[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5295617B2 - Method for producing concentrated composition for reduced beverage - Google Patents

Method for producing concentrated composition for reduced beverage Download PDF

Info

Publication number
JP5295617B2
JP5295617B2 JP2008100387A JP2008100387A JP5295617B2 JP 5295617 B2 JP5295617 B2 JP 5295617B2 JP 2008100387 A JP2008100387 A JP 2008100387A JP 2008100387 A JP2008100387 A JP 2008100387A JP 5295617 B2 JP5295617 B2 JP 5295617B2
Authority
JP
Japan
Prior art keywords
reduced
mass
composition
reduced beverage
concentrated composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008100387A
Other languages
Japanese (ja)
Other versions
JP2008301809A (en
Inventor
昌弘 福田
枝里 板屋
宏和 高橋
良 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008100387A priority Critical patent/JP5295617B2/en
Priority to KR1020097023051A priority patent/KR101463639B1/en
Priority to PCT/JP2008/001146 priority patent/WO2008139725A1/en
Priority to TW097116895A priority patent/TWI402041B/en
Priority to US12/594,222 priority patent/US8367140B2/en
Priority to EP08751671A priority patent/EP2143344B1/en
Publication of JP2008301809A publication Critical patent/JP2008301809A/en
Application granted granted Critical
Publication of JP5295617B2 publication Critical patent/JP5295617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tea And Coffee (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

本発明は非重合体カテキン類を高濃度に含有する還元飲料用濃縮組成物の製造方法に関する。   The present invention relates to a method for producing a concentrated composition for a reduced beverage containing a high concentration of non-polymer catechins.

市販の緑茶抽出物の濃縮物は、緑茶抽出物の濃縮物に含まれる成分の影響によって収斂味や苦味が強く、また喉越しが悪かった。カテキンによる生理効果を発現させる上で必要となる長期間の飲用への適性から、いずれの技術においても高濃度カテキン配合飲料特有のカテキン由来の苦味低減と適度な甘味や酸味を両立し、長期に保存安定可能な飲料が望まれていた(特許文献1〜3)。さらに、飲料形態にする前段階において、流通が容易である還元飲料用濃縮組成物も開発されていたが、苦味が低減されたものではなかった(特許文献4)。   The concentrate of the commercially available green tea extract was strong in astringency and bitterness due to the influence of the components contained in the concentrate of the green tea extract, and was not good over the throat. Because of the suitability for long-term drinking required to express the physiological effects of catechins, both technologies combine the bitterness reduction derived from catechins peculiar to high-concentrated catechin-containing beverages with moderate sweetness and sourness for a long time. A beverage that can be stored and stabilized has been desired (Patent Documents 1 to 3). Further, a concentrated composition for a reduced beverage that is easy to distribute has been developed in the previous stage of making it into a beverage form, but the bitterness has not been reduced (Patent Document 4).

このような還元飲料用濃縮組成物には一般に保存料、具体的には、ヒドロキシカルボン酸が使用されている。ヒドロキシカルボン酸を飲料の製造時に使用する方法としては、天然型カテキン類を良好に保存する目的で茶抽出液または抽出用水にヒドロキシカルボン酸であるアスコルビン酸を添加する方法(特許文献5、6)や、タンニンの浸出量が少ない緑茶飲料の製造の為にアスコルビン酸を溶解した溶液を用いて緑茶葉から抽出する方法(特許文献7)などが知られている。非重合体カテキン類を含有する飲料にアスコルビン酸等の保存料を配合するにあたって、その投入順序が得られる飲料や濃縮物にどのような影響を及ぼすかについての報告はこれまでの所見当たらない。
特開2002−142677号公報 特開平8−109178号公報 特開平8−298930号公報 米国特許第6413570号明細書 特開2002−84973号公報 特開2004−187613号公報 特開平2−13348号公報
Such concentrated concentrates for reduced beverages generally use preservatives, specifically, hydroxycarboxylic acids. As a method of using hydroxycarboxylic acid during the production of beverages, a method of adding ascorbic acid, which is a hydroxycarboxylic acid, to a tea extract or extraction water for the purpose of preserving natural catechins well (Patent Documents 5 and 6) Also known is a method of extracting from green tea leaves using a solution in which ascorbic acid is dissolved in order to produce a green tea beverage with a small amount of tannin leaching (Patent Document 7). There have been no reports on the effects of the order of addition of the preservatives such as ascorbic acid on beverages and concentrates containing non-polymer catechins.
JP 2002-142777 A JP-A-8-109178 JP-A-8-298930 US Pat. No. 6,413,570 JP 2002-84973 A JP 2004-187613 A JP-A-2-13348

本発明は、非重合体カテキン類を高濃度に含有するにも関わらず、飲料に還元した際に苦味及び収斂味が低減され、適度な甘味と酸味が両立し、保存安定性が良好である還元飲料用濃縮組成物の製造方法を提供するものである。   Although the present invention contains a high concentration of non-polymer catechins, the bitterness and astringency are reduced when reduced to a beverage, and both moderate sweetness and sourness are compatible, and the storage stability is good. A method for producing a concentrated composition for a reduced beverage is provided.

本発明者らは、高濃度の非重合体カテキン類を含有する茶抽出物の濃縮物及び/又は精製物、甘味料として炭水化物、並びに酸味料としてヒドロキシカルボン酸を特定の順番で混合した結果、飲料に還元した際に苦味や収斂味が低減され、適度な甘味と酸味が両立する還元飲料用濃縮組成物が得られることを見出した。   The inventors have mixed tea extract concentrates and / or purified products containing high concentrations of non-polymer catechins, carbohydrates as sweeteners, and hydroxycarboxylic acids as acidulants in a particular order, It has been found that when concentrated into a beverage, the bitterness and astringent taste are reduced, and a concentrated composition for a reduced beverage that has both moderate sweetness and sourness can be obtained.

すなわち、本発明は、下記順の下記工程を含む、非重合体カテキン類0.5〜25.0質量%を含有する還元飲料用濃縮組成物の製造方法を提供するものである。
(1)水にヒドロキシカルボン酸を混合する工程、
(2)非重合体カテキン類を含有する茶抽出物の濃縮物及び/又は精製物を前記水に混合する工程、
(3)炭水化物を前記水に混合する工程。
That is, this invention provides the manufacturing method of the concentrate composition for reduced drinks containing 0.5-25.0 mass% of non-polymer catechins including the following process of the following order.
(1) A step of mixing hydroxycarboxylic acid with water,
(2) mixing a concentrate and / or purified product of tea extract containing non-polymer catechins with the water,
(3) A step of mixing a carbohydrate with the water.

本発明により得られる還元飲料用濃縮組成物は、保存安定性が良好であり、かつ、これを還元した際に、苦味や収斂味が低減しており、適度な甘味と酸味が両立する。   The concentrated composition for a reduced beverage obtained by the present invention has good storage stability, and when reduced, the bitterness and astringency are reduced, and both moderate sweetness and sourness are compatible.

本発明における非重合体カテキン類とは、カテキン、ガロカテキン、カテキンガレート、ガロカテキンガレートなどの非エピ体カテキン類及びエピカテキン、エピガロカテキン、エピカテキンガレート、エピガロカテキンガレート等のエピ体カテキン類を合わせての総称であり、非重合体カテキン類の濃度は上記8種の合計量に基づいて定義される。   Non-polymer catechins in the present invention are non-epimeric catechins such as catechin, gallocatechin, catechin gallate and gallocatechin gallate and epi-catechins such as epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate And the concentration of non-polymer catechins is defined based on the total amount of the above eight types.

本発明の製造方法においては、まず(1)水にヒドロキシカルボン酸を混合する(工程(1))。このとき、5〜45℃の温度の水を使用することが、還元飲料用濃縮組成物を還元して得られた飲料(還元飲料)の苦味の低減、最適な甘味と酸味の両立の観点から好ましい。さらに還元飲料の苦味低減の観点から、水の温度の下限は8℃、更に10℃、特に35℃が好ましく、他方上限は42℃が特に好ましい。   In the production method of the present invention, first, (1) hydroxycarboxylic acid is mixed with water (step (1)). At this time, using water at a temperature of 5 to 45 ° C. is from the viewpoint of reducing the bitterness of the beverage (reduced beverage) obtained by reducing the concentrated composition for reduced beverage, and achieving both optimal sweetness and sourness. preferable. Furthermore, from the viewpoint of reducing the bitterness of the reduced beverage, the lower limit of the water temperature is preferably 8 ° C, more preferably 10 ° C, particularly 35 ° C, and the upper limit is particularly preferably 42 ° C.

工程(1)で用いられるヒドロキシカルボン酸としては、アスコルビン酸、エリソルビン酸、クエン酸、グルコン酸、酒石酸、乳酸、リンゴ酸等が挙げられるが、pH調整や酸化防止効果の点からアスコルビン酸が好ましい。ヒドロキシカルボン酸の使用量は、本発明の還元飲料用濃縮組成物中の濃度として下限は0.01質量%、更に0.1質量%、特に0.3質量%となる量が好ましく、他方上限は10.0質量%、更に9質量%、特に5.0質量%となる量が好ましい。ヒドロキシカルボン酸の濃度が0.01質量%以上である場合、還元飲料の苦味が抑制できるとともに適度な酸味となり、非重合体カテキン類の保存安定性が良好になる。一方、ヒドロキシカルボン酸の濃度が10.0質量%以下であると濃縮組成物の粘性や色相等が変質することなく保存安定性が良好であり、還元飲料とした際に適度な酸味や苦味が得られる。   Examples of the hydroxycarboxylic acid used in the step (1) include ascorbic acid, erythorbic acid, citric acid, gluconic acid, tartaric acid, lactic acid, malic acid and the like, but ascorbic acid is preferable from the viewpoint of pH adjustment and antioxidant effect. . The amount of hydroxycarboxylic acid used is preferably 0.01% by mass, more preferably 0.1% by mass, especially 0.3% by mass as the concentration in the concentrated composition for reduced beverages of the present invention, while the other upper limit. Is preferably 10.0% by mass, more preferably 9% by mass, and particularly preferably 5.0% by mass. When the concentration of the hydroxycarboxylic acid is 0.01% by mass or more, the bitterness of the reduced beverage can be suppressed and the acidity becomes moderate, and the storage stability of the non-polymer catechins is improved. On the other hand, when the concentration of the hydroxycarboxylic acid is 10.0% by mass or less, the storage stability is good without changing the viscosity or hue of the concentrated composition. can get.

