、0.02〜0.2質量%のカーボンナノチューブを少なくとも含む熱硬化型エポキシ系接着剤を作製しこれを前記金属形状物に塗布する工程と、エポキシ系樹脂組成物をマトリックス樹脂とする繊維強化プラスチックのプリプレグを切断積層等の作業により所定形状に整える工程と、前記の熱硬化型エポキシ系接着剤を塗布済みの金属形状物とプリプレグ形状物とを合せ押し付けつつ固定し加熱によって全未硬化樹脂をゲル化硬化させて両者を一体化させる工程と、を含むものである。 According to a nineteenth aspect of the present invention, there is provided a method of manufacturing an adhesive composite including a metal alloy, the step of forming a metal shape having a predetermined shape by mechanically processing a metal alloy material, and the metal shape having the predetermined shape. The surface of the object is an ultra-fine uneven surface covered with an ultra-fine uneven shape with an irregular period of 5 to 500 nm, and the ultra-fine uneven surface has a mean roughness RSm of 1 to 10 μm and a maximum roughness height Rz of 0. Surface treatment process for performing various liquid treatments including chemical etching so that the surface has a larger uneven shape with a roughness of 2 to 5 μm, and the center of particle size distribution as an epoxy resin, a curing agent, and a filler is 5 to 20 μm. Preparation of the inorganic powder and inorganic fine powder having an average particle size not greater than 100nm of the ultrafine filler, a thermosetting epoxy-based adhesive containing at least carbon nanotubes 0.02-0.2 wt% A step of applying this to the metal shape, a step of preparing a fiber reinforced plastic prepreg having the epoxy resin composition as a matrix resin into a predetermined shape by cutting and laminating, and the like, and the thermosetting epoxy adhesive And a step of combining and fixing the applied metal shaped article and prepreg shaped article together, and gelling and curing all uncured resins by heating to integrate them together.

本発明の請求項20による金属合金を含む接着複合体の製造方法は、金属合金材を機械的加工によりそれぞれの所定形状を有する金属形状物を形成する工程と、前記所定形状を有する前記金属形状物の表面を5〜500nmの不定期な周期の超微細凹凸形状で覆われた超微細凹凸面としかつ該超微細凹凸面が山谷平均間隔RSmが1〜10μmで最大粗さ高さRzが0.2〜5μmの粗度のより大きな凹凸形状を有する面となるように化学エッチング含む各種液処理を施す表面処理工程と、エポキシ系樹脂組成物をマトリックス樹脂とする繊維強化プラスチックの硬化形状物を用意し接着すべき箇所を粗面化する工程と、エポキシ樹脂、硬化剤、粒度分布の中心が5〜20μmの無機粉体及び粒子径100nm以下の無機超微粉末と、0.02〜0.2質量%のカーボンナノチューブを少なくとも含む熱硬化型エポキシ系接着剤を作製しこれを前記金属形状物及び前記繊維強化プラスチックの硬化形状物に塗布する工程と、前記熱硬化型エポキシ系接着剤を塗布済みの金属形状物と繊維強化プラスチックの硬化形状物とを合せ押し付けつつ固定し加熱によって全未硬化樹脂をゲル化硬化させて両者を一体化させる工程と、を含むものである。 According to claim 20 of the present invention, there is provided a method for producing an adhesive composite including a metal alloy, wherein a metal alloy material having a predetermined shape is formed by mechanically processing a metal alloy material; The surface of the object is an ultra-fine uneven surface covered with an ultra-fine uneven shape with an irregular period of 5 to 500 nm, and the ultra-fine uneven surface has a mean roughness RSm of 1 to 10 μm and a maximum roughness height Rz of 0. A surface treatment process for performing various liquid treatments including chemical etching so that the surface has a larger uneven shape with a roughness of 2 to 5 μm, and a cured product of fiber reinforced plastic using an epoxy resin composition as a matrix resin. a step of preparing to place the roughening to be bonded, an epoxy resin, a curing agent, the center of the particle size distribution following inorganic powder and the particle size 100nm of 5~20μm inorganic ultrafine powder, 0.02 A step of applying this to prepare a 0.2 wt% thermosetting comprising at least a carbon nanotube epoxy adhesive to the shaped metal and the cured shaped article of the fiber-reinforced plastic, the thermosetting epoxy adhesive And a step of combining and fixing the applied metal shape and the cured shape of the fiber reinforced plastic while pressing them, gelling and hardening all uncured resin by heating, and integrating them.

本発明の請求項18ないし20のいずれか1項を引用する請求項21による金属合金を含む接着複合体の製造方法は、前記した金属形状物及び/または繊維強化プラスチックのプリプレグないし硬化形状物に接着剤を塗布する工程後に、塗布済み材を密閉容器に収納し、容器内を減圧しその後に加圧する操作を繰り返し行う、材料表面への接着剤染み込まし工程を付加したものである。 Method for producing a bonded composite according to claim 21 comprising a metal alloy to cite any one of claims 18 to 20 of the present invention, the prepreg or cured shaped article of the metal shaped article and / or fiber-reinforced plastic After the step of applying the adhesive, the coated material is housed in a sealed container, and the operation of pressure reducing the inside of the container and then pressurizing is repeated, and the step of soaking the adhesive into the material surface is added.

本発明の請求項18ないし21のいずれか1項を引用する請求項22による金属合金を含む接着複合体の製造方法は、前記した熱硬化型エポキシ系接着剤の製造過程で充填材の分散を進めるためにサンドグラインドミル型湿式粉砕機を使用するものである。 According to a method of manufacturing an adhesive composite containing a metal alloy according to claim 22 which refers to any one of claims 18 to 21 of the present invention, the filler is dispersed in the manufacturing process of the thermosetting epoxy adhesive. In order to proceed, a sand grind mill type wet pulverizer is used.

金属合金同士及び金属合金とエポキシ系FRPを強烈な接着力で接着可能にした以前の本発明者らが特許出願において開示した接着技術においても、接着力の耐熱性は未解決な問題であり、また、被着材としての金属合金は前記特許出願に開示した接着技術の段階ですでに最高性能まで達していて、接着力は接着剤自体の性能に依存すると言えるものであったが、本発明ではエポキシ系接着剤の耐熱性能を上げるべく検討した結果、エポキシ接着剤に超微細無機充填材を加えることにより、100〜150℃以下での接着力を現行より10〜30MPa高めることができた。   Even in the bonding technique previously disclosed in the patent application by the present inventors that made it possible to bond metal alloys to each other and metal alloys and epoxy-based FRP with a strong adhesive force, the heat resistance of the adhesive force is an unresolved issue, In addition, the metal alloy as the adherend had already reached the maximum performance at the stage of the bonding technique disclosed in the above patent application, and the adhesive force could be said to depend on the performance of the adhesive itself. Then, as a result of examining to improve the heat resistance performance of the epoxy adhesive, the adhesive strength at 100 to 150 ° C. or less could be increased by 10 to 30 MPa from the present by adding an ultrafine inorganic filler to the epoxy adhesive.

本発明の金属合金複合体とその製造方法は、金属合金部品同士、または金属合金とFRPが強く一体化したものであり、その耐熱性も優れているから、軽量丈夫で且つ実用的な部品を提供することができる。金属合金を超々ジュラルミン等の高強度アルミニウム合金や耐熱性あるチタン合金とすると、CFRPと一体化することにより航空機用や自動車用部材として非常に軽量で特徴ある構造部材が製造できる。すなわち、複合体の端部が金属合金部であるとネジ止め、ボルト止めができて非常に便利になると同時に一定設計の部品化が可能となり、安価な大量生産が可能になる。   The metal alloy composite of the present invention and the manufacturing method thereof are metal alloy parts, or a metal alloy and FRP that are strongly integrated and have excellent heat resistance. Can be provided. If the metal alloy is a high-strength aluminum alloy such as ultraduralumin or a heat-resistant titanium alloy, a structural member that is extremely lightweight and characteristic as an aircraft or automobile member can be manufactured by integrating with the CFRP. That is, if the end portion of the composite is a metal alloy portion, it can be screwed and bolted, which is very convenient, and at the same time, can be made into a part with a constant design, and inexpensive mass production is possible.

本発明は、NATによる金属合金を含む接着複合体を形成する上で、その課題とする、接着物の耐熱性を高めることと、接着剤を改造することとについての解決策を与えるものであるが、はじめに本発明のNATによる金属合金を含む接着複合体を形成するために望まれる接着剤の特徴、それについての検討内容に関して説明し、さらに実際に金属合金を含む接着複合体を形成する形態について説明する。   The present invention provides a solution for increasing the heat resistance of an adhesive and remodeling an adhesive, which are problems in forming an adhesive composite including a metal alloy by NAT. First, the characteristics of the adhesive desired to form the adhesive composite containing the metal alloy by NAT of the present invention and the examination contents thereof will be described, and further, the form of actually forming the adhesive composite containing the metal alloy Will be described.

〔A〕NATによる金属合金を含む接着複合体を形成する上での接着剤の特徴
接着剤組成について種々検討した結果、以下のような基本方針とした。すなわち、接着剤の基本組成として、
1)無機充填材(タルク、クレー類)を必ず含むこと、
2)本発明者らが過去にNAT用として開発していたカーボンナノチューブを含むこと、
3)ヒュームドシリカ等の超微細無機充填材を加えること(理由は後述)、
4)CFRPとの類似性確保を目指しCFRPマトリックス樹脂に昨今よく使用されている非晶性熱可塑性樹脂のポリエーテルスルホン(以下「PES」という)粉体を配合すること、
とした。加えて、現行の接着剤メーカーは無機充填材等の配合に通常は自動乳鉢やニーダーを使用して接着剤を製造しているが、本発明者らは過去にカーボンナノチューブの分散に使用した最新型湿式粉砕機が良い分散結果を与えたことから、
5)サンドグラインドミルをエポキシ樹脂と全充填材との混合に標準使用すること、
とした。
[A] Features of the adhesive in forming an adhesive composite containing a metal alloy by NAT As a result of various studies on the adhesive composition, the following basic policy was adopted. That is, as the basic composition of the adhesive,
1) Be sure to include inorganic fillers (talc, clay),
2) including carbon nanotubes that the inventors have previously developed for NAT,
3) Add an ultrafine inorganic filler such as fumed silica (the reason will be described later)
4) Aiming at ensuring similarity with CFRP, blending with CFRP matrix resin, polyethersulfone (hereinafter referred to as “PES”) powder of amorphous thermoplastic resin, which is often used recently,
It was. In addition, current adhesive manufacturers usually use an automatic mortar or kneader to formulate inorganic fillers, etc., but the present inventors have used the latest used to disperse carbon nanotubes in the past. Since the mold wet pulverizer gave good dispersion results,
5) Standard use of sand grind mill for mixing epoxy resin and all fillers,
It was.

なお、3)の超微細無機充填材だが、単なる思い付きから充填すべきとしたのではない。破壊のメカニズムを推論し、後述する破壊の理論仮説を立て実験に望んだ。すなわち、本発明者らが行う接着剤性能の第一評価はNAT処理したA7075アルミニウム合金(「超々ジュラルミン」ともいう)片同士の接着物のせん断破断力値であったが、ジシアンジアミドを硬化剤とする市販の1液性エポキシ接着剤使用での常温接着力は65〜70MPaという強烈さにも拘らず、100℃、150℃の高温下でのせん断破断力は15〜20MPa及び6〜7MPaといずれも大幅に低下した。   In addition, although it is the ultrafine inorganic filler of 3), it should not be filled from a simple idea. I inferred the mechanism of destruction and made the theoretical hypothesis of destruction, which will be described later, and hoped for the experiment. In other words, the first evaluation of the adhesive performance performed by the present inventors was the shear breaking force value of the NAT-treated A7075 aluminum alloy (also referred to as “super-super duralumin”) pieces, but dicyandiamide was used as a curing agent. Despite the strength of 65-70 MPa at room temperature when using a commercially available one-part epoxy adhesive, the shear breaking strength at high temperatures of 100 ° C. and 150 ° C. is 15-20 MPa and 6-7 MPa. Also dropped significantly.

また、イミダゾール系化合物を硬化剤にした市販接着剤では、常温の破断試験では50〜60MPaだったのが、150℃で15MPaほどとなる。イミダゾール系化合物を硬化剤としたエポキシ接着剤は耐熱性接着剤と呼ばれ、ジシアンジアミド使用物より高温下で確かに強いがこの程度である。樹脂硬化物はガラス転移点(Tg)に近づくと急激に硬度が低下することが知られ、ジシアンジアミドやイミダゾール類を硬化剤としたエポキシ樹脂硬化物のTgは100〜140℃であるから上記の結果は致し方ないと片付けることもできる。   Moreover, in the commercially available adhesive which used the imidazole type compound as the hardening | curing agent, it was about 15 MPa at 150 degreeC, although it was 50-60 MPa in the break test at normal temperature. An epoxy adhesive using an imidazole compound as a curing agent is called a heat-resistant adhesive, which is certainly stronger at a higher temperature than a dicyandiamide-used product. It is known that the hardness of the cured resin decreases rapidly as it approaches the glass transition point (Tg), and the Tg of the cured epoxy resin using dicyandiamide or imidazole as a curing agent is 100 to 140 ° C. If you don't do it, you can clear it up.

しかしながら、本発明者らは、エポキシ樹脂硬化物が高温で柔らかくなると何ゆえ接着力が低下するかのメカニズムもさらに細かく推論すべきと考えた。この推論をすることで、ジシアンジアミドやイミダゾール類を使用するエポキシ系接着剤の高温下の接着力を多少であれ向上する手掛りが得られると予想した。なお上記したジシアンジアミドを硬化剤とする市販の1液性エポキシ接着剤とは「EP106NL(セメダイン社製)」であり、イミダゾール系化合物を硬化剤とする市販の1液性エポキシ接着剤とは「EP160(セメダイン社製)」である。   However, the present inventors thought that the mechanism of why the adhesive strength decreases when the cured epoxy resin becomes soft at high temperatures should be inferred in more detail. By this reasoning, it was expected that a clue to improve the adhesive strength at high temperatures of epoxy adhesives using dicyandiamide and imidazoles to some extent could be obtained. The commercially available one-component epoxy adhesive using dicyandiamide as a curing agent is “EP106NL (manufactured by Cemedine)”, and the commercially available one-component epoxy adhesive using an imidazole compound as a curing agent is “EP160”. (Cemedine).

以下推論の結果、高温下での接合物破断の直接原因は、「NAT処理した金属合金上のミクロンオーダー凹部の内壁面にあるスパイクの押さえが接着剤硬化物の軟化で効かなくなることによる」と仮説をおくに至った。実際、破断面を観察すれば金属側に残存付着している樹脂量が常温下破壊の場合より少なかった。これは、樹脂部が凹部入口付近で千切れるのではなく単純に抜けたものが多いことを示すものとみたのである。   As a result of inferences below, the direct cause of the joint breakage at high temperature is “the suppression of the spike on the inner wall surface of the micron-order recess on the NAT-treated metal alloy becomes ineffective due to the softening of the cured adhesive” I came up with a hypothesis. In fact, when the fracture surface was observed, the amount of the resin remaining on the metal side was less than that at the normal temperature. This is considered to indicate that the resin part is not broken in the vicinity of the entrance to the recess but is simply removed.

前記仮説が正しいとすると、ミクロンオーダー凹部内で固化した樹脂部の中に無機充填材が沢山含まれていると多少は抜け難くなり接着力を向上すると予期できる。さらには、ミクロンオーダー凹部の中には蛸壺型凹部(内部径より入口径が小さい凹部)も散見されるはずで、そこの樹脂部に無機充填材が多く含まれていたら硬化物は凹部から簡単には抜け出せないはずである。そしてここで言う無機充填材とは、ミクロンオーダー凹部に平気に入ってくれるものであり、粒子径は少なくとも0.1μm(100nm)以下の超微粒子でなくてはならない。この推論から前記の(3)の無機超微細充填材の添加案を検討したのであった。   If the hypothesis is correct, it can be expected that when a large amount of inorganic filler is contained in the resin portion solidified in the micron-order concave portion, it is difficult to come off to some extent and the adhesive strength is improved. Furthermore, in the micron-order recesses, vertical recesses (recesses having an inlet diameter smaller than the inner diameter) should also be seen. If the resin part contains a large amount of inorganic filler, the cured product will be removed from the recesses. It should not be easy to escape. The inorganic filler referred to here is one that favors micron-order concave portions, and must be ultrafine particles having a particle size of at least 0.1 μm (100 nm) or less. From this reasoning, the addition plan of the above-mentioned inorganic ultrafine filler (3) was examined.

耐熱性向上の目標は、ジシアンジアミドを硬化剤とした接着剤にて接着したA7075片同士のせん断破断力として常温下では60〜70MPa程度(現行市販接着剤レベル)でよいとし、100℃下では40MPa以上(現行市販接着剤では15〜25MPa)にしたいと希望した。また、A7075片とCFRPとの接着では、常温下の接着力で平均値としてせん断破断力60MPa以上(現行市販接着剤でのコキュアでもコボンドでも30〜34MPa)を予期した。この目標を持って、前記の材料組成の中で組成比を種々変更して接着剤を作製し試行錯誤の実験を繰り返した。その結果、コボンドでは目標より遥かに上、コキュアでは目標にわずか及ばぬ数値を得た。前述の仮説が正しいか否かに拘らず、明らかに接着力を向上させ、本発明に到達した。   The target for improving heat resistance is that the shear breaking force between A7075 pieces bonded with an adhesive containing dicyandiamide as a curing agent may be about 60 to 70 MPa at room temperature (current commercial adhesive level), and 40 MPa at 100 ° C. It was hoped that it would be above (15-25 MPa for current commercial adhesives). Further, in the adhesion between A7075 pieces and CFRP, an average value of the shear strength at normal temperature and a shear breaking strength of 60 MPa or more (30 to 34 MPa for both current-curing adhesives and co-bonds) was expected. With this goal, trials and errors were repeated by preparing adhesives by changing the composition ratio in the material composition. As a result, the value was far above the target for Cobond and slightly below the target for Cocure. Regardless of whether the above hypothesis is correct or not, the adhesive force was obviously improved and the present invention was achieved.

すなわち、A7075アルミニウム合金片とCFRP片の一体化物を、本発明に従って改良された接着剤及び市販CFRPプリプレグを使用したコキュア接着で得て、引っ張り破断試験をしたところせん断破断力で40〜45MPaが得られた。一方、CFRPプリプレグからメーカー指示どおりの硬化条件でCFRP片を作り上げ、さらに本発明者らが決めたよりきつい条件を二度三度と加えてCFRP片を作製した。このCFRP片とNAT処理したA7075アルミニウム合金片を上記接着剤で多少の工夫を加えたコボンド接着したところ、せん断破断力は60〜70MPaに達し、A7075アルミニウム合金片同士の接着力と同等にすることができた。   That is, an integrated product of A7075 aluminum alloy piece and CFRP piece was obtained by cocure adhesion using the improved adhesive according to the present invention and a commercially available CFRP prepreg, and when subjected to a tensile breaking test, a shear breaking force of 40 to 45 MPa was obtained. It was. On the other hand, a CFRP piece was prepared from the CFRP prepreg under the curing conditions as instructed by the manufacturer, and the harder conditions determined by the inventors were added twice and again. When this CFRP piece and NAT-treated A7075 aluminum alloy piece are co-bonded with the above-mentioned adhesive, the shear breaking force reaches 60 to 70 MPa, which is equivalent to the adhesion force between the A7075 aluminum alloy pieces. I was able to.

また、コキュアによって作製したCFRP片とA7075アルミニウム合金片の一体化物も、再度180℃で数時間加熱すると45〜50MPaに達した。このような現象はたまたま使用したCFRPプリプレグ材によるものかもしれないが、その炭素繊維とマトリックス樹脂間の接着力を最大にする硬化条件と、CFRP材として最高性能を発揮させるための硬化条件が異なっていたのだろうと思われた。   Further, the integrated product of CFRP piece and A7075 aluminum alloy piece produced by co-curing also reached 45 to 50 MPa when heated again at 180 ° C. for several hours. Such a phenomenon may be due to the CFRP prepreg material used, but the curing conditions for maximizing the adhesion between the carbon fiber and the matrix resin are different from the curing conditions for achieving the highest performance as a CFRP material. I thought it was.

すなわち、プリプレグがしっかりしたものであれば、そのCFRPとNAT処理済み金属合金とのコキュア接着は、改良されたエポキシ系接着剤の使用でせん断破断力60〜70MPaを十分なし得ることが想定できた。何故なら、多少の工程工夫はあったがCFRP片とA7075アルミニウム合金片のコボンド法接着で安定して60〜70MPaのせん断破断力が得られ、これはA7075アルミニウム合金片同士の同接着剤による接着実験で測定されるせん断破断力と全く同レベルにできたからである。それゆえ、プリプレグに関する改良研究や硬化条件の改良がなされれば、コボンドもコキュアも同レベルにできるはずである。   That is, if the prepreg is solid, it can be assumed that the cocure adhesion between the CFRP and the NAT-treated metal alloy can sufficiently achieve a shear breaking force of 60 to 70 MPa by using an improved epoxy adhesive. . This is because, although there were some process improvements, the co-bonding method of CFRP pieces and A7075 aluminum alloy pieces stably yielded a shear breaking force of 60 to 70 MPa, which is the adhesion of A7075 aluminum alloy pieces to each other by the same adhesive. This is because the shear breaking force measured in the experiment was exactly the same level. Therefore, if improved research on prepregs and improved curing conditions are made, cobond and cocure should be at the same level.

なお、当初行った単純なコキュア接着での接着力が何故35〜40MPaに留まったのかについての理由について本発明者らの考えを述べる。これらの状況は実施例で示すが、コキュア品を引っ張り破断して得た破断片の観察で、破断起点となる場所が分かったのである。すなわち、A7075アルミニウム合金片とCFRPのコキュア法による一体化試料を破断し、アルミニウム合金側の破断面を見たところ、せん断破断力が40MPa付近以上だったものでは必ず炭素繊維が付着していた。要するに、本発明者らが行った接着剤の改良によりCFRPマトリックス樹脂とエポキシ接着剤間の接着での問題が解消し、破壊の起点は炭素繊維とマトリックス樹脂の間の剥がれに移ったのである。   In addition, the present inventors think about the reason why the adhesive force in the simple cocure bonding performed at first remains at 35 to 40 MPa. These conditions are shown in the Examples, and by observing the broken pieces obtained by pulling and breaking the cocure product, it was possible to find the place to be the starting point of breakage. That is, when an integrated sample of the A7075 aluminum alloy piece and CFRP by the Cocure method was broken and the fracture surface on the aluminum alloy side was observed, carbon fibers were always attached to those having a shear fracture strength of about 40 MPa or more. In short, the adhesive improvement made by the present inventors solved the problem of adhesion between the CFRP matrix resin and the epoxy adhesive, and the starting point of the breakage shifted to peeling between the carbon fiber and the matrix resin.

プリプレグ製造時には、先ず炭素繊維束や炭素繊維布を表面処理して親エポキシ型とする。しかる後にマトリックス樹脂シートで両面を挟み、熱ロールで一体化しプリプレグとするのが通常のプリプレグ製造工程である。硬化後の炭素繊維とマトリックス樹脂間の接着力は非常に重要な要素であるから、炭素繊維の表面処理法は随分と研究されている。それゆえに、前記のコキュア品での炭素繊維剥がれの実態を見て驚いたが、過去にNATは存在しなかったから40MPaレベルもあれば十分だったのかもしれないし、たまたま使用したプリプレグが最高の炭素繊維表面処理法を施したものでなかったのかもしれない。   At the time of manufacturing the prepreg, first, a carbon fiber bundle or a carbon fiber cloth is surface-treated to obtain a parent epoxy type. After that, it is a normal prepreg manufacturing process that both sides are sandwiched between matrix resin sheets and integrated with a hot roll to form a prepreg. Since the adhesion between the carbon fiber and the matrix resin after curing is a very important factor, the surface treatment method of the carbon fiber has been extensively studied. Therefore, I was surprised to see the actual state of carbon fiber peeling in the above-mentioned cocure product, but since NAT did not exist in the past, it may have been 40MPa level, and the prepreg used by chance was the best carbon It may not have been subjected to a fiber surface treatment method.

やや面白い現象は、せん断破断力が約40MPaであったコキュア法によるA7075/CFRP一体化品と同じものを、190℃という高めの温度で再加熱して2回目の硬化処理をしてから引っ張り破断すると43MPa、2回の再加熱を加えると45MPaというふうにせん断破断力が向上した。本発明者らは、プリプレグメーカーではないので繊維処理の中身や理論について全くわからないが、前述したように、プリプレグ自体に求められる硬化条件と炭素繊維とマトリックス樹脂間の接着力を最高にする温度条件が一致していないのかもしれない。   A somewhat interesting phenomenon is the same as the A7075 / CFRP integrated product by the Cocure method with a shear breaking force of about 40 MPa. Then, the shear fracture strength improved to 43 MPa when 43 MPa and two reheatings were applied. Since the present inventors are not a prepreg manufacturer, they do not understand the contents and theory of fiber processing at all, but as described above, the curing conditions required for the prepreg itself and the temperature conditions that maximize the adhesion between the carbon fiber and the matrix resin. May not match.

それゆえに正しくは、最善の炭素繊維処理を行ったプリプレグをプリプレグメーカーに提供してもらい、その材料を使用しての実験結果を得ることが必要だろう。もちろんこれは、コボンド法にて接着する場合も同じことが言える。高い接着力データを叩き出すために、わざわざコキュア接着で得た一体化品を何回も焼き直すのはおかしいことだし、強いコボンド接着実証値を得るために接着前のCFRP材を焼き直すのはおかしなことだからである。   Therefore, correctly, it would be necessary to have a prepreg manufacturer provide a prepreg with the best carbon fiber treatment and obtain experimental results using that material. Of course, the same can be said for bonding by the cobond method. It is strange to re-fire the integrated product obtained by co-curing many times in order to get high adhesion data, and to re-fire the CFRP material before bonding in order to obtain a strong co-bond adhesion demonstration value. Because it is strange.

