JP5287834B2 - Titanium oxide-based vapor deposition material and method for producing the same - Google Patents
Titanium oxide-based vapor deposition material and method for producing the same Download PDFInfo
- Publication number
- JP5287834B2 JP5287834B2 JP2010255675A JP2010255675A JP5287834B2 JP 5287834 B2 JP5287834 B2 JP 5287834B2 JP 2010255675 A JP2010255675 A JP 2010255675A JP 2010255675 A JP2010255675 A JP 2010255675A JP 5287834 B2 JP5287834 B2 JP 5287834B2
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- oxide
- weight
- yttrium
- deposition material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007740 vapor deposition Methods 0.000 title claims description 92
- 239000000463 material Substances 0.000 title claims description 66
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims description 55
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 38
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 26
- 239000010936 titanium Substances 0.000 claims description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 24
- 229910052719 titanium Inorganic materials 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 21
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 claims description 20
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 claims description 20
- 238000010304 firing Methods 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 239000002994 raw material Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 42
- 239000010408 film Substances 0.000 description 33
- 239000002223 garnet Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 23
- 239000008187 granular material Substances 0.000 description 20
- 239000004408 titanium dioxide Substances 0.000 description 19
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 18
- 229910001928 zirconium oxide Inorganic materials 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 17
- 229910000449 hafnium oxide Inorganic materials 0.000 description 17
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 17
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 17
- 229910003454 ytterbium oxide Inorganic materials 0.000 description 17
- 229940075624 ytterbium oxide Drugs 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 239000000155 melt Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000011362 coarse particle Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 150000002910 rare earth metals Chemical class 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 229910003087 TiOx Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 5
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 230000003405 preventing effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- KELHQGOVULCJSG-UHFFFAOYSA-N n,n-dimethyl-1-(5-methylfuran-2-yl)ethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=C(C)O1 KELHQGOVULCJSG-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- GQUJEMVIKWQAEH-UHFFFAOYSA-N titanium(III) oxide Chemical compound O=[Ti]O[Ti]=O GQUJEMVIKWQAEH-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、チタン酸化物を主成分とした蒸着材料に関するものである。 The present invention relates to a vapor deposition material mainly composed of titanium oxide.
真空蒸着は、真空チャンバー内で蒸着材料を電子銃や抵抗加熱によって蒸発させ、対象物に蒸着膜を形成する技術である。二酸化チタン(TiO2)蒸着膜は、チタン酸化物系の蒸着材料から真空蒸着によって形成されるが、屈折率が非常に高く耐熱性に優れるため、従来からダイクロイックフィルター、ダイクロイックミラー等に用いられている。 Vacuum deposition is a technique for forming a deposited film on an object by evaporating a deposition material by an electron gun or resistance heating in a vacuum chamber. Titanium dioxide (TiO 2 ) vapor-deposited films are formed by vacuum deposition from titanium oxide-based vapor deposition materials, but have been used for dichroic filters, dichroic mirrors and the like because of their extremely high refractive index and excellent heat resistance. Yes.
二酸化チタンを蒸着材料として二酸化チタン蒸着膜を形成しようとすると、気化した蒸着材料が凝固して膜になる際(蒸着膜形成時)に酸素ガスを放出するため、蒸着膜の品位はよくない。そのため、蒸着材料は二酸化チタン以外の形態をとることが一般的である。例えば他のチタン酸化物や金属チタンの内のいくつかを組み合わせた形態をとる。 If an attempt is made to form a titanium dioxide vapor deposition film using titanium dioxide as a vapor deposition material, oxygen gas is released when the vaporized vapor deposition material solidifies to form a film (during vapor deposition film formation), so the quality of the vapor deposition film is not good. Therefore, the vapor deposition material generally takes a form other than titanium dioxide. For example, it takes a form combining some of other titanium oxides and metal titanium.
チタン酸化物の中でも、組成式TiOx(1.4≦x≦1.8)で表されるもの(以下亜酸化チタンとも称す)は、蒸着膜形成時のガス発生が少なく、二酸化チタン蒸着膜用の蒸着材料として最適とされる。しかしながら、前記亜酸化チタンの焼結体は非常に脆く、包装、輸送、蒸着時のルツボへの充填等の取り扱い時に容易に破砕し、多量の微粉を発生する。この微粉は蒸着時の溶融工程や加熱、気化工程でのスプラッシュ(突沸)の一因となる。スプラッシュの発生の結果、蒸着対象に蒸着材料の塊が飛散し、蒸着対象の汚損を招く。また、微粉の発生は蒸着材料の利用率の低下を招き、コストパフォーマンスが低下する。 Among the titanium oxides, those represented by the composition formula TiOx (1.4 ≦ x ≦ 1.8) (hereinafter also referred to as titanium suboxide) generate less gas when forming a deposited film, and are for a titanium dioxide deposited film. It is most suitable as a vapor deposition material. However, the sintered body of titanium suboxide is very brittle and easily crushed during handling such as packaging, transportation, filling in a crucible during vapor deposition, and a large amount of fine powder is generated. This fine powder contributes to splashing (bumping) in the melting process, heating, and vaporizing process during vapor deposition. As a result of the occurrence of splash, a lump of vapor deposition material scatters on the vapor deposition target, causing contamination of the vapor deposition target. Further, the generation of fine powder causes a decrease in the utilization rate of the vapor deposition material, and the cost performance decreases.
焼結体を非常に静かに取り扱えば、亜酸化チタン焼結体の破砕はまぬがれるが、通常工業的プロセスにおいては現実的ではない。 If the sintered body is handled very gently, the titanium suboxide sintered body will be shattered, but it is usually not practical in an industrial process.
一方、蒸着材料を焼結体ではなく溶融体として製造し、粉砕等の処理を施して使用する場合は前述の微粉発生の問題はない。しかしながら、溶融工程は焼結工程に比べて高温で行う必要があること、溶融時の溶融体とルツボの熱膨張差によるルツボの破損リスクがあること、溶融物とルツボが癒着して収率やメンテナンスコストがかかること、等の理由により、そのコストは焼結体の場合に比べて非常に大きい。 On the other hand, when the vapor deposition material is manufactured not as a sintered body but as a melt and used after being subjected to a treatment such as pulverization, there is no problem of the generation of fine powder. However, the melting process needs to be performed at a higher temperature than the sintering process, there is a risk of crucible damage due to the difference in thermal expansion between the melt and the crucible at the time of melting, The cost is very high compared to the case of the sintered body because of the maintenance cost.