水としては、イオン交換水、天然水、蒸留水、水道水等が挙げられるが、味の点から特にイオン交換水が好ましい。   Examples of water include ion-exchanged water, natural water, distilled water, tap water, and the like, and ion-exchanged water is particularly preferable from the viewpoint of taste.

次いで、工程(1)で得られた水溶液を非重合体カテキン類濃度が0.13質量%となるようにイオン交換水で希釈した時のpH(25℃)が2.5〜6.0の範囲内になるように調整することが好ましい(pH調整工程)。
すなわち、pH調整工程は、工程(1)で得られた水溶液のpHを調整するための任意の工程であり、工程(1)で得られた水溶液のpHが2.5〜6.0の範囲内にないときに本工程を行い、pHが前記範囲内にあれば本工程を行うことなく後述する工程(2)を行うことができる。
Subsequently, pH (25 degreeC) when diluting the aqueous solution obtained at the process (1) with ion-exchange water so that non-polymer catechin density | concentration may be 0.13 mass% is 2.5-6.0. It is preferable to adjust to be within the range (pH adjustment step).
That is, the pH adjustment step is an arbitrary step for adjusting the pH of the aqueous solution obtained in step (1), and the pH of the aqueous solution obtained in step (1) is in the range of 2.5 to 6.0. The step (2) described below can be carried out without carrying out the step if the pH is within the above range.

かかるpH調整には、工程(1)で得られた水溶液に、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム及び炭酸カリウムから選ばれる少なくとも1種を含有する水溶液(弱アルカリ水溶液)を投入することが好ましい。
弱アルカリ水溶液の添加量は、工程(1)で得られた水溶液を非重合体カテキン類濃度が0.13質量%となるようにイオン交換水で希釈した時のpHが2.5〜6.0となる量であるが、還元飲料の風味、色相及び保存安定性の観点から、好ましくは2.8〜5.5、更に好ましくは3.0〜5.0、特に好ましくは3.8〜4.5となる量である。pHが2.5以上では適度な酸味が得られ、長期の保存において非重合体カテキン類の保持に有利である。又、pHが6.0以下であると、長期の保存において還元性を有する糖類と非重合体カテキン類の反応が起き難くなり、非重合カテキン類の保持に有利である。pHの調整は、前記弱アルカリ水溶液以外にアスコルビン酸、クエン酸等の有機酸を用いて前記範囲にすることができ、長期の保存が可能で適度な酸味を有する還元飲料用濃縮組成物となる。
For such pH adjustment, an aqueous solution (weak alkaline aqueous solution) containing at least one selected from sodium bicarbonate, sodium carbonate, potassium bicarbonate and potassium carbonate is added to the aqueous solution obtained in step (1). preferable.
The amount of the weak alkaline aqueous solution added is 2.5 to 6. pH when the aqueous solution obtained in the step (1) is diluted with ion-exchanged water so that the non-polymer catechin concentration is 0.13% by mass. From the viewpoint of the flavor, hue and storage stability of the reduced beverage, it is preferably 2.8 to 5.5, more preferably 3.0 to 5.0, and particularly preferably 3.8 to 0. The amount is 4.5. When the pH is 2.5 or more, a moderate sourness is obtained, which is advantageous for retaining non-polymer catechins during long-term storage. Further, when the pH is 6.0 or less, the reaction between the reducing sugar and the non-polymer catechins hardly occurs during long-term storage, which is advantageous for holding the non-polymer catechins. The pH can be adjusted to the above range by using an organic acid such as ascorbic acid or citric acid in addition to the weak alkaline aqueous solution, and can be stored for a long period of time, resulting in a concentrated composition for a reduced beverage having an appropriate acidity. .

このように工程(1)の次にpH調整工程を行うことにより、次工程以降での発泡を抑制でき、かつ還元飲料の苦味を低減できる。また、弱アルカリ水溶液を投入後、消泡するまで十分な時間(好ましくは5分以上)をかけて攪拌する。   Thus, by performing a pH adjustment process after a process (1), the foaming in the following process can be suppressed and the bitterness of a reduced beverage can be reduced. Moreover, after adding weak alkaline aqueous solution, it stirs taking sufficient time (preferably 5 minutes or more) until it defoams.

次に、工程(1)又はpH調整工程で得られた水溶液に、非重合体カテキン類を含有する茶抽出物の濃縮物及び/又は精製物を混合する(工程(2))。このように、酸性条件下で茶抽出物の濃縮物及び/又は精製物を混合することで、色相及び保存安定性を向上させると共に苦味や収斂味を低減し、更に適度な酸味を付与することができる。
工程(2)に用いられる茶抽出物の濃縮物及び/又は精製物としては、緑茶抽出物の濃縮物及び/又は精製物が好ましく、具体的には、緑茶抽出物の濃縮物及び/又は精製物の水溶液、あるいは当該緑茶抽出物の濃縮物及び/又は精製物に緑茶抽出液を配合したものが挙げられるが、緑茶抽出物の精製物が特に好ましい。ここでいう緑茶抽出物の濃縮物とは、緑茶葉から熱水もしくは水溶性有機溶媒により抽出した溶液から水分を一部除去して非重合体カテキン類濃度を高めたものであり、形態としては、固体、水溶液、スラリー状など種々のものが挙げられる。
Next, a concentrate and / or purified product of tea extract containing non-polymer catechins is mixed with the aqueous solution obtained in the step (1) or the pH adjustment step (step (2)). In this way, by mixing the concentrate and / or purified product of tea extract under acidic conditions, the hue and storage stability are improved, bitterness and astringency are reduced, and an appropriate acidity is imparted. Can do.
The concentrate and / or purified product of the tea extract used in the step (2) is preferably a concentrated and / or purified product of the green tea extract, specifically, a concentrated and / or purified product of the green tea extract. An aqueous solution of a green tea extract, or a concentrate and / or a purified product of the green tea extract is blended with a green tea extract, and a purified product of the green tea extract is particularly preferable. The green tea extract concentrate mentioned here is a product obtained by partially removing water from a solution extracted from green tea leaves with hot water or a water-soluble organic solvent to increase the concentration of non-polymer catechins. , Solid, aqueous solution, slurry, and the like.

非重合体カテキン類を含有する緑茶抽出物の濃縮物としては市販の三井農林(株)「ポリフェノン」、伊藤園(株)「テアフラン」、太陽化学(株)「サンフェノン」などが挙げられる。非重合体カテキン類濃度が後掲の範囲内にあれば、これらを精製したものを用いてもよい。緑茶抽出物の精製物としては、例えば、緑茶抽出物又はその濃縮物を水又は水とエタノールなどの有機溶媒の混合物に懸濁して生じた沈殿を除去し、次いで溶媒を留去して精製したもの、茶葉から熱水もしくはエタノールなどの水溶性有機溶媒により抽出した抽出物を濃縮したものを更に精製したもの、あるいは抽出物を直接精製したものを用いてもよい。茶抽出物の精製においては、茶抽出物等を水又は有機溶媒水溶液に懸濁させて生じた沈殿を濾過する前に、活性炭と、酸性白土又は活性白土とを添加して処理してもよい。   Examples of the concentrate of green tea extract containing non-polymer catechins include commercially available Mitsui Norin Co., Ltd. “Polyphenone”, ITO EN Co., Ltd. “Theafuran”, Taiyo Kagaku Co., Ltd. “Sunphenon” and the like. If the concentration of non-polymer catechins is within the range described below, purified products thereof may be used. As a purified product of green tea extract, for example, a precipitate formed by suspending a green tea extract or a concentrate thereof in water or a mixture of water and an organic solvent such as ethanol is removed, and then the solvent is distilled off for purification. A product obtained by concentrating an extract extracted from tea leaves with hot water or a water-soluble organic solvent such as ethanol, or a product obtained by further purifying the extract may be used. In the purification of tea extract, activated carbon and acid clay or activated clay may be added and treated before filtering the precipitate formed by suspending tea extract or the like in water or an organic solvent aqueous solution. .

非重合体カテキン類は、緑茶抽出物又はその精製物をタンナーゼ処理により非重合体カテキン類中のガレート体率を低下させることができる。タンナーゼによる処理は、緑茶抽出物の非重合体カテキン類に対してタンナーゼを0.5〜10質量%の範囲になるように添加することが好ましい。タンナーゼ処理の温度は、酵素活性が得られる15〜40℃が好ましく、更に好ましくは20〜30℃である。タンナーゼ処理時のpH(25℃)は、酵素活性が得られる4〜6が好ましく、更に好ましくは4.5〜6であり、特に好ましくは5〜6である。   Non-polymer catechins can reduce the gallate content in non-polymer catechins by tannase treatment of a green tea extract or a purified product thereof. In the treatment with tannase, tannase is preferably added in a range of 0.5 to 10% by mass with respect to the non-polymer catechins of the green tea extract. The temperature of the tannase treatment is preferably 15 to 40 ° C., more preferably 20 to 30 ° C. at which enzyme activity can be obtained. The pH (25 ° C.) during the tannase treatment is preferably 4 to 6, from which enzyme activity can be obtained, more preferably 4.5 to 6, and particularly preferably 5 to 6.