結論としては、最善の炭素繊維表面処理法を実施するというようなことではなくて、コキュアであれコボンドであれ、硬化用の加熱処理工程は1回で済ませられるようなバランス調整されたCFRPプリプレグを作って頂くことではないかと考えられる。要するに、前記したような1回の接着/加熱硬化で、CFRP表面上の接着面に最大100MPa程度のせん断力がかかったとしてもその表層部が壊れることがないようにしたCFRPプリプレグ材を作って頂きたいとの思いである。もしかしたらこれはすでに存在しているのかもしれないが、本発明者らは未だ遭遇していない。   The bottom line is not to do the best carbon fiber surface treatment, but to use a balanced CFRP prepreg that can be cured in one step, whether it is cocure or cobond. It is thought that it should be made. In short, a CFRP prepreg material that prevents the surface layer portion from being broken even if a maximum shearing force of about 100 MPa is applied to the bonding surface on the CFRP surface by one-time bonding / heat curing as described above. I want to receive it. Perhaps this already exists, but we have not yet encountered it.

さて、コボンド法でCFRP片を接着する場合、#100〜#2000の各種サンドペーパーで数回端部を研磨して粗面化し、得た物を水道水、各種水溶液、各種溶剤等で洗浄し、乾燥した上で、接着剤を塗布した。塗布後は、NATで標準的に行うのと同じ減圧加圧処理して接着剤をCFRP材の粗面に染込ませた。多くの組み合わせを試行錯誤した結果、粗面化は#100サンドペーパーによる研磨品が良い成績のように見受けられ、かなり粗い面にするのが適していることがわかった。そして、その後の洗浄は加熱しかつ超音波をかけた界面活性剤入り水溶液に浸漬し、その後に純水か水道水で十分に洗浄し、80〜90℃で乾燥するのが最適のようであった。   Now, when bonding CFRP pieces by the co-bond method, the edges are polished several times with various sandpapers of # 100 to # 2000, and the resulting product is washed with tap water, various aqueous solutions, various solvents, etc. After drying, an adhesive was applied. After the application, the same pressure reduction and pressure treatment as that normally performed by NAT was performed, and the adhesive was soaked into the rough surface of the CFRP material. As a result of trial and error in many combinations, it was found that the roughening seemed to be a good result with a polished article with # 100 sandpaper, and it was suitable to make a fairly rough surface. Then, it seems that it is optimal that the subsequent washing is immersed in an aqueous solution containing a surfactant that has been heated and sonicated, and then thoroughly washed with pure water or tap water and dried at 80 to 90 ° C. It was.

本発明による接着剤を使用すれば、前記処理をしたCFRP片であると全く問題なく接着する。すなわち、A7075アルミニウム合金片と前記のCFRP片をコボンド接着すると、A7075アルミニウム合金片同士を接着した場合と同等のせん断破断力が得られ、かつ、アルミニウム合金側の破断面には炭素繊維がごくわずかに付着しているか全く付着していないかの何れかとなる。要するに、アルミニウム合金の表面近傍の接着剤硬化物の壊れが起点になって破断すれば70MPa付近で破断するから、その他の場所はそれ以上に丈夫であったと言える。この場合、アルミニウム合金側に炭素繊維は基本的に付着しないはずであるが、#100という粗いサンドペーパーで擦っており、炭素繊維が剥き出しになっている箇所が多くある。それゆえ、多少の炭素繊維カスがアルミニウム合金側に残るものと思われる。   If the adhesive according to the present invention is used, the processed CFRP piece can be bonded without any problem. That is, when the A7075 aluminum alloy piece and the CFRP piece are co-bonded, a shear breaking force equivalent to that obtained when the A7075 aluminum alloy pieces are bonded to each other can be obtained, and the carbon fiber is very small on the fracture surface on the aluminum alloy side. Either attached or not attached at all. In short, it can be said that the other parts were more robust because it breaks at around 70 MPa if it breaks starting from the breakage of the cured adhesive near the surface of the aluminum alloy. In this case, the carbon fiber should not basically adhere to the aluminum alloy side, but it is rubbed with a coarse sandpaper of # 100, and there are many places where the carbon fiber is exposed. Therefore, it seems that some carbon fiber residue remains on the aluminum alloy side.

さらに本発明が得た最大の利点は、耐熱性の確保である。それも前述したように硬化剤にはジシアンジアミドを主に使ったので、高温での接着力は急減しておかしくなかったが、超微細無機充填材等の添加によりよいものでは100℃下で60MPaものせん断破断力を得た。これは本発明者らにとっても驚くべき数値であった。前述した破壊理論が正しい故のものか全く異なる理由によるものかはわからぬが、数値としては非常に高く、過去にみられない強い接着力である。   Furthermore, the greatest advantage obtained by the present invention is ensuring heat resistance. As mentioned above, since dicyandiamide was mainly used as the curing agent, the adhesive strength at high temperature was not reduced suddenly. However, if it is better to add an ultrafine inorganic filler, it is 60 MPa at 100 ° C. A shear breaking force was obtained. This was a surprising value for the inventors. I don't know if the above-mentioned failure theory is correct or for a completely different reason, but the numerical value is very high, and it is a strong adhesive strength not seen in the past.

〔B〕金属合金を含む接着複合体の形成
実際にNATによる金属合金を含む接着複合体を形成する形態について詳細に説明する。
(1)金属合金形状物
本発明でいう金属合金形状物、すなわち前述のNATで被着材として使用する金属合金には理論上特にその種類に制限はない。全金属種としてもよいが、実際に意味を有しているのは硬質で実用的な金属種、合金種である。すなわち、水銀は当然ながら液状だから本発明に関係しないが、鉛など軟質金属種も本発明者の考える金属種からは除外されている。当然であるが、化学的には存在するが大気中で活発に反応するアルカリ金属種、アルカリ土類金属種(マグネシウムを除いて)も基本的には除外の対象である。
[B] Formation of Adhesive Composite Containing Metal Alloy An embodiment of actually forming an adhesive composite containing a metal alloy by NAT will be described in detail.
(1) Metal alloy shaped article The metal alloy shaped article referred to in the present invention, that is, a metal alloy used as an adherend in the above-mentioned NAT is theoretically not limited in particular. All metal species may be used, but what is actually meaningful is a hard and practical metal species or alloy species. That is, since mercury is naturally liquid, it is not relevant to the present invention, but soft metal species such as lead are also excluded from the metal species considered by the present inventors. Of course, alkali metal species and alkaline earth metal species (except for magnesium) that exist chemically but react actively in the atmosphere are also basically excluded.

本発明では、実質的にNATが役立つ金属合金種として、マグネシウム、アルミニウム、銅、チタン、鉄を主成分とする合金種と考えている。以下、これらについて説明する。しかし、あくまでもNAT理論は、金属種を限定していないし、さらに言えば金属であること自体も限定していない。ただし非金属をNATで条件とする粗度や超微細凹凸面、かつ、高硬度の表面層とすることの3条件を同時に備えさせることは実際上容易でない。要するにNATは表面形状とその表面薄層硬度だけを規定してアンカー効果論で接着を論じているので、少なくとも下記した金属合金種に限定されるものではない。   In the present invention, the metal alloy species that are useful for NAT are considered to be alloy species mainly composed of magnesium, aluminum, copper, titanium, and iron. Hereinafter, these will be described. However, the NAT theory does not limit the metal species, and moreover, it does not limit the metal itself. However, it is practically not easy to simultaneously provide the three conditions of making the non-metal a surface condition of roughness, ultra-fine uneven surface, and high hardness, which are NAT conditions. In short, since NAT discusses adhesion by anchor effect theory by defining only the surface shape and its surface thin layer hardness, it is not limited to at least the following metal alloy types.

特許文献9にアルミニウム合金に関して記載され、また、特許文献10にマグネシウム合金に関して記載されている。特許文献11に銅合金に関して記載され、特許文献12にチタン合金に関して記載されている。特許文献13にはステンレス鋼に関して記載され、特許文献14に一般鋼材に関して記載されている。特許文献15に黄銅合金に関して記載されている。特許文献16にアルミ鍍金鋼板に関して記載されている。アルミニウム合金から特殊鋼材まで並べたこれらの金属合金種に関しては、これら各特許文献における〔金属合金部品〕の項が本発明にも適用されるので、個々の詳細説明は省略する。個々の内容については本発明においても全く同様である。   Patent Document 9 describes an aluminum alloy, and Patent Document 10 describes a magnesium alloy. Patent Document 11 describes a copper alloy, and Patent Document 12 describes a titanium alloy. Patent Document 13 describes stainless steel, and Patent Document 14 describes general steel materials. Patent Document 15 describes a brass alloy. Patent Document 16 describes an aluminum plated steel sheet. Regarding these metal alloy types arranged from aluminum alloys to special steel materials, the section of [metal alloy parts] in each of these patent documents is also applied to the present invention, and therefore, detailed description thereof is omitted. The individual contents are exactly the same in the present invention.

(2)金属合金材の化学エッチング
腐食には全面腐食、孔食、疲労腐食など種類があるが、その金属合金に対して全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献記録(例えば「化学工学便覧(化学工学協会編集)」)によれば、アルミニウム合金は塩基性水溶液、マグネシウム合金は酸性水溶液、ステンレス鋼や一般鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食するとの記録がある。また、耐食性の強い銅合金は、強酸性とした過酸化水素などの酸化剤によって全面腐食させられるし、チタン合金は蓚酸や弗化水素酸系の特殊な酸で全面腐食させられることが専門書や特許文献から散見される。実際に市場で販売されている金属合金類は、純銅系銅合金や純チタン系チタン合金のように純度が99.9%以上で合金とは言い難いものもあるが、これらも本発明には含まれる。実際に世間で使用されているものの大部分は特徴的な物性を求めて多種多用な他元素が混合されて純金属系のものは少なく、実質的には合金である。
(2) Chemical etching of metal alloy materials There are various types of corrosion, including general corrosion, pitting corrosion, and fatigue corrosion. You can choose. According to literature records (for example, "Chemical Engineering Handbook (edited by Chemical Engineering Association)"), aluminum alloys are basic aqueous solutions, magnesium alloys are acidic aqueous solutions, stainless steel and general steel materials in general are hydrohalic acid such as hydrochloric acid, sulfurous acid, There is a record that the entire surface is corroded by an aqueous solution of sulfuric acid or a salt thereof. In addition, copper alloys with strong corrosion resistance can be totally corroded by oxidizing agents such as hydrogen peroxide that have been made strongly acidic, and titanium alloys can be corroded entirely by special acids such as oxalic acid or hydrofluoric acid. And are often found in patent literature. Some metal alloys that are actually sold in the market, such as pure copper-based copper alloys and pure titanium-based titanium alloys, have a purity of 99.9% or more and cannot be said to be alloys. included. Most of the materials that are actually used in the world are mixed with various other elements in order to obtain characteristic physical properties, and few of them are pure metals, and are substantially alloys.

すなわち、純金属から合金化した目的の金属のほとんどが、もともとの金属物性を低下させることなく耐食性を上げることにあった。それゆえ、合金では、前記したように文献から参照して適用した酸塩基類や特定の化学物質を使っても、目標とする化学エッチングができない場合も多い。要するに、前記した酸塩基類、特定化学薬品の使用は基本であって、実際には使用する酸塩基水溶液の濃度、液温度、浸漬時間、場合によっては添加物を工夫しつつ試行錯誤して適正な化学エッチングを行うことになる。   That is, most of the target metals alloyed from pure metals have improved corrosion resistance without deteriorating the original metal properties. Therefore, in many cases, the target chemical etching cannot be performed even in the case of using an acid base or a specific chemical substance applied with reference to the literature as described above. In short, the use of the acid-bases and specific chemicals described above is fundamental, and in practice, the concentration of the acid-base aqueous solution to be used, the liquid temperature, the immersion time, and in some cases, appropriate by trial and error while devising the additive Chemical etching is performed.

化学エッチング法について言えば、特許文献9にアルミニウム合金に関する記載、特許文献10にマグネシウム合金に関する記載、特許文献11に銅合金に関する記載、特許文献12にチタン合金に関する記載、特許文献13にステンレス鋼に関する記載、特許文献14に一般鋼材に関する記載、特許文献15に黄銅合金に関する記載、特許文献16にアルミ鍍金鋼板に関する記載をした。アルミニウム合金から特殊鋼材に関しては、これら各特許文献の〔化学エッチング〕の項を確認するとよい。本発明においても全く同様に適用できる。詳細はこれら特許文献を参照すればよいが、実際に行う作業として全般的に共通する点を説明すると、金属合金形状物を得たらまず各金属用の市販脱脂剤を溶かした水溶液に浸漬して脱脂し水洗する。この工程は、金属合金形状物を得る工程で付着した機械油や指脂の大部分を除けるので好ましく、常に行うべきである。   Speaking of chemical etching, Patent Document 9 describes aluminum alloy, Patent Document 10 describes magnesium alloy, Patent Document 11 describes copper alloy, Patent Document 12 describes titanium alloy, Patent Document 13 relates to stainless steel. Description, Patent Document 14 describes general steel materials, Patent Document 15 describes brass alloys, and Patent Document 16 describes aluminum plated steel sheets. For special steel materials from aluminum alloys, it is advisable to check the [Chemical Etching] section of these patent documents. The present invention can be applied in exactly the same manner. For details, refer to these patent documents, but to explain the points that are generally common as the work actually performed, when obtaining a metal alloy shape, first immerse it in an aqueous solution in which a commercially available degreasing agent for each metal is dissolved. Degrease and wash with water. This step is preferred and should always be performed because it removes most of the machine oil and finger grease deposited in the step of obtaining the metal alloy shape.

次いで、薄く希釈した酸塩基水溶液に浸漬して水洗するのが好ましい。これは本発明者等が予備酸洗浄や予備塩基洗浄と称している工程であるが、一般鋼材のように酸で腐食するような金属種では、塩基性水溶液に浸漬し水洗し、また、アルミニウム合金のように塩基性水溶液で特に腐食が早い金属種では、希薄酸水溶液に浸漬し水洗することである。これらは化学エッチングに使用する水溶液と逆性のものを前もって金属合金に付着(吸着)させる工程であり、その後の化学エッチングが誘導期間なしに始まることになって処理の再現性が著しく向上する。それゆえ、予備酸洗浄、予備塩基洗浄工程は本質的なものではないが、実務上、採用することが好ましい。   Then, it is preferably immersed in a thinly diluted acid-base aqueous solution and washed with water. This is a process that the present inventors have referred to as preliminary acid cleaning or preliminary base cleaning. However, in the case of a metal species that corrodes with an acid such as general steel, it is immersed in a basic aqueous solution and washed with water. In the case of a metal species that is particularly corrosive in a basic aqueous solution such as an alloy, it is immersed in a dilute acid aqueous solution and washed with water. These are processes in which a solution opposite to the aqueous solution used for the chemical etching is previously attached (adsorbed) to the metal alloy, and the subsequent chemical etching starts without an induction period, so that the reproducibility of the process is remarkably improved. Therefore, the preliminary acid cleaning and preliminary base cleaning steps are not essential, but are preferably employed in practice.

(3)表面硬化処理、微細エッチング
金属合金種によっては前記の化学エッチングを行っただけで同時にナノオーダーの微細エッチングもなされ、さらに合金種によっては表面の自然酸化層がもとよりも厚くなって硬化処理も処理済みになっている場合もある。例えば、純チタン系のチタン合金は化学エッチングだけを行うことで微細エッチングもなされる。しかし、多くは化学エッチングによりミクロンオーダーの大きな凹凸面を作った後で微細エッチングや表面硬化処理を行う必要がある。
(3) Surface hardening treatment, fine etching Depending on the type of metal alloy, fine etching on the nano-order is performed at the same time by performing the above chemical etching, and depending on the type of alloy, the natural oxide layer on the surface becomes thicker than the original and hardening treatment is performed. May have already been processed. For example, a pure titanium-based titanium alloy is also finely etched by performing only chemical etching. However, in many cases, it is necessary to perform fine etching or surface hardening treatment after forming a large uneven surface on the order of microns by chemical etching.

この時でも予測できない化学現象に見舞われることが多い。すなわち、表面硬化処理や表面安定化処理を目的に化学エッチング後の金属合金に酸化剤等を反応させたり化成処理したりするとき、得られる表面が偶然ながら超微細凹凸化される例である。マグネシウム合金を過マンガン酸カリ系水溶液で化成処理した場合に生じた酸化マンガンとみられる表面層は10万倍電子顕微鏡でようやく判別つく5〜10nm直径の棒状結晶が錯綜したものである。この試料をXRD(X線回折計)で分析したが、酸化マンガン類由来の回折線は検出できなかった。表面が酸化マンガンで覆われていることはXPS分析で明らかである。XRDで検出できなかった理由は結晶が検出限界を超えた薄い層であったからとみている。要するに、マグネシウム合金では化成処理したことが微細エッチング操作を兼ねていたことになる。   Even at this time, we are often hit by unpredictable chemical phenomena. That is, this is an example in which, when a metal alloy after chemical etching is reacted with a oxidant or chemical conversion treatment or chemical conversion treatment for the purpose of surface hardening treatment or surface stabilization treatment, the resulting surface is made ultra fine irregularities by chance. The surface layer that appears to be manganese oxide formed when a magnesium alloy is subjected to chemical conversion treatment with a potassium permanganate aqueous solution is a complex of rod-like crystals having a diameter of 5 to 10 nm that can be finally identified with a 100,000-fold electron microscope. This sample was analyzed by XRD (X-ray diffractometer), but diffraction lines derived from manganese oxides could not be detected. It is clear by XPS analysis that the surface is covered with manganese oxide. The reason why XRD could not be detected is that the crystal was a thin layer exceeding the detection limit. In short, the chemical conversion treatment for the magnesium alloy also serves as a fine etching operation.

銅合金でも同様で、塩基性下の酸化で表面を酸化第2銅に変化させる硬化処置を取ったところ、純銅系銅合金では、その表面は円形や円が歪んだ形の穴開口部が一面に生じ特有の微細凹凸面になる。純銅系でない銅合金では凹部型でなく10〜150nm径の粒径物や不定多角形状物が連なり、一部融け合って積み重なった形の超微細凹凸形状になったりする。この場合でも表面の殆どは酸化第2銅で覆われており、硬化と微細凹凸化が同時に生じる。   The same is true for copper alloys, and when a hardening treatment is performed to change the surface to cupric oxide by oxidation under basic conditions, the surface of a pure copper-based copper alloy has a circular or circularly distorted hole opening. It becomes a peculiar fine uneven surface. A copper alloy that is not a pure copper type is not a concave shape, but is continuous with a particle having a diameter of 10 to 150 nm or an indefinite polygonal shape. Even in this case, most of the surface is covered with cupric oxide, and hardening and fine unevenness occur simultaneously.

一般鋼材については未だ詳細が不明である。化学エッチング工程だけで微細凹凸も一挙になされることが多く、もともと表層(自然酸化層)が硬いこともあってそのままNAT用として使用できないことはなかった。問題は自然酸化層の耐食性が十分でないために、接着工程までに腐食が始まってしまったり、接着後の環境が厳しいと直ぐ接着力が低下したりすることであった。これらは化成処理によって防ぐことができる可能性はあるが、前例がないので接着物を温度衝撃試験にかける試験、一般環境下に放置する試験、塗装した物を塩水噴霧装置にかける試験、その他を行って接着の耐久性を調べる必要がある。少なくとも4週間という短期間で、化成処理をせずにフェノール樹脂系接着剤で接着した鋼材(実際にはSPCC:冷間圧延鋼材)は接合力が急減した。しかし前記化成処理をした一般鋼材(SPCC)はこの条件では当初の接着力から低下しなかった。   Details of general steel materials are still unknown. In many cases, fine unevenness is often made only by the chemical etching process, and the surface layer (natural oxide layer) was originally hard, so that it could not be used as it is for NAT. The problem is that the corrosion resistance of the natural oxide layer is not sufficient, so that corrosion starts before the bonding process, or the adhesive force decreases immediately when the environment after bonding is severe. Although there is a possibility that these can be prevented by chemical conversion treatment, since there is no precedent, there are tests that apply adhesives to a temperature shock test, tests that leave them in a general environment, tests that apply a coated product to a salt spray device, etc. It is necessary to go and check the durability of the bond. In a short period of at least 4 weeks, the bonding strength of a steel material (actually SPCC: cold rolled steel material) bonded with a phenol resin adhesive without chemical conversion treatment decreased sharply. However, the general steel (SPCC) subjected to the chemical conversion treatment did not deteriorate from the initial adhesive force under these conditions.

また、本発明者らの経験では、化成処理を行って耐食性向上を兼ねた表面処理や超微細凹凸作成処理をした場合、一般に化成処理層の膜厚が厚いと、接着力が低下することの多いことがわかっている。前記のマグネシウム合金に付着した酸化マンガン薄層のようにXRDで回折線が検出されないような薄層である方が強い接着力が観察される。化成処理層が厚くなったもの同士をエポキシ樹脂系接着剤で接着し、破壊試験した場合、破壊面はほとんどが金属相と化成皮膜の間となる。   In addition, in the experience of the present inventors, when the surface treatment and the ultra fine unevenness creation treatment that also improved the corrosion resistance by performing a chemical conversion treatment, generally, if the film thickness of the chemical conversion treatment layer is thick, the adhesive strength may decrease. I know many. A strong adhesive force is observed when the thin layer is such that a diffraction line is not detected by XRD, such as the thin layer of manganese oxide adhered to the magnesium alloy. When the chemical conversion treatment layers are thickened with an epoxy resin adhesive and subjected to a destructive test, the fracture surface is mostly between the metal phase and the chemical conversion film.

本発明者等の経験では、化成処理で作製した厚い皮膜(化成皮膜)とエポキシ接着剤硬化物との接合力は、その化成皮膜と内部金属合金相との接合力より常に強かった。すなわち、一般鋼材でも化成処理時間を更に伸ばして化成処理層を厚くすれば接着物の永続性は向上するはずである。しかしながら化成皮膜を厚くすれば接着力自体が低下する。どの程度でバランスを取るかは、おそらく本発明を使用した後の商業化研究開発に委ねられる。   In the experience of the present inventors, the bonding force between the thick film (chemical conversion film) produced by chemical conversion treatment and the cured epoxy adhesive was always stronger than the bonding force between the chemical conversion film and the internal metal alloy phase. That is, even with a general steel material, if the chemical conversion treatment time is further extended to thicken the chemical conversion treatment layer, the durability of the bonded material should be improved. However, if the chemical conversion film is thickened, the adhesive strength itself is lowered. The degree of balance is probably left to commercial research and development after using the present invention.

(4)エポキシ系接着剤/樹脂分
エポキシ系接着剤について述べる。硬化性樹脂分はエポキシ樹脂と硬化剤からなる。双方とも容易に市中から入手でき、エポキシ樹脂について言えば、ビスフェノール型エポキシ樹脂、多官能ポリフェノール型エポキシ樹脂、脂環型エポキシ樹脂、等が市販されている。また、エポキシ基が多官能の化合物、例えば複数の水酸基やアミノ基を有する多官能化合物やオリゴマー等と結合した多官能エポキシ樹脂も多種が市販されている。通常の市販接着剤に使われる全エポキシ樹脂の内の過半を占めるのは液状で粘度の低いビスフェノール型エポキシ樹脂単量体型である。本発明でも接着剤としての低粘度を確保すべくビスフェノール型エポキシ樹脂単量体を過半配合した。
(4) Epoxy adhesive / resin component The epoxy adhesive will be described. The curable resin component consists of an epoxy resin and a curing agent. Both can be easily obtained from the market. As for epoxy resins, bisphenol-type epoxy resins, polyfunctional polyphenol-type epoxy resins, alicyclic epoxy resins, and the like are commercially available. In addition, various types of polyfunctional epoxy resins in which an epoxy group is combined with a polyfunctional compound, for example, a polyfunctional compound or oligomer having a plurality of hydroxyl groups or amino groups, are commercially available. The majority of all epoxy resins used in ordinary commercial adhesives are liquid and low viscosity bisphenol type epoxy resin monomer types. In the present invention, a bisphenol type epoxy resin monomer is mixed in a majority to ensure low viscosity as an adhesive.

一方、硬化する能力はアミン系化合物、フェノール樹脂、酸無水物等にあるが、本発明ではアミン系化合物を使用する。その理由は、CFRPプリプレグに使用されているのが通常アミン系硬化剤系だからである。本発明の目的は、金属合金同士を強く接着することだけでなく、金属合金とCFRPとをコキュア法で強く接着することにもある。コボンド法と異なってコキュア法では、金属合金との接着とCFRP部材としての成形硬化を同時になし遂げられるので、工業的なCFRP部材の量産方法としてコボンド法よりも合理的と考えられるからである。コキュアでは、CFRPプリプレグのマトリックス樹脂(やはり1種の1液性エポキシ樹脂接着材である)と同種の硬化剤を使用することが必要であるから、アミン系の接着剤の使用を条件とした。   On the other hand, the ability to cure is in amine compounds, phenol resins, acid anhydrides, etc., but amine compounds are used in the present invention. The reason is that the amine curing agent system is usually used for CFRP prepregs. The object of the present invention is not only to strongly bond metal alloys to each other but also to strongly bond metal alloys and CFRP by a co-curing method. This is because, unlike the co-bonding method, the co-curing method can simultaneously achieve adhesion with a metal alloy and molding and hardening as a CFRP member, so that it is considered more rational than the co-bonding method as an industrial CFRP member mass production method. Since it is necessary for cocure to use the same kind of curing agent as the matrix resin of CFRP prepreg (which is also a kind of one-component epoxy resin adhesive), the use of an amine-based adhesive was a condition.