特許文献1では組成がTiOx(x=1.4〜1.8)であるチタン酸化物をベースとし、酸化ジルコニウム、酸化ハフニウム、酸化イットリウム及び酸化イッテルビウムからなる群からの酸化物を0.1〜10重量%添加した焼結蒸着材料が提案され、具体的には酸化ジルコニウムを添加する場合について開示されているが、その効果は十分なものではなかった。 In Patent Document 1, a titanium oxide having a composition of TiO x (x = 1.4 to 1.8) is used as a base, and an oxide from the group consisting of zirconium oxide, hafnium oxide, yttrium oxide and ytterbium oxide is 0.1. A sintered vapor deposition material added at 10 wt% has been proposed and specifically disclosed for the case of adding zirconium oxide, but the effect was not sufficient.
本願発明の目的は、組成式TiOx(1.4≦x≦1.8)で表される亜酸化チタンと同等の性能を持ち、安価で、取り扱い時に微粉が発生しないチタン酸化物系の焼結蒸着材料を提供することである。 The purpose of the present invention is titanium oxide-based sintering that has the same performance as titanium suboxide represented by the composition formula TiOx (1.4 ≦ x ≦ 1.8), is inexpensive, and does not generate fine powder during handling. It is to provide a vapor deposition material.
本願発明者は、鋭意検討を重ね、本願発明を完成するに至った。本願発明者らは、特定組成のチタン酸化物に特定の酸化物を含有させた焼結体は、取り扱い時に破砕しにくく、破砕しても微粉がほとんど発生しないことを見出した。 The inventor of the present application has made extensive studies and has completed the present invention. The inventors of the present application have found that a sintered body in which a specific oxide is contained in a titanium oxide having a specific composition is difficult to be crushed during handling, and hardly generates fine powder even when crushed.
本願発明の蒸着材料は、組成式TiOx(1.4≦x≦1.8)で表されるチタン酸化物からなる主成分と、ガーネット構造をとる化合物を含む焼結体であることを特徴とする。 The vapor deposition material of the present invention is a sintered body containing a main component composed of a titanium oxide represented by a composition formula TiOx (1.4 ≦ x ≦ 1.8) and a compound having a garnet structure. To do.
前記焼結体は、さらに酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種を含むことが好ましい。さらに酸化イットリウムを含むと特に好ましい。 The sintered body preferably further contains at least one selected from aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide. Further, it is particularly preferable to contain yttrium oxide.
もう一つの本願発明の蒸着材料は、組成式TiOx(1.4≦x≦1.8)で表されるチタン酸化物からなる主成分と、酸化イットリウムと、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種と、を含む焼結体であることを特徴とする。 Another vapor deposition material of the present invention includes a main component composed of a titanium oxide represented by a composition formula TiOx (1.4 ≦ x ≦ 1.8), yttrium oxide, aluminum oxide, zirconium oxide, hafnium oxide, and It is a sintered body containing at least one selected from ytterbium oxide.
前記酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種は、酸化アルミニウムであることが好ましい。 At least one selected from the aluminum oxide, zirconium oxide, hafnium oxide and ytterbium oxide is preferably aluminum oxide.
前記焼結体中の前記ガーネット構造をとる化合物と、前記酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種と、前記酸化イットリウムと、の合計は、前記蒸着材料に対して1重量%〜10重量%であることが好ましい。 The total of the compound having the garnet structure in the sintered body, at least one selected from the aluminum oxide, zirconium oxide, hafnium oxide and ytterbium oxide, and the yttrium oxide is 1 with respect to the vapor deposition material. It is preferable that it is 10 to 10 weight%.
前記ガーネット構造をとる化合物は、希土類アルミニウムガーネットであることが好ましい。 The compound having the garnet structure is preferably a rare earth aluminum garnet.
前記蒸着材料は、0.1Pa〜1.0×10−4Paの圧力下、1300℃〜1750℃で焼成されてなる焼結体であることが好ましい。 The vapor deposition material is preferably a sintered body that is fired at 1300 ° C. to 1750 ° C. under a pressure of 0.1 Pa to 1.0 × 10 −4 Pa.
本願発明の蒸着材料は、主成分以外に、ガーネット構造をとる化合物、あるいは酸化イットリウムと、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種を含む焼結体であるため、取り扱い時に破砕しにくい。また、破砕が生じたとしても微粉が発生しない。そのため、亜酸化チタン系の焼結蒸着材料として従来よりも格段に取り扱いやすいものとなる。その上スプラッシュの発生しない安定した亜酸化チタン系の蒸着材料となる。そのため、本願発明の蒸着材料を用いて蒸着すると、高品位な蒸着膜を安定して生成することができるようになる。 The vapor deposition material of the present invention is a sintered body containing a compound having a garnet structure or yttrium oxide and at least one selected from aluminum oxide, zirconium oxide, hafnium oxide and ytterbium oxide in addition to the main component. Sometimes difficult to crush. Even if crushing occurs, no fine powder is generated. Therefore, it becomes much easier to handle as a titanium suboxide-based sintered vapor deposition material than before. In addition, it becomes a stable titanium suboxide-based vapor deposition material that does not generate splash. Therefore, when vapor deposition is performed using the vapor deposition material of the present invention, a high-quality vapor deposition film can be stably generated.
前記焼結体が主成分以外の成分としてガーネット構造をとる化合物を含む場合、さらに酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種を含むと、破砕防止効果が格段に向上する。特に酸化アルミニウムはガーネット構造をとる化合物と相性がよく、焼結具合を制御しやすい。 When the sintered body includes a compound having a garnet structure as a component other than the main component, and further includes at least one selected from aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide, the crushing prevention effect is significantly improved. . In particular, aluminum oxide is compatible with a compound having a garnet structure, and the degree of sintering is easily controlled.
前記焼結体が主成分以外の成分として酸化イットリウムを含む場合、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種を含むことが必須であるが、この場合も酸化アルミニウムを含むと破砕防止効果が格段に向上し、焼結具合を制御しやすい。 When the sintered body includes yttrium oxide as a component other than the main component, it is essential to include at least one selected from aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide, and in this case also includes aluminum oxide. The effect of preventing crushing is greatly improved and the degree of sintering is easy to control.
前記ガーネット構造をとる化合物が希土類アルミニウムガーネットであると、適度な強度の焼結体を得やすく、得られる焼結体の品質ばらつきを抑えやすい。 When the compound having the garnet structure is a rare earth aluminum garnet, it is easy to obtain a sintered body having an appropriate strength, and it is easy to suppress the quality variation of the obtained sintered body.