非重合体カテキン類にはエピガロカテキンガレート、ガロカテキンガレート、エピカテキンガレート及びカテキンガレートからなるガレート体と、エピガロカテキン、ガロカテキン、エピカテキン及びカテキンからなる非ガレート体がある。上記のガレート体率とは、(A)非重合体カテキン類中の(B)非重合体カテキン類のガレート体の割合([(B)/(A)]×100)をいう。(A)非重合体カテキン類中の(B)ガレート体率(以下、単に「ガレート体率」という)は5〜55質量%が好ましい。ガレート体率の下限は8質量%、特に10質量%が好ましく、他方上限は54質量%、更に53質量%、更に50質量%、特に48質量%であることが苦味抑制の観点から好ましい。   Non-polymer catechins include a gallate body composed of epigallocatechin gallate, gallocatechin gallate, epicatechin gallate and catechin gallate, and a non-gallate body composed of epigallocatechin, gallocatechin, epicatechin and catechin. Said gallate body rate means the ratio ([(B) / (A)] × 100) of the gallate body of (B) non-polymer catechins in (A) non-polymer catechins. The (B) gallate body ratio (hereinafter simply referred to as “gallate body ratio”) in the (A) non-polymer catechins is preferably 5 to 55% by mass. The lower limit of the gallate body ratio is preferably 8% by mass, particularly 10% by mass, and the other upper limit is preferably 54% by mass, further 53% by mass, further 50% by mass, and particularly 48% by mass from the viewpoint of bitterness suppression.

茶抽出物の濃縮物及び/又は精製物は、還元飲料用濃縮組成物中の非重合体カテキン類濃度が0.5〜25質量%、好ましくは2.0〜25.0質量%、更に好ましくは3.0〜25.0質量%、特に好ましくは4.0〜18.0質量%になるように添加する。非重合体カテキン類含量が上記範囲内である場合、還元飲料とした際に非重合体カテキン類による生理効果を確実に期待できると共に、苦味及び収斂味を十分に抑制することが可能になる。   The concentrate and / or purified product of the tea extract has a concentration of non-polymer catechins in the concentrated composition for reduced beverage of 0.5 to 25% by mass, preferably 2.0 to 25.0% by mass, and more preferably. Is added in an amount of 3.0 to 25.0% by mass, particularly preferably 4.0 to 18.0% by mass. When the content of the non-polymer catechins is within the above range, the physiological effect of the non-polymer catechins can be surely expected when a reduced beverage is used, and the bitterness and astringent taste can be sufficiently suppressed.

次に、工程(2)で得られた水溶液に、炭水化物を混合する(工程(3))。これにより、本発明の還元飲料用濃縮組成物が得られる。炭水化物を上記工程後に添加することにより、非重合体カテキン類の苦味抑制や収斂味の低減効果が高められる。   Next, a carbohydrate is mixed in the aqueous solution obtained in the step (2) (step (3)). Thereby, the concentrate composition for reduced drinks of this invention is obtained. By adding the carbohydrate after the above-described step, the effect of suppressing the bitter taste of non-polymer catechins and reducing the astringent taste is enhanced.

本発明で用いられる炭水化物は、単糖、複合多糖、オリゴ糖、糖アルコール又はそれらの混合物を含むものである。単糖の例としてはテトロース、ペントース、ヘキソース及びケトヘキソースがある。ヘキソースの例は、ブドウ糖として知られるグルコースのようなアルドヘキソースである。果糖として知られるフルクトースはケトヘキソースである。単糖類の例としては、コーンシロップ、高フルクトースコーンシロップ、果糖ブドウ糖液糖、ブドウ糖果糖液糖、アガペエキス、蜂蜜等の混合単糖も使用できる。複合多糖としての好ましい例はマルトデキストリンである。更に、多価アルコール、例えばグリセロール類も本発明で用いることができる。   The carbohydrates used in the present invention include monosaccharides, complex polysaccharides, oligosaccharides, sugar alcohols or mixtures thereof. Examples of monosaccharides are tetrose, pentose, hexose and ketohexose. An example of a hexose is an aldohexose such as glucose known as glucose. Fructose, known as fructose, is a ketohexose. As examples of monosaccharides, mixed monosaccharides such as corn syrup, high fructose corn syrup, fructose glucose liquid sugar, glucose fructose liquid sugar, agape extract, and honey can also be used. A preferred example of the complex polysaccharide is maltodextrin. In addition, polyhydric alcohols such as glycerol can be used in the present invention.

本発明で用いる炭水化物は、非重合体カテキン類の保存安定性の向上や最適な甘味を得るために非還元性の糖類又は糖アルコールがより好ましく、またこれらを併用することもできる。非還元性の糖類としてはオリゴ糖があるが、例えば二糖類としてスクロース、マルトース、ラクトース、セルビオース、トレハロース、三糖類としてラフィノース、パノース、メレジトース、ゲンチアノース、四糖類としてスタキオ−ス等が挙げられる。このオリゴ糖の重要なタイプは二糖であり、代表例はサトウキビ、サトウダイコンから得られるショ糖又はテンサイ糖として知られるスクロースである。製品としては精製糖であるグラニュー糖、車糖、加工糖、液糖、シュガーケーンやメイプルシロップ等が使用できる。   The carbohydrate used in the present invention is more preferably a non-reducing saccharide or sugar alcohol in order to improve the storage stability of non-polymer catechins and obtain an optimal sweetness, and these can also be used in combination. Non-reducing saccharides include oligosaccharides, and examples include disaccharides such as sucrose, maltose, lactose, cellobiose, trehalose, trisaccharides such as raffinose, panose, melezitose, gentianose, and tetrasaccharides such as stachyose. An important type of this oligosaccharide is a disaccharide, a typical example being sucrose known as sugar cane or sugar beet sugar obtained from sugar cane or sugar beet. As products, refined sugars such as granulated sugar, curd sugar, processed sugar, liquid sugar, sugar cane, maple syrup and the like can be used.

本発明で用いる炭水化物は、カロリーの観点から糖アルコールが更に好ましく、糖アルコールとしてはエリスリトール、ソルビトール、キシリトール、マルチトール、ラクチトール、パラチノース、マンニトール、タガトース等などが好ましい。本発明の還元飲料用濃縮組成物ではこれら炭水化物の中でもカロリーが少ないエリスリトールが最適である。   The carbohydrate used in the present invention is more preferably a sugar alcohol from the viewpoint of calories, and the sugar alcohol is preferably erythritol, sorbitol, xylitol, maltitol, lactitol, palatinose, mannitol, tagatose and the like. In the concentrated composition for a reduced beverage according to the present invention, among these carbohydrates, erythritol, which has few calories, is optimal.

炭水化物の使用量は還元飲料用濃縮組成物中に1.0〜65.0質量%となる量が好ましい。かかる使用量の下限は10.0質量%、更に15.0質量%、更に20.0質量%、特に24.0質量%が好ましく、他方上限は60.0質量%、更に50.0質量%、特に40.0質量%が好ましい。炭水化物の濃度が上記範囲内である場合、還元飲料の苦味及び収斂味を十分に抑制することができる。   The amount of carbohydrate used is preferably 1.0 to 65.0% by mass in the concentrated composition for reduced beverage. The lower limit of the amount used is 10.0% by mass, more preferably 15.0% by mass, further 20.0% by mass, and particularly preferably 24.0% by mass, while the upper limit is 60.0% by mass, further 50.0% by mass. In particular, 40.0% by mass is preferable. When the carbohydrate concentration is within the above range, the bitterness and astringency of the reduced beverage can be sufficiently suppressed.

炭水化物が一定程度以上存在すると酸味、塩味とのバランスが取り易いので、非重合体カテキン類を0.13質量%濃度となるようにイオン交換水で希釈して還元飲料とした際にショ糖を1としたときの甘味度が2以上であることが好ましい(参考文献:JISZ8144、官能評価分析−用語、番号3011、甘味;JISZ9080、官能評価分析−方法、試験方法;飲料用語辞典4−2甘味度の分類、資料11(ビバレッジジャパン社);特性等級試験mAG試験、ISO 6564−1985(E)、「Sensory Analysis−Methodology−Flavour profile method」等)。一方、甘味度が8以下であると、甘味による喉にひっかかる感覚を抑制でき、喉越しが良好になる。尚、これらの炭水化物は茶抽出物由来のものも含む。   If there is a certain amount or more of carbohydrates, it is easy to balance acidity and saltiness. Therefore, when non-polymer catechins are diluted with ion-exchanged water to a concentration of 0.13% by mass, It is preferable that the sweetness degree when it is set to 1 is 2 or more (reference document: JISZ8144, sensory evaluation analysis-term, number 3011, sweetness; JISZ9080, sensory evaluation analysis-method, test method; beverage terminology dictionary 4-2 sweetness Degree classification, document 11 (Beverage Japan); characteristic grade test mAG test, ISO 6564-1985 (E), “Sensory Analysis-Methodology-Flavour profile method”, etc.). On the other hand, when the sweetness level is 8 or less, it is possible to suppress the sensation that is caught in the throat due to sweetness, and the over the throat is improved. These carbohydrates include those derived from tea extract.

本発明の製造方法においては、各工程において還元飲料用濃縮組成物中の各成分の濃度及び物性が所定の値になるように各配合成分を添加して調整するか、あるいは各工程を行った後に、又は全工程を行った後に還元飲料用濃縮組成物中の各成分の濃度及び物性が所定の値になるように調整する工程を備えていてもよい。   In the production method of the present invention, each component is added and adjusted so that the concentration and physical properties of each component in the concentrated composition for a reduced beverage in the respective steps become predetermined values, or each step is performed. You may provide the process of adjusting so that the density | concentration and physical property of each component in the concentrate composition for reduced drinks may become a predetermined value after performing after all or the process.

工程(1)は前記のように35〜45℃で行うことが好ましい。工程(2)、(3)及びpH調整工程の温度は特に制限されないが、45℃以下、特に20〜45℃の温度で行うのが好ましい。   As described above, the step (1) is preferably performed at 35 to 45 ° C. The temperature in the steps (2) and (3) and the pH adjustment step is not particularly limited, but it is preferably 45 ° C. or less, particularly 20 to 45 ° C.