すなわち、本発明で使用する硬化剤はアミン系化合物であり、具体的にはジシアンジアミド、イミダゾール系化合物、芳香族ジアミン系化合物である。脂肪族系アミン化合物は好ましくない。脂肪族系アミン化合物を硬化剤として用いると常温域でゲル化が始まることが多いからである。ただし、常温でゲル化がすぐ始まらず、硬化剤混合から数時間以内でNAT処理金属合金に塗布し染み込まし処理が有効なものであれば使用できる。そのような物として脂環族アミン化合物の一部が使用できる。すなわち、ポットライフの長い2液性エポキシ樹脂組成物用の硬化剤として市販され、硬化に100℃程度の加熱が有効とされる組成物である。このような硬化剤は、脂環族アミンを主成分とする混合アミンとカタログ表示されて市販されており、使用できるのであるが、塗布と染込まし作業は時間制限付きで行う必要がある。   That is, the curing agent used in the present invention is an amine compound, specifically, dicyandiamide, an imidazole compound, or an aromatic diamine compound. Aliphatic amine compounds are not preferred. This is because when an aliphatic amine compound is used as a curing agent, gelation often starts in a normal temperature range. However, any gel can be used as long as gelation does not start immediately at room temperature, and it is applied to and soaked into a NAT-treated metal alloy within several hours after mixing of the curing agent. A part of the alicyclic amine compound can be used as such a product. That is, it is a composition marketed as a curing agent for a two-component epoxy resin composition having a long pot life, and heating at about 100 ° C. is effective for curing. Such a curing agent is cataloged and marketed as a mixed amine containing alicyclic amine as a main component, and can be used. However, it is necessary to apply and soak the work with a time limit.

(5)エポキシ樹脂系接着剤/無機充填材
充填材について述べる。接着剤は無機充填材を含むのが普通であり、この無機充填材は重要な役目を果たす。すなわち、現在の破壊理論に従えば、物体が破壊に至る前段には応力集中域の中の何処か微少な部分や応力集中域近辺の強度の弱い部分で微小な局所破壊が先ず起こり、この局所破壊が隣の微小部分の応力集中を高めて局所破壊の連鎖に進むと考える。この微小破壊の連鎖は拡大し、破壊部の大きさは微小でなくなり大きなヒビとなり遂にはそれが完全破壊、接着系では被着材同士の剥がれに至るとのメカニズム論である。
(5) Epoxy resin adhesive / inorganic filler The filler will be described. Adhesives usually contain an inorganic filler, which plays an important role. In other words, according to the current fracture theory, a small local fracture occurs first in a small part of the stress concentration area or in a weak intensity area near the stress concentration area before the object breaks. It is thought that the fracture increases the stress concentration of the adjacent minute part and proceeds to the chain of local fracture. This is a mechanism theory that the chain of microfracture expands, the size of the fractured portion is not microscopic and becomes a large crack, and finally it is completely fractured, and in the adhesive system, the adherends are peeled off.

実際、接着剤硬化物の強度は全体として一様なわけはなく、ミクロ的には必ず強弱がある。従って、もし破壊が連鎖し易ければ微小破壊はほとんど完全破壊に至り、完全破壊はミクロ的に強度の弱い部分での強度値だけで決まることになる。それゆえ、最も弱い微小部分の局所破壊が起こってもこれが連鎖せぬようにすれば次に弱い微小部分にて局所破壊が起こるまで事件は起こらず結果的に接着力は向上する。局所破壊が生じてもそれを局所で止める上で数μm〜数十μm径の無機充填材の存在が非常に有効というのが現行の破壊理論である。   Actually, the strength of the cured adhesive is not uniform as a whole, and it is always strong and weak on a micro level. Therefore, if the fractures are easily chained, the microfracture almost reaches a complete fracture, and the complete fracture is determined only by the strength value at a microscopically weak part. Therefore, even if the local breakage of the weakest minute part occurs, if this is not linked, the incident does not occur until the local breakage occurs in the next weakest minute part, and the adhesive force is improved as a result. The current fracture theory is that the presence of an inorganic filler having a diameter of several μm to several tens of μm is very effective in stopping local fracture even if it occurs locally.

それゆえに、構造用接着剤には無機充填材が必ず含まれる。市販エポキシ系接着剤には粒径数μm〜数十μmのシリカ、クレー(粘土、カオリン)、タルク、アルミナ、等の粉体が通常数%以上含まれている。添加する無機充填材の詳細は接着剤性能を左右するだけに接着剤メーカーの重要企業秘密であり本発明者らの知るところではない。それゆえ、市中から微粉が購入できるクレー、タルクに限り本発明者らは実験に使用した。   Therefore, the structural adhesive always includes an inorganic filler. Commercially available epoxy adhesives usually contain several percent or more of powders of silica, clay (clay, kaolin), talc, alumina, etc. having a particle size of several μm to several tens of μm. The details of the inorganic filler to be added are important company secrets of the adhesive manufacturer only because they affect the adhesive performance, and are not known to the present inventors. Therefore, the present inventors used in the experiment only clay and talc for which fine powder can be purchased from the city.

本発明者らは、無機充填材に関する詳細なノウハウのないことがハンデキャップであったが、その分は最新型湿式粉砕機を充填材分散機として使うことで相殺できると考え実験を進めた。すなわち、無機充填材の選択にはその表面性(すなわち、エポキシ樹脂との親和性)が重要であると見られ、その実践上の知識が本発明者らに欠落していたが、分散を最新型湿式粉砕機で行うことである程度のメカノケミカル効果が発揮されてエポキシ樹脂と充填材の間の親和性が向上する可能性に期待した。   The present inventors had a handicap that there was no detailed know-how regarding the inorganic filler, but the experiment was carried out on the assumption that the amount could be offset by using the latest wet pulverizer as the filler disperser. In other words, the surface properties (ie, affinity with epoxy resin) seem to be important for the selection of the inorganic filler, and the inventors have lacked practical knowledge, but the dispersion has been updated. We expected the possibility that the affinity between the epoxy resin and the filler could be improved by using a mold wet pulverizer to achieve a certain mechanochemical effect.

(6)エポキシ樹脂系接着剤/超微細無機充填材
本発明で最も重要なことだが、NATで作製した界面周辺の状況を想定し、そこで起こり得る破壊現象を推論してNATに関係する破壊理論の仮説を考えた。すなわちNAT処理した金属合金表面に存在する凹凸が1〜10μmの最小で1μm周期の凹凸であるから、粒径数μm以上の大きさの既存の無機充填材はこの凹部にほとんど入れ込めず関係ない。それゆえ、NATでの破壊理論のみが関与する充填材は、1μmの凹部に進入し得る微細充填材であり、具体的には粒径0.1μm(100nm)以下のものである。これは本発明で使用する接着剤の最大の特徴で、それゆえに必要条件であるが実際の効果も大きい。常温下では全く効果がないが100℃下では超微細無機充填材を含まない接着剤に比較して10〜30MPaも接着力が向上し得る。
(6) Epoxy resin adhesive / ultra fine inorganic filler The most important thing in the present invention is that the situation around the interface made with NAT is assumed, and the possible failure phenomenon is inferred there, and the failure theory related to NAT. I thought of the hypothesis. That is, since the unevenness present on the surface of the NAT-treated metal alloy is a minimum of 1 to 10 μm and an unevenness of 1 μm period, the existing inorganic filler having a particle size of several μm or more can hardly be inserted into the recess. . Therefore, the filler that involves only the fracture theory in NAT is a fine filler that can enter a 1 μm recess, and specifically has a particle size of 0.1 μm (100 nm) or less. This is the greatest feature of the adhesive used in the present invention, and is therefore a necessary condition but also has a large actual effect. Although there is no effect at room temperature, the adhesive force can be improved by 10 to 30 MPa at 100 ° C. as compared with an adhesive not containing an ultrafine inorganic filler.

本発明者らの仮説は、高温下に接着物が置かれ環境温度が接着物硬化物のガラス転移点に近づいて軟化し接着力が急減する場面で超微細無機充填材が役立つとするものである。すなわち、NATによるエポキシ接着剤硬化物が高温度下の強い引き剥がし応力に見舞われたとき、最初に変異が生じる箇所を2箇所と推定した。図16はNATで接合した金属合金部と接着剤硬化物を模式的に示しており、40は金属合金片の金属合金相、41はセラミック質相、42は接着剤硬化物相を示すが、変異が生じる場所候補の一つは図16にあるミクロンオーダー凹部の入口付近である。ここで壊れるのであれば本発明者らがすでに開示したCNTを添加することで強化でき(特許文献17)る。ただし、この接着力向上効果があるのは常温付近で最も大きく高温下では明確な添加効果が認められなかった。常温下で効果があるCNT添加量は、実験値からみて0.2質量%以下であり、特に0.005〜0.1質量%で明確であった。   Our hypothesis is that ultrafine inorganic fillers are useful in situations where the adhesive is placed under high temperature and the environmental temperature approaches the glass transition point of the cured adhesive and softens and the adhesive strength decreases rapidly. is there. That is, when the cured epoxy adhesive by NAT was hit by a strong peeling stress at high temperature, it was presumed that there were two locations where the mutation first occurred. FIG. 16 schematically shows a metal alloy part bonded with NAT and a cured adhesive product. 40 represents a metal alloy phase of a metal alloy piece, 41 represents a ceramic phase, and 42 represents a cured adhesive product phase. One of the candidate locations where the mutation occurs is near the entrance of the micron-order concave portion shown in FIG. If it breaks here, it can be strengthened by adding the CNT already disclosed by the present inventors (Patent Document 17). However, the effect of improving the adhesive strength was greatest near room temperature, and no clear additive effect was observed at high temperatures. The amount of CNT added that is effective at room temperature is 0.2% by mass or less, especially from 0.005 to 0.1% by mass, as seen from the experimental value.

もう一つの破壊候補箇所はミクロンオーダーの凹部内であって、凹部内の接着剤硬化物が高温で柔らかくなりスパイクのグリップが緩んで抜けかけること、すなわち、スパイクに接する部分のどこかで形が崩れるなど変形して滑りが起こることとした。この微小界面での滑りが界面に沿って連鎖的に進めばスパイク効果はなくなりこのミクロンオーダー凹部が有したアンカー効果はゼロになる。そうなるとその凹部周辺にある凹部群への応力集中度が高まり、次はその周辺凹部で同じことが生じる。結局はミクロンオーダー凹部から接着剤硬化物が抜けて浮くことになり破断に繋がる。やはりスパイクが滑るとまずいはずである。   Another candidate for destruction is in a micron-order recess, and the cured adhesive in the recess becomes soft at high temperatures and the spike grip loosens, that is, the shape is somewhere in contact with the spike. It was decided that slip would occur due to deformation such as collapse. If the slip at this microinterface advances in a chain along the interface, the spike effect disappears and the anchor effect possessed by this micron-order recess becomes zero. As a result, the degree of stress concentration on the concave group around the concave portion increases, and the same thing occurs next in the peripheral concave portion. Eventually, the cured adhesive will come out of the micron-order recesses and float, leading to breakage. It should be bad if the spike slips.

スパイクに接している接着剤硬化物の硬度強度を維持したくても高温下では樹脂硬度が下がるので充填材に頼るしかない。しかしスパイク部の凹凸周期は数十nmレベルなので数nm径の超微細な充填材が要ることになる。残念ながら数nm径の超微細粉末は世の中に見当たらないし例え存在しても接着剤内に均一分散させるのは至難だろう。そこでスパイク周辺で滑りが連鎖して進み、スパイクの効きがなくなってミクロンオーダー凹部の中の接着剤硬化物凸部がすでに数十nm程度浮いた状態になった場合を仮定する。この様子の模式図を図17に示す。   Even if it is desired to maintain the hardness and strength of the adhesive cured product in contact with the spike, the resin hardness decreases at high temperatures, and so there is no choice but to rely on fillers. However, since the concave / convex period of the spike portion is on the order of several tens of nanometers, an ultrafine filler with a diameter of several nanometers is required. Unfortunately, ultrafine powder with a diameter of several nanometers is not found in the world, and even if it exists, it will be difficult to uniformly disperse it in the adhesive. Therefore, it is assumed that the slip progresses in the vicinity of the spike, the effect of the spike disappears, and the adhesive cured product convex portion in the micron order concave portion has already floated about several tens of nm. A schematic diagram of this situation is shown in FIG.

この場合、その周囲のミクロンオーダー凹部にその連鎖が伝わらないようにするには、浮いた距離が数十nmレベル以上にならずにそこまでのガタで止まることである。止まる条件としては、その凹部形状がアンダー形状であって内部径よりも開口部が狭まっていること、金属合金側凹部に収まっている接着剤硬化物が全体として崩れず壊れないで頑張ってくれること、の双方である。本発明者らの一人である安藤はこの仮説に基づきNAT用接着剤に超微細無機充填材の有用性を予想した。   In this case, in order to prevent the chain from being transmitted to the surrounding micron-order recesses, the floated distance does not become more than several tens of nanometers and stops at the backlash. The conditions to stop are that the shape of the recess is an under shape and the opening is narrower than the internal diameter, and that the hardened adhesive contained in the recess on the metal alloy side does not collapse as a whole and does its best without breaking , Both. Based on this hypothesis, Ando, one of the present inventors, predicted the usefulness of ultrafine inorganic fillers for NAT adhesives.

すなわち、NAT処理した金属合金側の凹部は化学エッチング手法で得られているので素直な半球形状やV字溝状でないもの、すなわち内部より開口部が狭い蛸壺状の凹部や凹部開口方向が垂直方向ではなく斜め方向となったようないわゆるアンダー形状の凹部がそこそこの確率で存在するとする。そのようなアンダー形状の凹部内に粒径数十〜数百nmの超微細充填材が分散している接着剤が侵入し固化した場合、これら凹部の中に存在する接着剤硬化物は簡単には粉々に壊れない。   In other words, since the concave portion on the NAT-treated metal alloy side is obtained by a chemical etching method, it is not a straight hemispherical shape or V-shaped groove shape, that is, a bowl-shaped concave portion whose opening is narrower than the inside or a concave opening direction is vertical. It is assumed that there is a so-called under-shaped concave portion that has an oblique direction, not a direction, with a reasonable probability. When an adhesive in which an ultrafine filler having a particle size of several tens to several hundreds of nanometers penetrates into such under-shaped recesses and solidifies, the cured adhesive present in these recesses can be easily obtained. Will not break into pieces.

例えば強烈な垂直方向の剥がし力がかかった場合、高温下なので接着剤中の硬化ポリマーもやや軟化しておりスパイクの効き目が落ちているので応力集中箇所付近で最も強い力がかかったミクロンオーダー凹部にては、その内壁面スパイクに接しているポリマー部が滑ってスパイクの効きがなくなると考える。そのような凹部が上記したアンダー形状であればその凹部内の接着剤硬化物は固定が外れ数十nmだけ浮く。すなわち、凹部がアンダー構造をしていれば、凹部内の接着剤硬化物の中心部が大きく破壊されなければ浮くだけで抜けずに止まる。   For example, when a strong vertical peeling force is applied, the cured polymer in the adhesive is slightly softened due to high temperature, and the effect of the spike is reduced, so the micron-order concave portion where the strongest force is applied near the stress concentration point In, it is considered that the polymer part in contact with the inner wall spike slides and the effect of the spike is lost. If such a concave portion has the above-described under shape, the cured adhesive in the concave portion is unfixed and floats by several tens of nm. That is, if the concave portion has an under structure, the central portion of the adhesive cured product in the concave portion will not float and will not come off unless the central portion of the cured adhesive is greatly broken.

図17は破断寸前の接合面をイメージし模式的に示したものであり、50は金属合金片の金属合金相、51はセラミック質相、52は接着剤硬化物相、53は剥がれて生じた空間を示すが、並んだ5個のミクロンオーダー凹部の内の中央部3個の凹部だけがアンカーの効かない状況となり数十nm浮いた形となっている。しかし、接着剤硬化物全体は高温で軟化しているのでやや弾性があり、図中の端部の凹部2個は中央3個に引きずられて浮き上がることはない。すなわち、スパイクの効き目がなくなって3個の凹部で破壊現象が生じても、このレベルの破壊で一旦止まってくれれば連鎖破壊へは進み難いと考えるのが本発明者らのNATに基づく高温破壊時の仮説である。   FIG. 17 schematically shows the joint surface just before breakage, where 50 is a metal alloy phase of a metal alloy piece, 51 is a ceramic phase, 52 is a cured adhesive phase, and 53 is peeled off. Although the space is shown, only the three concave portions at the center of the five micron-order concave portions arranged side by side are in a state where the anchor does not work, and are in the form of floating several tens of nm. However, since the entire cured adhesive is softened at a high temperature, it is somewhat elastic and the two recesses at the end in the figure are not lifted by being dragged to the center three. That is, even if the effect of the spike disappears and the destruction phenomenon occurs in the three recesses, it is considered that it is difficult to proceed to the chain destruction once it stops at this level of destruction. It is a hypothesis of time.

別の言い方をすれば、無数あるミクロンオーダーの凹部群の内の最も弱い箇所でアンカー効果が失われても、そこは数十nm程度のガタが生じるだけで収められ、次に弱い箇所が局所破壊に至るまで接着が保てるという考え方でもある。この仮説に従って追加すべき充填材を100nm以下の超微細な無機充填材とした。これらがミクロンオーダー凹部内に入ってくれればその部分での硬度が保たれてスパイク機能が多少低下しても簡単には凹部から抜けることはないとの考えに依る。100nm以下の粒径を有する超微細無機充填材として容易に入手可能な物にはヒュームドシリカがある。   In other words, even if the anchor effect is lost at the weakest part of the infinite number of micron-order recesses, the anchoring effect is lost by generating a play of about several tens of nanometers. It is also an idea that adhesion can be maintained until destruction. The filler to be added according to this hypothesis was an ultrafine inorganic filler of 100 nm or less. It is based on the idea that if they enter the micron-order recess, the hardness at that portion is maintained, and even if the spike function is somewhat lowered, it will not easily come out of the recess. Fumed silica is easily available as an ultrafine inorganic filler having a particle size of 100 nm or less.

これらの超微細無機粉末は本発明に不可欠な充填材となる。ヒュームドシリカには2種あり、一つはシリカ(酸化珪素)砂を原料にして還元し金属珪素を得る還元工程の排気ガスから回収された超微細な溶融シリカであって欧州の企業が供給しており、もう一つは、四塩化珪素を気化させ燃焼して超微細溶融シリカとしたもので、「アエロジル」商標で市販されているものである。アエロジルには表面処理されたものも市販されており、本発明者らは疎水性処理をしたものを使用した。燃焼処理で得られたヒュームドシリカは親水性が強いというわけではないが、疎水性処理したものの方がエポキシ樹脂との親和性が好ましいと考えた。   These ultrafine inorganic powders are essential fillers for the present invention. There are two types of fumed silica. One is ultra-fine fused silica recovered from the exhaust gas in the reduction process that uses silica (silicon oxide) sand as a raw material to obtain metallic silicon. The other is vaporized and combusted silicon tetrachloride to form ultrafine fused silica, which is commercially available under the trademark “Aerosil”. Aerosil that has been surface-treated is also commercially available, and the present inventors have used a hydrophobic treatment. The fumed silica obtained by the combustion treatment is not necessarily highly hydrophilic, but the hydrophobic treatment is considered to have better affinity with the epoxy resin.

通常、ミクロンオーダーより小さい粒径の粉末は凝集しており、アエロジルも実態は凝集品である。凝集力は粉体が超微粉になるほど強く、接着剤に投入して自動乳鉢で混練したくらいでは凝集は解けず本発明で想定する分散状態にならない。それゆえ、エポキシ樹脂への添加後に分散機にかける必要がある。これについては後述する。実験結果から、超微細無機充填材の充填率は0.3質量%以上が好ましく、特に0.3〜3質量%が好ましい。3質量%を超えて添加した場合、粘度が高くなって使用し難いだけでなく、使用した場合には、明確な理由はわからぬが接着力は横ばいか低下した。   Normally, powders with particle sizes smaller than micron order are agglomerated, and Aerosil is actually an agglomerated product. The agglomeration force becomes stronger as the powder becomes ultrafine powder, and the agglomeration cannot be solved and the dispersed state assumed in the present invention cannot be achieved as long as it is put into an adhesive and kneaded in an automatic mortar. Therefore, it is necessary to apply to a disperser after addition to the epoxy resin. This will be described later. From the experimental results, the filling rate of the ultrafine inorganic filler is preferably 0.3% by mass or more, particularly preferably 0.3 to 3% by mass. When added in excess of 3% by mass, not only was the viscosity increased and it was difficult to use, but when used, the adhesive strength remained unchanged or decreased, although no clear reason was known.

(7)エポキシ樹脂系接着剤/エラストマー型充填材
本発明では充填材としてエラストマー成分を加えるのが好ましい。各種加硫ゴム、各種加硫ゴムの表面を変性した粉末ゴム、各種生ゴム、各種生ゴムを変性した変性ゴム、塩化ビニル樹脂(以下「PVC」)、酢酸ビニル樹脂(以下「PVA」)、ポリビニルホルマール樹脂(以下「PVF」)、エチレン酢酸ビニル樹脂(以下「EVA」)、ポリオレフィン樹脂類、ポリエチレンテレフタレート樹脂(以下「PET」)、各種ポリアミド樹脂(以下「PA類」)、ポリエーテルスルホン樹脂(以下「PES」)、ポリウレタン樹脂、熱可塑性ポリエステルエラストマー(以下「TPEE」)、熱可塑性ポリウレタンエラストマー(以下「TPU」)、熱可塑性ポリアミドエラストマー(以下「TPA」)、熱可塑性ポリオレフィン系エラストマー(以下「TPO」)等が本発明で言うエラストマー成分である。
(7) Epoxy resin adhesive / elastomer type filler In the present invention, it is preferable to add an elastomer component as a filler. Various vulcanized rubbers, powder rubbers modified on the surface of various vulcanized rubbers, various raw rubbers, modified rubbers modified from various raw rubbers, vinyl chloride resin (hereinafter “PVC”), vinyl acetate resin (hereinafter “PVA”), polyvinyl formal Resin (hereinafter “PVF”), ethylene vinyl acetate resin (hereinafter “EVA”), polyolefin resin, polyethylene terephthalate resin (hereinafter “PET”), various polyamide resins (hereinafter “PA”), polyethersulfone resin (hereinafter referred to as “PET”) "PES"), polyurethane resin, thermoplastic polyester elastomer (hereinafter "TPEE"), thermoplastic polyurethane elastomer (hereinafter "TPU"), thermoplastic polyamide elastomer (hereinafter "TPA"), thermoplastic polyolefin elastomer (hereinafter "TPO"). )) Etc. are elastomer components as referred to in the present invention. .

これらの中には通常はエラストマーとされないものが含まれているが、硬化したエポキシ樹脂は硬質でありこれからすれば熱可塑性樹脂は軟質である。これらは硬化物の靭性をその軟質ゆえに高めてくれる。好ましいのは、これらを粒径10〜20μmの微粉として配合すること、さらに、これら表面を親エポキシ樹脂型に改良したものである。高温下にてエポキシ樹脂と反応するのはアミノ基や水酸基であるからエラストマー端部等にこれらを持たせるのも有効な変性処理である。また、本発明は常温下だけでなくやや高温下でも強い接着力を示す接着剤を求めているので柔らか過ぎる物はあまり好ましくない。それらを勘案して入手が容易なものを列記すると、水酸基ができ易いPVF、端部に水酸基のあるウレタン樹脂、アミノ基が無数にあるPA類、さらには意図的に水酸基を付けたPES等がある。   Some of these are not usually elastomers, but the cured epoxy resin is hard and the thermoplastic resin is soft. These increase the toughness of the cured product due to its softness. Preference is given to blending these as fine powder having a particle size of 10 to 20 μm and further improving the surface to a parent epoxy resin mold. Since it is an amino group or a hydroxyl group that reacts with the epoxy resin at a high temperature, it is an effective modification treatment to have these at the end of the elastomer. Moreover, since the present invention seeks an adhesive that exhibits a strong adhesive force not only at room temperature but also at a slightly high temperature, an excessively soft material is not preferred. Taking these into account, those that are readily available include PVF that is prone to hydroxyl groups, urethane resins with hydroxyl groups at the ends, PAs with countless amino groups, and PES with intentionally hydroxyl groups. is there.

エラストマー型充填材は、接着剤の3〜10%の充填率とするのが好ましい。具体的にはエラストマー成分を粉砕して求める粒度品を分級しこれを使用する方法がまず考えられる。実際には、硬度の低い前記した物質類を粉砕機で10μmレベルの微粉砕物とし収率良く得るのは難しく、液体窒素等で極低温に冷却して硬度を上げ、その温度下で機械粉砕する方法を取るのが普通だが、粒径を数十μmまでとして収率を高く得るのはそれほど容易でない。ただし、粒径の大きなものを別用途に使う道があるなど幸運があることもある。すなわち、PESを粉砕すると耐熱性ある弾性塗料の充填材に使用でき、この用途が大きいので併産される10μmオーダーの微粉砕物も市販品として供給されている。本発明での実験例では市販のPES粉体を購入して使用した。   It is preferable that the elastomer type filler has a filling rate of 3 to 10% of the adhesive. Specifically, a method of classifying a particle size product obtained by pulverizing an elastomer component and using this is first considered. Actually, it is difficult to obtain the above-mentioned substances having low hardness as a finely pulverized product of 10 μm level with a pulverizer, and it is difficult to obtain a good yield. However, it is not so easy to obtain a high yield by reducing the particle size to several tens of μm. However, it may be fortunate that there is a way to use a larger particle size for another purpose. That is, when PES is pulverized, it can be used as a filler for heat-resistant elastic paints, and since this application is great, finely pulverized products of the order of 10 μm that are co-produced are also supplied as commercial products. In the experimental example of the present invention, commercially available PES powder was purchased and used.

その他に、乳化重合で得られる合成ゴムや熱可塑性樹脂については、重合工程を終えて得られるラテックス状物を互いに付着せぬように工夫しつつ水分を切り、乾燥させて粉体を得る方法がある。接着剤の充填材用として製造されているものはほとんどないが特殊機能型化成品として印刷インキや特殊塗料に用いる特殊コート材用、液晶ディスプレー等の電子機器部品用、医療用、等種々の用途に使われている。これらももちろん使用できる。   In addition, for synthetic rubbers and thermoplastic resins obtained by emulsion polymerization, there is a method to obtain powder by cutting off moisture and dehydrating latex materials obtained after finishing the polymerization process so that they do not adhere to each other. is there. Few products are manufactured as adhesive fillers, but as special functional chemicals, special coating materials used in printing inks and special paints, electronic device parts such as liquid crystal displays, and medical uses. It is used for. Of course, these can also be used.