本願発明の蒸着材料は、0.1Pa〜1.0×10−4Paの圧力下、1300℃〜1750℃で焼成されてなる焼結体であると、特に破砕しにくくなる。その一方で、適当な応力で意図的に粉砕することも可能であり、目的の粒度に応じた粉砕処理ができるようになる。さらに、得られる焼結体の組成は非常に安定して制御されたものとなる。 The vapor deposition material of the present invention is particularly difficult to break when it is a sintered body that is fired at 1300 ° C. to 1750 ° C. under a pressure of 0.1 Pa to 1.0 × 10 −4 Pa. On the other hand, it is possible to pulverize intentionally with an appropriate stress, and it becomes possible to perform pulverization according to the target particle size. Furthermore, the composition of the obtained sintered body is very stably controlled.
以下、本願発明の蒸着材料について、実施の形態及び実施例を用いて詳細に説明する。但し、本願発明はこれら実施の形態及び実施例に限定されるものではない。 Hereinafter, the vapor deposition material of this invention is demonstrated in detail using embodiment and an Example. However, the present invention is not limited to these embodiments and examples.
主成分であるチタン酸化物は、組成式TiOx(1.4≦x≦1.8)で表される亜酸化チタンである。亜酸化チタンを蒸着材料とし、適度な酸素分圧下で蒸着すると、蒸着膜形成時のガス発生が抑えられ、品位の高い蒸着膜が得られる。蒸着材料が二酸化チタンの場合、ガス発生により、例えば蒸着膜内部に空孔が形成される等の不具合が生じ、蒸着膜の品位が劣る。 The main component of titanium oxide is titanium suboxide represented by the composition formula TiOx (1.4 ≦ x ≦ 1.8). When titanium suboxide is used as a vapor deposition material and vapor deposition is performed under an appropriate oxygen partial pressure, gas generation during vapor deposition film formation is suppressed, and a high quality vapor deposition film can be obtained. When the vapor deposition material is titanium dioxide, problems such as formation of vacancies in the vapor deposition film occur due to gas generation, resulting in poor quality of the vapor deposition film.
亜酸化チタンTiOxのxの値は、1.4を下回ると蒸着膜が着色する傾向が、1.8を上回ると蒸着膜形成時のガス発生が増える傾向にあるので、1.4≦x≦1.8である必要がある。1.5≦x≦1.7であると、蒸着材料を気化させるのに必要なエネルギーが低くなるので好ましい。1.6≦x≦1.7であると、特に必要なエネルギーが低くなるのでより好ましい。 When the value of x of titanium suboxide TiO x is less than 1.4, the vapor deposition film tends to be colored, and when it exceeds 1.8, gas generation during vapor deposition film formation tends to increase. It is necessary that ≦ 1.8. It is preferable that 1.5 ≦ x ≦ 1.7 because energy required for vaporizing the vapor deposition material becomes low. It is more preferable that 1.6 ≦ x ≦ 1.7 because particularly necessary energy is reduced.
本願発明の蒸着材料は、焼結体中に主成分以外の成分を含む必要であるが、その態様は以下の2通りある。 Although the vapor deposition material of this invention needs to contain components other than a main component in a sintered compact, the aspect has the following two types.
<第1の態様>
第1の態様は、焼結体が、主成分以外にガーネット構造をとる化合物を含む態様である。ガーネット構造をとる化合物が存在することで破砕防止効果とスプラッシュ防止効果が得られる。
<First aspect>
In the first aspect, the sintered body includes a compound having a garnet structure in addition to the main component. The presence of a compound having a garnet structure provides a crush preventing effect and a splash preventing effect.
前記ガーネット構造をとる化合物としては、A3B2(SiO4)3(AはCa、Fe、Mn、Mgなど、BはAl、Cr、Tiなど)で表されるオルトケイ酸塩(いわゆる柘榴石)、イットリウム鉄ガーネット(YIG)に代表される希土類鉄ガーネット、イットリウムアルミニウムガーネット(YAG)に代表される希土類アルミニウムガーネットなどがある。中でも希土類アルミニウムガーネットが適度な強度の焼結体を得やすいので好ましい。 As the compound having the garnet structure, orthosilicate (so-called meteorite) represented by A 3 B 2 (SiO 4 ) 3 (A is Ca, Fe, Mn, Mg, etc., B is Al, Cr, Ti, etc.) ), Rare earth iron garnet represented by yttrium iron garnet (YIG), and rare earth aluminum garnet represented by yttrium aluminum garnet (YAG). Among these, rare earth aluminum garnet is preferable because it is easy to obtain a sintered body having an appropriate strength.
前記希土類アルミニウムガーネットの中でも、イットリウム、ランタン、ガドリニウム及びルテチウムからなる群より選択される少なくとも一種の元素を希土類元素としたものは焼結体の特性を制御しやすいのでより好ましい。中でもYAGあるいは希土類元素の主成分がイットリウムであるものは製造バラツキが少なく特に好ましい。 Among the rare earth aluminum garnets, those in which at least one element selected from the group consisting of yttrium, lanthanum, gadolinium and lutetium is a rare earth element are more preferable because the properties of the sintered body can be easily controlled. Among them, YAG or a rare earth element whose main component is yttrium is particularly preferable because of little manufacturing variation.
第1の態様において、前記焼結体が、主成分以外の成分として、さらに酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種を含むと、破砕防止効果が格段に向上して好ましい。特に酸化アルミニウムを含むと、焼結具合を制御しやすいのでより好ましい。 In the first aspect, when the sintered body further contains at least one selected from aluminum oxide, zirconium oxide, hafnium oxide and ytterbium oxide as a component other than the main component, the anti-crushing effect is significantly improved. preferable. In particular, it is more preferable to include aluminum oxide because the degree of sintering can be easily controlled.
第1の態様において、前記焼結体は、主成分以外の成分はさらに酸化イットリウムを含んでいてもよい。 In the first aspect, the sintered body may further contain yttrium oxide as a component other than the main component.
<第2の態様>
第2の態様は、焼結体が、主成分以外に、酸化イットリウムと、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種と、を含む態様である。両者が共存することで態様1と同様の効果が得られる。
<Second aspect>
In the second aspect, the sintered body includes, in addition to the main component, yttrium oxide and at least one selected from aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide. The effect similar to the aspect 1 is acquired by both coexisting.
第1の態様同様、前記酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種が酸化アルミニウムであると、焼結具合を制御しやすく好ましい。 As in the first embodiment, it is preferable that at least one selected from the aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide is aluminum oxide because the degree of sintering is easily controlled.
特定の理論に束縛されるものではないが、これは以下のような作用機構によるものと推測される。 Although not bound by a specific theory, this is presumed to be due to the following mechanism of action.