本発明により得られる還元飲料用濃縮組成物は液体又は粉末状の形態であり、飲料用濃縮物である(コーデックス食品添加物14.1.4.3参照)。これをイオン交換水、炭酸水又は他の飲料などを加える等の還元操作後、殺菌して製品にしたものが還元飲料である。還元時には、JAS果汁飲料品質表示基準(日本農林規格協会編、P79)に記載の濃縮果汁や還元果汁の基準とされる糖用屈折率計示度(Brix)を基準に希釈を行うことができる。また、本発明においては、製品(還元飲料)中の非重合体カテキン類濃度を0.05〜0.5質量%にすることが好ましく、かかる非重合体カテキン類濃度に調整するために緑茶抽出物の濃縮物及び/又は精製物を更に配合することも可能である。   The concentrated composition for a reduced beverage obtained by the present invention is in the form of a liquid or powder and is a beverage concentrate (see Codex Food Additives 14.1.4.3). A reduced beverage is a product obtained by sterilizing the product after a reduction operation such as adding ion-exchanged water, carbonated water or other beverages. At the time of reduction, dilution can be performed based on the refractometer indication (Brix) for sugar, which is used as a standard for concentrated fruit juice and reduced fruit juice described in JAS juice beverage quality display standards (edited by the Japan Agricultural Standards Association, P79). . In the present invention, it is preferable that the concentration of non-polymer catechins in the product (reduced beverage) is 0.05 to 0.5% by mass. In order to adjust the concentration of such non-polymer catechins, green tea extraction is performed. It is also possible to further blend product concentrates and / or purified products.

本発明により得られる還元飲料用濃縮組成物は、液体の場合は非重合体カテキン類の酸化防止やハンドリングの観点から20以上のBrixが好ましく、更に好ましくはBrixが35〜70、特に好ましくはBrixが40〜50である。Brixが20以上では還元飲料の苦味、収斂味は抑制効果が良好であり、Brixが70以下であると濃縮組成物に含有する炭水化物やヒドロキシカルボン酸の結晶化が良好に抑制できる。   In the case of a liquid beverage concentrate composition obtained by the present invention, in the case of a liquid, 20 or more Brix is preferable from the viewpoint of preventing oxidation and handling of non-polymer catechins, more preferably Brix is 35 to 70, and particularly preferably Brix. Is 40-50. When the Brix is 20 or more, the bitterness and astringency of the reduced beverage have a good inhibitory effect, and when the Brix is 70 or less, the crystallization of carbohydrates and hydroxycarboxylic acids contained in the concentrated composition can be satisfactorily suppressed.

本発明により得られる還元飲料用濃縮組成物が固体、たとえば粉末状の場合は、固形分が70質量%以上のものが吸湿防止やハンドリングの観点から好ましい。同様の観点から、固形分は80質量%以上、特に90質量%以上であることが好ましい。還元飲料用濃縮組成物を溶かして飲む際に、非重合体カテキン類を高濃度に溶解させるために平均粒径10μm以下のものが好ましい。粉末状の還元飲料用濃縮組成物を製造するには、真空濃縮法や凍結濃縮法などを採用することができる。粉末化の方法は乾式でも湿式でもよく、真空乾燥、凍結乾燥、噴霧乾燥などがあり、品質的には凍結乾燥が好ましく、コスト面では噴霧乾燥が好ましい。凍結乾燥の乾燥温度は−50〜50℃程度であり、噴霧乾燥の乾燥温度は50℃〜120℃程度である。また、粉末状還元飲料用濃縮組成物の形態は、容器詰の上でスプーンによる計量方法を用いても良いが、スティックタイプのものが1杯分を簡便に調整できる点で好ましい。また密封容器内は窒素ガスを充填し、材質は酸素透過性の低いものの方がインスタント粉末飲料の品質を維持する上で好ましい。   When the concentrated composition for a reduced beverage obtained by the present invention is solid, for example, in the form of a powder, a solid content of 70% by mass or more is preferable from the viewpoint of moisture absorption prevention and handling. From the same viewpoint, the solid content is preferably 80% by mass or more, particularly 90% by mass or more. In order to dissolve non-polymer catechins at a high concentration when the concentrated composition for reduced beverage is melted and drinks, those having an average particle size of 10 μm or less are preferable. In order to produce a concentrated composition for a reduced beverage, a vacuum concentration method, a freeze concentration method, or the like can be employed. The powdering method may be dry or wet, and includes vacuum drying, freeze drying, spray drying, and the like. In terms of quality, freeze drying is preferable, and in terms of cost, spray drying is preferable. The drying temperature for freeze-drying is about −50 to 50 ° C., and the drying temperature for spray drying is about 50 to 120 ° C. Moreover, although the form of the concentrated composition for powdered reduced beverages may use a measuring method with a spoon after being packed in a container, a stick-type one is preferable in that it can easily adjust one serving. Also, nitrogen gas is filled in the sealed container, and a material having a low oxygen permeability is preferable for maintaining the quality of the instant powdered beverage.

本発明により得られる還元飲料用濃縮組成物は、一般の飲料用濃縮品と同様に包装材料に使用できるポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、アルミ蒸着フィルム等を材質とするレトルトパックで提供されることが好ましく、更に金属缶、PETボトル、ガラス容器のような形態でも提供されることができる。   The concentrated composition for reduced beverages obtained by the present invention is provided in a retort pack made of polypropylene (PP), polyethylene terephthalate (PET), aluminum deposited film, etc., which can be used for packaging materials in the same way as general beverage concentrates. It is preferable to be provided, and it can also be provided in the form of a metal can, a PET bottle, or a glass container.

本発明により得られる還元飲料用濃縮組成物は製造後、輸送や保管した後イオン交換水や炭酸水などで希釈して還元飲料とするが、保存安定性に優れるため冷蔵のみならず室温付近(10〜50℃)でも保存が可能である。本発明により得られる還元飲料用濃縮組成物は製造時にPPなどの容器に充填後、加熱殺菌できる場合にあっては適用されるべき法規(日本にあっては食品衛生法)に定められた殺菌条件で製造できる。PETボトル、紙容器のようにレトルト殺菌できないものについては、あらかじめ上記と同等の殺菌条件、例えばプレート式熱交換器などで高温短時間殺菌後、一定の温度迄冷却して容器に充填する等の方法が採用できる。また無菌下で、充填された容器に別の成分を配合して充填してもよい。更に、酸性下で加熱殺菌後、無菌下でpHを中性に戻すことや、中性下で加熱殺菌後、無菌下でpHを酸性に戻すなどの操作も可能である。殺菌条件の例としては、風味や保存安定性の観点からプレート式熱交換器などで60〜145℃が好ましい。   The concentrated composition for a reduced beverage obtained by the present invention is manufactured, transported and stored, and then diluted with ion-exchanged water or carbonated water to make a reduced beverage. However, because of its excellent storage stability, it is not only refrigerated but near room temperature ( 10 to 50 ° C.). The concentrated composition for a reduced beverage obtained according to the present invention can be sterilized as stipulated by laws and regulations (Food Sanitation Law in Japan) if it can be heat sterilized after filling into a container such as PP at the time of manufacture. Can be manufactured under certain conditions. For PET bottles and paper containers that cannot be sterilized by retort, sterilize under the same conditions as above, for example, after sterilizing at high temperature and short time with a plate heat exchanger, etc. The method can be adopted. Moreover, you may mix | blend another component with the filled container under aseptic conditions. Furthermore, after sterilizing under heat, the pH can be returned to neutral under aseptic conditions, or after sterilizing under heat under neutral conditions, the pH can be returned to acidic conditions under aseptic conditions. As an example of sterilization conditions, 60-145 degreeC is preferable with a plate-type heat exchanger etc. from a viewpoint of flavor or storage stability.

(非重合体カテキン類の測定)
本発明における還元飲料用濃縮組成物3.0gまたは1.7gをイオン交換水で100gに希釈した後、メンブランフィルター(0.8μm)でろ過し、次いで蒸留水で希釈した試料を、島津製作所製、高速液体クロマトグラフ(型式SCL−10AVP)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラム L−カラムTM ODS(4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法により測定した。移動相A液は酢酸を0.1mol/L含有の蒸留水溶液、B液は酢酸を0.1mol/L含有のアセトニトリル溶液とし、試料注入量は20μL、UV検出器波長は280nmの条件で行った。測定後、希釈率で換算して非重合体カテキン類の濃度を求めた。
(Measurement of non-polymer catechins)
After diluting 3.0 g or 1.7 g of the concentrated composition for reduced beverage in the present invention to 100 g with ion-exchanged water, filtering with a membrane filter (0.8 μm), and then diluting with distilled water, a sample made by Shimadzu Corporation Using a high-performance liquid chromatograph (model SCL-10AVP), a packed column for octadecyl group-introduced liquid chromatograph, L-column TM ODS (4.6 mmφ × 250 mm: manufactured by Chemical Substances Evaluation and Research Institute), and column temperature The measurement was performed at 35 ° C. by the gradient method. The mobile phase A solution was a distilled aqueous solution containing 0.1 mol / L of acetic acid, the B solution was an acetonitrile solution containing 0.1 mol / L of acetic acid, the sample injection amount was 20 μL, and the UV detector wavelength was 280 nm. . After the measurement, the concentration of non-polymer catechins was determined in terms of dilution rate.

濃度勾配条件(体積%)
時間 移動相A 移動相B
0分 97% 3%
5分 97% 3%
37分 80% 20%
43分 80% 20%
43.5分 0% 100%
48.5分 0% 100%
49分 97% 3%
62分 97% 3%
Concentration gradient condition (volume%)
Time Mobile phase A Mobile phase B
0 minutes 97% 3%
5 minutes 97% 3%
37 minutes 80% 20%
43 minutes 80% 20%
43.5 minutes 0% 100%
48.5 minutes 0% 100%
49 minutes 97% 3%
62 minutes 97% 3%

(風味の評価)
容器詰還元飲料をパネラー5名により飲用試験を行い、後述する基準飲料に対する相対的な評価として、苦味を6段階、収斂味を6段階、酸味を3段階、及び甘味を4段階で評価し、平均化した結果を用いた。
(Evaluation of flavor)
A drinking test is conducted with 5 panelists for reduced beverages, and as a relative evaluation with respect to the reference beverage described later, the bitterness is evaluated in 6 levels, the astringency is evaluated in 6 levels, the acidity is evaluated in 3 levels, and the sweetness is evaluated in 4 levels. Averaged results were used.