どのようなエラストマー性の粉体であっても添加が有効か否かは理論的に考察して選択すべきではなく実験して採用すべきか否かを決めるべきである。この添加物はNAT処理した金属片同士の接着物を破断する接着力観察では明確な結果は通常得られない。もちろん、エラストマー粉体を配合した接着剤の使用で金属合金片同士の接着力が低下するのでは好ましくないが、接着力が低下しなければ第一関門はパスとする。この引っ張り破断試験は出来れば常温下だけでなく100℃下や150℃下でも行うのが好ましい。そして次いで金属合金片とCFRPの接着物を共硬化で作成し、その接着力を測定する。この実験で添加効果があれば使用できると判断して組成比の詳細を検討すべきである。   Whether or not the addition of any elastomeric powder is effective should not be selected theoretically, but should be determined through experimentation. With this additive, a clear result is usually not obtained by observation of the adhesive strength that breaks the adhesive between the NAT-treated metal pieces. Of course, it is not preferable that the adhesive strength between metal alloy pieces is reduced by using an adhesive containing elastomer powder, but if the adhesive strength does not decrease, the first barrier is a pass. This tensile fracture test is preferably performed not only at room temperature but also at 100 ° C. or 150 ° C. Then, an adhesive of the metal alloy piece and CFRP is prepared by co-curing, and the adhesive force is measured. In this experiment, if there is an additive effect, it should be judged that it can be used, and the details of the composition ratio should be examined.

(8)エポキシ樹脂系接着剤/充填材の分散
本発明に使用する接着剤の基本組成は前記したように、エポキシ樹脂、硬化剤、平均粒径10μmレベルの無機充填材、及び粒径100nm以下の超微細無機充填材、平均粒径5μm〜20μmの熱可塑性樹脂粉体であるが、特に超微細無機充填材は従来型の混合混練法である自動乳鉢やニーダーで混合混練したのでは分散せず混ざったことにならない。
(8) Dispersion of epoxy resin adhesive / filler As described above, the basic composition of the adhesive used in the present invention is an epoxy resin, a curing agent, an inorganic filler having an average particle size of 10 μm, and a particle size of 100 nm or less. Ultrafine inorganic filler, thermoplastic resin powder having an average particle size of 5 μm to 20 μm. Especially, ultrafine inorganic filler is dispersed when mixed and kneaded by an automatic mortar or kneader, which is a conventional mixing and kneading method. It ’s not mixed.

粒径100nm以下の超微細無機充填材及びCNTは凝集しているので、破壊分散させることが必要であり、そのために湿式粉砕機を使うのが好ましい。特にサンドグラインドミル等の最新型の湿式粉砕機の使用が好ましい。さらには、超微細無機充填材だけでなく、通常の無機充填材、熱可塑性樹脂粉体もサンドグラインドミルに同時に投入することで良い分散が得られるはずで、全ての混合分散に湿式粉砕機を採用することは好ましい。ただ湿式粉砕機の運転では発熱が伴う。硬化剤も含めてサンドグラインドミル等を使用し混合分散させようとする場合、粉砕室の温度管理を厳密に行わないと事故に至る。すなわち、湿式粉砕機は液状物の粘度がある程度低くならないと運転ができず、昇温して粘度を下げ運転開始したとしても粉砕室での発熱を上手く制御しないとゲル化による発熱も加わって一挙に暴走し粉砕室内を固化し粉砕機を使用不能におとしめる。それゆえ、硬化剤を加えずに湿式粉砕機を使用して充填材を混ぜ切り、その後に硬化剤を加えニーダー等を使用して混練するのが好ましい。   Since the ultrafine inorganic filler having a particle size of 100 nm or less and the CNT are aggregated, it is necessary to break and disperse, and therefore, a wet pulverizer is preferably used. In particular, the use of the latest wet pulverizer such as a sand grind mill is preferable. Furthermore, not only ultrafine inorganic fillers, but also normal inorganic fillers and thermoplastic resin powders should be put into a sand grind mill at the same time to obtain good dispersion. It is preferable to adopt. However, the operation of the wet pulverizer is accompanied by heat generation. When trying to mix and disperse using a sand grind mill etc. including a hardener, an accident will occur unless the temperature of the grinding chamber is strictly controlled. That is, the wet pulverizer cannot be operated unless the viscosity of the liquid material is lowered to some extent, and even if the temperature is increased and the viscosity is lowered and the operation is started, if the heat generation in the pulverization chamber is not controlled well, the heat generation due to gelation is added. Runaway, solidify the crushing chamber and make the crusher unusable. Therefore, it is preferable to mix up the filler using a wet pulverizer without adding a curing agent, and then add a curing agent and knead using a kneader or the like.

最終的に、常温下でペースト状になり、金属片にやや厚めに塗って70℃下に1分ほどおくと溶けて液状に拡がる程度の物までが使用可能と考えている。これは硬化剤がジシアンジアミドであれイミダゾールであれ芳香族ジアミンであれ、約100℃とするとゲル化が始まるので70℃程度が扱える最高温度と判断したことによる。これは今後の改良研究で変わるかもしれない。得られた接着剤を冷蔵庫に入れて5度以下で保管すれば半年以上は問題ない。もし硬化剤が脂環族アミンの混合物であるなどゲル化が常温下でも遅いながら進行するようなものを使用する場合は、混練時間も5分程度にして以下に述べる塗布や染込まし処理を数時間以内にするのが好ましい。そしてこの接着剤は保管すべきでない。   Ultimately, it is considered that it can be used in the form of a paste at room temperature, which is slightly thickened on a metal piece and melts and spreads into a liquid state when placed at 70 ° C. for about 1 minute. Whether the curing agent is dicyandiamide, imidazole or aromatic diamine, gelation starts at about 100 ° C., and therefore it is judged that the maximum temperature that can be handled is about 70 ° C. This may change in future improvement studies. If the obtained adhesive is put in a refrigerator and stored at 5 degrees or less, there is no problem for more than half a year. If the curing agent is a mixture of alicyclic amines and the gelation proceeds slowly even at room temperature, the kneading time should be about 5 minutes and the coating and soaking process described below should be performed. Preferably within a few hours. And this adhesive should not be stored.

(9)接着剤塗布及びその後の処理
前記で得た接着剤を金属合金片の必要箇所に塗布する。筆塗りでもヘラ塗りでもよい。その後、50〜70℃に予め加熱しておいた減圧容器または圧力容器に入れ、数分おいてから数十mmHg程度まで減圧して数秒おき、その後空気を入れて常圧に戻すか数気圧や数十気圧の圧力下にするのが好ましい。塗布物を暖めるのは、接着剤の粘度を十数Pa秒以下にするためである。この温度が高いほど粘度は下がるが、高きに過ぎるとゲル化が始まり接着力確保に不利になる。これらはその接着剤のゲル化温度をどう予測するかで変わってくる。
(9) Adhesive application and subsequent treatment The adhesive obtained as described above is applied to a necessary portion of the metal alloy piece. Brush painting or spatula painting may be used. After that, put it in a vacuum vessel or a pressure vessel preheated to 50 to 70 ° C., and after reducing the pressure to several tens of mmHg after several minutes, put it in several seconds, and then return to normal pressure by adding air, It is preferable that the pressure be several tens of atmospheres. The reason why the coated material is warmed is to make the viscosity of the adhesive 10 or less Pa seconds or less. The higher this temperature is, the lower the viscosity is. However, when the temperature is too high, gelation starts and it is disadvantageous for securing adhesive force. These depend on how the gel temperature of the adhesive is predicted.

次いで減圧と昇圧のサイクルを繰り返すのが好ましい。減圧下で接着剤と金属合金間の空気が抜け、常圧戻しで接着剤が金属面上の超微細凹部に侵入し易くなる。実際の量産に当たっては、圧力容器を使用して高圧空気を使用するのは設備上も経費上もコストアップに繋がるので、それよりは気密性の袋や減圧容器を使用して減圧/常圧戻しを数回行うのが経済的である。容器や袋から取り出し、常温以下の温度とした保管場所に置き短時間内に次工程に入るのが好ましい。   Then, it is preferable to repeat the cycle of pressure reduction and pressure increase. The air between the adhesive and the metal alloy escapes under reduced pressure, and the adhesive easily enters the ultrafine recesses on the metal surface when returned to normal pressure. In actual mass production, using high-pressure air using a pressure vessel leads to increased costs both in terms of equipment and costs. It is economical to do this several times. It is preferable to take it out from the container or bag, put it in a storage place at a temperature below room temperature, and enter the next step within a short time.

(10)被着材:金属合金同士の接着
同種の金属合金同士を接着する場合、上記の工程で接着剤塗布した金属合金片2枚を作製し、これらを抱き合わせてクリップ等で留め、そのまま熱風乾燥機に入れて加熱硬化させればよい。被着材に別種の金属を使用する場合では、被着材側の金属合金もNATに従った表面処理を行った上で上節に示した方法でエポキシ系接着剤を塗布し、かつ塗布後の処理も行った上で抱き合わせてクリップ等で留め、同様に加熱硬化させればよい。
(10) Adhering material: Adhesion between metal alloys When adhering metal alloys of the same type, two metal alloy pieces coated with an adhesive are produced in the above-mentioned process, and they are tie-bonded and fastened with a clip or the like. What is necessary is just to heat-harden in a dryer. When using a different type of metal for the adherend, apply an epoxy adhesive to the adherend side metal alloy according to the method described in the above section after applying a surface treatment in accordance with NAT. After the above processing is performed, they may be tied together and fastened with a clip or the like, and similarly heat cured.

接着剤の硬化剤が脂環族アミン系化合物、ジシアンジアミド、イミダゾール系化合物、または芳香族ジアミン系化合物であるとして、加熱は前記の物を熱風乾燥機に入れて行い、金属片同士の接着では、通常は90℃前後に30分程度おいて接着剤成分を溶融し、120℃まで昇温して30分程度保持し、135℃に上げてさらに30分加熱し、さらに165℃に上げて30分おき、さらに180℃に上げて30分おくと、本発明者らが扱った全接着剤、CFRPプリプレグで問題なく硬化できた。最適な温度条件は各組成物によって変わるから前記に拘ることはないが、前記条件はどのような1液性エポキシ接着剤、CFRPプリプレグの硬化も可能にするので実験が安易にできた。   As the curing agent of the adhesive is an alicyclic amine-based compound, dicyandiamide, imidazole-based compound, or aromatic diamine-based compound, heating is performed by putting the above-mentioned thing in a hot air dryer, Usually, the adhesive component is melted at about 90 ° C. for about 30 minutes, heated to 120 ° C. and held for about 30 minutes, heated to 135 ° C. and further heated for 30 minutes, further raised to 165 ° C. for 30 minutes. When the temperature was further raised to 180 ° C. for 30 minutes, the entire adhesive and CFRP prepreg handled by the present inventors could be cured without problems. Since the optimum temperature condition varies depending on each composition, it is not limited to the above. However, since the condition allows curing of any one-component epoxy adhesive, CFRP prepreg, the experiment can be easily performed.

(11)被着材:FRP半硬化物又はプリプレグと接着方法
FRPにはガラス繊維強化プラスチック(以下、「GFRP」という。)、アラミド繊維強化プラスチック(以下、「AFRP」という。)、CFRP等がある。本発明はエポキシ樹脂をマトリックスとするFRPについて論じており、ガラス繊維、炭素繊維、アラミド繊維はもちろん、その他の強化繊維を使用したFRPであっても、マトリックス樹脂がエポキシ樹脂であれば全て適用できる。ここではエポキシ樹脂を使用したCFRPについて具体的に説明し、その他のFRPでの説明に代える。
(11) Adhering material: FRP semi-cured product or prepreg and adhesion method FRP includes glass fiber reinforced plastic (hereinafter referred to as “GFRP”), aramid fiber reinforced plastic (hereinafter referred to as “AFRP”), CFRP, and the like. is there. The present invention discusses FRP using an epoxy resin as a matrix, and all FRPs using glass fiber, carbon fiber, aramid fiber and other reinforcing fibers can be applied as long as the matrix resin is an epoxy resin. . Here, CFRP using an epoxy resin will be specifically described, and the description will be replaced with other FRP.

市販のCFRPプレプリグはその殆どがエポキシ樹脂系品であるから確認の上で使用できる。CFRPプリプレグは、1液性エポキシ接着剤と基本は同じのエポキシ樹脂と硬化剤を最低限含むエポキシ樹脂組成物からなるマトリックス樹脂に、炭素繊維を押し込んだものである。市販のCFRPプリプレグの殆どは、エポキシ樹脂、硬化剤にエラストマー型充填材も加えニーダーやロールで混練し最後はロールでシート化する。このシート状物2枚で炭素繊維織物を挟み付け、これを脱泡しながら加熱ロールに通してシート化するのが昨今のCFRPプリプレグの製造法である。   Most commercially available CFRP prepregs are epoxy resin-based products and can be used after confirmation. The CFRP prepreg is obtained by pressing carbon fibers into a matrix resin composed of an epoxy resin composition containing at least the same epoxy resin and a curing agent as the basic one-component epoxy adhesive. Most commercially available CFRP prepregs are kneaded with a kneader or roll after adding an elastomer type filler to an epoxy resin and a curing agent, and finally formed into a sheet with a roll. The current method for producing CFRP prepregs is to sandwich a carbon fiber woven fabric with two sheets and pass through a heating roll while defoaming them to form a sheet.

なお、炭素繊維索や炭素繊維布はマトリックス樹脂との接着性を高めるため、前もってエポキシ樹脂含む有機溶剤液等に浸漬して乾燥する等、マトリックス樹脂との接着性を高めるべく何らかの処理がなされる。詳細はプリプレグメーカーの重要秘密であり全くわからない。日本国内特許を調査すると1985年以降にこの関係が記述された公開特許が発現し、また2005年以降はみられない。それゆえに、すでに定番のものが使用されていると思われるがこれが何かはわからない。   In addition, in order to enhance the adhesion with the matrix resin, the carbon fiber cord or the carbon fiber cloth is subjected to some treatment to improve the adhesion with the matrix resin, such as being dipped in an organic solvent liquid containing an epoxy resin and dried in advance. . Details are an important secret of the prepreg maker and I don't know at all. When Japanese patents are investigated, published patents describing this relationship appear after 1985, and no patents are seen after 2005. Therefore, it seems that the classic one is already used, but I don't know what this is.

CFRPプリプレグを必要形状に切断し、必要な形に重ね合わせてプリプレグ積層物とする。ただし、単方向プリプレグ(縦糸が多く横糸がごくわずかな織り方の織物からのプリプレグ)を、複数枚重ねる場合はその方向を重ねたり角度を傾けて重ねたりすることで、最終的なCFRP板材としての強度の方向性が制御できるため、その組み付けには多くのノウハウがあるとされる。また、炭素繊維の平織り品では縦糸横糸の数が同じであり、例えば45度ずつ角度を変えてプリプレグを重ねると強度的には全方向に対し等しくなると言われている。要するに、必要な枚数、その重ね方を前もって設計し、それに従って各プリプレグを切断し、設計通り重ね合わして準備を終える。   A CFRP prepreg is cut into a required shape and is laminated in a required shape to form a prepreg laminate. However, when stacking multiple unidirectional prepregs (prepregs from weaving fabrics with many warps and very little wefts), the final CFRP plate material can be obtained by overlapping the directions or tilting the angles. It is said that there is a lot of know-how in the assembly because the direction of the strength of the steel can be controlled. Carbon fiber plain weaves have the same number of warp and weft yarns, and are said to have the same strength in all directions when overlapping prepregs, for example, by changing the angle by 45 degrees. In short, the required number of sheets and how to stack them are designed in advance, and each prepreg is cut accordingly, and the preparation is completed by stacking as designed.

(12)プリプレグの積層及び複合体の製造方法
前述したエポキシ系接着剤を塗布した金属合金部品に、前記FRPプリプレグを乗せる。この状態で上手く加熱すればエポキシ樹脂接着剤とプリプレグ中のエポキシ樹脂が一旦溶融し引き続いてこれらが硬化する。しっかり接合するには両者を押し付けた状態で加熱し、間に含まれる空気が樹脂溶融時に追い出される必要がある。例えば、金属合金形状物の接合すべき面の反対側形状に合わせた台座を予め作成しておき、アルミ箔やポリエチレンフィルムを敷いた後で前記金属合金部品をおき、プリプレグを多数枚載せ、さらにプリプレグの上にポリエチレンフィルムを敷き、構造材等で別途製作した最終品プリプレグ形状に合わせた固定用部材を載せ、さらにその上に重量物を載せることで加熱硬化中の押し付けと固定ができる。
(12) Lamination of prepreg and method for producing composite The FRP prepreg is placed on the metal alloy part to which the above-mentioned epoxy adhesive is applied. If heated well in this state, the epoxy resin adhesive and the epoxy resin in the prepreg are once melted and subsequently cured. In order to join firmly, it heats in the state which pressed both, and the air contained in between needs to be expelled at the time of resin melting. For example, a pedestal matched to the shape opposite to the surface to be joined of the metal alloy shaped object is prepared in advance, and after placing an aluminum foil or polyethylene film, the metal alloy part is placed, and a large number of prepregs are placed. A polyethylene film is laid on the prepreg, a fixing member according to the shape of the final product prepreg separately manufactured with a structural material or the like is placed, and a heavy object is further placed thereon, so that pressing and fixing during heat curing can be performed.

もちろん、双方を押し付けつつ硬化させればよいので重力だけでなく種々の方法が利用できる。航空機部材では上記のように組み付けた全体を耐熱性のフィルム袋(バッグ)に封じ減圧しつつ過熱し、全エポキシ分が溶融したときに内部の空気が強制的に抜けるようにしている。空気がある程度抜けるとプリプレグが締まるので、その後にバッグ内に空気を送って昇圧下で硬化させる仕掛けである。本発明者等はそこまで行う実験設備がないので、プリプレグ内の空気はエポキシ分の溶融時に押え付けている圧力でかなり抜けるだろうと期待して実験を行った。   Of course, not only gravity but also various methods can be used because both of them can be cured while being pressed. In aircraft members, the entire assembly as described above is sealed in a heat-resistant film bag (bag) and heated while being decompressed so that the internal air is forcibly removed when all the epoxy is melted. Since the prepreg is tightened when the air escapes to some extent, it is a mechanism to send the air into the bag and harden it under pressure. Since the present inventors have no experimental equipment to do so, the experiment was conducted with the expectation that the air in the prepreg would be considerably removed by the pressure pressed when the epoxy component was melted.

加熱は仕組んだ全体を熱風乾燥機やオートクレーブの中に入れて行い、通常は90℃に30分程度おき、120℃まで昇温して30分保持し、135℃に上げてさらに30分加熱し、165℃に上げ30分おき、さらに180℃に上げて30分おいた。この硬化条件は本来エポキシ成分や硬化剤成分によって変わるが、本発明者らにとって市販のプリプレグの詳細組成はわからないので前記条件で加熱しどのようなものでも対応できるようにした。放冷し金型を外し、成形物を取り出す。離型ができるように前記記述の様にアルミ箔やポリエチレンフィルムを使用した場合はこれを剥がし取る。   Heating is performed by placing the entire structure in a hot air dryer or autoclave, usually at 90 ° C for about 30 minutes, raised to 120 ° C and held for 30 minutes, then raised to 135 ° C and heated for another 30 minutes. The temperature was raised to 165 ° C. every 30 minutes and further raised to 180 ° C. for 30 minutes. Although the curing conditions originally vary depending on the epoxy component and the curing agent component, the detailed composition of the commercially available prepreg is unknown to the present inventors. Allow to cool, remove the mold, and remove the molded product. If an aluminum foil or polyethylene film is used as described above so that the mold can be released, it is peeled off.

(13)接着力の測定の例
本発明で用いた金属合金同士の接着物、または金属合金とFRPのコキュア接着物の接着力測定法を以下説明する。図13は、金属合金とFRPの接着のための焼成用のための焼成治具の断面図である。図14は、この焼成治具1で金属合金片とCFRPをコキュア接着で作製した金属合金樹脂複合体10の試験片である。焼成治具1は、金属合金板11とプリプレグ12とを焼成するときの固定治具である。金型本体2は、上面が開放されており直方体状に凹部3が形成されている。この底部には貫通孔4が形成されている。
(13) Example of Measurement of Adhesive Strength A method for measuring the adhesive strength of an adhesive between metal alloys used in the present invention or an adhesive adhesive between a metal alloy and FRP will be described below. FIG. 13 is a cross-sectional view of a firing jig for firing for bonding a metal alloy and FRP. FIG. 14 is a test piece of the metal alloy resin composite 10 in which the metal alloy piece and CFRP are produced by cocure bonding with the firing jig 1. The firing jig 1 is a fixing jig for firing the metal alloy plate 11 and the prepreg 12. The mold body 2 has an open upper surface and a recess 3 formed in a rectangular parallelepiped shape. A through hole 4 is formed at the bottom.

貫通孔4には、底板5の突起6が挿入されている。突起6は、金型本体2の底面7から突出するように突き出ている。金型本体2の底面は、金型台座8上に搭載されている。底板5を金型本体2の凹部3に挿入して載置した状態で、図14に示すような金属合金片21とCFRP22を接合した金属合金樹脂複合体10,20を焼成して製造する。この複合体10,20を製造するには、概略すると次のような手順で行う。まず、底板5の全上面に離型用フィルム17を敷く。離型用フィルム17の上に金属合金片11と板状のスペーサ16を載せる。このスペーサ16の上と金属合金片11の端部の上に所要のプリプレグ12を積層する。プリプレグ12は市販品を鋏で切断したものである。   A protrusion 6 of the bottom plate 5 is inserted into the through hole 4. The protrusion 6 protrudes from the bottom surface 7 of the mold body 2. The bottom surface of the mold body 2 is mounted on the mold base 8. In a state where the bottom plate 5 is inserted and placed in the recess 3 of the mold body 2, the metal alloy resin composites 10 and 20 in which the metal alloy pieces 21 and the CFRP 22 are joined as shown in FIG. In general, the composites 10 and 20 are manufactured by the following procedure. First, a release film 17 is laid on the entire upper surface of the bottom plate 5. The metal alloy piece 11 and the plate-like spacer 16 are placed on the release film 17. The required prepreg 12 is laminated on the spacer 16 and the end of the metal alloy piece 11. The prepreg 12 is obtained by cutting a commercially available product with scissors.

このプリプレグ12の積層の後に、離型用のポリエチレンフィルム片13をアルミニウム合金板11及びプリプレグ12の上にさらに積層する。この上にウェイトとしてPTFE(ポリテトラフルオロエチレン樹脂)のブロック14,15を載せる。さらに、必要に応じて、この上に数kgの錘(図示せず)を載せる。この状態で焼成炉に投入し、プリプレグを硬化させて放冷した後、錘及び台座8等を外して、突起6の下端を床面に押し付けると離型用フィルム13、17とともに金属合金片とCFRPを接合した金属合金樹脂複合体10(図14参照)が取り出せる。スペーサ16、離型用フィルム17、13は、接着性のない素材であるからCFRPから容易に剥がすことができる。   After the prepreg 12 is laminated, a release polyethylene film piece 13 is further laminated on the aluminum alloy plate 11 and the prepreg 12. On top of this, PTFE (polytetrafluoroethylene resin) blocks 14 and 15 are placed as weights. Further, if necessary, a several kg weight (not shown) is placed thereon. In this state, the prepreg is cured and allowed to cool, and then the weight and the pedestal 8 and the like are removed, and the lower end of the protrusion 6 is pressed against the floor surface. The metal alloy resin composite 10 (see FIG. 14) joined with CFRP can be taken out. Since the spacer 16 and the release films 17 and 13 are non-adhesive materials, they can be easily peeled off from the CFRP.

以下、本発明の実施例について説明する。なお、図15は金属合金片同士を接着剤接合した形状を図示したものである。金属合金片は本発明による表面処理法で処理されたもので、使用した接着剤も本発明に従ったものである。金属合金同士は接合面33で接合されている。金属合金上の微細凹凸面にはエポキシ系接着剤が介在して接着されている。また、図14は前述したように、金属合金片とFRPとをエポキシ系接着剤で接合して得た接合強度測定用の試験片を表している。   Examples of the present invention will be described below. FIG. 15 illustrates a shape in which metal alloy pieces are bonded to each other with an adhesive. The metal alloy piece was processed by the surface treatment method according to the present invention, and the adhesive used was also in accordance with the present invention. The metal alloys are joined together at the joining surface 33. The fine uneven surface on the metal alloy is bonded with an epoxy adhesive. Moreover, FIG. 14 represents the test piece for joint strength measurement obtained by joining a metal alloy piece and FRP with an epoxy adhesive as described above.

〔測定機器類〕
測定等に使用した機器類は以下に示したものである。
(a)X線表面観察(XPS観察)
数μm径の表面を深さ1〜2nmまでの範囲で構成元素を観察する形式のESCA「AXIS−Nova(クラトス/島津製作所社製)」を使用した。
(b)電子顕微鏡観察
SEM型の電子顕微鏡「S−4800(日立製作所社製)」及び「JSM−6700F(日本電子)」を使用し1〜2KVにて観察した。
(c)走査型プローブ顕微鏡観察
「SPM−9600(島津製作所社製)」を使用した。これはダイナミックフォース型の走査型プローブ顕微鏡である。
(d)X線回折分析(XRD分析)
「XRD−6100(島津製作所社製)」を使用した。
(e)複合体の接合強度の測定
引っ張り試験機「AG−10kNX(島津製作所社製)」を使用し、引っ張り速度10mm/分でせん断破断力を測定した。
(f)充填材の分散(湿式粉砕機の使用)
直径0.1〜0.5mmのジルコニアビーズをサンドとするサンドグラインドミル「ミニツエア(アシザワ・ファインテック社製)」を使用した。
[Measurement equipment]
The equipment used for measurement etc. is shown below.
(A) X-ray surface observation (XPS observation)
An ESCA “AXIS-Nova (Kuratos / Shimadzu Corporation)” in the form of observing constituent elements on a surface having a diameter of several μm in a depth range of 1 to 2 nm was used.
(B) Electron Microscope Observation An SEM type electron microscope “S-4800 (manufactured by Hitachi, Ltd.)” and “JSM-6700F (JEOL)” were used and observed at 1 to 2 KV.
(C) Scanning probe microscope observation “SPM-9600 (manufactured by Shimadzu Corporation)” was used. This is a dynamic force type scanning probe microscope.
(D) X-ray diffraction analysis (XRD analysis)
“XRD-6100 (manufactured by Shimadzu Corporation)” was used.
(E) Measurement of Bonding Strength of Composite Material Using a tensile tester “AG-10kNX (manufactured by Shimadzu Corporation)”, the shear breaking force was measured at a pulling speed of 10 mm / min.
(F) Dispersion of filler (use of wet pulverizer)
A sand grind mill “Minitsu Air (manufactured by Ashizawa Finetech)” using zirconia beads having a diameter of 0.1 to 0.5 mm as sand was used.