第1の態様においては、ガーネット構造を有する化合物が粒子間の結合強度を増し、焼結体からの微粉発生を防止する。一般的にこのような物質は粒子成長を促すことが多く、結果粒界が増え、スプラッシュは却って発生しやすくなる。ところが、ガーネット構造を有する化合物は粒子成長を促す効果がないか、あるいは弱いため、焼結体の結晶性は下がり、粒界が減る。そのため、強度が高められたにも関わらず粒界の少ない焼結体となり、微粉発生とスプラッシュ発生の両方を効果的に抑制するのである。 In the first aspect, the compound having a garnet structure increases the bond strength between the particles and prevents the generation of fine powder from the sintered body. In general, such substances often promote particle growth, resulting in an increase in grain boundaries, and splash tends to occur on the contrary. However, since a compound having a garnet structure has no effect or weakness for promoting particle growth, the crystallinity of the sintered body is lowered and the grain boundary is reduced. Therefore, despite the increased strength, the sintered body has few grain boundaries, and both fine powder generation and splash generation are effectively suppressed.
第2の態様においては、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化イッテルビウムから選択される少なくとも一種が粒子間の結合強度を効果的に増す。しかし、これだけでは前述のようにスプラッシュ発生の要因の一つを生む。それに対し、酸化イットリウムも共存することで、粒子成長が抑制され、微粉発生とスプラッシュ発生の両方を効果的に抑制するのである。どちらか一方だけではこれら効果の内の片方あるいは両方が十分得られない。 In the second aspect, at least one selected from aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide effectively increases the bond strength between the particles. However, this alone causes one of the causes of splash occurrence as described above. On the other hand, the coexistence of yttrium oxide suppresses the particle growth and effectively suppresses both fine powder generation and splash generation. One or both of these effects cannot be obtained sufficiently by either one.
本願発明の蒸着材料における主成分は、実質的にその化学的、物理的特性を決める成分であり、本願においては蒸着材料全体に対しておおよそ80重量%以上なら主成分たるものとする。主成分が少なすぎると、蒸着膜の化学的、物理的特性が、主成分のみからなる蒸着材料から得られる蒸着膜の化学的、物理的特性から乖離するので注意が必要である。 The main component in the vapor deposition material of the present invention is a component that substantially determines its chemical and physical characteristics. In the present application, the main component is approximately 80% by weight or more based on the entire vapor deposition material. If the amount of the main component is too small, the chemical and physical characteristics of the vapor deposition film deviate from the chemical and physical characteristics of the vapor deposition film obtained from the vapor deposition material consisting only of the main component.
前記主成分以外の成分の合計は、主成分について論じたように、多すぎては好ましくない。少なすぎれば微粉発生抑制やスプラッシュ抑制の効果が不十分になるので好ましくない。前記主成分以外の成分の合計が蒸着材料全体に対して1〜10重量%だと、主成分のみからなる蒸着材料から得られる蒸着膜と同等の蒸着膜を得られ、且つ、微粉発生抑制とスプラッシュ抑制の効果が特に顕著なので好ましい。より好ましい範囲は1重量%〜5重量%、さらに好ましい範囲は2重量%〜4重量%である。 The total of the components other than the main component is not preferable if it is too large as discussed for the main component. If the amount is too small, the effect of suppressing fine powder generation and splash is insufficient, which is not preferable. When the total of the components other than the main component is 1 to 10% by weight with respect to the entire vapor deposition material, a vapor deposition film equivalent to the vapor deposition film obtained from the vapor deposition material consisting only of the main component can be obtained, and fine powder generation can be suppressed. This is preferable because the effect of suppressing splash is particularly remarkable. A more preferable range is 1% by weight to 5% by weight, and a further preferable range is 2% by weight to 4% by weight.
第1の態様における、ガーネット構造をとる化合物、又はガーネット構造をとる化合物と酸化イットリウムの合計、あるいは第2の態様における、酸化イットリウムは、蒸着材料全体に対して0.5重量%〜2.5重量%であることがスプラッシュ抑制効果と、主成分とのバランス上好ましい。 The compound having a garnet structure in the first embodiment, or the total of the compound having a garnet structure and yttrium oxide, or yttrium oxide in the second embodiment is 0.5% by weight to 2.5% with respect to the entire deposition material. It is preferable in terms of the balance between the splash suppressing effect and the main component.
いずれの態様においても、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種は、蒸着材料全体に対して0.5重量%〜1.5重量%であることが焼結体の強度と粒子成長のバランス上好ましい。 In any of the embodiments, at least one selected from aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide is 0.5% by weight to 1.5% by weight with respect to the entire deposition material. It is preferable in terms of balance between strength and particle growth.
ガーネット構造をとる化合物及び酸化イットリウムの合計重量M1と、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種の重量M2との比M1/M2については、0.5以上1.0以下であると、前述の効果が特に顕著なので好ましい。 Regarding the ratio M 1 / M 2 of the total weight M 1 of the compound having a garnet structure and yttrium oxide and at least one weight M 2 selected from aluminum oxide, zirconium oxide, hafnium oxide and ytterbium oxide, 0.5 It is preferable that the ratio is 1.0 or less because the above-described effects are particularly remarkable.
本願蒸着材料は、主成分の原料と、主成分以外の成分の原料とを混合機等で混合した後、高温で焼成して焼結体としたものである。焼成手法は炉内の雰囲気をチタンと反応しないように調整して電気炉等で焼成してもよいし、炉内の真空度を高めて(排気、減圧して)真空炉で焼成してもよい。後者の方が現実的な手法と言えて好ましい。前者の場合は、例えばアルゴン等の希ガス雰囲気を用いる。 The vapor deposition material of the present application is obtained by mixing a raw material of a main component and a raw material of a component other than the main component with a mixer or the like and then firing at a high temperature to obtain a sintered body. The firing method may be such that the atmosphere in the furnace is adjusted so as not to react with titanium and fired in an electric furnace or the like, or the degree of vacuum in the furnace is increased (exhaust and depressurized) and fired in a vacuum furnace. Good. The latter is preferable because it is a realistic method. In the former case, a rare gas atmosphere such as argon is used.