(安定性の評価)
還元飲料用濃縮組成物を殺菌後、5℃で3日保管した。保管後の還元飲料用濃縮組成物の状態を目視で観察し下記の基準で判定した。
評価基準
不均一である ×
やや不均一である △
均一である ○
(Evaluation of stability)
The concentrated composition for a reduced beverage was sterilized and stored at 5 ° C. for 3 days. The state of the concentrated composition for a reduced beverage after storage was visually observed and judged according to the following criteria.
Evaluation criteria Non-uniform ×
Somewhat uneven △
Uniform ○

製造例1
「非重合体カテキン類含有緑茶抽出物の精製物1」の製造
市販の緑茶抽出物の濃縮物(三井農林(株)「ポリフェノンHG」)100gを90.0質量%エタノール900gに分散させ、30分熟成し、2号濾紙及び孔径0.2μmの濾紙で濾過し、イオン交換水200mLを加えて減圧濃縮を行った。このうち75.0gをステンレス容器に投入し、イオン交換水で全量を1,000gとし、5質量%重曹水溶液3.0gを添加してpH5.5に調整した。次いで、22℃、150r/minの攪拌条件下で、イオン交換水1.07g中にキッコーマンタンナーゼKTFH(Industrial Grade、500U/g以上)0.27g(非重合体カテキン類に対して2.4%)を溶解した液を添加し、55分後にpHが4.24に低下した時点で酵素反応を終了した。次いで95℃の温浴にステンレス容器を浸漬し、90℃、10分間保持して酵素活性を完全に失活した後、25℃まで冷却した後に濃縮処理を行い「非重合体カテキン類含有緑茶抽出物の精製物1」を得た。非重合体カテキン類は15.0質量%、非重合体ガレート体率は44.4質量%、水分量は75.0質量%であった。
Production Example 1
Production of “Purified Product 1 of Green Tea Extract Containing Non-polymer Catechins” 100 g of a commercially available concentrate of green tea extract (Mitsui Norin “Polyphenone HG”) was dispersed in 900 g of 90.0% by mass ethanol, 30 The mixture was aged, filtered through No. 2 filter paper and filter paper having a pore size of 0.2 μm, and 200 mL of ion-exchanged water was added, followed by concentration under reduced pressure. Of these, 75.0 g was put into a stainless steel container, and the total amount was adjusted to 1,000 g with ion-exchanged water, and adjusted to pH 5.5 by adding 3.0 g of a 5 mass% sodium bicarbonate aqueous solution. Then, under stirring conditions of 22 ° C. and 150 r / min, 0.27 g of Kikkoman tannase KTFH (Industrial Grade, 500 U / g or more) in 1.07 g of ion-exchanged water (2.4% based on non-polymer catechins) ) Was added, and the enzyme reaction was terminated when the pH dropped to 4.24 55 minutes later. Next, the stainless steel container was immersed in a 95 ° C. warm bath, kept at 90 ° C. for 10 minutes to completely deactivate the enzyme activity, then cooled to 25 ° C. and then subjected to concentration treatment, “a non-polymer catechin-containing green tea extract” Of 1 ”was obtained. The non-polymer catechins were 15.0% by mass, the non-polymer gallate content was 44.4% by mass, and the water content was 75.0% by mass.

製造例2
「非重合体カテキン類含有緑茶抽出物の精製物2」の製造
市販の緑茶抽出物の濃縮物(三井農林(株)「ポリフェノンHG」)1,000gを、25℃、200r/minの攪拌条件下で、95質量%エタノール水溶液9,000g中に懸濁させ、活性炭(クラレコールGLC、クラレケミカル社製)200gと酸性白土(ミズカエース#600、水澤化学社製)500gを投入後、約10分間攪拌を続けた。次いで、25℃で約30分間の攪拌処理を続けた。2号濾紙で活性炭、酸性白土、及び沈殿物を濾過した後、0.2μmメンブランフィルターによって再濾過を行った。最後にイオン交換水200gを濾過液に添加し、40℃、3.3kPaでエタノールを留去し、減圧濃縮を行った。このうち750gをステンレス容器に投入し、イオン交換水で全量を10,000gとし、5質量%重炭酸ナトリウム水溶液30gを添加してpH5.5に調整した。次いで、22℃、150r/minの攪拌条件下で、イオン交換水10.7g中にキッコーマンタンナーゼKTFH(Industrial Grade、500U/g以上)2.7gを溶解した液を添加し、30分後にpHが4.24に低下した時点で酵素反応を終了した。95℃の温浴にステンレス容器を浸漬し、90℃、10分間保持して酵素活性を完全に失活させた。次いで、25℃まで冷却した後に濃縮処理を行い「非重合体カテキン類含有緑茶抽出物の精製物2」を得た。非重合体カテキン類は15.0質量%、非重合体ガレート体率は44.4質量%、水分量75.0質量%であった。
Production Example 2
Manufacture of “purified product 2 of green tea extract containing non-polymer catechins” 1,000 g of commercially available green tea extract concentrate (Mitsui Norin “Polyphenone HG”) at 25 ° C. and 200 r / min. The suspension is suspended in 9,000 g of a 95% by weight ethanol aqueous solution, and 200 g of activated carbon (Kuraray Coal GLC, manufactured by Kuraray Chemical Co., Ltd.) and 500 g of acid clay (Mizuka Ace # 600, manufactured by Mizusawa Chemical Co., Ltd.) are added for about 10 minutes. Stirring was continued. Subsequently, the stirring process for about 30 minutes was continued at 25 degreeC. The activated carbon, acid clay, and precipitate were filtered with No. 2 filter paper, and then re-filtered with a 0.2 μm membrane filter. Finally, 200 g of ion-exchanged water was added to the filtrate, and ethanol was distilled off at 40 ° C. and 3.3 kPa, followed by concentration under reduced pressure. Of this, 750 g was put into a stainless steel container, and the total amount was adjusted to 10,000 g with ion-exchanged water, and adjusted to pH 5.5 by adding 30 g of a 5% by mass aqueous sodium bicarbonate solution. Next, under a stirring condition of 22 ° C. and 150 r / min, a solution in which 2.7 g of Kikkoman tannase KTFH (Industrial Grade, 500 U / g or more) is dissolved in 10.7 g of ion-exchanged water is added. The enzymatic reaction was terminated when the temperature dropped to 4.24. The stainless steel container was immersed in a warm bath at 95 ° C. and kept at 90 ° C. for 10 minutes to completely deactivate the enzyme activity. Subsequently, after cooling to 25 ° C., concentration treatment was performed to obtain “Purified product 2 of green tea extract containing non-polymer catechins”. The non-polymer catechins were 15.0% by mass, the non-polymer gallate content was 44.4% by mass, and the water content was 75.0% by mass.

製造例3
「非重合体カテキン類含有緑茶抽出物の精製物3」の製造
市販の緑茶抽出物の濃縮物(三井農林(株)「ポリフェノンHG」)1、000gを25℃、200rpm攪拌条件下の95質量%エタノール水溶液4909g中に懸濁させ、活性炭(クラレコールGLC、クラレケミカル社製)200gと酸性白土(ミズカエース#600、水澤化学社製)1000gを投入後、約10分間攪拌を続けた。そして40質量%エタノール水溶液4091gを10分間かけて滴下したのち、室温のまま約30分間の攪拌処理を続けた。最終的にエタノール水溶液は70質量%となった。その後、2号濾紙で活性炭及び沈殿物を濾過したのち、0.2μmメンブランフィルターによって再濾過を行った。最後にイオン交換水2000gを濾過液に添加し、25℃まで冷却した後に濃縮処理を行い「非重合体カテキン類含有緑茶抽出物の精製物3」を得た。非重合体カテキン類は22.0質量%、非重合体ガレート体率は52.9質量%、水分量45.2質量%であった。
Production Example 3
Manufacture of "purified product 3 of green tea extract containing non-polymer catechins" 1,000 g of commercially available green tea extract concentrate (Mitsui Norin Co., Ltd., “Polyphenon HG”) at 25 ° C. and 200 rpm under stirring at 95 mass Suspended in 4909 g of an aqueous ethanol solution, 200 g of activated carbon (Kuraray Coal GLC, manufactured by Kuraray Chemical Co., Ltd.) and 1000 g of acidic white clay (Mizuka Ace # 600, manufactured by Mizusawa Chemical Co., Ltd.) were added, and stirring was continued for about 10 minutes. And 4091 g ethanol aqueous solution 4091g was dripped over 10 minutes, Then, about 30 minutes stirring process was continued with room temperature. The ethanol aqueous solution finally became 70 mass%. Thereafter, the activated carbon and the precipitate were filtered with No. 2 filter paper, and then re-filtered with a 0.2 μm membrane filter. Finally, 2000 g of ion-exchanged water was added to the filtrate, and after cooling to 25 ° C., concentration treatment was performed to obtain “Purified product 3 of non-polymer catechins-containing green tea extract”. The non-polymer catechins were 22.0% by mass, the non-polymer gallate content was 52.9% by mass, and the water content was 45.2% by mass.