次に接合系の実験例について各金属片の種類毎に説明する。
〔実験例1〕(アルミニウム合金の表面処理)
市販の3mm厚A7075板材(神戸製鋼所社製)を入手し、切断して45mm×15mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を水に投入して60℃、濃度7.5%の水溶液とした。これに前記アルミニウム合金板材を7分浸漬しよく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記の合金板材を1分浸漬してよく水洗した。次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、先ほどの合金板材を4分浸漬してよく水洗した。
Next, an experimental example of the joining system will be described for each type of metal piece.
[Experiment 1] (Surface treatment of aluminum alloy)
A commercially available 3 mm thick A7075 plate (manufactured by Kobe Steel) was obtained and cut into a large number of 45 mm × 15 mm rectangular pieces. A commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co.)” was poured into water to form an aqueous solution at 60 ° C. and a concentration of 7.5%. The aluminum alloy sheet was immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% concentration hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 1 minute and washed with water. Next, a 1.5% concentration aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the above alloy plate material was immersed for 4 minutes and washed with water.

続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記合金板材を1分浸漬し水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記合金板材を2分浸漬し、水洗した。次いで5%濃度の過酸化水素水溶液を40℃とし前記合金板材を5分浸漬し水洗した。次いで67℃にした温風乾燥機に15分入れて乾燥した。   Subsequently, a 3% concentration aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in the tank for 1 minute and washed with water. Next, an aqueous solution containing 3.5% monohydric hydrazine at 60 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 2 minutes and washed with water. Next, a 5% hydrogen peroxide aqueous solution was set to 40 ° C., and the alloy sheet was immersed for 5 minutes and washed with water. Subsequently, it put into the warm air dryer which was 67 degreeC for 15 minutes, and dried.

乾燥後、アルミ箔で前記アルミニウム合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。同じ処理をしたA7075片を電子顕微鏡観察したところ40〜100nm径の凹部で覆われていることがわかった。1万倍、10万倍の電顕写真を図1に示す。また、走査型プローブ顕微鏡にかけて粗度データをとったところ、山谷平均間隔(RSm)は3〜4μm、最大高さ(Rz)は1〜2μmであった。   After drying, the aluminum alloy sheets were wrapped together with aluminum foil, which was then stored in a plastic bag. An A7075 piece subjected to the same treatment was observed with an electron microscope and found to be covered with a recess having a diameter of 40 to 100 nm. An electron micrograph of 10,000 times and 100,000 times is shown in FIG. In addition, when roughness data was taken with a scanning probe microscope, the mean valley interval (RSm) was 3 to 4 μm, and the maximum height (Rz) was 1 to 2 μm.

〔実験例2〕(アルミニウム合金の表面処理)
市販の1.6mm厚A5052板材(住友軽金属工業社製)を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を水に投入して60℃、濃度7.5%の水溶液とした。これに前記アルミニウム合金板材を7分浸漬しよく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記の合金板材を1分浸漬してよく水洗した。次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、先ほどの合金板材を2分浸漬してよく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記合金板材を1分浸漬し水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記合金板材を2分浸漬し、水洗した。
[Experiment 2] (Surface treatment of aluminum alloy)
A commercially available 1.6 mm thick A5052 plate (manufactured by Sumitomo Light Metal Industry Co., Ltd.) was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. A commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co.)” was poured into water to form an aqueous solution at 60 ° C. and a concentration of 7.5%. The aluminum alloy sheet was immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% concentration hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 1 minute and washed with water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in a separate tank, and the above alloy plate material was immersed for 2 minutes and washed with water. Subsequently, a 3% concentration aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in the tank for 1 minute and washed with water. Next, an aqueous solution containing 3.5% monohydric hydrazine at 60 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 2 minutes and washed with water.

次いで67℃にした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記アルミニウム合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。同じ処理をしたA5052片を電子顕微鏡観察したところ30〜100nm径の凹部で覆われていることが分かった。1万倍、10万倍の電顕写真を図2に示す。また、走査型プローブ顕微鏡にかけて粗度データを得たがこれによると山谷平均間隔(RSm)は2.0〜3.4μm、最大高さ(Rz)は0.2〜0.5μmであった。   Subsequently, it put into the warm air dryer which was 67 degreeC for 15 minutes, and dried. After drying, the aluminum alloy sheets were wrapped together with aluminum foil, which was then stored in a plastic bag. When the A5052 piece treated in the same way was observed with an electron microscope, it was found that the A5052 piece was covered with a recess having a diameter of 30 to 100 nm. FIG. 2 shows an electron micrograph of 10,000 times and 100,000 times. In addition, roughness data was obtained by applying a scanning probe microscope. According to this, the mean valley interval (RSm) was 2.0 to 3.4 μm, and the maximum height (Rz) was 0.2 to 0.5 μm.

〔実験例3〕(マグネシウム合金の表面処理)
市販の1mm厚AZ31B板材(日本金属社製)を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス社製)」を水に投入して65℃、濃度7.5%の水溶液とした。これに前記マグネシウム合金板材を5分浸漬しよく水洗した。続いて別の槽に40℃とした1%濃度の水和クエン酸水溶液を用意し、これに前記の合金板材を6分浸漬してよく水洗した。次いで別の槽に65℃とした1%濃度の炭酸ナトリウムと1%濃度の炭酸水素ナトリウムを含む水溶液を用意し、先ほどの合金板材を5分浸漬してよく水洗した。続いて別の槽に65℃とした15%濃度の苛性ソーダ水溶液を用意し、これに前記合金板材を5分浸漬し水洗した。次いで別の槽に40℃とした0.25%濃度の水和クエン酸水溶液に1分浸漬して水洗した。次いで45℃とした過マンガン酸カリを2%、酢酸を1%、水和酢酸ナトリウムを0.5%含む水溶液に1分浸漬し、15秒水洗し、90℃にした温風乾燥機に15分入れて乾燥した。
[Experiment 3] (Surface treatment of magnesium alloy)
A commercially available 1 mm thick AZ31B plate material (manufactured by Nippon Metal Co., Ltd.) was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. A commercially available magnesium alloy degreasing agent “Cleaner 160 (manufactured by Meltex Co., Ltd.)” was poured into water to form an aqueous solution at 65 ° C. and a concentration of 7.5%. The magnesium alloy sheet was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 1% concentration hydrated citric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 6 minutes and washed with water. Next, an aqueous solution containing 1% concentration sodium carbonate and 1% concentration sodium hydrogen carbonate at 65 ° C. was prepared in another tank, and the above alloy plate was dipped for 5 minutes and washed with water. Subsequently, a 15% strength aqueous caustic soda solution at 65 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 5 minutes and washed with water. Subsequently, it was immersed in a 0.25% strength hydrated citric acid aqueous solution at 40 ° C. for 1 minute and washed in another tank. Next, it was immersed in an aqueous solution containing 2% potassium permanganate at 45 ° C., 1% acetic acid and 0.5% hydrated sodium acetate for 1 minute, washed with water for 15 seconds, and placed in a warm air dryer at 90 ° C. for 15 minutes. Dried and dried.

乾燥後、アルミ箔で前記マグネシウム合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。この処理をしたAZ31B片を電子顕微鏡観察したところ5〜10nm径の棒状結晶が複雑に絡み合っている箇所やそれらの塊が100nm径程度の集まりとなり、その集まりが面を作っている超微細な凹凸形状で覆われている箇所があった。その10万倍電顕写真2種を図3に示す。また、走査型プローブ顕微鏡で走査して粗度観測を行ったところJISで言う山谷平均間隔、すなわち凹凸周期の平均値(RSm)が2〜3μm、最大粗さ高さ(Rz)が1〜1.5μmであった。   After drying, the magnesium alloy sheet was wrapped together with aluminum foil, which was then sealed in a plastic bag. Observation of this treated AZ31B piece with an electron microscope reveals that 5 to 10 nm diameter rod-like crystals are intricately entangled and their lumps are gathered together with a diameter of about 100 nm, and the gathering forms ultra fine irregularities. There was a part covered with the shape. Two types of the 100,000 times electron micrographs are shown in FIG. Further, when the roughness was observed by scanning with a scanning probe microscope, the mean interval between ridges and valleys referred to in JIS, that is, the average value (RSm) of the uneven period was 2 to 3 μm, and the maximum roughness height (Rz) was 1-1. It was 5 μm.

〔実験例4〕(銅合金の表面処理)
市販の1mm厚の純銅系銅合金であるタフピッチ銅(C1100:神戸製鋼所社製)板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%含む水溶液を60℃として5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗し予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記銅合金片を10分浸漬し水洗した。次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、前記の合金板材を1分浸漬してよく水洗した。次いで先ほどのエッチング用槽に1分浸漬して水洗し、そして先ほどの酸化処理用の槽に1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記銅合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental Example 4] (Surface treatment of copper alloy)
Tough pitch copper (C1100: manufactured by Kobe Steel), which is a commercially available 1 mm thick pure copper-based copper alloy, was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was immersed in water at 60 ° C. for 5 minutes and then washed with water, and then 1.5% caustic soda at 40 ° C. It was immersed in an aqueous solution for 1 minute, washed with water, and washed with a preliminary base. Next, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (manufactured by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared, and the copper alloy piece was immersed in this for 10 minutes and washed with water. Next, an aqueous solution containing 10% of caustic soda at 65 ° C. and 5% of sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the alloy plate was immersed for 1 minute and washed with water. Next, it was immersed in the etching tank for 1 minute and washed with water, and then immersed in the oxidation treatment tank for 1 minute and washed with water. Subsequently, it put into the warm air dryer which was 90 degreeC for 15 minutes, and dried. After drying, the copper alloy sheets were wrapped together with aluminum foil, which was then sealed and stored in a plastic bag.

同じ処理をしたC1100片を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は3〜7μm、最大粗さ高さ(Rz)は3〜5μmであった。また、10万倍電子顕微鏡観察したところ、直径又は長径短径の平均が10〜150nmの孔開口部又は凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸形状でほぼ全面が覆われていた。その1万倍、10万倍電顕写真を図4に示す。   A piece of C1100 treated in the same way was subjected to a scanning probe microscope. As a result, the mean valley interval (RSm) in JIS was 3 to 7 μm, and the maximum roughness height (Rz) was 3 to 5 μm. Further, when observed with an electron microscope of 100,000 times, a hole or opening having a diameter or an average of a major axis and a minor axis having an average of 10 to 150 nm is present on the entire surface at irregular intervals of 30 to 300 nm. It was covered. The 10,000 times and 100,000 times electron micrographs are shown in FIG.

〔実験例5〕(銅合金の表面処理)
市販の0.8mm厚のリン青銅(C5191)板材を購入し18mm×45mmの長方形片に切断し、金属板1である銅合金片とした。槽に市販のアルミ合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液を60℃として脱脂用水溶液とした。ここへ前記銅合金板材を5分浸漬して脱脂し、よく水洗した。続いて別の槽に25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記銅合金片を15分浸漬し水洗した。次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、65℃としてから前記の合金板材を1分浸漬してよく水洗した。次いで再び先ほどのエッチング液に1分浸漬し水洗した。次いで酸化用の水溶液に1分再度浸漬し、水洗した。前記の銅合金片を、90℃にした温風乾燥機に15分入れて乾燥した。アルミニウム箔に包んで保管した。
[Experimental Example 5] (Surface treatment of copper alloy)
A commercially available phosphor bronze (C5191) plate material having a thickness of 0.8 mm was purchased and cut into 18 mm × 45 mm rectangular pieces to obtain a copper alloy piece as the metal plate 1. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” in a tank was made 60 ° C. to obtain a degreasing aqueous solution. The said copper alloy board | plate material was immersed here for 5 minutes, degreased | defatted, and washed well with water. Subsequently, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (made by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared in another tank, and the copper alloy piece was added to this for 15 minutes. It was immersed and washed with water. Next, an aqueous solution containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the alloy plate was immersed for 1 minute and washed with water after reaching 65 ° C. Next, it was again immersed in the previous etching solution for 1 minute and washed with water. Subsequently, it was immersed again in the aqueous solution for oxidation for 1 minute and washed with water. The copper alloy piece was placed in a hot air dryer at 90 ° C. for 15 minutes and dried. Wrapped in aluminum foil and stored.

同じ処理をしたC5191片を1万倍、10万倍電顕写真を図5に示すが、10万倍電子顕微鏡観察で、直径または長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状であり、純銅系であるタフピッチ銅の微細構造とは全く異なった形状であった。また、走査型プローブ顕微鏡にかけたところ、JISで言う山谷平均間隔(RSm)は1〜3μm、最大粗さ高さ(Rz)は0.3〜0.4μmであった。   FIG. 5 shows 10,000 times and 100,000 times electron micrographs of the C5191 piece treated in the same manner, but when observed with an electron microscope of 100,000 times, convex portions having an average diameter or major axis and minor axis of 10 to 200 nm are mixed. It was an ultra-fine concavo-convex shape existing on the entire surface, and was completely different from the fine structure of tough pitch copper, which is pure copper. Moreover, when it applied to the scanning probe microscope, the ridge-and-valley average space | interval (RSm) said by JIS was 1-3 micrometers, and the maximum roughness height (Rz) was 0.3-0.4 micrometer.

〔実験例6〕(銅合金の表面処理)
市販の0.7mm厚の微量の鉄含有銅合金「KFC(神戸製鋼所社製)」板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%含む水溶液を60℃として5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗し予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記銅合金片を8分浸漬し水洗した。次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、前記の合金板材を1分浸漬してよく水洗した。次いで先ほどのエッチング用槽に1分浸漬して水洗し、そして先ほどの酸化処理用の槽に1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記銅合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental example 6] (Surface treatment of copper alloy)
A small amount of commercially available 0.7-mm-thick iron-containing copper alloy “KFC” (manufactured by Kobe Steel) was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was immersed in water at 60 ° C. for 5 minutes and then washed with water, and then 1.5% caustic soda at 40 ° C. It was immersed in an aqueous solution for 1 minute, washed with water, and washed with a preliminary base. Next, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (made by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared, and the copper alloy piece was immersed in this for 8 minutes and washed with water. Next, an aqueous solution containing 10% of caustic soda at 65 ° C. and 5% of sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the alloy plate was immersed for 1 minute and washed with water. Next, it was immersed in the etching tank for 1 minute and washed with water, and then immersed in the oxidation treatment tank for 1 minute and washed with water. Subsequently, it put into the warm air dryer which was 90 degreeC for 15 minutes, and dried. After drying, the copper alloy sheets were wrapped together with aluminum foil, which was then sealed and stored in a plastic bag.

同じ処理をしたKFC銅合金片を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大粗さ高さ(Rz)は0.3〜0.5μmであった。又、10万倍電子顕微鏡観察したところ、直径または長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状で全面が覆われていた。1万倍、10万倍電顕写真を図6に示す。   The same treated KFC copper alloy piece was subjected to a scanning probe microscope. As a result, the mean valley and valley interval (RSm) in JIS was 1 to 3 μm, and the maximum roughness height (Rz) was 0.3 to 0.5 μm. Further, when observed with an electron microscope of 100,000 times, the entire surface was covered with an ultra fine uneven shape in which convex portions having an average diameter or major axis and minor axis of 10 to 200 nm were mixed and present on the entire surface. The 10,000 times and 100,000 times electron micrographs are shown in FIG.

〔実験例7〕(銅合金の表面処理)
市販の0.7mm厚の特殊銅合金「KLF5(神戸製鋼所社製)」板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%含む水溶液を60℃として5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗し予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記銅合金片を8分浸漬し水洗した。次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、前記の合金板材を1分浸漬してよく水洗した。次いで先ほどのエッチング用槽に1分浸漬して水洗し、そして先ほどの酸化処理用の槽に1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記銅合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental Example 7] (Surface treatment of copper alloy)
Commercially available 0.7 mm thick special copper alloy “KLF5 (manufactured by Kobe Steel)” plate material was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was immersed in water at 60 ° C. for 5 minutes and then washed with water, and then 1.5% caustic soda at 40 ° C. It was immersed in an aqueous solution for 1 minute, washed with water, and washed with a preliminary base. Next, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (made by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared, and the copper alloy piece was immersed in this for 8 minutes and washed with water. Next, an aqueous solution containing 10% of caustic soda at 65 ° C. and 5% of sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the alloy plate was immersed for 1 minute and washed with water. Next, it was immersed in the etching tank for 1 minute and washed with water, and then immersed in the oxidation treatment tank for 1 minute and washed with water. Subsequently, it put into the warm air dryer which was 90 degreeC for 15 minutes, and dried. After drying, the copper alloy sheets were wrapped together with aluminum foil, which was then sealed and stored in a plastic bag.

同じ処理をしたKLF5銅合金片を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大粗さ高さ(Rz)は0.3〜0.5μmであった。また、10万倍電子顕微鏡観察したところ、直径10〜20nmの粒径物及び50〜150nm径の不定多角形状物が混ざり合って積み重なった形状、言わば溶岩台地斜面ガラ場状の超微細凹凸形状でほぼ全面が覆われていた。1万倍、10万倍電顕写真を図7に示す。   A piece of KLF5 copper alloy treated in the same way was subjected to a scanning probe microscope. As a result, the mean valley and valley interval (RSm) in JIS was 1 to 3 μm, and the maximum roughness height (Rz) was 0.3 to 0.5 μm. In addition, when observed with an electron microscope of 100,000 times, a shape in which a particle size of 10 to 20 nm and an indefinite polygonal shape of 50 to 150 nm are mixed and stacked together, that is, a lava plateau slope-like ultra fine uneven shape. Almost the entire surface was covered. The 10,000 times and 100,000 times electron micrographs are shown in FIG.

〔実験例8〕(チタン合金の表面処理)
市販の純チタン型チタン合金JIS1種「KS40(神戸製鋼所社製)」1mm厚板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液を60℃として脱脂用水溶液とした。前記水溶液に前記チタン合金板材を5分浸漬して脱脂し、よく水洗した。次いで別の槽に60℃とした1水素2弗化アンモニウムを40%含む万能エッチング材「KA−3(金属加工技術研究所社製)」を2%含む水溶液を用意し、これに前記チタン合金片を3分浸漬しイオン交換水でよく水洗した。次いで3%濃度の硝酸水溶液に1分浸漬し水洗した。90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記チタン合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。
[Experiment 8] (Surface treatment of titanium alloy)
A commercially available pure titanium type titanium alloy JIS type 1 “KS40 (manufactured by Kobe Steel)” 1 mm thick plate material was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” in a tank was made 60 ° C. to obtain a degreasing aqueous solution. The titanium alloy plate was immersed in the aqueous solution for 5 minutes to degrease and washed thoroughly with water. Next, an aqueous solution containing 2% of a universal etching material “KA-3 (manufactured by Metalworking Technology Laboratories)” containing 40% of monohydrogen difluoride at 60 ° C. is prepared in another tank, and the titanium alloy The piece was immersed for 3 minutes and washed thoroughly with ion exchange water. Subsequently, it was immersed in a 3% nitric acid aqueous solution for 1 minute and washed with water. It put into the warm air dryer which was 90 degreeC for 15 minutes, and dried. After drying, the titanium alloy sheets were wrapped together with aluminum foil and stored in a plastic bag.

同じ処理をしたKS40チタン合金片の電子顕微鏡、及び走査型プローブ顕微鏡による観察を行った。電子顕微鏡での観察から、幅と高さが10〜数百nmで長さが数百〜数μmの湾曲した連山状突起が間隔周期10〜数百nmで面上に林立している形状の超微細凹凸面を有していることがわかった。この1万倍10万倍電顕写真を図8に示す。また、走査型プローブ顕微鏡の観察で、山谷平均間隔(RSm)は1〜3μm、最高粗さ高さ(Rz)は0.8〜1.5μmであった。また、XPSによる分析から表面には酸素とチタンが大量に観察され、少量の炭素が観察された。これらから表層は酸化チタンが主成分であることが分かり、しかも暗色であることから3価のチタンの酸化物と推定された。   The KS40 titanium alloy pieces subjected to the same treatment were observed with an electron microscope and a scanning probe microscope. From the observation with an electron microscope, a curved continuous mountain-shaped projection having a width and height of 10 to several hundred nm and a length of several hundred to several μm stands on the surface with an interval period of 10 to several hundred nm. It was found to have an ultra fine uneven surface. This 10,000 times 100,000 times electron micrograph is shown in FIG. Moreover, by observation with a scanning probe microscope, the mean valley interval (RSm) was 1 to 3 μm, and the maximum roughness height (Rz) was 0.8 to 1.5 μm. Further, from the analysis by XPS, a large amount of oxygen and titanium were observed on the surface, and a small amount of carbon was observed. From these, it was found that the surface layer was composed mainly of titanium oxide, and because it was dark, it was estimated to be a trivalent titanium oxide.

〔実験例9〕(チタン合金の表面処理)
市販のα−β型チタン合金「KSTi−9(神戸製鋼社製)」の1mm厚板材を切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液を60℃として脱脂用水溶液とした。前記水溶液に前記チタン合金板材を5分浸漬して脱脂し、よく水洗した。次いで別の槽に40℃とした苛性ソーダ1.5%濃度の水溶液を用意し、1分浸漬して水洗した。次いで別の槽に、市販汎用エッチング試薬「KA−3(金属加工技術研究所社製)」を2重量%溶解した水溶液を60℃にして用意し、これに前記チタン合金片を3分浸漬しイオン交換水でよく水洗した。黒色のスマットが付着していたので40℃とした3%濃度の硝酸水溶液に3分浸漬し、次いで超音波を効かしたイオン交換水に5分浸漬してスマットを落とし、再び3%硝酸水溶液に0.5分浸漬し水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥した。得られたチタン合金片に金属光沢はなく暗褐色であった。乾燥後、アルミ箔で前記チタン合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental Example 9] (Surface treatment of titanium alloy)
A 1 mm thick plate material of a commercially available α-β type titanium alloy “KSTi-9 (manufactured by Kobe Steel)” was cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” in a tank was made 60 ° C. to obtain a degreasing aqueous solution. The titanium alloy plate was immersed in the aqueous solution for 5 minutes to degrease and washed thoroughly with water. Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in a separate tank, immersed for 1 minute and washed with water. Next, an aqueous solution in which 2% by weight of a commercially available general-purpose etching reagent “KA-3 (manufactured by Metalworking Technology Laboratories)” was dissolved was prepared at 60 ° C. in another tank, and the titanium alloy piece was immersed in this for 3 minutes. Wash thoroughly with ion-exchanged water. Since black smut was attached, it was immersed in 3% nitric acid aqueous solution at 40 ° C. for 3 minutes, then immersed in ion-exchanged water treated with ultrasonic waves for 5 minutes to remove the smut, and again into 3% nitric acid aqueous solution. It was immersed for 0.5 minutes and washed with water. Subsequently, it put into the warm air dryer which was 90 degreeC for 15 minutes, and dried. The obtained titanium alloy piece was dark brown with no metallic luster. After drying, the titanium alloy sheets were wrapped together with aluminum foil and stored in a plastic bag.

同じ処理をしたKSTi−9チタン合金片を、電子顕微鏡及び走査型プローブ顕微鏡で観察した。1万倍、10万倍電子顕微鏡で観察した結果を図9に示す。その様子は実験例8の電顕観察写真図8に酷似した部分に加え、表現が難しい枯葉状の部分が多く見られた。また、走査型プローブ顕微鏡による走査解析によると山谷平均間隔RSmは4〜6μm、最大粗さ高さRzは1〜2μmと出た。   The KSTi-9 titanium alloy piece treated in the same manner was observed with an electron microscope and a scanning probe microscope. The results of observation with an electron microscope of 10,000 times and 100,000 times are shown in FIG. In addition to the portion very similar to the electron microscopic observation photograph 8 of Experimental Example 8, many dead leaf-like portions that are difficult to express were seen. Moreover, according to the scanning analysis by a scanning probe microscope, the average valley / slope RSm was 4 to 6 μm, and the maximum roughness height Rz was 1 to 2 μm.

〔実験例10〕(ステンレス鋼の表面処理)
市販のステンレス鋼SUS304/2B(高砂鉄工所社製)の1mm厚板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液を60℃として脱脂用水溶液とした。前記水溶液に前記ステンレス鋼板材を5分浸漬して脱脂し、よく水洗した。続いて別の槽に65℃とした1水素2弗化アンモニウムを1%と98%硫酸を5%含む水溶液を用意し、これに前記ステンレス鋼片を4分浸漬しイオン交換水でよく水洗した。次いで40℃とした3%濃度の硝酸水溶液に3分浸漬して水洗した。90℃とした温風乾燥機に15分入れて乾燥した。乾燥後、アルミ箔で前記ステンレス鋼板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental Example 10] (Stainless steel surface treatment)
1 mm thick plate material of commercially available stainless steel SUS304 / 2B (manufactured by Takasago Iron Works Co., Ltd.) was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” in a tank was made 60 ° C. to obtain a degreasing aqueous solution. The stainless steel plate material was immersed in the aqueous solution for 5 minutes for degreasing and thoroughly washed with water. Subsequently, an aqueous solution containing 1% ammonium difluoride and 5% 98% sulfuric acid at 65 ° C. was prepared in another tank, and the stainless steel piece was immersed in this for 4 minutes and washed thoroughly with ion-exchanged water. . Next, it was immersed in a 3% nitric acid aqueous solution at 40 ° C. for 3 minutes and washed with water. It put into the warm air dryer which was 90 degreeC for 15 minutes, and dried. After drying, the stainless steel plate material was wrapped together with aluminum foil, which was then stored in a plastic bag.