焼成温度は、炉の構造、雰囲気等によって適宜決定する。低すぎれば焼結が不十分に、高すぎれば焼結体が堅くなりすぎたり粒子成長が起こりすぎたりする傾向にあるので注意が必要である。雰囲気焼成の場合は1200℃〜1500℃であればよく、好ましくは1300℃〜1400℃である。真空焼成の場合は、1300〜1750℃であればよく、好ましくは1400℃〜1600℃である。真空焼成は、雰囲気焼成に比べてチタンの酸素以外の元素との反応をほぼ確実に防止できるのでより好ましい。 The firing temperature is appropriately determined depending on the furnace structure, atmosphere, and the like. If it is too low, the sintering is insufficient, and if it is too high, the sintered body tends to be too stiff or grain growth tends to occur. In the case of atmospheric firing, it may be 1200 ° C to 1500 ° C, and preferably 1300 ° C to 1400 ° C. In the case of vacuum firing, it may be 1300 to 1750 ° C, and preferably 1400 to 1600 ° C. Vacuum firing is more preferable because it can almost certainly prevent reaction of titanium with elements other than oxygen as compared to atmosphere firing.
真空焼成する場合、10Pa以下の圧力範囲で焼成することで真空焼成としての意味をなす。真空度は高ければ高いに越したことはないが、コストや手間考慮すると、1.0×10−1Pa〜1.0×10−4Paの圧力範囲が現実的であり好ましい。 In the case of vacuum firing, firing as a pressure range of 10 Pa or less makes sense as vacuum firing. If the degree of vacuum is high, the pressure is never high, but considering the cost and labor, a pressure range of 1.0 × 10 −1 Pa to 1.0 × 10 −4 Pa is realistic and preferable.
主成分の原料は、目的組成である市販の主成分を用いてもよいし、金属チタン及び各種チタン酸化物を目的組成に応じて適宜選択し、混合して用いてもよい。例えば金属チタンと二酸化チタン、一酸化チタンと二酸化チタン、金属チタンと一酸化チタンと五酸化三チタン、三酸化二チタンと二酸化チタン、等様々な組み合わせが可能である。原料入手のし易さ、価格、取り扱い易さ等を考慮すると、金属チタンと二酸化チタンを混合するのが好ましい。 As the main component material, a commercially available main component having the target composition may be used, or metallic titanium and various titanium oxides may be appropriately selected according to the target composition and used in combination. For example, various combinations such as titanium metal and titanium dioxide, titanium monoxide and titanium dioxide, metal titanium and titanium monoxide and trititanium oxide, and dititanium trioxide and titanium dioxide are possible. In consideration of easy availability of raw materials, price, ease of handling, etc., it is preferable to mix titanium metal and titanium dioxide.
第1の態様において、主成分以外の成分の原料は、ガーネット構造の化合物が使用可能である。さらに必要に応じて酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種、さらに必要に応じて酸化イットリウムが使用可能である。焼成温度における予期せぬ反応を防ぐため、他の形態の原料は使用しない。 In the first embodiment, a garnet structure compound can be used as a raw material for components other than the main component. Furthermore, at least one selected from aluminum oxide, zirconium oxide, hafnium oxide and ytterbium oxide can be used as required, and yttrium oxide can be used as necessary. To prevent unexpected reactions at the firing temperature, no other form of raw material is used.
第2の態様において、主成分以外の成分の原料は、酸化イットリウムと、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種とが使用可能である。焼成温度における予期せぬ反応を防ぐため、他の形態の原料は使用しない。 In the second embodiment, the raw materials for components other than the main component can be yttrium oxide and at least one selected from aluminum oxide, zirconium oxide, hafnium oxide, and ytterbium oxide. To prevent unexpected reactions at the firing temperature, no other form of raw material is used.
得られた焼結体は使用目的に応じて適宜粉砕工程を設けて粒度調整を行ってもよい。あるいは高水圧切断機等で特定の大きさの断片に切り分けてもよい。本願発明の焼結体蒸着材料は通常の取り扱い中に意図しない破砕はほとんど起こらず、また、粉砕工程においても微粉がほとんど発生しない。 The obtained sintered body may be adjusted in particle size by appropriately providing a pulverization step according to the purpose of use. Or you may cut | divide into the fragment | piece of a specific magnitude | size with a high hydraulic-pressure cutting machine etc. The sintered body vapor-deposited material of the present invention hardly causes unintentional crushing during normal handling, and hardly generates fine powder in the pulverization process.
本願発明の蒸着材料は、主成分及び主成分以外の成分の間で反応するわけではなく、それぞれ独立して存在している。このことは粉末X線回折(XRD)によって確認できる。すなわち、XRDスペクトルの形状はおおよそ主成分のものと同等である。但し、バックグラウンドのノイズが増加し、スペクトルのピークは半値幅が広がり、ややブロードになる。このことから、化学的には変化が生じていないが、結晶的な特性に変化が生じていることが分かる。なお、相対的な量の少なさ故に、副成分に係るスペクトルのピークははっきりとは観察できない。図1はx=1.67(Ti3O5)である本願蒸着材料のXRDスペクトル、図2は主成分100%の焼結体のXRDスペクトル、図3はTi3O5溶融体を粉砕して粉体にしたもののXRDスペクトルである。 The vapor deposition material of the present invention does not react between the main component and the components other than the main component, but exists independently. This can be confirmed by powder X-ray diffraction (XRD). That is, the shape of the XRD spectrum is approximately the same as that of the main component. However, the background noise increases, and the peak of the spectrum has a half-width that is slightly broadened. From this, it can be seen that although no change has occurred chemically, a change has occurred in the crystalline characteristics. In addition, since the relative amount is small, the peak of the spectrum related to the subcomponent cannot be clearly observed. 1 XRD spectrum of the present vapor deposition material is x = 1.67 (Ti 3 O 5 ), FIG. 2 is XRD spectra of the main component of 100% of the sintered body, FIG. 3 is crushed Ti 3 O 5 melt XRD spectrum of the powder.
平均粒径0.5μmの二酸化チタン粉末86.7重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.4重量%、酸化アルミニウム粉末1.0重量%及びYAG粉末1.9重量%を撹拌混合機で混合し、造粒機で粒径0.5mm〜3.0mm程度の顆粒状に造粒した。得られた造粒品を、1Pa以下の減圧下、1650℃で2時間焼成し、焼結体を得た。得られた焼結体を粗粉砕し、粒径0.5mm〜3.0mm程度の焼結顆粒を得た。 86.7% by weight of titanium dioxide powder having an average particle size of 0.5 μm, 10.4% by weight of titanium metal powder with coarse particles removed by a metal mesh screen having a nominal opening of 45 μm, 1.0% by weight of aluminum oxide powder, and 1.9% by weight of YAG powder was mixed with a stirring mixer, and granulated into granules having a particle size of about 0.5 mm to 3.0 mm with a granulator. The obtained granulated product was fired at 1650 ° C. for 2 hours under a reduced pressure of 1 Pa or less to obtain a sintered body. The obtained sintered body was coarsely pulverized to obtain sintered granules having a particle size of about 0.5 mm to 3.0 mm.