実施例1
撹拌した40℃のイオン交換水にアスコルビン酸3.0gを溶解し、次いで10質量%重曹水溶液10gを投入し、炭酸ガスが消泡するまで10分間撹拌後、「非重合体カテキン類含有緑茶抽出物の精製物1」353.3g、中国産緑茶抽出物の濃縮物73.0g、エリスリトール274.0gの順にイオン交換水に溶解し全量を1,000gとし、138℃でUHT殺菌後レトルトパックに充填した。得られた還元飲料用濃縮組成物の非エピ体率は15.0質量%、非重合体ガレート体率は46.3質量%、カフェイン/非重合体カテキン類比は0.104、没食子酸0.16質量%であった。還元飲料用濃縮組成物の組成、物性を表1に示す。
次いで、得られた還元飲料用濃縮組成物のうち17gを使用し、果糖38.6g、エリスリトール2.9g、クエン酸1.0g、アスコルビン酸0.45g、緑茶香料0.5gを添加し、さらに重曹水でpHを4.0に調整し、イオン交換水で全量を1,000gとした。得られた還元飲料をUHT殺菌しガラス容器に充填して容器詰還元飲料を得た。容器詰還元飲料の組成、風味評価結果を表2に示す。
Example 1
Dissolve 3.0 g of ascorbic acid in stirred ion-exchanged water at 40 ° C., then add 10 g of 10% by weight aqueous sodium bicarbonate solution and stir for 10 minutes until the carbon dioxide disappears, then extract “green tea extract containing non-polymer catechins” Purified product 1 ”353.3g, Chinese green tea extract concentrate 73.0g, erythritol 274.0g in this order dissolved in ion-exchanged water to a total amount of 1,000g, and after UHT sterilization at 138 ° C in a retort pack Filled. The concentrated composition for a reduced beverage obtained had a non-epimeric ratio of 15.0% by mass, a nonpolymeric gallate ratio of 46.3% by mass, a caffeine / nonpolymeric catechin ratio of 0.104, and gallic acid of 0 It was 16 mass%. Table 1 shows the composition and physical properties of the concentrated composition for a reduced beverage.
Next, 17 g of the obtained concentrated composition for a reduced beverage was used, and 38.6 g of fructose, 2.9 g of erythritol, 1.0 g of citric acid, 0.45 g of ascorbic acid, and 0.5 g of green tea flavor were added. The pH was adjusted to 4.0 with sodium bicarbonate water, and the total amount was adjusted to 1,000 g with ion-exchanged water. The obtained reduced beverage was UHT sterilized and filled into a glass container to obtain a container-packed reduced beverage. Table 2 shows the composition and flavor evaluation results of the packaged reduced beverage.

実施例2
実施例1で得られた還元飲料用濃縮組成物のうち17gを使用し、果糖38.6g、エリスリトール2.9g、クエン酸1.0g、アスコルビン酸0.45g、レモンライム香料1.0gを添加し、さらに重曹水でpHを4.0に調整し、イオン交換水で全量を1,000gとした。得られた還元飲料をUHT殺菌しガラス容器に充填して容器詰還元飲料を得た。容器詰還元飲料の組成、風味評価結果を表2に示す。
Example 2
17 g of the concentrated composition for reduced beverage obtained in Example 1 was used, and 38.6 g of fructose, 2.9 g of erythritol, 1.0 g of citric acid, 0.45 g of ascorbic acid, and 1.0 g of lemon lime flavor were added. Further, the pH was adjusted to 4.0 with sodium bicarbonate water, and the total amount was adjusted to 1,000 g with ion-exchanged water. The obtained reduced beverage was UHT sterilized and filled into a glass container to obtain a container-packed reduced beverage. Table 2 shows the composition and flavor evaluation results of the packaged reduced beverage.

実施例3
撹拌した40℃のイオン交換水にアスコルビン酸3.0gを溶解し、次いで10質量%重曹水溶液15.0gを投入し、炭酸ガスが消泡するまで10分間撹拌後、「非重合体カテキン類含有緑茶抽出物の精製物1」を500.0g、エリスリトール273.6gの順に溶解し全量を1,000gとし、138℃でUHT殺菌後レトルトパックに充填した。得られた還元飲料用濃縮組成物の非エピ体率は16.9質量%、非重合体ガレート体率は44.4質量%、カフェイン/非重合体カテキン類比は0.059、没食子酸0.24質量%であった。還元飲料用濃縮組成物の組成、物性を表1に示す。
次いで、得られた還元飲料用濃縮組成物のうち17gを使用し、果糖38.6g、エリスリトール2.85g、アスコルビン酸0.45g、クエン酸1.0g、レモンライム香料1.0gを添加し、さらに重曹水でpHを4.0に調整し、イオン交換水で全量を1,000gとした。得られた還元飲料をUHT殺菌しガラス容器に充填して容器詰還元飲料を得た。組成、風味評価結果を表2に示す。
Example 3
Dissolve 3.0 g of ascorbic acid in stirred ion exchanged water at 40 ° C., and then add 15.0 g of a 10% by mass aqueous sodium bicarbonate solution. After stirring for 10 minutes until the carbon dioxide gas disappears, “non-polymer catechins contained” 500.0 g of purified green tea extract 1 ”and 273.6 g of erythritol were dissolved in this order to make a total amount of 1,000 g, and filled in a retort pack after UHT sterilization at 138 ° C. The concentrated composition for a reduced beverage thus obtained had a non-epimeric ratio of 16.9% by mass, a nonpolymeric gallate ratio of 44.4% by mass, a caffeine / nonpolymeric catechin ratio of 0.059, and gallic acid of 0 .24% by mass. Table 1 shows the composition and physical properties of the concentrated composition for a reduced beverage.
Next, using 17 g of the obtained concentrated composition for a reduced beverage, fructose 38.6 g, erythritol 2.85 g, ascorbic acid 0.45 g, citric acid 1.0 g, and lemon lime flavor 1.0 g were added, Further, the pH was adjusted to 4.0 with sodium bicarbonate water, and the total amount was adjusted to 1,000 g with ion-exchanged water. The obtained reduced beverage was UHT sterilized and filled into a glass container to obtain a container-packed reduced beverage. The composition and flavor evaluation results are shown in Table 2.

実施例4
実施例3で得られた還元飲料用濃縮組成物のうち17gを使用し、中国産緑茶抽出物の濃縮物0.2g、果糖38.6g、エリスリトール2.9g、クエン酸1.0g、アスコルビン酸0.45g、緑茶香料0.5gを添加し、さらに重曹水でpHを4.0に調整し、イオン交換水で全量を1,000gとした。得られた還元飲料をUHT殺菌しガラス容器に充填して容器詰還元飲料を得た。容器詰還元飲料の組成、風味評価結果を表2に示す。
Example 4
Using 17 g of the concentrated composition for reduced beverage obtained in Example 3, 0.2 g of Chinese green tea extract concentrate, 38.6 g of fructose, 2.9 g of erythritol, 1.0 g of citric acid, ascorbic acid 0.45 g and green tea flavor 0.5 g were added, pH was adjusted to 4.0 with sodium bicarbonate water, and the total amount was adjusted to 1,000 g with ion-exchanged water. The obtained reduced beverage was UHT sterilized and filled into a glass container to obtain a container-packed reduced beverage. Table 2 shows the composition and flavor evaluation results of the packaged reduced beverage.

実施例5
撹拌した40℃のイオン交換水にアスコルビン酸3.0gを溶解し、次いで10質量%重曹水溶液15.0gを投入し、炭酸ガスが消泡するまで10分間撹拌後、「非重合体カテキン類含有緑茶抽出物の精製物1」を500.0g、エリスリトール273.6gの順に溶解し全量を1,000gとした。次いで、凍結乾燥機(日本フリーザーBFD-2)を使用し、−20℃、5〜10Torrの条件下で乾燥し、還元飲料用濃縮組成物の粉末374gを得た。この粉末状還元飲料用濃縮組成物の非エピ体率は12.2質量%、非重合体ガレート体率は44.4質量%、カフェイン/非重合体カテキン類比は0.059、没食子酸0.24質量%であった。還元飲料用濃縮組成物の組成、物性を表1に示す。
次いで、得られた粉末状還元飲料用濃縮組成物のうち7.8gを使用し、果糖38.6g、緑茶香料0.5gを添加し、重曹水でpHを4.0に調整し、イオン交換水で全量を1,000gとした。得られた還元飲料をUHT殺菌後ガラス容器に充填して容器詰還元飲料を得た。組成、風味評価結果を表2に示す。
Example 5
Dissolve 3.0 g of ascorbic acid in stirred ion exchanged water at 40 ° C., and then add 15.0 g of a 10% by mass aqueous sodium bicarbonate solution. After stirring for 10 minutes until the carbon dioxide gas disappears, “non-polymer catechins contained” The purified product 1 "of green tea extract" was dissolved in the order of 500.0 g and erythritol 273.6 g to a total amount of 1,000 g. Subsequently, using a freeze dryer (Nippon Freezer BFD-2), it was dried at −20 ° C. and 5 to 10 Torr to obtain 374 g of a concentrated beverage powder for reduced beverage. The concentrated composition for powdered reduced beverage has a non-epimeric ratio of 12.2% by mass, a nonpolymeric gallate ratio of 44.4% by mass, a caffeine / nonpolymeric catechin ratio of 0.059, and gallic acid of 0 .24% by mass. Table 1 shows the composition and physical properties of the concentrated composition for a reduced beverage.
Next, 7.8 g of the obtained concentrated composition for powdered reduced beverage is used, 38.6 g of fructose and 0.5 g of green tea flavor are added, pH is adjusted to 4.0 with sodium bicarbonate water, and ion exchange is performed. The total amount was made up to 1,000 g with water. The obtained reduced beverage was filled into a glass container after UHT sterilization to obtain a container-packed reduced beverage. The composition and flavor evaluation results are shown in Table 2.

比較例1
撹拌した40℃のイオン交換水に「非重合体カテキン類含有緑茶抽出物の精製物1」500.0g、アスコルビン酸3.0g、エリスリトール273.6g、10質量%重曹水溶液15.0gの順に溶解し全量を1,000gとし、146℃でUHT殺菌後レトルトパックに充填した。得られた還元飲料用濃縮組成物の非エピ体率は44.9質量%、非重合体ガレート体率は44.4質量%、カフェイン/非重合体カテキン類比は0.059、没食子酸質量0.24質量%であった。還元飲料用濃縮組成物の組成、物性を表1に示す。
次いで、得られた還元飲料用濃縮組成物のうち17gを使用し、果糖38.6g、エリスリトール2.85g、クエン酸1.0g、レモンライム香料1.0gを添加し、さらに重曹水でpHを5.45に調整し、イオン交換水で全量を1,000gとした。得られた還元飲料をUHT殺菌しガラス容器に充填して容器詰還元飲料を得た。容器詰還元飲料の組成、風味評価結果を表2に示す。
Comparative Example 1
In purified ion-exchanged water at 40 ° C., 500.0 g of “purified product of non-polymer catechins-containing green tea extract”, 3.0 g of ascorbic acid, 273.6 g of erythritol, 15.0 g of 10% by mass aqueous sodium bicarbonate solution were dissolved in this order. The total amount was 1,000 g, and the retort pack was filled at 146 ° C. after UHT sterilization. The concentrated composition for a reduced beverage thus obtained had a non-epimeric ratio of 44.9% by mass, a nonpolymeric gallate ratio of 44.4% by mass, a caffeine / nonpolymeric catechin ratio of 0.059, and a gallic acid mass. It was 0.24 mass%. Table 1 shows the composition and physical properties of the concentrated composition for a reduced beverage.
Next, 17 g of the obtained concentrated composition for reduced beverage was used, 38.6 g of fructose, 2.85 g of erythritol, 1.0 g of citric acid and 1.0 g of lemon lime flavor were added, and the pH was adjusted with sodium bicarbonate water. The total amount was adjusted to 5.45 and made up to 1,000 g with ion-exchanged water. The obtained reduced beverage was UHT sterilized and filled into a glass container to obtain a container-packed reduced beverage. Table 2 shows the composition and flavor evaluation results of the packaged reduced beverage.

基準飲料
撹拌した40℃のイオン交換水に「非重合体カテキン類含有緑茶抽出物の精製物1」177.0g、中国産緑茶抽出物の濃縮物73.0g、アスコルビン酸89.3g、エリスリトール250.0g、10質量%重曹水溶液10.0gの順に溶解し全量を1,000gとし、146℃でUHT殺菌してレトルトパックに充填した。この還元飲料用濃縮組成物の非エピ体率は45.0質量%、非重合体ガレート体率は47.3質量%、カフェイン/非重合体カテキン類比は0.104、没食子酸0.09質量%であった。還元飲料用濃縮組成物の組成、物性を表1に示す。
次いで、得られた還元飲料用濃縮組成物のうち30gを使用し果糖38.6g、緑茶香料0.5gを添加し、さらに重曹水でpHを5.45に調整し、イオン交換水で全量を1,000gとした。得られた還元飲料をUHT殺菌しガラス容器に充填して容器詰還元飲料を得た。容器詰還元飲料の組成を表2に示す。
Standard Beverage In ion-exchanged water at 40 ° C., 177.0 g of “purified product of green tea extract containing non-polymer catechins”, 73.0 g of Chinese green tea extract concentrate, 89.3 g of ascorbic acid, erythritol 250 0.0 g, 10.0 g of 10% by weight aqueous sodium bicarbonate solution were dissolved in this order to make the total amount 1,000 g, and UHT sterilized at 146 ° C. and filled into a retort pack. The concentrated composition for reduced beverage has a non-epimer ratio of 45.0% by mass, a non-polymer gallate ratio of 47.3% by mass, a caffeine / non-polymer catechin ratio of 0.104, and gallic acid 0.09. It was mass%. Table 1 shows the composition and physical properties of the concentrated composition for a reduced beverage.
Next, 30 g of the obtained concentrated composition for reduced beverage was used, 38.6 g of fructose and 0.5 g of green tea flavor were added, pH was adjusted to 5.45 with sodium bicarbonate water, and the total amount was adjusted with ion-exchanged water. 1,000 g. The obtained reduced beverage was UHT sterilized and filled into a glass container to obtain a container-packed reduced beverage. Table 2 shows the composition of the packaged reduced beverage.

Figure 0005295617
Figure 0005295617

Figure 0005295617
Figure 0005295617

実施例6
撹拌した40℃のイオン交換水にアスコルビン酸3.0gを溶解し、次いで10質量%重曹水溶液15.0gを投入し、炭酸ガスが消泡するまで10分間撹拌後、「非重合体カテキン類含有緑茶抽出物の精製物2」500.0g、エリスリトール245.0gの順にイオン交換水に溶解し、全量を1,000gとし、138℃でUHT殺菌後レトルトパックに充填した。還元飲料用濃縮組成物の組成、物性を表3に示す。
次いで、得られた還元飲料用濃縮組成物のうち17.0gを使用し、緑茶抽出物の濃縮物0.2g、果糖38.6g、エリスリトール2.9g、クエン酸1.0g、アスコルビン酸0.45g、緑茶香料0.5gを添加し、更に重曹水でpHを4.0に調整し、イオン交換水で全量を1,000gとした。得られた還元飲料をUHT殺菌しガラス容器に充填して容器詰還元飲料を製造した。容器詰還元飲料の組成、風味評価結果を表4に示す。
Example 6
Dissolve 3.0 g of ascorbic acid in stirred ion exchanged water at 40 ° C., and then add 15.0 g of a 10% by mass aqueous sodium bicarbonate solution. After stirring for 10 minutes until the carbon dioxide gas disappears, “non-polymer catechins contained” Purified green tea extract 2 ”500.0 g and erythritol 245.0 g were dissolved in ion-exchanged water in this order, and the total amount was 1,000 g, which was sterilized at 138 ° C. and filled into a retort pack. Table 3 shows the composition and physical properties of the concentrated composition for a reduced beverage.
Next, 17.0 g of the obtained concentrated composition for a reduced beverage was used, 0.2 g of green tea extract concentrate, 38.6 g of fructose, 2.9 g of erythritol, 1.0 g of citric acid, and 0.8 g of ascorbic acid. 45 g and 0.5 g of green tea flavor were added, the pH was adjusted to 4.0 with sodium bicarbonate water, and the total amount was adjusted to 1,000 g with ion-exchanged water. The obtained reduced beverage was UHT sterilized and filled into a glass container to produce a container-packed reduced beverage. Table 4 shows the composition and flavor evaluation results of the packaged reduced beverage.

実施例7
緑茶抽出物の濃縮物を使用せず、緑茶香料の代わりにレモンライム香料を使用した以外は実施例6と同様に容器詰還元飲料を製造した。容器詰還元飲料の組成、風味評価結果を表4に示す。
Example 7
A packaged reduced beverage was produced in the same manner as in Example 6 except that the concentrate of green tea extract was not used and lemon lime flavor was used instead of green tea flavor. Table 4 shows the composition and flavor evaluation results of the packaged reduced beverage.

実施例8
果糖、エリスリトール、クエン酸を使用せずにサイクロデキストリンを使用し、アスコルビン酸の代わりにアスコルビン酸Naを使用し、重曹水でpH調整しなかった以外は実施例6と同様に容器詰還元飲料を製造した。容器詰還元飲料の組成、風味評価結果を表4に示す。
Example 8
Use the cyclodextrin without using fructose, erythritol, citric acid, use ascorbic acid Na instead of ascorbic acid, and do not adjust the pH with sodium bicarbonate water. Manufactured. Table 4 shows the composition and flavor evaluation results of the packaged reduced beverage.

実施例9
レモンライム香料を使用せずにグレープフルーツ香料、グレープフルーツ果汁を使用し、更にブドウ糖、スクラロース、クエン酸ナトリウム、食塩、サイクロデキストリンを使用し、クエン酸を増量し、重曹水でpH調整しなかった以外は実施例7と同様に容器詰還元飲料を製造した。容器詰還元飲料の組成、風味評価結果を表4に示す。
Example 9
Grapefruit flavor and grapefruit juice are used without using lemon lime flavor, and glucose, sucralose, sodium citrate, salt, cyclodextrin is used, citric acid is increased, and pH is not adjusted with sodium bicarbonate water. A packaged reduced beverage was produced in the same manner as in Example 7. Table 4 shows the composition and flavor evaluation results of the packaged reduced beverage.

実施例10
「非重合体カテキン類含有緑茶抽出物の精製物2」を「非重合体カテキン類含有緑茶抽出物の精製物3」に変更し、10質量%重曹水を使用せずに実施例6と同様に還元飲料用濃縮組成物を製造し、次いで容器詰還元飲料を製造した。還元飲料用濃縮組成物の組成、物性を表3に示し、容器詰還元飲料の組成、風味評価結果を表4に示す。
Example 10
“Purified product 2 of non-polymer catechins-containing green tea extract” was changed to “Purified product 3 of non-polymer catechins-containing green tea extract” and was the same as in Example 6 without using 10% by mass of sodium bicarbonate water. Then, a concentrated composition for a reduced beverage was produced, and then a packaged reduced beverage was produced. The composition and physical properties of the concentrated composition for reduced beverage are shown in Table 3, and the composition of the packaged reduced beverage and the flavor evaluation results are shown in Table 4.

実施例11
「非重合体カテキン類含有緑茶抽出物の精製物2」を「非重合体カテキン類含有緑茶抽出物の精製物3」に変更し、10質量%重曹水を使用せずに実施例7と同様に還元飲料用濃縮組成物を製造し、次いで容器詰還元飲料を製造した。還元飲料用濃縮組成物の組成、物性を表3に示し、容器詰還元飲料の組成、風味評価結果を表4に示す。
Example 11
“Purified product 2 of non-polymer catechins-containing green tea extract” was changed to “Purified product 3 of non-polymer catechins-containing green tea extract” and the same as in Example 7 without using 10% by mass of sodium bicarbonate water. Then, a concentrated composition for a reduced beverage was produced, and then a packaged reduced beverage was produced. The composition and physical properties of the concentrated composition for reduced beverage are shown in Table 3, and the composition of the packaged reduced beverage and the flavor evaluation results are shown in Table 4.

比較例2
撹拌した40℃のイオン交換水に「非重合体カテキン類含有緑茶抽出物の精製物2」を500.0g、アスコルビン酸3.0g、エリスリトール245.0g、10%重曹水溶液5.0gの順に溶解し、炭酸ガスが消泡するまで攪拌した。次いで、全量を1,000gとし、146℃でUHT殺菌後レトルトパックに充填した。得られた還元飲料用濃縮組成物の非エピ体率は41.1質量%、非重合体ガレート体率は44.4質量%、カフェイン/非重合体カテキン類比は0.023、没食子酸0.30質量%であった。還元飲料用濃縮組成物の組成、物性を表3に示す。
次いで、得られた濃縮組成物のうち17.0gを使用し、実施例7と同様の組成を採用して比較例1と同様の方法で容器詰還元飲料を製造した。容器詰還元飲料の組成、風味評価結果を表4に示す。
Comparative Example 2
500.0 g of “purified product 2 of non-polymer catechins-containing green tea extract”, 3.0 g of ascorbic acid, 245.0 g of erythritol, 5.0 g of 10% aqueous sodium bicarbonate solution were dissolved in the ion-exchanged water at 40 ° C. with stirring. And stirred until the carbon dioxide gas disappeared. Next, the total amount was 1,000 g, and the retort pack was filled at 146 ° C. after UHT sterilization. The concentrated composition for reduced beverage thus obtained had a non-epimeric ratio of 41.1% by mass, a nonpolymeric gallate ratio of 44.4% by mass, a caffeine / nonpolymeric catechin ratio of 0.023, and gallic acid of 0 It was 30% by mass. Table 3 shows the composition and physical properties of the concentrated composition for a reduced beverage.
Next, 17.0 g of the obtained concentrated composition was used, and the same composition as in Example 7 was adopted to produce a container-packed reduced beverage by the same method as in Comparative Example 1. Table 4 shows the composition and flavor evaluation results of the packaged reduced beverage.

比較例3
「非重合体カテキン類含有緑茶抽出物の精製物2」を「非重合体カテキン類含有緑茶抽出物の精製物3」に変更した以外は比較例2と同様の順番で実施例7と同様の組成の容器詰還元飲料を製造した。容器詰還元飲料の組成、風味評価結果を表2に示す。
Comparative Example 3
The same as in Example 7 in the same order as in Comparative Example 2, except that “Purified product 2 of green tea extract containing non-polymer catechins” was changed to “Purified product 3 of green tea extract containing non-polymer catechins”. A packaged reduced beverage of composition was produced. Table 2 shows the composition and flavor evaluation results of the packaged reduced beverage.

Figure 0005295617
Figure 0005295617

Figure 0005295617
Figure 0005295617

表2及び4から実施例1〜11の容器詰還元飲料は、比較例1〜3の容器詰還元飲料に比べて苦味、収斂味、酸味及び甘味のバランスが改善していることが明らかである。   From Tables 2 and 4, it is clear that the container-packed reduced beverages of Examples 1 to 11 have improved balance of bitterness, astringency, sourness and sweetness as compared with the container-packed reduced beverages of Comparative Examples 1 to 3. .

Claims (9)

下記順の下記工程を含む、非重合体カテキン類0.5〜25.0質量%を含有する還元飲料用濃縮組成物の製造方法:
(1)水にヒドロキシカルボン酸を混合する工程、
(2)非重合体カテキン類を含有する茶抽出物の濃縮物及び/又は精製物を前記水に混合する工程、
(3)炭水化物を前記水に混合する工程。
The manufacturing method of the concentrate composition for reduced drinks containing 0.5-25.0 mass% of non-polymer catechins including the following process of the following order:
(1) A step of mixing hydroxycarboxylic acid with water,
(2) mixing a concentrate and / or purified product of tea extract containing non-polymer catechins with the water,
(3) A step of mixing a carbohydrate with the water.
工程(1)と工程(2)の間に、工程(1)で得られた水溶液のpHが2.5〜6.0の範囲内になるように調整するpH調整工程を含む請求項1記載の還元飲料用濃縮組成物の製造方法。 During step (1) and step (2), according to claim pH of the resulting aqueous solution in step (1) comprises a pH adjustment step of adjusting to be within 2.5 to 6.0 1 The manufacturing method of the concentrate composition for reduced drinks of description. 炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム及び炭酸カリウムから選ばれる少なくとも1種を含有する水溶液を混合してpH調整する請求項2記載の還元飲料用濃縮組成物の製造方法。   The method for producing a concentrated composition for a reduced beverage according to claim 2, wherein the pH is adjusted by mixing an aqueous solution containing at least one selected from sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate and potassium carbonate. 炭水化物が非還元性糖類及び/又は糖アルコールである請求項1〜3のいずれか1項に記載の還元飲料用濃縮組成物の製造方法。   The method for producing a concentrated composition for a reduced beverage according to any one of claims 1 to 3, wherein the carbohydrate is a non-reducing saccharide and / or a sugar alcohol. 糖アルコールがエリスリトールである請求項4記載の還元飲料用濃縮組成物の製造方法。   The method for producing a concentrated composition for a reduced beverage according to claim 4, wherein the sugar alcohol is erythritol. ヒドロキシカルボン酸がアスコルビン酸である請求項1〜5のいずれか1項に記載の還元飲料用濃縮組成物の製造方法。   The method for producing a concentrated composition for reduced beverage according to any one of claims 1 to 5, wherein the hydroxycarboxylic acid is ascorbic acid. 炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム及び炭酸カリウムから選ばれる少なくとも1種を含有する水溶液を投入後、消泡するまで撹拌する請求項3〜6のいずれか1項に記載の還元飲料用濃縮組成物の製造方法。   The concentrated beverage for reduced beverage according to any one of claims 3 to 6, wherein an aqueous solution containing at least one selected from sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate and potassium carbonate is added and then stirred until defoaming. A method for producing the composition. 工程(1)〜(3)及びpH調整工程のすべてが45℃以下で行われる請求項2〜7のいずれか1項に記載の還元飲料用濃縮組成物の製造方法。   The method for producing a concentrated composition for reduced beverage according to any one of claims 2 to 7, wherein all of the steps (1) to (3) and the pH adjusting step are performed at 45 ° C or lower. 請求項1〜8のいずれか1項に記載の製造方法により得られた還元飲料用濃縮組成物を還元してなる還元飲料。   The reduced drink formed by reduce | restoring the concentrated composition for reduced drinks obtained by the manufacturing method of any one of Claims 1-8.
JP2008100387A 2007-05-08 2008-04-08 Method for producing concentrated composition for reduced beverage Active JP5295617B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008100387A JP5295617B2 (en) 2007-05-08 2008-04-08 Method for producing concentrated composition for reduced beverage
KR1020097023051A KR101463639B1 (en) 2007-05-08 2008-05-07 Concentrate composition for drink from concentrate
PCT/JP2008/001146 WO2008139725A1 (en) 2007-05-08 2008-05-07 Concentrate composition for drink from concentrate
TW097116895A TWI402041B (en) 2007-05-08 2008-05-07 Concentrated compositions for reduced beverages
US12/594,222 US8367140B2 (en) 2007-05-08 2008-05-07 Concentrate composition for drink from concentrate
EP08751671A EP2143344B1 (en) 2007-05-08 2008-05-07 Concentrate composition for drink from concentrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007123969 2007-05-08
JP2007123969 2007-05-08
JP2008100387A JP5295617B2 (en) 2007-05-08 2008-04-08 Method for producing concentrated composition for reduced beverage

Publications (2)

Publication Number Publication Date
JP2008301809A JP2008301809A (en) 2008-12-18
JP5295617B2 true JP5295617B2 (en) 2013-09-18

Family

ID=40231078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100387A Active JP5295617B2 (en) 2007-05-08 2008-04-08 Method for producing concentrated composition for reduced beverage

Country Status (1)

Country Link
JP (1) JP5295617B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100209585A1 (en) * 2007-08-30 2010-08-19 Kao Corporation Instant powder drink
KR101974442B1 (en) * 2012-11-30 2019-05-03 (주)아모레퍼시픽 Agent for improvement of catechin bioavailability comprising cyclodextrin
NZ711319A (en) * 2013-03-04 2020-04-24 Suntory Holdings Ltd Green tea beverage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413570B1 (en) * 1999-02-12 2002-07-02 Lipton, Division Of Conopco, Inc. Tea concentrate
JP3403400B1 (en) * 2001-09-28 2003-05-06 花王株式会社 Packaged beverage
JP3638588B2 (en) * 2002-05-17 2005-04-13 花王株式会社 Containerized tea beverage
DE602004028647D1 (en) * 2003-12-02 2010-09-23 Kao Corp PACKAGED BEVERAGE

Also Published As

Publication number Publication date
JP2008301809A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
TWI402041B (en) Concentrated compositions for reduced beverages
JP5080835B2 (en) Effervescent container beverage
JP5294758B2 (en) Instant powder beverage
EP2022346B1 (en) Beverage packed in container
JP5399864B2 (en) Purified tea extract
TWI411403B (en) Production process of purified green tea extract
TWI451844B (en) Production process of purified green tea extract
JP5313320B2 (en) Container drink
KR101475758B1 (en) Method for production of tea extract
JP4838752B2 (en) Container drink
EP1695630B1 (en) Bottled beverage
JP4751204B2 (en) Method for producing purified green tea extract
JP4917988B2 (en) Container drink
JP4768666B2 (en) Container drink
WO2016174888A1 (en) Green tea extract composition
JP4884003B2 (en) Container oolong tea drink
JP5295616B2 (en) Concentrated composition for reduced beverage
JP2009055905A (en) Packaged beverage
JP5295617B2 (en) Method for producing concentrated composition for reduced beverage
TWI439231B (en) Method for producing purified substances of green tea extract
JP4782753B2 (en) Container drink
JP4768667B2 (en) Container drink
JP4102748B2 (en) Containerized tea beverage
JP2007319075A (en) Packaged beverage
JP4818998B2 (en) Method for producing concentrated composition for reduced beverage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R151 Written notification of patent or utility model registration

Ref document number: 5295617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350