同じ処理をしたSUS304片の電子顕微鏡、及び走査型プローブ顕微鏡による観察を行った。電子顕微鏡観察から、直径30〜70nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地斜面ガラ場状、の超微細凹凸形状で覆われていた。この電顕写真を図10に示す。走査型プローブ顕微鏡の走査解析で、山谷平均間隔(RSm)は1〜2μmであり、その最大高低差(Rz)は0.3〜0.4μmであった。さらに別の1個をXPS分析にかけた。XPSでは表面の約1nm深さより浅い部分の元素情報が得られる。このXPS分析から表面には酸素と鉄が大量に、また、少量のニッケル、クロム、炭素、ごく少量のモリブデン、珪素が観察された。これらから表層は金属酸化物が主成分であることが分かった。この分析パターンはエッチング前のSUS304と殆ど同じであった。   Observation of the SUS304 piece subjected to the same treatment with an electron microscope and a scanning probe microscope was performed. From observation with an electron microscope, it was covered with a super fine uneven shape of a laminar slope slanted shape, that is, a shape in which particles having a diameter of 30 to 70 nm and indefinite polygonal shapes were stacked. This electron micrograph is shown in FIG. In the scanning analysis of the scanning probe microscope, the mean valley interval (RSm) was 1 to 2 μm, and the maximum height difference (Rz) was 0.3 to 0.4 μm. Another one was subjected to XPS analysis. In XPS, element information of a portion shallower than the surface depth of about 1 nm can be obtained. From this XPS analysis, a large amount of oxygen and iron were observed on the surface, and a small amount of nickel, chromium, carbon, a very small amount of molybdenum and silicon were observed. From these, it was found that the surface layer was mainly composed of metal oxide. This analysis pattern was almost the same as SUS304 before etching.

〔実験例11〕(一般鋼材の表面処理)
市販の厚さ1.6mmの冷間圧延鋼材「SPCC」板材を購入し、多数の大きさ18mm×45mmの長方形片に切断し、鋼材片とした。この鋼材片の端部に穴を開け、十数個に対し塩化ビニルでコートした銅線を通し、鋼材片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%を含む水溶液を60℃とし、鋼材片を5分浸漬して水道水(群馬県太田市)で水洗した。次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これの鋼材片を1分浸漬し水洗した。次いで別の槽に50℃とした98%硫酸を10%含む水溶液を用意し、これに鋼材片を6分浸漬し、イオン交換水で十分に水洗した。次いで25℃とした1%濃度のアンモニア水に1分浸漬して水洗し、次いで45℃とした2%濃度の過マンガン酸カリ、1%濃度の酢酸、0.5%濃度の水和酢酸ナトリウムを含む水溶液に1分浸漬して十分に水洗した。これを90℃とした温風乾燥機内に15分入れて乾燥した。
[Experimental Example 11] (Surface treatment of general steel materials)
A commercially available 1.6 mm thick cold rolled steel “SPCC” plate was purchased and cut into a large number of 18 mm × 45 mm rectangular pieces to form steel pieces. Drill holes in the ends of this steel piece, pass through copper wires coated with vinyl chloride to dozens, and bend the copper wires so that the steel pieces do not overlap each other, so that all can be hung at the same time did. An aqueous solution containing 7.5% of an aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” at 60 ° C. was immersed in the tank for 5 minutes and washed with tap water (Ota City, Gunma Prefecture). Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the steel piece was immersed for 1 minute and washed with water. Next, an aqueous solution containing 10% of 98% sulfuric acid at 50 ° C. was prepared in another tank, and a steel piece was immersed in this for 6 minutes and sufficiently washed with ion-exchanged water. Next, it was immersed in 1% aqueous ammonia at 25 ° C. for 1 minute, washed with water, then at 45 ° C. 2% potassium permanganate, 1% acetic acid, 0.5% sodium hydroxide hydrate It was immersed in an aqueous solution containing 1 minute and washed thoroughly with water. This was placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

同じ処理をしたSPCC鋼片の10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜200nmで幅が数百〜数千nmの階段が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われていることがわかる。パーライト構造が剥き出しになった様子であり化成処理層はごく薄いことがわかる。写真を図11に示す。一方、走査型プローブ顕微鏡による走査解析では山谷平均間隔RSmが1〜3μm、最大粗さ高さRzが0.3〜1.0μmの粗度が観察された。   From the observation result of the SPCC steel slab treated with the same treatment by a 100,000 times electron microscope, it is almost an ultra-fine concavo-convex shape in which the height and depth are 80 to 200 nm and the width is several hundred to several thousand nm infinite steps. It can be seen that the entire surface is covered. It can be seen that the pearlite structure is exposed and the chemical conversion treatment layer is very thin. A photograph is shown in FIG. On the other hand, in the scanning analysis with a scanning probe microscope, roughness with a mountain-valley average interval RSm of 1 to 3 μm and a maximum roughness height Rz of 0.3 to 1.0 μm was observed.

〔実験例12〕(一般鋼材の表面処理)
市販の厚さ1.6mmの熱間圧延鋼材「SPHC」板材を購入し、多数の大きさ18mm×45mmの長方形片に切断し、鋼材片とした。この鋼材片の端部に穴を開け、十数個に対し塩化ビニルでコートした銅線を通し、鋼材片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%を含む水溶液を60℃とし、鋼材片を5分浸漬して水道水(群馬県太田市)で水洗した。次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これの鋼材片を1分浸漬し水洗した。次いで別の槽に65℃とした98%硫酸を10%と1水素2弗化アンモニウム1%を含む水溶液を用意し、これに鋼材片を2分浸漬し、イオン交換水で十分に水洗した。次いで25℃とした1%濃度のアンモニア水に1分浸漬して水洗し、次いで55℃とした80%正リン酸を1.5%、亜鉛華を0.21%、珪弗化ナトリウムを0.16%、塩基性炭酸ニッケルを0.23%含む水溶液に1分浸漬して十分に水洗した。これを90℃とした温風乾燥機内に15分入れて乾燥した。
[Experiment 12] (Surface treatment of general steel)
A commercially available 1.6 mm thick hot rolled steel “SPHC” plate was purchased and cut into a large number of 18 mm × 45 mm rectangular pieces to obtain steel pieces. Drill holes in the ends of this steel piece, pass through copper wires coated with vinyl chloride to dozens, and bend the copper wires so that the steel pieces do not overlap each other, so that all can be hung at the same time did. An aqueous solution containing 7.5% of an aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” at 60 ° C. was immersed in the tank for 5 minutes and washed with tap water (Ota City, Gunma Prefecture). Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the steel piece was immersed for 1 minute and washed with water. Next, an aqueous solution containing 10% 98% sulfuric acid at 65 ° C. and 1% ammonium hydrogen fluoride and 1% was prepared in another tank, and a steel piece was immersed in this for 2 minutes and washed thoroughly with ion-exchanged water. Next, it was immersed in 1% ammonia water at 25 ° C. for 1 minute and washed with water, then at 55 ° C., 80% normal phosphoric acid was 1.5%, zinc white was 0.21%, and sodium silicofluoride was 0%. It was immersed in an aqueous solution containing 16% and 0.23% basic nickel carbonate for 1 minute and thoroughly washed with water. This was placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

同じ処理をしたSPHC鋼片の10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜500nmで幅が数百〜数万nmの階段が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われていることがわかり、これもやはりパーライト構造であった。この電顕写真を図12に示す。一方、走査型プローブ顕微鏡による走査解析では山谷平均間隔RSmが1〜3μm、最大粗さ高さRzが0.3〜1.0μmの粗度が観察された。   From the observation results of the SPHC steel slab, which was processed in the same manner, with a 100,000-fold electron microscope, it was found to be an extremely fine concavo-convex shape having a height and depth of 80 to 500 nm and a width of several hundred to several tens of thousands of stairs. It was found that the entire surface was covered, and this was also a pearlite structure. This electron micrograph is shown in FIG. On the other hand, in the scanning analysis with a scanning probe microscope, roughness with a mountain-valley average interval RSm of 1 to 3 μm and a maximum roughness height Rz of 0.3 to 1.0 μm was observed.

〔実験例13〕(接着剤:アエロジル)
ビスフェノール型エポキシ樹脂の単量体型が主成分の分子量約370のエポキシ樹脂「JER828(ジャパンエポキシレジン社製)」、固体である分子量約1300の多量体型のビスフェノール型エポキシ樹脂「JER1003(ジャパンエポキシレジンン社製)」、多官能型のフェノールノボラック型エポキシ樹脂「JER154(ジャパンエポキシレジン社製)」、アニリン型の3官能エポキシ樹脂「JER630(ジャパンエポキシレジン社製)」、平均粒径が15μm程度のPES粉体「PES4100MP(住友化学社製)」、直径が約50nmの多層型カーボンナノチューブ「MCNT(ナノカーボンテクノロジーズ社製)」、平均粒径が16〜20nmとされる疎水性処理したヒュームドシリカ「アエロジルR805(日本アエロジル社製)」、平均粒径が8〜12μmの微粉タルク「ハイミクロンHE5(竹原化学工業社製)」、平均粒径が10〜15μmの焼成したカオリン型クレー「サテントン5(竹原化学工業社製)」、エポキシ樹脂の硬化剤である微粉型ジシアンジアミド「DICY7(ジャパンエポキシレジン社製)」、及び、同硬化助剤となる3−(3,4−ジクロルフェニル)−1,1−ジメチル尿素「DCMU99(保土ヶ谷化学工業社製)」を入手した。
[Experimental Example 13] (Adhesive: Aerosil)
An epoxy resin “JER828 (manufactured by Japan Epoxy Resin Co., Ltd.)” whose main component is a monomer type of bisphenol-type epoxy resin, and a polymer bisphenol epoxy resin “JER1003 (Japan Epoxy Resin) having a molecular weight of about 1300 which is a solid. ) ”, Polyfunctional phenol novolac type epoxy resin“ JER154 (made by Japan Epoxy Resin Co.) ”, aniline type trifunctional epoxy resin“ JER630 (made by Japan Epoxy Resin Co., Ltd.) ”, average particle size of about 15 μm PES powder “PES4100MP (manufactured by Sumitomo Chemical Co., Ltd.)”, multi-walled carbon nanotube “MCNT (manufactured by Nanocarbon Technologies)” having a diameter of about 50 nm, and hydrophobized fumed silica having an average particle diameter of 16 to 20 nm "Aerosil R805 (Japan "Erosil Co., Ltd."), fine talc "Hymicron HE5 (manufactured by Takehara Chemical Industry Co., Ltd.)" with an average particle size of 8-12 μm, calcined kaolin clay "Satinton 5 (Takehara Chemical Co., Ltd.) with an average particle size of 10-15 µm ) ”, Fine powdered dicyandiamide“ DICY7 (manufactured by Japan Epoxy Resin Co., Ltd.) ”which is a curing agent for epoxy resin, and 3- (3,4-dichlorophenyl) -1,1-dimethyl which is the curing aid. Urea “DCMU99 (Hodogaya Chemical Co., Ltd.)” was obtained.

「JER828」を60部、「JER1003」を20部、「JER154」を10部、「JER630」10部をビーカーに取り130℃とした熱風乾燥機内に放置して加熱し、固体型「JER1003」を溶融すると同時に撹拌し全体を均一化した。その後、放冷しエポキシ樹脂液として保管した。   60 parts of “JER828”, 20 parts of “JER1003”, 10 parts of “JER154”, 10 parts of “JER630” are placed in a beaker and heated in a hot air dryer at 130 ° C. to heat the solid type “JER1003” At the same time of melting, the whole was homogenized by stirring. Then, it stood to cool and stored as an epoxy resin liquid.

直径0.3mmのジルコニアビーズを粉砕室容量の80%充填したサンドグラインドミル「ミニツエア(アシザワ・ファインテック社製)」を用意し、その入口側に循環ポンプと撹拌機付きのオープンタンクを繋いだ。一方、サンドグラインドミルの出口はオープンタンクに開放した。上記のエポキシ樹脂液を60℃に再加熱して粘度を下げ、350gをオープンタンクに投入し、循環ポンプで粉砕室も完全に満たしてからミルを運転開始した。ミルには水冷ラインがあるので通水を調整して粉砕室内が50〜60℃になるようにした。ミル回転子の周速は11〜12m/秒とした。   A sand grind mill “Minitsu Air (manufactured by Ashizawa Finetech Co., Ltd.)” filled with 80% of the grinding chamber capacity with 0.3 mm diameter zirconia beads was prepared, and an open tank with a circulation pump and a stirrer was connected to the inlet side. . On the other hand, the exit of the sand grind mill was opened to an open tank. The above epoxy resin liquid was reheated to 60 ° C. to lower the viscosity, 350 g was put into an open tank, and the mill was started after the grinding chamber was completely filled with a circulation pump. Since the mill has a water cooling line, water flow was adjusted so that the inside of the grinding chamber was 50-60 ° C. The peripheral speed of the mill rotor was set to 11 to 12 m / sec.

その後、オープンタンクに「ハイミクロンHE5」を10g徐々に入れて循環粉砕を進め、次いで「アエロジルR805」を1.6g同様に加えた。これで5分ほど循環粉砕を進め、次いで「PES4100MP」16gを徐々に加えた後、40分間湿式粉砕(実質は分散操作)を続けた。ミルの出口をオープンタンクからポリエチ瓶に向くようにし、全エポキシ樹脂100部に対してPES4.5部、微粉タルク2.9部、アエロジル0.5部入りの混合物をポリエチ瓶に得た。次いでビーカーに前記混合物108部に対し硬化剤「DICY7」5部を取ってガラス棒でよく混練し、次いで硬化助剤「DCMU99」3部を取って再度よく混練した。次いでビーカーにアルミ箔で蓋をして常温下に50時間放置して一種の熟成を行い、ポリ瓶に取り直して5℃とした冷蔵庫に保管した。この接着剤の名称を「PES,T3,A0.5」とした。   Thereafter, 10 g of “Hi-micron HE5” was gradually added to the open tank to circulate and grind, and then “Aerosil R805” was added in the same manner as 1.6 g. This was followed by circulating pulverization for about 5 minutes. Then, 16 g of “PES4100MP” was gradually added, and then wet pulverization (substantially dispersion operation) was continued for 40 minutes. The outlet of the mill was directed from the open tank to the polyethylene bottle, and a mixture containing 4.5 parts of PES, 2.9 parts of fine talc and 0.5 part of Aerosil was obtained in a polyethylene bottle with respect to 100 parts of the total epoxy resin. Next, 5 parts of the curing agent “DICY7” was taken into 108 parts of the mixture in a beaker and well kneaded with a glass rod, and then 3 parts of the curing aid “DCMU99” was taken and kneaded well again. Next, the beaker was covered with aluminum foil, allowed to stand at room temperature for 50 hours, a kind of aging was carried out, taken back into a plastic bottle and stored in a refrigerator at 5 ° C. The name of this adhesive was “PES, T3, A0.5”.

〔実験例14〕(接着剤:アエロジルとCNT)
実験例13と同様に接着剤を作製したが、サンドグラインドミルのオープンタンクにエポキシ樹脂350gを投入し、循環ポンプで全てを満たしてからミルを運転開始した後でオープンタンクに投入したのは「PES4100MP」16g、微粉タルク「ハイミクロンHE5」10g、ヒュームドシリカ「アエロジルR805」2gに加えてCNT「MCNT」0.3gだった。そしてミルから全エポキシ樹脂100部に対しPES4.5部、微粉タルク2.9部、アエロジル0.5部、CNT0.07部入りの混合物を得た。次いでビーカーに前記混合物108部に対し、「DICY7」5部と「DCMU99」3部を実験例13と同様に加え40℃で5分間混練した。これを常温で50時間寝かせた後にポリエチ瓶に取って5℃とした冷蔵庫に保管した。この接着剤の名称を「PES,T3,A0.5,C0.07」とした。
[Experimental Example 14] (Adhesive: Aerosil and CNT)
An adhesive was prepared in the same manner as in Experimental Example 13, but 350 g of epoxy resin was put into an open tank of a sand grind mill, and after filling the whole with a circulation pump, the mill was started and then put into the open tank. In addition to 16 g of PES4100MP, 10 g of fine talc “Hymicron HE5”, 2 g of fumed silica “Aerosil R805”, it was 0.3 g of CNT “MCNT”. A mixture containing 4.5 parts of PES, 2.9 parts of fine talc, 0.5 part of Aerosil, and 0.07 part of CNT was obtained from 100 parts of the total epoxy resin. Subsequently, 5 parts of “DICY7” and 3 parts of “DCMU99” were added to 108 parts of the mixture in a beaker in the same manner as in Experimental Example 13, and kneaded at 40 ° C. for 5 minutes. This was allowed to stand at room temperature for 50 hours, and then taken in a polyethylene bottle and stored in a refrigerator at 5 ° C. The name of this adhesive was “PES, T3, A0.5, C0.07”.

〔実験例15〕(接着剤:比較)
実験例13と全く同様にして接着剤を作ったがヒュームドシリカ「アエロジルR802」を加えなかったことが異なる接着剤を作製した。すなわち、硬化剤ジシアンジアミドを加える前の混合物には全エポキシ樹脂100部基準でPESが4.5部、微粉タルクが2.9部含まれたものであった。得られた接着剤の名称を「PES,T3」とした。
[Experimental Example 15] (Adhesive: Comparison)
An adhesive was prepared in exactly the same manner as in Experimental Example 13, but an adhesive was produced in which fumed silica “Aerosil R802” was not added. That is, the mixture before adding the curing agent dicyandiamide contained 4.5 parts of PES and 2.9 parts of fine talc based on 100 parts of the total epoxy resin. The name of the obtained adhesive was “PES, T3”.

〔実験例16〕(接着剤)
実験例13と全く同様にして接着剤を作ったがPES粉体「PES4100MP」を加えなかったことだけが異なる接着剤を作製した。すなわち、硬化剤「DICY7」等を加える前の混合物には全エポキシ樹脂100部基準で微粉タルク「ハイミクロンHE5」が2.9部、「アエロジルR805」が0.5部含まれたものであった。得られた接着剤の名称を「T3,A0.5」とした。
[Experimental Example 16] (Adhesive)
Adhesives were made in exactly the same manner as in Experimental Example 13, but different adhesives were produced except that the PES powder “PES4100MP” was not added. That is, the mixture before adding the curing agent “DICY7”, etc. contained 2.9 parts of fine talc “Hymicron HE5” and 0.5 part of “Aerosil R805” based on 100 parts of the total epoxy resin. It was. The name of the obtained adhesive was designated as “T3, A0.5”.

〔実験例17〕(接着剤:比較)
実験例16と全く同様にして接着剤を作ったがヒュームドシリカ「アエロジルR802」を加えなかった。すなわち、硬化剤ジシアンジアミドを加える前の混合物には全エポキシ樹脂100部基準で微粉タルク「ハイミクロンHE5」が2.9部含まれたものであった。得られた接着剤の名称を接着剤「T3」とした。
[Experimental Example 17] (Adhesive: Comparison)
An adhesive was made in exactly the same way as in Experimental Example 16, but fumed silica “Aerosil R802” was not added. That is, the mixture before adding the curing agent dicyandiamide contained 2.9 parts of fine powder talc “High Micron HE5” based on 100 parts of the total epoxy resin. The name of the obtained adhesive was designated as an adhesive “T3”.

〔実験例18〕(接着実験:A7075アルミニウム合金)
実験例1に示した方法で45mm×15mm×3mm厚のA7075アルミニウム合金片を6個作製し、この小片の端部に実験例13で得た接着剤「PES,T3,A0.5」を塗り付けた。これを予め60度にした温風乾燥機内に30分入れて予熱しておいた大型デシケータに入れて蓋をし、真空ポンプを使用して内部を30mmHg以下の減圧にした。減圧下に数分おき、常圧に戻した。この減圧/常圧戻しの操作を3回繰り返し、その後にデシケータを開いてアルミニウム合金片を取り出した。そして接着剤塗布面同士を突き合わせ接着面積が0.6〜0.7cmになるようにしてからクリップ2個で固定し、3組を作った。これを90℃にセットしておいた熱風乾燥機内に入れた。90℃に30分保持した後に120℃に昇温し、30分おいてから135℃に昇温してこの温度に30分保持した。その後にさらに165℃に昇温して30分保持し、さらに180℃に昇温して30分おき、熱風乾燥機の電源を切って翌日まで放冷した。
[Experiment 18] (Adhesion experiment: A7075 aluminum alloy)
Six A7075 aluminum alloy pieces having a thickness of 45 mm × 15 mm × 3 mm were produced by the method shown in Experimental Example 1, and the adhesive “PES, T3, A0.5” obtained in Experimental Example 13 was applied to the ends of the small pieces. I attached. This was put in a large-scale desiccator which had been preheated for 30 minutes in a hot air dryer preliminarily set at 60 ° C., covered, and the inside was reduced to 30 mmHg or less using a vacuum pump. The pressure was returned to normal pressure every few minutes under reduced pressure. This decompression / return to normal pressure operation was repeated three times, after which the desiccator was opened and the aluminum alloy piece was taken out. Then, the adhesive application surfaces were butted together so that the adhesion area was 0.6 to 0.7 cm 2 , and then fixed with two clips to form three sets. This was placed in a hot air dryer set at 90 ° C. After maintaining at 90 ° C. for 30 minutes, the temperature was raised to 120 ° C., and after 30 minutes, the temperature was raised to 135 ° C. and held at this temperature for 30 minutes. Thereafter, the temperature was further raised to 165 ° C. and held for 30 minutes, further raised to 180 ° C. for 30 minutes, and the hot air dryer was turned off and allowed to cool until the next day.

得られた一体化物を常温と100℃と150℃下で引っ張り破断試験した。せん断破断力を接着面積で除して3組のせん断破断力を算出し平均値を出したところ常温下は68.9MPa、100℃下は55.1MPa、150℃下は17.1MPaであった。   The obtained integrated product was subjected to a tensile fracture test at normal temperature, 100 ° C., and 150 ° C. The shear rupture force was divided by the adhesion area to calculate three sets of shear rupture forces, and the average value was obtained. The result was 68.9 MPa at room temperature, 55.1 MPa at 100 ° C., and 17.1 MPa at 150 ° C. .

〔実験例19〕(接着実験)
実験例14で得られた接着剤「PES,T3,A0.5,C0.07」を使用して実験例1で得られたA7075アルミニウム合金片同士を接着硬化してNATによるせん断破断力測定用の試験試料を作成した。すなわち、使用した接着剤が「PES,T3,A0.5,C0.07」であるほかは実験例18と全く同様に実験を進め、せん断破断力を測定した。常温下のせん断破断力の平均は77.1MPa、100℃下の平均は54.0MPa、150℃下の平均は16.0MPaであった。常温下では実験例18より10MPa程度高く、CNTの添加が常温付近での接着力向上に役立つが高温下では効果が明白に出ない。
[Experimental Example 19] (Adhesion experiment)
Adhesive hardening of the A7075 aluminum alloy pieces obtained in Experimental Example 1 using the adhesive “PES, T3, A0.5, C0.07” obtained in Experimental Example 14 to measure the shear breaking force by NAT A test sample was prepared. That is, the experiment proceeded in exactly the same way as in Experimental Example 18 except that the adhesive used was “PES, T3, A0.5, C0.07”, and the shear fracture strength was measured. The average shear breaking force at room temperature was 77.1 MPa, the average under 100 ° C. was 54.0 MPa, and the average under 150 ° C. was 16.0 MPa. At room temperature, it is about 10 MPa higher than Experimental Example 18, and the addition of CNTs helps to improve the adhesive strength near room temperature, but the effect is not apparent at high temperatures.

〔実験例20〕(接着実験:比較)
実験例15で得られた接着剤「PES,T3」を使用して実験例1で得たA7075アルミニウム合金片同士を接着硬化してNATによるせん断破断力測定用の試験試料を作製した。すなわち、使用した接着剤が「PES,T3」である他は実験例18と全く同様に実験を進め、せん断破断力を測定した。常温下のせん断破断力の平均は68.8MPa、100℃下の平均のせん断破断力は32.0MPa、150℃下の平均のせん断破断力は10.2MPaであった。実験例18と比較すればアエロジルを含まないことが異なるが、常温下ではほぼ差異がないように思われ、100℃下、150℃下では大きく低下した。アエロジル添加効果は常温下ではよくわからないが、明らかに高温下での接着力が向上した。
[Experimental Example 20] (Adhesion experiment: comparison)
The A7075 aluminum alloy pieces obtained in Experimental Example 1 were bonded and cured using the adhesive “PES, T3” obtained in Experimental Example 15 to prepare a test sample for measuring the shear breaking force by NAT. That is, the experiment proceeded in exactly the same way as in Experimental Example 18 except that the adhesive used was “PES, T3”, and the shear fracture strength was measured. The average shear breaking force at normal temperature was 68.8 MPa, the average shear breaking force at 100 ° C. was 32.0 MPa, and the average shear breaking force at 150 ° C. was 10.2 MPa. Compared with Experimental Example 18, it does not contain aerosil, but it seems that there is almost no difference at room temperature, and it is greatly reduced at 100 ° C. and 150 ° C. The effect of adding Aerosil is not well understood at room temperature, but the adhesion at high temperature was clearly improved.