酸化アルミニウム粉末が1.5重量%、YAG粉末が1.5重量%であること以外は実施例1と同様にして焼結顆粒を得た。 Sintered granules were obtained in the same manner as in Example 1 except that the aluminum oxide powder was 1.5% by weight and the YAG powder was 1.5% by weight.
平均粒径0.5μmの二酸化チタン粉末85.9重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.3重量%、酸化アルミニウム粉末1.9重量%及びYAG粉末1.9重量%を撹拌混合機で混合し、造粒機で粒径0.5mm〜3.0mm程度の顆粒状に造粒した。以下実施例1と同様にして焼結顆粒を得た。 85.9% by weight of titanium dioxide powder having an average particle size of 0.5 μm, 10.3% by weight of titanium metal powder with coarse particles removed by a metal mesh screen having a nominal opening of 45 μm, 1.9% by weight of aluminum oxide powder, and 1.9% by weight of YAG powder was mixed with a stirring mixer, and granulated into granules having a particle size of about 0.5 mm to 3.0 mm with a granulator. Thereafter, sintered granules were obtained in the same manner as in Example 1.
平均粒径0.5μmの二酸化チタン粉末86.7重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.4重量%、酸化アルミニウム粉末1.7重量%及び酸化イットリウム粉末1.2重量%を撹拌混合機で混合し、造粒機で粒径0.5mm〜3.0mm程度の顆粒状に造粒した。以下実施例1と同様にして焼結顆粒を得た。 86.7% by weight of titanium dioxide powder having an average particle size of 0.5 μm, 10.4% by weight of titanium metal powder with coarse particles removed by a metal mesh screen having a nominal opening of 45 μm, 1.7% by weight of aluminum oxide powder, and 1.2 wt% of yttrium oxide powder was mixed with a stirring mixer, and granulated into granules having a particle size of about 0.5 mm to 3.0 mm with a granulator. Thereafter, sintered granules were obtained in the same manner as in Example 1.
平均粒径0.5μmの二酸化チタン粉末86.7重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.4重量%及びYAG粉末3.0重量%を撹拌混合機で混合し、造粒機で粒径0.5〜3.0mm程度の顆粒状に造粒した。以下実施例1と同様にして焼結顆粒を得た。 Stirring 86.7% by weight of titanium dioxide powder having an average particle size of 0.5 μm, 10.4% by weight of metal titanium powder from which coarse particles have been removed by a metal mesh screen having a nominal aperture of 45 μm, and 3.0% by weight of YAG powder The mixture was mixed with a mixer and granulated into granules having a particle size of about 0.5 to 3.0 mm with a granulator. Thereafter, sintered granules were obtained in the same manner as in Example 1.
[比較例1]
平均粒径0.5μmの二酸化チタン粉末89.3重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.7重量%とを撹拌混合機で混合し、造粒機で粒径0.5mm〜3.0mm程度の顆粒状に造粒した。得られた造粒品を、1Pa以下の減圧下、1650℃で2時間焼成し、焼結体を得た。得られた焼結体を粗粉砕し、粒径0.5mm〜3.0mm程度の焼結顆粒を得た。
[Comparative Example 1]
A mixture of 89.3 wt% titanium dioxide powder having an average particle size of 0.5 μm and 10.7 wt% of metal titanium powder from which coarse particles have been removed by a metal mesh sieve having a nominal aperture of 45 μm is mixed with a stirring mixer. It was granulated into granules having a particle size of about 0.5 mm to 3.0 mm with a granulator. The obtained granulated product was fired at 1650 ° C. for 2 hours under a reduced pressure of 1 Pa or less to obtain a sintered body. The obtained sintered body was coarsely pulverized to obtain sintered granules having a particle size of about 0.5 mm to 3.0 mm.
[比較例2]
比較例1と同様にして原料を顆粒状に造粒した。得られた造粒品を、1Pa以下の減圧下、1800℃で2時間焼成し、溶融体を得た。得られた溶融体を粗粉砕し、粒径0.5mm〜3.0mm程度の顆粒を得た。
[Comparative Example 2]
The raw material was granulated in the same manner as in Comparative Example 1. The obtained granulated product was fired at 1800 ° C. for 2 hours under a reduced pressure of 1 Pa or less to obtain a melt. The obtained melt was coarsely pulverized to obtain granules having a particle size of about 0.5 mm to 3.0 mm.
[比較例3]
平均粒径0.5μmの二酸化チタン粉末86.7重量%、公称目開き45μmの金属製網篩によって粗大粒子が取り除かれた金属チタン粉末10.4重量%及び酸化アルミニウム粉末3.0重量%を撹拌混合機で混合し、造粒機で粒径0.5〜3.0mm程度の顆粒状に造粒した。以下実施例1と同様にして焼結顆粒を得た。
[Comparative Example 3]
86.7% by weight of titanium dioxide powder having an average particle size of 0.5 μm, 10.4% by weight of metal titanium powder from which coarse particles have been removed by a metal mesh screen having a nominal opening of 45 μm, and 3.0% by weight of aluminum oxide powder The mixture was mixed with a stirring mixer and granulated into granules having a particle size of about 0.5 to 3.0 mm with a granulator. Thereafter, sintered granules were obtained in the same manner as in Example 1.
[比較例4]
酸化アルミニウム粉末の替わりに酸化イットリウム粉末3.0重量%を用いたこと以外は比較例3と同様にして焼結顆粒を得た。
[Comparative Example 4]
Sintered granules were obtained in the same manner as in Comparative Example 3 except that 3.0% by weight of yttrium oxide powder was used in place of the aluminum oxide powder.
<微粉発生率>
焼結終了後、得られた焼結体を1)焼成炉から取り出し、2)粗粉砕して顆粒状にし、3)保管用ナイロン袋梱包し、保管用ナイロン袋から取り出して蒸着装置に設置した。その後、電子ビーム蒸着装置で蒸着膜を生成した。実施例1〜5及び比較例1〜4について、1)〜3)の工程で焼結体から発生した微粉末を回収した。回収した微粉末を、公称目開き0.1mmの金属製網篩で篩い、篩を通過した微粉末の焼結体に対する重量比を微粉発生率とした。この微粉発生率が大きいほど得られた焼結体は脆く、取り扱いにくい(ハンドリングが悪い)と言える。
<Fine powder generation rate>
After the sintering, the obtained sintered body was 1) taken out from the firing furnace, 2) coarsely pulverized into granules, 3) packed in a storage nylon bag, taken out from the storage nylon bag and placed in a vapor deposition apparatus. . Then, the vapor deposition film was produced | generated with the electron beam vapor deposition apparatus. For Examples 1 to 5 and Comparative Examples 1 to 4, fine powder generated from the sintered bodies in the steps 1) to 3) was collected. The collected fine powder was sieved with a metal mesh screen having a nominal mesh size of 0.1 mm, and the weight ratio of the fine powder that passed through the sieve to the sintered body was defined as the fine powder generation rate. The larger the fine powder generation rate, the more the sintered body obtained is brittle and it can be said that it is difficult to handle (poor handling).
<スプラッシュ発生評価>
実施例1〜5及び比較例1〜4について、電子ビーム蒸着装置の銅製ハース(ルツボ)内に蒸着材料を、試料台にガラス基板を設置し、装置内を5.0×10−4Paまで排気、減圧した。減圧後、加速電圧6kVで電子銃から250mAの電子ビームを発生させ、焼結顆粒を加熱、溶解した。焼結顆粒の加熱開始から、焼結顆粒全体が溶融するまでの間、電子ビーム蒸着装置の窓から銅製ハースを観察し、スプラッシュの発生頻度を比較した。
<Splash generation evaluation>
About Examples 1-5 and Comparative Examples 1-4, a vapor deposition material is installed in a copper hearth (crucible) of an electron beam evaporation apparatus, a glass substrate is installed on a sample stage, and the inside of the apparatus is up to 5.0 × 10 −4 Pa. Exhaust and reduced pressure. After decompression, a 250 mA electron beam was generated from an electron gun at an acceleration voltage of 6 kV, and the sintered granules were heated and melted. From the start of heating the sintered granules to the melting of the entire sintered granules, the copper hearth was observed from the window of the electron beam evaporation apparatus, and the frequency of occurrence of splash was compared.
<蒸着膜の評価>
焼結顆粒全体の溶解を確認した後、装置内部を1.4×10−2Paの酸素雰囲気に調整し、電子ビームの電流値を成膜速度0.3nm/secとなるような値に調整し、ガラス基板を250℃に保ちながら光学膜厚2λの蒸着膜を生成した。得られた蒸着膜について、分光光度計で透過・反射のピークを求めて波長分散特性を算出し、波長560nmにおける屈折率を求めた。
<Evaluation of vapor deposition film>
After confirming the dissolution of the entire sintered granule, the inside of the apparatus is adjusted to an oxygen atmosphere of 1.4 × 10 −2 Pa, and the current value of the electron beam is adjusted to a value at which the film formation rate is 0.3 nm / sec. And the vapor deposition film | membrane with an optical film thickness of 2lambda was produced | generated, keeping a glass substrate at 250 degreeC. About the obtained vapor deposition film, the peak of transmission / reflection was calculated | required with the spectrophotometer, the wavelength dispersion characteristic was calculated, and the refractive index in wavelength 560nm was calculated | required.
実施例1〜5及び比較例1〜4における、各原料の重量比を表1に、評価結果を表2に示す(四捨五入の関係で重量%の合計は必ずしも100.0%になっていない)。また、実施例1、比較例1及び比較例2のXRDスペクトルをそれぞれ図1、図2及び図3に、SEM写真をそれぞれ図4、図5及び図6に示す。 In Examples 1 to 5 and Comparative Examples 1 to 4, the weight ratio of each raw material is shown in Table 1, and the evaluation results are shown in Table 2 (the sum of weight percent is not necessarily 100.0% due to rounding off). . Further, XRD spectra of Example 1, Comparative Example 1 and Comparative Example 2 are shown in FIGS. 1, 2 and 3, respectively, and SEM photographs are shown in FIGS. 4, 5 and 6, respectively.
図1、図2及び図3より、本願発明の蒸着材料は添加物のない焼結体や、溶融体に比べてやや結晶性の低いものであることが分かる。また、図4、図5及び図6より、本願発明の蒸着材料は、焼結体でありながら、溶融体の蒸着材料と同程度に粒界の少ないことが分かる。 1, 2, and 3, it can be seen that the vapor deposition material of the present invention has a slightly lower crystallinity than a sintered body without additives and a melt. 4, 5, and 6, it can be seen that the vapor deposition material of the present invention is a sintered body but has as few grain boundaries as the vapor deposition material of the melt.
表2より、焼結体中に、主成分以外にガーネット化合物が存在することで、あるいは、主成分以外に酸化イットリウムと、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び酸化イッテルビウムから選択される少なくとも一種とが存在することで、微粉発生率抑制とスプラッシュ抑制が両立していることが分かる。また、生成した蒸着膜の屈折率より、本願発明の蒸着材料から生成される蒸着膜は、従来のチタン酸化物系蒸着材料から生成される蒸着膜と実質同等であることがわかる(屈折率の値から蒸着膜は二酸化チタンであるといえる)。これらのことから、本願発明の蒸着材料はハンドリングが良く、コスト的に有利で、スプラッシュの発生しにくい、二酸化チタン蒸着膜形成に好適な蒸着材料であるといえる。 From Table 2, the sintered body contains a garnet compound in addition to the main component, or at least one selected from yttrium oxide and aluminum oxide, zirconium oxide, hafnium oxide and ytterbium oxide in addition to the main component. It can be seen that there is a balance between fine powder generation rate suppression and splash suppression. Moreover, it can be seen from the refractive index of the generated vapor deposition film that the vapor deposition film produced from the vapor deposition material of the present invention is substantially equivalent to the vapor deposition film produced from the conventional titanium oxide-based vapor deposition material (with a refractive index of From the values, it can be said that the deposited film is titanium dioxide). From these facts, it can be said that the vapor deposition material of the present invention is a vapor deposition material suitable for forming a titanium dioxide vapor deposition film that has good handling, is advantageous in terms of cost, and hardly generates splash.
本願発明の蒸着材料を用いることで、膜品位の高い二酸化チタン蒸着膜を安定して形成することができる。本願発明の蒸着材料はその歩留まりが高く、ハンドリングがよいのでコストを抑えることができる。結果、膜品位の高い二酸化チタン蒸着膜を従来よりも安価に形成可能である。そのため、高屈折率で耐熱性の高い光学機器が安定して且つ安価に製造できる。 By using the vapor deposition material of the present invention, a titanium dioxide vapor deposition film with high film quality can be stably formed. The vapor deposition material of the present invention has a high yield and is easy to handle, so that the cost can be reduced. As a result, a titanium dioxide vapor-deposited film with high film quality can be formed at a lower cost than before. Therefore, an optical device having a high refractive index and high heat resistance can be manufactured stably and inexpensively.