〔実験例21〕(接着実験)
実験例16で得た接着剤「T3,A0.5」を使用して実験例1で得たA7075アルミニウム合金片同士を接着硬化してNATによるせん断破断力測定用の試験試料を作製した。すなわち、使用した接着剤が接着剤「T3,A0.5」であるほかは実験例20と全く同様に実験を進め、せん断破断力を測定した。常温下のせん断破断力の平均は68.5MPa、100℃下の平均のせん断破断力は50.2MPa、150℃下の平均のせん断破断力は17.3MPaであった。実験例18、19と比較し、100℃下では大差なかった。
[Experiment 21] (Adhesion experiment)
The A7075 aluminum alloy pieces obtained in Experimental Example 1 were bonded and cured using the adhesive “T3, A0.5” obtained in Experimental Example 16 to prepare a test sample for measuring the shear breaking force by NAT. That is, the experiment was conducted in exactly the same manner as in Experimental Example 20 except that the adhesive used was the adhesive “T3, A0.5”, and the shear breaking strength was measured. The average shear breaking force at room temperature was 68.5 MPa, the average shear breaking force at 100 ° C. was 50.2 MPa, and the average shear breaking force at 150 ° C. was 17.3 MPa. Compared to Experimental Examples 18 and 19, there was no significant difference at 100 ° C.

〔実験例22〕(接着実験:比較)
実験例17で得られた接着剤「T3」を使用して実験例1で得られたA7075アルミニウム合金片同士を接着硬化してNATによるせん断破断力測定用の試験試料を作製した。すなわち、使用した接着剤が接着剤「T3」である他は実験例20と全く同様に実験を進め、せん断破断力を測定した。常温下のせん断破断力の平均は67.1MPa、100℃下の平均のせん断破断力は32.0MPa、150℃下の平均のせん断破断力は7.3MPaであった。実験例18、19と比較して超微細無機充填材を全く含まないことが異なるが、高温域で接着力は大きく低下した。
[Experimental example 22] (Adhesion experiment: comparison)
The A7075 aluminum alloy pieces obtained in Experimental Example 1 were bonded and cured using the adhesive “T3” obtained in Experimental Example 17 to prepare a test sample for measuring the shear breaking force by NAT. That is, the experiment proceeded in exactly the same manner as in Experimental Example 20 except that the adhesive used was the adhesive “T3”, and the shear breaking strength was measured. The average shear breaking force at room temperature was 67.1 MPa, the average shear breaking force at 100 ° C. was 32.0 MPa, and the average shear breaking force at 150 ° C. was 7.3 MPa. Although it differs from Experimental Examples 18 and 19 in that it does not contain any ultrafine inorganic filler, the adhesive strength was greatly reduced at high temperatures.

〔実験例23〜33〕(接着実験)
接着剤「PES,T3」と接着剤「PES,T3,A0.5」を使用して実験例2〜12で得られた金属合金片同士を接着硬化して各種金属合金片同士のNATによるせん断破断力測定用の試験試料を作製した。これらを常温下と100℃下で各3個ずつ破断してせん断破断力を測定し平均した。その結果を表1に示す。
[Experimental Examples 23 to 33] (Adhesion experiment)
The metal alloy pieces obtained in Experimental Examples 2 to 12 were bonded and cured using the adhesive “PES, T3” and the adhesive “PES, T3, A0.5”, and various metal alloy pieces were sheared by NAT. A test sample for measuring the breaking force was prepared. These were each broken at room temperature and 100 ° C., and the shear breaking force was measured and averaged. The results are shown in Table 1.

表1より明らかだが、100℃下のデータは金属合金種にあまり関りなく「PES,T3」で概ね25〜30MPaであり、「PES,T3,A0.5」で40〜50MPaと急上昇する。全体を比較して、厚さの薄とかやや軟質である合金片での実験値が低いこと、また、表面性のやや劣るチタン合金類が他よりやや低めであった。   As is apparent from Table 1, the data at 100 ° C. is roughly 25-30 MPa for “PES, T3” and rapidly rises to 40-50 MPa for “PES, T3, A0.5” regardless of the type of metal alloy. Compared with the whole, the experimental value of the alloy piece having a thin thickness or slightly softness was low, and titanium alloys having a slightly inferior surface property were slightly lower than others.

〔実験例34〕(CFRPとの複合体の作製)
CFRPプリプレグ「パイロフィルTR3110(三菱レイヨン社製)」を入手し、45mm×15mmの小片多数を切り出した。実験例1にて得られた表面処理を行ったA7075アルミニウム合金片の端部に実験例13で作製した接着剤「PES,T3,A0.5」を塗布し、さらにデシケータに入れて減圧/常圧戻しの操作を3回加えた。前述した図13に示す焼成金型1を用いてアルミニウム合金片とCFRPとの接合体を作製する。金型の2と5内に、0.05mmポリエチフィルムの離型用フィルム17を敷き、上記したアルミニウム合金片11、PTFEスペーサ16を置いた。先ほど切断しておいた45mm×15mmのCFRPプリプレグ「パイロフィルTR3110(三菱レイヨン社製)」を厚さ3mm分積層して置いた。さらに、アルミニウム合金片11の上部にポリエチフィルム製の離型用フィルム14を置いた。
[Experimental Example 34] (Preparation of complex with CFRP)
A CFRP prepreg “Pyrofil TR3110 (manufactured by Mitsubishi Rayon Co., Ltd.)” was obtained, and a large number of 45 mm × 15 mm pieces were cut out. The adhesive “PES, T3, A0.5” produced in Experimental Example 13 was applied to the end of the A7075 aluminum alloy piece subjected to the surface treatment obtained in Experimental Example 1, and further put into a desiccator to reduce pressure / normally. The operation of pressure return was added 3 times. A bonded body of an aluminum alloy piece and CFRP is produced using the firing mold 1 shown in FIG. In the molds 2 and 5, a release film 17 of 0.05 mm polyethylene film was laid, and the aluminum alloy piece 11 and the PTFE spacer 16 described above were placed. A 45 mm × 15 mm CFRP prepreg “Pyrofil TR3110 (manufactured by Mitsubishi Rayon Co., Ltd.)” that had been cut earlier was stacked and placed in a thickness of 3 mm. Further, a release film 14 made of a polyethylene film was placed on top of the aluminum alloy piece 11.

PTFE製のスペーサ13とブロック15を載せ、熱風乾燥機に入れた。そこで更にPFTEスペーサ、ブロック13、15の上に、5kgの鉄の錘18をのせて乾燥機に通電し90℃まで昇温して30分おき、次いで120℃まで昇温して30分おき、135℃まで昇温して30分おき、さらに165℃に昇温して30分おき、180℃まで上げて30分おき、通電を止めて扉を閉めたまま放冷した。翌日に乾燥機から出し、焼成金型1から成形物を離型し、ポリエチフィルムを剥ぎ取って図14に示すアルミニウム合金とCFRPの複合体10を得た。同じ操作を繰り返し、アルミニウム合金片とCFRPの複合体である一体化物10を6個得た。   A PTFE spacer 13 and a block 15 were placed and placed in a hot air dryer. Therefore, a 5 kg iron weight 18 is placed on the PFTE spacers, blocks 13 and 15, and the dryer is energized. The temperature is raised to 90 ° C. for 30 minutes, then raised to 120 ° C. for 30 minutes, The temperature was raised to 135 ° C. every 30 minutes, further raised to 165 ° C. every 30 minutes, then raised to 180 ° C. every 30 minutes, and the electricity was turned off and the door was closed and left to cool. The next day, the product was taken out from the dryer, the molded product was released from the firing mold 1, and the polyethylene film was peeled off to obtain a composite 10 of aluminum alloy and CFRP shown in FIG. The same operation was repeated to obtain six integrated objects 10 which are composites of aluminum alloy pieces and CFRP.

接合後2日目に引っ張り破断試験した。CFRP部分は紙やすりをかけた1mm厚のSUS304ステンレス鋼片2枚で挟み、これをチャック板で挟んで固定する方法を取った。常温下でのせん断破断力は最高で38.0MPaだが平均では35.8MPaであり、破断面を観察するとアルミニウム合金側に炭素繊維カスが僅かだが何れも付着していた。また、100℃下の平均のせん断破断力は23.2MPaであり、アルミニウム合金側に炭素繊維カスは付着していなかった。   A tensile break test was conducted on the second day after joining. The CFRP portion was sandwiched between two 1 mm thick SUS304 stainless steel pieces that were sanded and fixed by sandwiching them with a chuck plate. The maximum shear breaking force at room temperature was 38.0 MPa, but the average was 35.8 MPa. When the fracture surface was observed, there was a slight amount of carbon fiber residue attached to the aluminum alloy side. Moreover, the average shear breaking force under 100 degreeC was 23.2 MPa, and the carbon fiber residue did not adhere to the aluminum alloy side.

〔実験例35〕(CFRPとの複合体の作製)
実験例34と全く同様に実験を進め、CFRP片とA7075アルミニウム合金片を接着剤「PES,T3,A0.5」にてコキュア接着して一体化した。3対を得て、これを90℃とした熱風乾燥機に入れて30分おき、135℃に上げて30分おき、165℃に上げて30分おき、さらに180℃に上げて1時間おいて出した。
[Experimental Example 35] (Preparation of complex with CFRP)
The experiment proceeded in exactly the same way as in Experimental Example 34, and the CFRP piece and the A7075 aluminum alloy piece were integrated by cocure bonding with an adhesive “PES, T3, A0.5”. Three pairs were obtained, put in a hot air dryer at 90 ° C. every 30 minutes, raised to 135 ° C. every 30 minutes, raised to 165 ° C. every 30 minutes, further raised to 180 ° C. and held for 1 hour. I put it out.

翌日、熱風乾燥機から出して常温下で引っ張り破断試験をしたところ、せん断破断力は最高で43.0MPa、平均で42.8MPaであり、実験例34より向上していた。さらに破断面を観察すると、アルミニウム合金側に炭素繊維カスが何れも付着していた。炭素繊維とマトリックス樹脂の間で剥がれが生じ、これが起点となって破断したとみられた。そしてこれは使用したこのプリプレグについて言えることであろうが、実験例34との関係から、炭素繊維とマトリックス樹脂間の接着力は硬化条件をきつくすることで向上することがわかった。   The next day, it was taken out from the hot air dryer and subjected to a tensile breaking test at room temperature. As a result, the shear breaking strength was 43.0 MPa at the maximum and 42.8 MPa on the average, which was improved from Experimental Example 34. Furthermore, when the fracture surface was observed, carbon fiber residue adhered to the aluminum alloy side. Peeling occurred between the carbon fiber and the matrix resin, and this was considered to be the starting point for fracture. And this can be said for this prepreg used, but it was found from the relationship with Experimental Example 34 that the adhesive force between the carbon fiber and the matrix resin was improved by tightening the curing conditions.

〔実験例36〕(接着剤とCFRPとの複合体の作製:クレー充填材)
実験例13と全く同様に接着剤を作製したが、無機充填材として微粉タルク「ハイミクロンHE5(竹原化学工業社製)」を使用せず、代わりに焼成カオリンクレーの「サテントン5(竹原化学工業社製)」を使用した。この接着剤の名称を「PES,KC3,A0.5」とした。
[Experimental example 36] (Preparation of composite of adhesive and CFRP: clay filler)
An adhesive was prepared in exactly the same manner as in Experimental Example 13, but fine powder talc “Hi-micron HE5 (manufactured by Takehara Chemical Industries)” was not used as the inorganic filler, but instead “Satinton 5 (Takehara Chemical Industries, Ltd.) of calcined kaolin clay. Used). The name of the adhesive was “PES, KC3, A0.5”.

実験例1で得られた表面処理を行ったA7075アルミニウム合金片の端部に上記で作製した接着剤「PES,KC3,A0.5」を塗布した。それ以外は実験例35と全く同様に実験を進め、A7075アルミニウム合金とCFRPの複合体10を3対得た。接合後7日目に引っ張り破断試験した。CFRP部分は紙やすりをかけた1mm厚のSUS304ステンレス鋼片2枚で挟み、これをチャック板で挟んで固定する方法をとった。常温下でのせん断破断力は平均で41.2MPaであった。この結果は実験例35に近かった。   The adhesive “PES, KC3, A0.5” produced above was applied to the end of the A7075 aluminum alloy piece subjected to the surface treatment obtained in Experimental Example 1. Otherwise, the experiment proceeded in exactly the same way as in Experimental Example 35, and three pairs of A7075 aluminum alloy and CFRP composite 10 were obtained. A tensile fracture test was performed on the seventh day after joining. The CFRP portion was sandwiched between two 1 mm thick SUS304 stainless steel pieces that were sanded and fixed by sandwiching them with a chuck plate. The shear breaking strength at normal temperature was 41.2 MPa on average. This result was close to Experimental Example 35.

〔実験例37〕(CFRPとの複合体の作成:コボンド)
CFRPプリプレグ「パイロフィルTR3110(三菱レイヨン社製)」を入手し、45mm×15mmの小片多数を切り出した。前述した図13に示す焼成金型1を用いてCFRPの長方形体を作製する。金型の2と5内に、0.05mmポリエチフィルムの離型用フィルム17を敷き、通常は上記した11の位置に置く金属合金片に代えて同形状のPTFE片を置き、さらにPTFEスペーサ16を置いた。先ほど切断しておいた45mm×15mmのCFRPプリプレグ「パイロフィルTR3110(三菱レイヨン社製)」を3mm厚分積層して置いた。さらに、PTFE片11の上部にポリエチフィルム製の離型用フィルム14を置いた。
[Experimental Example 37] (Creation of a complex with CFRP: Cobond)
A CFRP prepreg “Pyrofil TR3110 (manufactured by Mitsubishi Rayon Co., Ltd.)” was obtained, and a large number of 45 mm × 15 mm pieces were cut out. A CFRP rectangular body is produced using the firing mold 1 shown in FIG. A mold release film 17 of 0.05 mm polyethylene film is laid in the molds 2 and 5, and a PTFE piece of the same shape is placed instead of the metal alloy piece usually placed at the position 11, and a PTFE spacer 16 is further provided. Placed. A 45 mm × 15 mm CFRP prepreg “Pyrofil TR3110 (manufactured by Mitsubishi Rayon Co., Ltd.)” that had been cut earlier was laminated and placed in a thickness of 3 mm. Further, a release film 14 made of a polyethylene film was placed on top of the PTFE piece 11.

PTFE製のスペーサ13とブロック15を載せ、熱風乾燥機に入れた。そこでさらにPFTEスペーサ、ブロック13、15の上に、5kgの鉄の錘18を載せて熱風乾燥機を作動させ90℃まで昇温して30分おき、次いで120℃まで昇温して30分おき、135℃まで昇温して30分おき、さらに165℃に昇温して30分おき、180℃まで上げて30分おき、熱風乾燥機の作動を停止して扉を閉めたまま放冷した。翌日に熱風乾燥機から出し、焼成金型1から成形物を離型し、ポリエチフィルムを剥ぎ取ってCFRPの長方形体を得た。この作業を繰り返し、CFRP片多数を得た。   A PTFE spacer 13 and a block 15 were placed and placed in a hot air dryer. Therefore, a 5 kg iron weight 18 is placed on the PFTE spacers, blocks 13 and 15, and the hot air dryer is operated to raise the temperature to 90 ° C. for 30 minutes, and then to 120 ° C. for 30 minutes. The temperature was raised to 135 ° C. every 30 minutes, further raised to 165 ° C. every 30 minutes, raised to 180 ° C. every 30 minutes, the operation of the hot air dryer was stopped, and the door was allowed to cool with the door closed. . The next day, the product was taken out from the hot air dryer, the molded product was released from the baking mold 1, and the polyethylene film was peeled off to obtain a CFRP rectangular body. This operation was repeated to obtain many CFRP pieces.

3日後に上記で得られたCFRP片の一部を再び熱風乾燥機に入れ、90℃で30分おき、次いで135℃まで昇温して30分置き、さらに165℃に昇温して30分おき、190℃まで上げて30分おき放冷した。これを2度焼き品と称した。得た2度焼き品を3日後に同じ条件でもう一度焼いた。これを3度焼き品と称した。   After 3 days, a part of the CFRP piece obtained above was put again in a hot air dryer, and every 30 minutes at 90 ° C, then heated to 135 ° C and kept for 30 minutes, and further heated to 165 ° C and 30 minutes Then, the temperature was raised to 190 ° C. and allowed to cool every 30 minutes. This was called a twice-baked product. The obtained twice-baked product was baked again under the same conditions after 3 days. This was called a third-degree baked product.

上記の作業で得たCFRP片の端部を#100サンドペーパーでしっかり数回擦り粗面化した。このCFRP片を実験例1で使用した60℃の脱脂槽に超音波付きで5分浸漬し、純水でよく洗浄して90℃で15分乾燥した。このCFRP部材の粗面化部に実験例13で作製した接着剤「PES,T3,A0.5」を塗布した。一方、実験例1にて得た表面処理を行ったA7075アルミニウム合金片を得てその端部にも実験例13で作製した接着剤「PES,T3,A0.5」を塗布した。得られた接着剤付きCFRP片と同A7075アルミニウム合金片の双方をデシケータに入れて減圧/常圧戻しの操作を3回加えた。   The end of the CFRP piece obtained by the above operation was firmly rubbed with a # 100 sandpaper several times to roughen it. This CFRP piece was immersed in a 60 ° C. degreasing tank used in Experimental Example 1 with ultrasonic waves for 5 minutes, washed thoroughly with pure water, and dried at 90 ° C. for 15 minutes. The adhesive “PES, T3, A0.5” produced in Experimental Example 13 was applied to the roughened portion of the CFRP member. On the other hand, an A7075 aluminum alloy piece subjected to the surface treatment obtained in Experimental Example 1 was obtained, and the adhesive “PES, T3, A0.5” prepared in Experimental Example 13 was applied to the end portion thereof. Both the obtained CFRP piece with adhesive and the same A7075 aluminum alloy piece were put into a desiccator, and the operation of depressurization / return to normal pressure was added three times.

デシケータから出し、CFRP片とアルミニウム合金片の接着剤塗布片同士を0.6〜0.7cmの接着面として接触させクリップ2個で固定して対を作った。この対を熱風乾燥機に入れ、90℃まで昇温して30分置き、次いで135℃まで昇温して50分おき、さらに165℃に昇温して30分おき、放冷した。 A pair was made by taking out from the desiccator, contacting the CFRP piece and the aluminum alloy piece with the adhesive application pieces as an adhesive surface of 0.6 to 0.7 cm 2 and fixing with two clips. This pair was put into a hot air dryer, heated to 90 ° C. and held for 30 minutes, then heated to 135 ° C. for 50 minutes, further heated to 165 ° C. for 30 minutes and allowed to cool.

接合後2日目に引っ張り破断試験した。その結果を表2に示す。理由はわからないが、CFRP片を何回も焼き直すと炭素繊維とマトリックス樹脂間の接着力が向上するのかアルミニウム合金片とCFRP片の接着力は高くなり、3回焼き品ではせん断破断力の最高値の物は71.8MPaあった。平均値も70MPa付近であり、A7075アルミニウム合金片同士の接着物のデータ(実験例18)とほぼ同じとなった。   A tensile break test was conducted on the second day after joining. The results are shown in Table 2. I don't know why, but how many times the CFRP piece is refired improves the adhesion between the carbon fiber and the matrix resin. The value was 71.8 MPa. The average value is also around 70 MPa, which is almost the same as the data (Experimental Example 18) of the adhesion between A7075 aluminum alloy pieces.

〔実験例38〜42〕(CFRPとの複合体の作成:コボンド:比較も含む)
実験例37と全く同様に行ったが、使用した接着剤だけ接着剤「PES,T3,A0.5」ではなく別のものを使用した。実験例41ではジシアンジアミドを硬化剤とする市販の1液性エポキシ系接着剤「EP106NL(セメダイン社)」、実験例42ではイミダゾール類を硬化剤とする市販の1液性エポキシ系接着剤「EP160(セメダイン社)」を使用した。硬化条件等も実験例37と同じである。引っ張り破断試験した結果の平均値を表3に示す。
[Experimental Examples 38 to 42] (Creation of a complex with CFRP: cobond: including comparison)
The experiment was carried out in exactly the same way as in Experimental Example 37, but the adhesive used was a different one instead of the adhesive “PES, T3, A0.5”. In Experimental Example 41, a commercially available one-component epoxy adhesive “EP106NL (Cemedine)” using dicyandiamide as a curing agent, and in Experimental Example 42, a commercially available one-component epoxy adhesive “EP160 (using imidazoles) as a curing agent. Cemedine) ”was used. The curing conditions are the same as in Experimental Example 37. Table 3 shows an average value of the results of the tensile fracture test.

表3から、アエロジル入りの接着剤を使用すると高温での接着力が大きく向上し、硬化剤にジシアンジアミドではなくイミダゾール化合物を使用して耐熱性接着剤として市販されている「EP160(セメダイン社製)」よりも100℃下で優れていることが分かった。また、実験例41にて使用した市販の接着剤「EP106NL」には無機充填材が含まれており、中味としては実験例40の接着剤「T3」に最も似ていると予想した。その結果もやや似た傾向であったが、高温下での結果は若干だが実験例40の方が優れるように思われた。これが事実とすれば、その理由はエポキシ樹脂のレシピーが適当だったからだと推測される。「EP106NL」は低粘度接着剤として市販されており、エポキシ樹脂中のビスフェノールA型エポキシ樹脂単量体型の含有量が本実験でのレシピー(60%とした)より多いのではないだろうか。本実験シリーズで使用したエポキシ樹脂混合物は多分に良好な組成比だと言えよう。   From Table 3, when an adhesive containing aerosil is used, the adhesive strength at a high temperature is greatly improved, and an imidazole compound is used as a curing agent instead of dicyandiamide, which is commercially available as a heat-resistant adhesive "EP160 (produced by Cemedine)" It was found to be superior at 100 ° C. Further, the commercially available adhesive “EP106NL” used in Experimental Example 41 contained an inorganic filler, and the content was expected to be most similar to the adhesive “T3” of Experimental Example 40. The results were somewhat similar, but the results at high temperatures were slightly but the experimental example 40 seemed to be superior. If this is the case, it is assumed that the reason is that the epoxy resin recipe was appropriate. “EP106NL” is commercially available as a low-viscosity adhesive, and the content of the bisphenol A type epoxy resin monomer type in the epoxy resin may be higher than the recipe (60%) in this experiment. It can be said that the epoxy resin mixture used in this experimental series has a rather good composition ratio.

図1は、A7075アルミニウム合金を苛性ソーダ水溶液でエッチングし水和ヒドラジン水溶液で微細エッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 1 is a 10,000 times and 100,000 times electron micrograph of an A7075 aluminum alloy obtained by etching with an aqueous caustic soda solution and fine etching with an aqueous hydrazine solution. 図2は、A5052アルミニウム合金を苛性ソーダ水溶液でエッチングし水和ヒドラジン水溶液で微細エッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 2 is an electron micrograph of 10,000 times that obtained by etching an A5052 aluminum alloy with an aqueous caustic soda solution and finely etching with an aqueous hydrazine solution. 図3は、AZ31Bマグネシウム合金をクエン酸水溶液でエッチングし過マンガン酸カリ水溶液で化成処理等して得たものの10万倍電顕写真2種である。FIG. 3 shows two kinds of 100,000-magnification electron micrographs obtained by etching a AZ31B magnesium alloy with a citric acid aqueous solution and chemical conversion treatment with a potassium permanganate aqueous solution. 図4は、C1100銅合金を硫酸・過酸化水素水溶液でエッチングし亜塩素酸ソーダ水溶液で表面硬化処理等して得たものの1万倍、10万倍電顕写真である。FIG. 4 is an electron micrograph of 10,000 times and 100,000 times that obtained by etching a C1100 copper alloy with an aqueous solution of sulfuric acid and hydrogen peroxide and performing surface hardening treatment with an aqueous solution of sodium chlorite. 図5は、C5191リン青銅合金を硫酸・過酸化水素水溶液でエッチングし亜塩素酸ソーダ水溶液で表面硬化処理等して得たものの1万倍、10万倍電顕写真である。FIG. 5 is an electron micrograph of 10,000 times and 100,000 times obtained by etching a C5191 phosphor bronze alloy with an aqueous solution of sulfuric acid and hydrogen peroxide and surface hardening with an aqueous solution of sodium chlorite. 図6は、「KFC(神戸製鋼所社製)」銅合金を硫酸・過酸化水素水溶液でエッチングし亜塩素酸ソーダ水溶液で表面硬化処理等して得たものの1万倍、10万倍電顕写真である。Fig. 6 shows 10,000 times and 100,000 times the electron microscope of “KFC (Kobe Steel)” copper alloy etched with sulfuric acid / hydrogen peroxide solution and surface hardened with sodium chlorite solution. It is a photograph. 図7は、「KLF5(神戸製鋼所社製)」銅合金を硫酸・過酸化水素水溶液でエッチングし亜塩素酸ソーダ水溶液で表面硬化処理等して得たものの1万倍、10万倍電顕写真である。FIG. 7 shows 10,000 times and 100,000 times the electron microscope of “KLF5 (Kobe Steel)” copper alloy etched with sulfuric acid / hydrogen peroxide aqueous solution and surface hardened with sodium chlorite aqueous solution. It is a photograph. 図8は、「KS40(神戸製鋼所社製)」純チタン系チタン合金を1水素2弗化アンモニウム水溶液でエッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 8 is an electron micrograph of 10,000 times that obtained by etching “KS40 (manufactured by Kobe Steel)” pure titanium-based titanium alloy with an aqueous solution of 1 hydrogen diammonium fluoride. 図9は、「KSTi−9(神戸製鋼所社製)」α−β系チタン合金を1水素2弗化アンモニウム水溶液でエッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 9 is an electron micrograph of 10,000 times that obtained by etching a “KSTi-9 (manufactured by Kobe Steel)” α-β titanium alloy with an aqueous solution of 1 hydrogen diammonium fluoride. . 図10は、SUS304ステンレス鋼を硫酸水溶液でエッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 10 is an electron micrograph of 10,000 times and 100,000 times that obtained by etching SUS304 stainless steel with a sulfuric acid aqueous solution. 図11は、冷間圧延鋼材「SPCCブライト」を硫酸水溶液でエッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 11 is an electron micrograph of 10,000 times and 100,000 times that obtained by etching a cold-rolled steel material “SPCC Bright” with an aqueous sulfuric acid solution. 図12は、熱間圧延鋼材「SPHC」を硫酸水溶液でエッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 12 is an electron micrograph of 10,000 times and 100,000 times that obtained by etching hot-rolled steel “SPHC” with a sulfuric acid aqueous solution. 図13は、金属片とFRPプリプレグを1液性熱硬化型接着剤で貼り合せ、熱風乾燥機内で硬化させるための焼成治具を模式的に示す断面図である。FIG. 13 is a cross-sectional view schematically showing a firing jig for bonding a metal piece and an FRP prepreg with a one-component thermosetting adhesive and curing them in a hot air dryer. 図14は、NAT型処理をした金属合金片とFRPが1液性エポキシ系接着剤によってコキュア接着して得た一体化物の形状を表したものである。FIG. 14 shows the shape of an integrated product obtained by cocure-bonding a NAT-treated metal alloy piece and FRP with a one-component epoxy adhesive. 図15は、NAT型処理をした各種金属合金片同士の1液性エポキシ系接着剤による接着物の形状を表したものである。FIG. 15 shows the shape of an adhesive with a one-component epoxy adhesive between various metal alloy pieces that have been subjected to NAT processing. 図16は、新NMT理論、NAT理論での金属合金表面構造を示す模式的部分断面図である。FIG. 16 is a schematic partial cross-sectional view showing a metal alloy surface structure in the new NMT theory and NAT theory. 図17は、NAT型処理した金属合金片とエポキシ接着剤硬化物の接合面が破断寸前になったときの模式図である。FIG. 17 is a schematic view when the joining surface of the NAT-treated metal alloy piece and the cured epoxy adhesive is on the verge of breaking.

符号の説明Explanation of symbols

1…焼成治具
2…金型本体
3…金型凹部
4…金型貫通孔
5…金型底板
6…底板突起
7…金型底面
8…台座
10…金属合金片とFRPの一体化物
11…金属合金片
12…FRP
13…離型用フィルム
14…PTFEブロック
15…PTFEブロック
16…PTFEスペーサ
17…離型用フィルム
20…金属合金片とFRPの一体化物
21…金属合金片
22…FRP
30…金属合金同士の複合体
31…金属合金片
32…金属合金片
40…金属合金片の金属合金相
41…セラミック質層
42…接着剤硬化物相
50…金属合金片の金属合金相
51…セラミック質層
52…接着剤硬化物相
53…剥がれて生じた空間
DESCRIPTION OF SYMBOLS 1 ... Firing jig | tool 2 ... Mold body 3 ... Mold recessed part 4 ... Mold through-hole 5 ... Mold bottom plate 6 ... Bottom plate protrusion 7 ... Mold bottom surface 8 ... Base 10 ... Integrated object 11 of metal alloy piece and FRP 11 ... Metal alloy piece 12 ... FRP
DESCRIPTION OF SYMBOLS 13 ... Release film 14 ... PTFE block 15 ... PTFE block 16 ... PTFE spacer 17 ... Release film 20 ... Integrated metal alloy piece and FRP 21 ... Metal alloy piece 22 ... FRP
DESCRIPTION OF SYMBOLS 30 ... Composite of metal alloys 31 ... Metal alloy piece 32 ... Metal alloy piece 40 ... Metal alloy phase 41 of a metal alloy piece ... Ceramic layer 42 ... Hardened adhesive agent phase 50 ... Metal alloy phase 51 of a metal alloy piece ... Ceramic layer 52 ... Hardened adhesive phase 53 ... Space generated by peeling

Claims (22)

表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末と、0.02〜0.2質量%のカーボンナノチューブを含むものであることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive complex comprising a metal alloy consisting of, wherein the adhesive is a thermosetting epoxy adhesive, with the center of the particle size distribution comprises an inorganic powder filler 5~20μm as a filler, 0 An adhesive composite containing a metal alloy characterized by containing ultrafine inorganic powder having a particle diameter of 100 nm or less of 3 to 3% by mass and carbon nanotubes of 0.02 to 0.2% by mass .
請求項1に記載の金属合金を含む接着複合体において、前記接着剤が充填材としてさらに、熱可塑性樹脂粉体1〜10質量%含むものであることを特徴とする金属合金を含む接着複合体。   The adhesive composite containing the metal alloy according to claim 1, wherein the adhesive further contains 1 to 10% by mass of thermoplastic resin powder as a filler. 請求項2に記載の金属合金を含む接着複合体において、前記熱可塑性樹脂粉体がポリエーテルスルホンであることを特徴とする金属合金を含む接着複合体。 The adhesive composite containing the metal alloy according to claim 2, wherein the thermoplastic resin powder is polyethersulfone. 請求項1ないしのいずれか1項に記載の金属合金を含む接着複合体において、前記超微細無機粉末がヒュームドシリカであることを特徴とする金属合金を含む接着複合体。 The adhesive composite containing the metal alloy according to any one of claims 1 to 3 , wherein the ultrafine inorganic powder is fumed silica. 請求項1ないしのいずれか1項に記載の金属合金を含む接着複合体において、前記接着剤がサンドグラインドミル型湿式粉砕機を使用して充填材をエポキシ樹脂中に高品位分散させることにより作製されたものであることを特徴とする金属合金を含む接着複合体。 The adhesive composite containing the metal alloy according to any one of claims 1 to 4 , wherein the adhesive disperses the filler in the epoxy resin with high quality using a sand grind mill type wet pulverizer. An adhesive composite containing a metal alloy, wherein the composite is manufactured. 請求項1ないしのいずれか1項に記載の金属合金を含む接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに10〜100nm径で同等の深さまたは高さの凹部もしくは突起である不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面にナトリウムイオンを含まない厚さ2nm以上の酸化アルミニウム薄層が形成されているアルミニウム合金製の金属形状物であることを特徴とする金属合金を含む接着複合体。 Comparable in adhesive composite comprising a metal alloy according to any one of claims 1 to 5, wherein the shaped metal can surface in 10~100nm diameter with has a roughness of micron by chemical etching A thin aluminum oxide layer having a thickness of 2 nm or more, which is covered with an irregularly shaped ultra-fine irregular surface having irregular intervals or protrusions of a certain depth or height and does not contain sodium ions is formed on the surface. An adhesive composite containing a metal alloy, wherein the adhesive composite is a metal shape made of an aluminum alloy. 表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜20nm径で20〜200nm長さの棒状物が無数に錯綜した形の超微細凹凸面で覆われた形状であり、かつ該表面にマンガン酸化物の薄層が形成されているマグネシウム合金製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal shape was covered with an ultra-fine irregular surface having a surface with a roughness on the order of microns by chemical etching and an infinite number of bar-shaped objects having a diameter of 5 to 20 nm and a length of 20 to 200 nm. An adhesive composite containing a metal alloy, characterized in that the metal alloy is made of a magnesium alloy having a shape and a thin layer of manganese oxide formed on the surface thereof.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜20nm径で10〜30nm長さの棒状突起が無数に有する直径80〜100nmの球状物が不規則に積み重なった形状の超微細凹凸面で覆われた形状であり、かつ該表面にマンガン酸化物の薄層が形成されているマグネシウム合金製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal-shaped product has a surface roughness of micron order by chemical etching, and a spherical product with a diameter of 5 to 20 nm and an infinite number of rod-shaped protrusions having a length of 10 to 30 nm and a diameter of 80 to 100 nm. Adhesion including a metal alloy characterized by being a metal shape made of a magnesium alloy having a shape covered with super fine uneven surfaces of a stacked shape and a thin layer of manganese oxide formed on the surface Complex.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに20〜40nmの粒形物及び/または不定多角形状物が積み重なった形状の超微細凹凸面で覆われた形状であり、かつ該表面にマンガン酸化物の薄層が形成されているマグネシウム合金製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The shape of the metal shape is covered with an ultra-fine irregular surface having a surface with a roughness on the order of microns by chemical etching and a stack of 20 to 40 nm granular shapes and / or indefinite polygonal shapes. An adhesive composite containing a metal alloy, which is a metal shape made of a magnesium alloy and having a thin layer of manganese oxide formed on the surface.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに直径または長径短径の平均が10〜150nmの孔開口部または凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸面でほぼ全面が覆われた形状であり、かつ該表面に主として酸化第2銅の薄層が形成されている銅合金製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The surface of the metal shape has a roughness on the order of microns by chemical etching, and the surface of the hole or recess having an average diameter or major axis / minor axis of 10 to 150 nm at irregular intervals of 30 to 300 nm. A metal shape made of a copper alloy having a shape in which almost the entire surface is covered with an ultra-fine uneven surface present in the surface, and a thin layer of cupric oxide is mainly formed on the surface. An adhesive composite containing an alloy.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに直径または長径短径の平均が10〜200nmの凸部が混在して全面に存在する超微細凹凸形状であり、かつ該表面に主として酸化第2銅の薄層が形成されている銅合金製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal shape is an ultra-fine concavo-convex shape in which the surface has a roughness on the order of microns by chemical etching and has an average of 10 to 200 nm in diameter or major axis and minor axis in a mixed manner. An adhesive composite containing a metal alloy, wherein the adhesive is a metal shape made of a copper alloy, and a thin layer of cupric oxide is mainly formed on the surface.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに直径または長径短径の平均が10〜150nmの粒形物または不定多角形状物連なり一部融け合って積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ該表面に主として酸化第2銅の薄層が形成されている銅合金製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal shape has a surface roughness of micron order by chemical etching, and the average of the diameter or major axis and minor axis is 10 to 150 nm. Including a metal alloy characterized by being a metal shape made of a copper alloy in which a substantially entire surface is covered with an ultrafine uneven shape of a shape and a thin layer of cupric oxide is mainly formed on the surface Adhesive complex.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに直径10〜20nmの粒形物及び50〜150nm径の不定多角形状物が混在して積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ該表面に主として酸化第2銅の薄層が形成されている銅合金製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal shape has a micron-order roughness due to chemical etching, and has an ultrafine shape in which a granular shape having a diameter of 10 to 20 nm and an indefinite polygonal shape having a diameter of 50 to 150 nm are mixed and stacked. An adhesive composite containing a metal alloy, characterized in that the metal alloy is a metal shape made of a copper alloy, which is almost entirely covered with a concavo-convex shape, and in which a thin layer of cupric oxide is mainly formed on the surface.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有するとともに直径20〜70nmの粒形物や不定多角形状物が積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ該表面に金属酸化物の薄層が形成されているステンレス鋼製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal shaped object has a surface with a micron-order roughness by chemical etching and is covered almost entirely with an ultra-fine irregular shape of a shape in which particles having a diameter of 20 to 70 nm and irregular polygonal shapes are stacked, An adhesive composite containing a metal alloy, characterized in that it is a metal shape made of stainless steel having a thin layer of metal oxide formed on the surface.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有するとともに高さ80〜150nm、奥行き80〜200nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ該表面にマンガン酸化物、クロム酸化物、亜鉛リン酸化物、または亜鉛とカルシウムのリン酸化物のいずれかの薄層が形成されている鋼材製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal shape has a surface roughness of micron order by chemical etching, a height of 80 to 150 nm, a depth of 80 to 200 nm, a width of several hundred to several thousand nm, and an extremely fine unevenness having a shape with infinite steps. A metal made of a steel material that is almost entirely covered with a shape and on which a thin layer of either manganese oxide, chromium oxide, zinc phosphorus oxide, or zinc and calcium phosphate is formed An adhesive composite comprising a metal alloy, wherein the composite is a shape.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有するとともに高さ80〜150nm、奥行きが80〜500nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面にマンガン酸化物、クロム酸化物、亜鉛リン酸化物、または亜鉛とカルシウムのリン酸化物のいずれかの薄層が形成されている鋼材製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal shape has a micron-order roughness by chemical etching, a height of 80 to 150 nm, a depth of 80 to 500 nm, a width of several hundred to several thousand nm, and an ultrafine shape having an infinite number of steps. Made of a steel material that is almost entirely covered with an uneven shape and on which a thin layer of manganese oxide, chromium oxide, zinc phosphorous oxide, or zinc and calcium phosphorous oxide is formed. An adhesive composite containing a metal alloy characterized by being a metal shape of the above.
表面が化学エッチングによるミクロンオーダーの粗度を有しているとともに5〜500nmの不定期な周期の超微細凹凸面で覆われた形状であり、かつ該表面に金属酸化物または金属リン酸化物の薄層が形成されている金属形状物と、
該金属形状物と接着接合される被着材と、
前記金属形状物と前記被着材との接着面に塗布された接着剤が硬化してなり前記金属形状物と前記被着材とを一体的に接着させる接着剤硬化層と、
からなる金属合金を含む接着複合体であって、前記接着剤が熱硬化型エポキシ系接着剤であり、充填材として粒径分布の中心が5〜20μmの無機粉体充填材を含むとともに、0.3〜3質量%の粒径100nm以下の超微細無機粉末を含み、
前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度を有するとともに高さ50〜100nm、奥行きが80〜200nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面にマンガン酸化物、クロム酸化物、亜鉛リン酸化物、または亜鉛とカルシウムのリン酸化物のいずれかの薄層が形成されている鋼材製の金属形状物であることを特徴とする金属合金を含む接着複合体。
The surface has a roughness on the order of microns by chemical etching and is covered with an ultra-fine irregular surface with an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal shape in which a thin layer is formed;
An adherend bonded and bonded to the metal shape;
An adhesive cured layer that cures an adhesive applied to an adhesive surface between the metal shape and the adherend, and integrally bonds the metal shape and the adherend;
An adhesive composite containing a metal alloy comprising: an adhesive that is a thermosetting epoxy adhesive, and includes an inorganic powder filler having a particle size distribution center of 5 to 20 μm as a filler, and 0 .3-3 mass% ultrafine inorganic powder having a particle size of 100 nm or less,
The metal shape has a micron-order roughness by chemical etching, a height of 50 to 100 nm, a depth of 80 to 200 nm, a width of several hundred to several thousand nm, and an ultrafine shape having an infinite number of steps. Made of a steel material that is almost entirely covered with an uneven shape and on which a thin layer of manganese oxide, chromium oxide, zinc phosphorous oxide, or zinc and calcium phosphorous oxide is formed. An adhesive composite containing a metal alloy characterized by being a metal shape of the above.
同種または異種の複数の金属合金材を機械的加工によりそれぞれの所定形状を有する金属形状物を形成する工程と、
前記所定形状を有する前記金属形状物の表面を5〜500nmの不定期な周期の超微細凹凸形状で覆われた超微細凹凸面としかつ該超微細凹凸面が山谷平均間隔RSmが1〜10μmで最大粗さ高さRzが0.2〜5μmの粗度のより大きな凹凸形状を有する面となるよう化学エッチング含む各種液処理を施す表面処理工程と、
エポキシ樹脂、硬化剤、粒度分布の中心が5〜20μmの無機粉体及び粒子径100nm以下の無機微粉末と、0.02〜0.2質量%のカーボンナノチューブを少なくとも含む熱硬化型エポキシ系接着剤を作製しこれを前記金属形状物に塗布する工程と、
前記の熱硬化型エポキシ系接着剤を塗布済みの同種または異種の金属合金からなる金属形状物同士を貼り合せ、固定し、加熱によって全未硬化樹脂をゲル化硬化させて両者を一体化させる工程と、
を含むことを特徴とする金属合金を含む接着複合体の製造方法。
Forming a metal shape having a predetermined shape by machining a plurality of the same or different metal alloy materials;
The surface of the metal shaped object having the predetermined shape is an ultra-fine uneven surface covered with an ultra-fine uneven shape with an irregular period of 5 to 500 nm, and the ultra-fine uneven surface has an average interval between peaks and valleys RSm of 1 to 10 μm. A surface treatment step of performing various liquid treatments including chemical etching so that the surface having a larger uneven shape having a roughness with a maximum roughness height Rz of 0.2 to 5 μm,
Thermosetting epoxy-based adhesive comprising at least an epoxy resin, a curing agent, an inorganic powder having a particle size distribution center of 5 to 20 μm, an inorganic fine powder having a particle diameter of 100 nm or less, and 0.02 to 0.2% by mass of carbon nanotubes Producing an agent and applying it to the metal shape,
A process of laminating and fixing metal shapes made of the same or different metal alloys coated with the above-mentioned thermosetting epoxy adhesive, and unifying the entire uncured resin by heating to integrate the two. When,
The manufacturing method of the adhesive composite containing the metal alloy characterized by including.
金属合金材を機械的加工によりそれぞれの所定形状を有する金属形状物を形成する工程と、
前記所定形状を有する前記金属形状物の表面を5〜500nmの不定期な周期の超微細凹凸形状で覆われた超微細凹凸面としかつ該超微細凹凸面が山谷平均間隔RSmが1〜10μmで最大粗さ高さRzが0.2〜5μmの粗度のより大きな凹凸形状を有する面となるように化学エッチング含む各種液処理を施す表面処理工程と、
エポキシ樹脂、硬化剤、充填材としての粒度分布の中心が5〜20μmの無機粉体及び超微細充填材としての平均粒子径100nm以下の無機微粉末と、0.02〜0.2質量%のカーボンナノチューブを少なくとも含む熱硬化型エポキシ系接着剤を作製しこれを前記金属形状物に塗布する工程と、
エポキシ系樹脂組成物をマトリックス樹脂とする繊維強化プラスチックのプリプレグを切断積層等の作業により所定形状に整える工程と、
前記の熱硬化型エポキシ系接着剤を塗布済みの金属形状物とプリプレグ形状物とを合せ押し付けつつ固定し加熱によって全未硬化樹脂をゲル化硬化させて両者を一体化させる工程と、
を含むことを特徴とする金属合金を含む接着複合体の製造方法。
Forming metal shapes having respective predetermined shapes by mechanical processing of metal alloy materials;
The surface of the metal shaped object having the predetermined shape is an ultra-fine uneven surface covered with an ultra-fine uneven shape with an irregular period of 5 to 500 nm, and the ultra-fine uneven surface has an average interval between peaks and valleys RSm of 1 to 10 μm. A surface treatment step for performing various liquid treatments including chemical etching so that the maximum roughness height Rz is a surface having a larger roughness with a roughness of 0.2 to 5 μm,
Epoxy resin, curing agent, inorganic powder having a particle size distribution center of 5 to 20 μm as filler and inorganic fine powder having an average particle diameter of 100 nm or less as ultrafine filler , and 0.02 to 0.2% by mass Producing a thermosetting epoxy adhesive containing at least carbon nanotubes and applying it to the metal shape;
A step of preparing a fiber-reinforced plastic prepreg having an epoxy resin composition as a matrix resin into a predetermined shape by work such as cutting and lamination;
The step of fixing the above-mentioned thermosetting epoxy adhesive with the applied metal shape and prepreg shape together and fixing them, and gelling and curing all uncured resin by heating, and integrating both,
The manufacturing method of the adhesive composite containing the metal alloy characterized by including.
金属合金材を機械的加工によりそれぞれの所定形状を有する金属形状物を形成する工程と、
前記所定形状を有する前記金属形状物の表面を5〜500nmの不定期な周期の超微細凹凸形状で覆われた超微細凹凸面としかつ該超微細凹凸面が山谷平均間隔RSmが1〜10μmで最大粗さ高さRzが0.2〜5μmの粗度のより大きな凹凸形状を有する面となるように化学エッチング含む各種液処理を施す表面処理工程と、
エポキシ系樹脂組成物をマトリックス樹脂とする繊維強化プラスチックの硬化形状物を用意し接着すべき箇所を粗面化する工程と、
エポキシ樹脂、硬化剤、粒度分布の中心が5〜20μmの無機粉体及び粒子径100nm以下の無機超微粉末と、0.02〜0.2質量%のカーボンナノチューブを少なくとも含む熱硬化型エポキシ系接着剤を作製しこれを前記金属形状物及び前記繊維強化プラスチックの硬化形状物に塗布する工程と、
前記熱硬化型エポキシ系接着剤を塗布済みの金属形状物と繊維強化プラスチックの硬化形状物とを合せ押し付けつつ固定し加熱によって全未硬化樹脂をゲル化硬化させて両者を一体化させる工程と、
を含むことを特徴とする金属合金を含む接着複合体の製造方法
Forming metal shapes having respective predetermined shapes by mechanical processing of metal alloy materials;
The surface of the metal shaped object having the predetermined shape is an ultra-fine uneven surface covered with an ultra-fine uneven shape with an irregular period of 5 to 500 nm, and the ultra-fine uneven surface has an average interval between peaks and valleys RSm of 1 to 10 μm. A surface treatment step for performing various liquid treatments including chemical etching so that the maximum roughness height Rz is a surface having a larger roughness with a roughness of 0.2 to 5 μm,
Preparing a cured shape of fiber reinforced plastic using an epoxy resin composition as a matrix resin and roughening a portion to be bonded;
Thermosetting epoxy system comprising an epoxy resin, a curing agent, an inorganic powder having a particle size distribution center of 5 to 20 μm, an inorganic ultrafine powder having a particle diameter of 100 nm or less, and at least 0.02 to 0.2% by mass of carbon nanotubes Producing an adhesive and applying it to the metal shape and the cured shape of the fiber reinforced plastic; and
Fixing the thermosetting epoxy adhesive applied metal shape and the cured shape of fiber reinforced plastic while pressing them together and heating them to gel and cure all uncured resin to integrate them,
For producing an adhesive composite containing a metal alloy
請求項18ないし20のいずれか1項に記載の金属合金を含む接着複合体の製造方法において、
前記した金属形状物及び/または繊維強化プラスチックのプリプレグないし硬化形状物に接着剤を塗布する工程後に、塗布済み材を密閉容器に収納し、容器内を減圧しその後に加圧する操作を繰り返し行う、材料表面への接着剤染み込まし工程を付加した、
ことを特徴とする金属合金を含む接着複合体の製造方法。
In the manufacturing method of the adhesion composite containing the metal alloy according to any one of claims 18 to 20,
After the step of applying the adhesive to the above-described metal shape and / or fiber reinforced plastic prepreg or cured shape, the applied material is housed in a sealed container, and the operation of repeatedly depressurizing the inside of the container and then pressurizing is repeated. Added the process of soaking the adhesive on the material surface,
The manufacturing method of the adhesive composite containing the metal alloy characterized by the above-mentioned.
請求項18ないし21のいずれか1項に記載の金属合金を含む接着複合体の製造方法において、
前記した熱硬化型エポキシ系接着剤の製造過程で充填材の分散を進めるためにサンドグラインドミル型湿式粉砕機を使用する、
ことを特徴とする金属合金を含む接着複合体の製造方法。
In the manufacturing method of the adhesion composite containing the metal alloy according to any one of claims 18 to 21,
In order to advance the dispersion of the filler in the manufacturing process of the thermosetting epoxy adhesive described above, a sand grind mill type wet pulverizer is used.
The manufacturing method of the adhesive composite containing the metal alloy characterized by the above-mentioned.
JP2008308019A 2008-12-02 2008-12-02 Adhesive composite containing metal alloy and method for producing the same Active JP5295738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308019A JP5295738B2 (en) 2008-12-02 2008-12-02 Adhesive composite containing metal alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308019A JP5295738B2 (en) 2008-12-02 2008-12-02 Adhesive composite containing metal alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010131789A JP2010131789A (en) 2010-06-17
JP5295738B2 true JP5295738B2 (en) 2013-09-18

Family

ID=42343626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308019A Active JP5295738B2 (en) 2008-12-02 2008-12-02 Adhesive composite containing metal alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP5295738B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237646B (en) 2010-12-02 2015-07-22 东丽株式会社 Method for producing metal composite, and chassis for electronic equipment
US9484123B2 (en) 2011-09-16 2016-11-01 Prc-Desoto International, Inc. Conductive sealant compositions
CN103129048B (en) * 2011-12-02 2015-07-29 鸿富锦精密工业(深圳)有限公司 The preparation method of the complex of metal and plastics and complex
JP6087551B2 (en) * 2012-09-21 2017-03-01 オイレス工業株式会社 Manufacturing method of multilayer sliding member
CN102876272B (en) * 2012-09-27 2014-10-29 深圳清华大学研究院 Heat-conduction binding material and preparation method thereof
JP6230792B2 (en) * 2013-01-24 2017-11-15 日新製鋼株式会社 Painted metal preform, composite, and method for producing the same
CN103436192B (en) * 2013-07-23 2015-04-22 苏州靖羽新材料有限公司 Metal adhesive and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269620A (en) * 1995-10-23 2000-09-29 Ibiden Co Ltd Printed wiring board
JP2000204263A (en) * 1999-01-08 2000-07-25 Matsushita Electric Ind Co Ltd Thermosetting resin composition and mounting method for electronic part using the same
WO2008133030A1 (en) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Titanium alloy compound material, and its jointing method

Also Published As

Publication number Publication date
JP2010131789A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5129903B2 (en) Magnesium alloy composite and manufacturing method thereof
JP5094849B2 (en) Stainless steel composite
JP5295738B2 (en) Adhesive composite containing metal alloy and method for producing the same
JP5008040B2 (en) Titanium alloy composite and its joining method
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
JP5554483B2 (en) Metal-resin composite and method for producing the same
JP4965649B2 (en) Copper alloy composite and manufacturing method thereof
JP4965347B2 (en) Tubular composite and manufacturing method thereof
US8845910B2 (en) Aluminum alloy composite and method for joining thereof
JP5191961B2 (en) One-component epoxy adhesive and bonding method
KR101216800B1 (en) Steel product composite and process for producing the steel product composite
JP2011042030A (en) Bonded structure of metal and adherend and process for producing the same
JP4906004B2 (en) Method for producing composite of metal alloy and fiber reinforced plastic
JP5372469B2 (en) Metal alloy laminate
JP4903881B2 (en) Joined body of metal alloy and adherend and method for producing the same
JP2011073191A (en) Joined body of cfrp and adherend and method of manufacturing the same
JP5253416B2 (en) Metal-resin composite and method for producing the same
JP2010269534A (en) Bonded composite containing metal, and method for manufacturing the same
JP5253315B2 (en) Solvent type epoxy adhesive and bonding method
JP2011148937A (en) Solvent-type epoxy adhesive and adhering method
JP2009241569A (en) Tubular joining composite
JP5714864B2 (en) CFRP prepreg and bonded material
JP2011104853A (en) Laminate of metal and carbon fiber reinforced resin and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Ref document number: 5295738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250