Claims (16)
イットリウムアルミニウムガーネットとを含み、前記主成分の含有量が80重量%以上、且つ前記イットリウムアルミニウムガーネットの含有量が1重量%〜10重量%の焼結体である蒸着材料。 A main component composed of a titanium oxide represented by a composition formula TiO x (1.4 ≦ x ≦ 1.8);
A vapor deposition material comprising a sintered body containing yttrium aluminum garnet, wherein the content of the main component is 80% by weight or more and the content of the yttrium aluminum garnet is 1% by weight to 10% by weight.
金属チタン及びチタン酸化物からなる群から、主成分の目的組成に応じて適宜選択され、前記主成分として前記蒸着材料の80重量%以上に相当する前記主成分の原料と、前記蒸着材料の1重量%〜10重量%に相当するイットリウムアルミニウムガーネットと、を含む原料を混合する混合工程と、
得られる混合物を焼成する焼成工程と、
を有する製造方法。 A method for producing a vapor deposition material mainly comprising a titanium oxide represented by a composition formula TiO x (1.4 ≦ x ≦ 1.8),
From the group consisting of titanium metal and titanium oxide, the raw material of the main component corresponding to 80% by weight or more of the vapor deposition material as the main component, and one of the vapor deposition materials, selected as appropriate according to the target composition of the main component A mixing step of mixing raw materials including yttrium aluminum garnet corresponding to 10% by weight,
A firing step of firing the resulting mixture;
A manufacturing method comprising:
金属チタン及びチタン酸化物からなる群から、主成分の目的組成に応じて適宜選択され、前記主成分として前記蒸着材料の80重量%以上に相当する前記主成分の原料と、その合計が前記蒸着材料の1重量%〜10重量%に相当する酸化イットリウム及び酸化アルミニウムと、を含む原料を混合する混合工程と、
得られる混合物を焼成する焼成工程と、
を有する製造方法。 A method for producing a vapor deposition material mainly comprising a titanium oxide represented by a composition formula TiO x (1.4 ≦ x ≦ 1.8),
From the group consisting of titanium metal and titanium oxide, it is appropriately selected according to the target composition of the main component, and the main component raw material corresponding to 80% by weight or more of the vapor deposition material as the main component, and the total thereof is the vapor deposition A mixing step of mixing a raw material containing yttrium oxide and aluminum oxide corresponding to 1 wt% to 10 wt% of the material;
A firing step of firing the resulting mixture;
A manufacturing method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010255675A JP5287834B2 (en) | 2010-11-16 | 2010-11-16 | Titanium oxide-based vapor deposition material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010255675A JP5287834B2 (en) | 2010-11-16 | 2010-11-16 | Titanium oxide-based vapor deposition material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012107276A JP2012107276A (en) | 2012-06-07 |
JP5287834B2 true JP5287834B2 (en) | 2013-09-11 |
Family
ID=46493185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010255675A Expired - Fee Related JP5287834B2 (en) | 2010-11-16 | 2010-11-16 | Titanium oxide-based vapor deposition material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5287834B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5929673B2 (en) * | 2012-09-28 | 2016-06-08 | 日亜化学工業株式会社 | Titanium oxide vapor deposition material |
JP2019189464A (en) * | 2016-08-26 | 2019-10-31 | Agc株式会社 | Dititanium trioxide type ceramic bulk body and method of producing the same |
JP6829340B1 (en) * | 2020-10-01 | 2021-02-10 | 松田産業株式会社 | Gold vapor deposition material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60197867A (en) * | 1984-03-21 | 1985-10-07 | Shin Nippon Kinzoku Kagaku Kk | Titanium oxide composition for vacuum deposition by heating with electron gun |
JP3039721B2 (en) * | 1992-03-24 | 2000-05-08 | キヤノン株式会社 | Vapor deposition material and method for producing optical thin film using the vapor deposition material |
JPH0641729A (en) * | 1992-07-27 | 1994-02-15 | Oputoron:Kk | Material for vapor deposition |
JP3836163B2 (en) * | 1994-02-22 | 2006-10-18 | 旭硝子セラミックス株式会社 | Method for forming high refractive index film |
DE19607833A1 (en) * | 1996-03-01 | 1997-09-04 | Merck Patent Gmbh | Stabilized evaporation materials based on titanium oxide |
JP4314642B2 (en) * | 1998-04-30 | 2009-08-19 | 東洋紡績株式会社 | Vacuum deposition material |
JP3708429B2 (en) * | 2000-11-30 | 2005-10-19 | Hoya株式会社 | Method for manufacturing vapor deposition composition, method for manufacturing optical component having vapor deposition composition and antireflection film |
-
2010
- 2010-11-16 JP JP2010255675A patent/JP5287834B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012107276A (en) | 2012-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5169888B2 (en) | Composite tungsten oxide target material and manufacturing method thereof | |
JP6461543B2 (en) | Alloy target of aluminum and rare earth element and method for producing the same | |
EP2301904B1 (en) | Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film | |
JPH11302835A (en) | Production of zinc oxide base sintered compact | |
WO2019235499A1 (en) | Zinc oxide varistor | |
JP5287834B2 (en) | Titanium oxide-based vapor deposition material and method for producing the same | |
JP5929673B2 (en) | Titanium oxide vapor deposition material | |
JP2012197199A (en) | Copper selenide particle powder, and method for producing the same | |
TW201425268A (en) | Method for producing conductive mayenite compound having high-electron-density | |
JP2011057548A (en) | Method for making heating element of molybdenum silicide type | |
TW201238929A (en) | Process for producing sintered magnesium oxide material | |
Bari et al. | Phase evolution, microstructure, and microwave dielectric properties of reaction-sintered Li2ZnTi3O8 ceramic obtained using nanosized TiO2 reagent | |
JP4575035B2 (en) | Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel | |
JP6660943B2 (en) | Production method of plate-like alumina powder | |
AU751299B2 (en) | A composition for permanent magnet | |
US11827569B2 (en) | Yttrium aluminum garnet powder and processes for synthesizing same | |
JP6414527B2 (en) | Sn-Zn-O-based oxide sintered body and method for producing the same | |
JPH10158826A (en) | Mgo target and its production | |
Setiawati et al. | Studies on thermal migration of Eu ion doped into TiO2 nanoparticles | |
JP5993700B2 (en) | Method for producing zinc oxide-based sintered body | |
WO2018105689A1 (en) | Zinc oxide varistor and method for manufacturing same | |
JP7020123B2 (en) | Sputtering target | |
JP6459830B2 (en) | Oxide sintered body, method for producing the same, and method for producing oxide film | |
JP4638767B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP2010143798A (en) | Sintered magnesium oxide and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5287834 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |