[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5284834B2 - Capacitive proximity sensor - Google Patents

Capacitive proximity sensor Download PDF

Info

Publication number
JP5284834B2
JP5284834B2 JP2009060377A JP2009060377A JP5284834B2 JP 5284834 B2 JP5284834 B2 JP 5284834B2 JP 2009060377 A JP2009060377 A JP 2009060377A JP 2009060377 A JP2009060377 A JP 2009060377A JP 5284834 B2 JP5284834 B2 JP 5284834B2
Authority
JP
Japan
Prior art keywords
frequency
proximity detection
value
oscillation
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009060377A
Other languages
Japanese (ja)
Other versions
JP2010216808A (en
Inventor
秀夫 渡辺
Original Assignee
秀夫 渡辺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 秀夫 渡辺 filed Critical 秀夫 渡辺
Priority to JP2009060377A priority Critical patent/JP5284834B2/en
Publication of JP2010216808A publication Critical patent/JP2010216808A/en
Application granted granted Critical
Publication of JP5284834B2 publication Critical patent/JP5284834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は静電容量の変化を検出して近接する物体を検知する近接検知センサーに関する。 The present invention relates to a proximity detection sensor that detects a proximity object by detecting a change in capacitance.

従来より静電容量の変化を検出して近接する物体を検知するセンサーが知られている。この種のセンサーを開示する文献としては、例えば下記特許文献1がある。この特許文献1で開示された実施例は検出電極とした手摺に接近する物体による静電容量の変化を検出するセンサーが、手摺の長さや絶縁体の厚み等による静的状態における静電容量値の変化に対応して、コンデンサーの静電容量の値を変化させて設定する事で感度変化に対応している。また静電火花除去手段として手摺にネオン管を接続している。   2. Description of the Related Art Conventionally, a sensor that detects a nearby object by detecting a change in electrostatic capacitance is known. As a document disclosing this type of sensor, for example, there is Patent Document 1 below. In the embodiment disclosed in Patent Document 1, a sensor that detects a change in electrostatic capacitance due to an object approaching a handrail as a detection electrode has a capacitance value in a static state depending on the length of the handrail, the thickness of an insulator, and the like. Corresponding to the change of the sensitivity, it corresponds to the sensitivity change by changing the value of the capacitance of the capacitor. A neon tube is connected to the handrail as an electrostatic spark removing means.

特許第3600796号Japanese Patent No. 3600796

本発明の課題は、静電容量の変化を検出して近接する物体を検知する静電容量式近接検知センサーにおいて、検出電極の形状、設置状況の変化に対して感度を自動的に調整し、また静電火花に対応する新たな素子を追加することなく対応できる、使いやすくローコストな近接検知センサーを提供する事にある。   An object of the present invention is to automatically adjust the sensitivity with respect to a change in the shape and installation state of the detection electrode in a capacitance type proximity detection sensor that detects a nearby object by detecting a change in capacitance, Another object of the present invention is to provide an easy-to-use and low-cost proximity sensor that can be used without adding a new element corresponding to electrostatic sparks.

以上の課題を解決するために、第一の発明は検知電極に被検知物が近接したことを静電容量の変化から検知する近接検知センサーにおいて、前記静電容量を経時的に計測する静電容量計測手段と、経時的に計測した計測値の早い変化を除去したフィルター値を出力するフィルター値演算手段と、フィルター値に対応して決められた近接検知判定値を出力する近接検知判定値演算手段と、前記計測値が前記フィルター値より前記判定値以上変化したことを検出する判定手段からなる近接検知センサー。   In order to solve the above-described problems, a first invention is a proximity detection sensor that detects that an object to be detected has approached a detection electrode from a change in capacitance. Capacitance measurement means, filter value calculation means for outputting a filter value from which a rapid change in the measured value measured over time is output, and proximity detection determination value calculation for outputting a proximity detection determination value determined according to the filter value Proximity detection sensor comprising means and determination means for detecting that the measured value has changed by more than the determination value from the filter value.

第二の発明は請求項1において、前記検知電極は大地と略平行に架設された導電体で、検知範囲に合わせてその長さを変化させることを特徴とした近接検知センサー。 A second invention according to claim 1 is the proximity detection sensor according to claim 1, wherein the detection electrode is a conductor laid substantially parallel to the ground, and its length is changed in accordance with a detection range.

第三の発明は請求項1又は2において、前記静電容量計測手段が発振手段を含み、前記発振手段の発振素子がCMOSインバーターであり、その出力端子に接続した抵抗の他端に検知電極と、コイルとそれぞれ一端が接地されたコンデンサーによる共振回路の一端、を接続したことを特徴とした近接検知センサー。 According to a third aspect of the present invention, in the first or second aspect, the capacitance measuring unit includes an oscillating unit, the oscillating element of the oscillating unit is a CMOS inverter, and a detection electrode is connected to the other end of the resistor connected to the output terminal. A proximity detection sensor characterized by connecting a coil and one end of a resonance circuit by a capacitor each having one end grounded.

本発明によれば検知電極の形状、設置状況を変更しても近接検知判定値を近接検知判定値演算手段により適切に調整でき、感度を自動補正する事ができる。またローコストなCMOSインバータを用いた回路でありながら静電火花に対応できる。 According to the present invention, even if the shape and installation state of the detection electrode are changed, the proximity detection determination value can be appropriately adjusted by the proximity detection determination value calculation means, and the sensitivity can be automatically corrected. Moreover, it is possible to cope with electrostatic sparks even though the circuit uses a low-cost CMOS inverter.

本発明の実施例全体を示すブロック図である。It is a block diagram which shows the whole Example of this invention. 本発明の発振手段実施例を示す回路図である。It is a circuit diagram which shows the oscillation means Example of this invention. 本発明のソフトウェア実施例のフローチャートである。It is a flowchart of the software Example of this invention.

本発明の実施例について図を用いて説明する。図1は本発明の実施例全体を示すブロック図で、図1中の検知電極11は大地等との間に静電容量を持ち、電極の形状、距離等により一定の値となる。この検知電極に被検知物体が接近すると接近に伴って前記静電容量が増加する方向に変化する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the entire embodiment of the present invention. The detection electrode 11 in FIG. 1 has a capacitance between the ground and the like, and has a constant value depending on the shape and distance of the electrode. When the object to be detected approaches the detection electrode, the capacitance changes in the direction in which the capacitance increases as the object approaches.

具体的には、検知電極を半径4mm,の円柱とし大地上0.2mに設置するとその単位長あたりの静電容量C1は下記の計算式で求められ、長さを1mとすると
C1=2πε/log(2h/a)=12.1pF となる。
(a:円柱の半径、h:大地からの高さ、ε:誘電率)
検知範囲を広くするため検知電極の長さを2倍にすれば、その静電容量C2は24.2pFとなる。また検知対象物の大きさが異なり、電極の高さhを変更した場合でも検知電極の直径aを同じ比率で大きくすれば単位長さあたりの静電容量は変化しない事がわかる。上記0.2mの高さに設置するのはネコの検知を想定しているが、これを犬などのより大きい被検知対象物を検知する場合はその大きさに合わせ、たとえば高さを0.4m、検知電極半径を8mmにすればよい。
Specifically, when the sensing electrode is a cylinder having a radius of 4 mm and installed on the ground 0.2 m, the capacitance C1 per unit length can be obtained by the following calculation formula. When the length is 1 m, C1 = 2πε / log (2h / a) = 12.1 pF.
(A: radius of cylinder, h: height from ground, ε: dielectric constant)
If the length of the detection electrode is doubled in order to widen the detection range, the capacitance C2 becomes 24.2 pF. Also, it can be seen that the capacitance per unit length does not change if the diameter a of the detection electrode is increased by the same ratio even when the size of the detection object is different and the height h of the electrode is changed. The installation at the height of 0.2 m assumes the detection of a cat. However, when detecting a larger object to be detected such as a dog, the height is adjusted to 0. What is necessary is just to make 4 m and a detection electrode radius into 8 mm.

検知電極の高さと半径が同じで長さが1mの時と2mの場合に検知電極に同じ物体が接近した場合の静電容量の増加分ΔCxは物体の大きさが1mより充分小さければ同じなので、それぞれの静電容量はC1x=12.1+ΔCx,C2x=24.2+ΔCxとなる。 The increase in capacitance ΔCx when the same object approaches the detection electrode when the height and radius are the same and the length is 1 m and 2 m is the same if the size of the object is sufficiently smaller than 1 m. The respective capacitances are C1x = 12.1 + ΔCx, C2x = 24.2 + ΔCx.

図1中の静電容量測定手段12は、この実施例では静電容量により発振周波数が変化する発振回路と、その発振周波数を計測する発振周波数計測手段で実現される。発振回路例を図2に示す。21,22はCMOSインバーターで21は発振素子として、22はバッファとして作動する。本回路は外部からの火花放電対策の特別な部品を使用せず、コイル23・コンデンサー25・抵抗26を検知電極に接続し静電気入力を分散する事で、特に静電気に弱いCMOSインバーターを保護している。コイル23・コンデンサー24・コンデンサー25及び検知電極と大地の静電容量Cxで共振回路を構成しており、その発振周波数f0は下記の式で求められる。
f0=1/2π√(L23・C24・(C25+Cx)/(C25+c24+Cx))
ここでC24>>C25,C24>>Cxとすると下記のように近似できる。
f0=1/2π√(L23・(C25+Cx))
In this embodiment, the capacitance measuring means 12 in FIG. 1 is realized by an oscillation circuit whose oscillation frequency changes depending on the capacitance, and an oscillation frequency measuring means for measuring the oscillation frequency. An example of an oscillation circuit is shown in FIG. 21 and 22 operate as CMOS inverters, 21 operates as an oscillation element, and 22 operates as a buffer. This circuit does not use any special parts to prevent spark discharge from the outside, but connects the coil 23, capacitor 25, and resistor 26 to the detection electrode to disperse the static input, thereby protecting the CMOS inverter that is particularly sensitive to static electricity. Yes. A resonance circuit is constituted by the coil 23, the capacitor 24, the capacitor 25, the detection electrode, and the electrostatic capacitance Cx of the ground, and the oscillation frequency f0 is obtained by the following equation.
f0 = 1 / 2π√ (L23 · C24 · (C25 + Cx) / (C25 + c24 + Cx))
If C24 >> C25 and C24 >> Cx, it can be approximated as follows.
f0 = 1 / 2π√ (L23 · (C25 + Cx))

具体的にL23=33mH、C25=5pF、その定常状態での発振周波数f10=211.87kHであれば、Cx=12.1pFで検知電極の長さが1mと計算できる。被検知物が接近して増加する静電容量をΔCx1=1pFとすると、被検知物が接近した時の発振周波数f10Δ1x=205.93kHとなる。その差は5.94kHである。また同様に検知電極が2mの場合はそれぞれf20=162.13kH、f20Δ1x=159.43kHとなる。その差は2.70kHである。このように検知電極の長さを変化させると定常発振周波数も変化し、また同じ被検知物が接近した場合でもその周波数変化幅も異なる。 Specifically, if L23 = 33 mH, C25 = 5 pF, and the oscillation frequency f10 = 211.87 kH in the steady state, the length of the detection electrode can be calculated as 1 m with Cx = 12.1 pF. Assuming that the capacitance that the detected object increases and ΔCx1 = 1 pF, the oscillation frequency f10Δ1x = 205.93 kH when the detected object approaches is obtained. The difference is 5.94 kH. Similarly, when the detection electrode is 2 m, f20 = 162.13 kHz and f20Δ1x = 159.43 kHz, respectively. The difference is 2.70 kH. Thus, when the length of the detection electrode is changed, the steady oscillation frequency also changes, and even when the same object to be detected approaches, the frequency change width also differs.

発振周波数計測手段は一定時間ごとに入力される発振回路のパルス数をカウントすることによって実現できる。具体的には100mSごとに積算されたパルス数をマイクロコンピュターに取り込むソフトウェアーによって実現し、その全体のフローチャートを図3に示す。パルスが入力されるたびに31のパルスカウントアップルーチンで1づつカウントアップし、100mSごとに33のパルス数カウント取り込みルーチンで取り込む。100mSごとのカウント数を周波数演算33で10倍にすることによって周波数を演算する。最新の演算した周波数をfxnとする。 The oscillation frequency measuring means can be realized by counting the number of pulses of the oscillation circuit that are input at regular intervals. Specifically, it is realized by software that takes in the number of pulses integrated every 100 mS into a microcomputer, and the entire flowchart is shown in FIG. Each time a pulse is input, the count is incremented by one in 31 pulse count-up routines, and is captured in 33 pulse number count capture routines every 100 mS. The frequency is calculated by multiplying the count number for every 100 mS by 10 by the frequency calculation 33. The latest calculated frequency is fxn.

図1中のフィルター演算手段13は100mSごとに演算される周波数の値をフィルタリングし瞬時的な変化や非常にゆっくりとした変化等を除去する。具体的には前回の演算した周波数をfxn−1,その前をfxn−2として順番に記憶しその100回分の平均値を求めることで実現する。このフィルター演算結果の値をfyとすると
fy=(fxn+fxn−1+・・・・・・・・・+fxn−99)/100
と表せる。図3中のフィルター演算35の部分で実現する。
The filter calculation means 13 in FIG. 1 filters the frequency value calculated every 100 mS to remove instantaneous changes or very slow changes. Specifically, this is realized by sequentially storing the previous calculated frequency as fxn-1 and the previous frequency as fxn-2, and obtaining the average value for 100 times. If the value of this filter calculation result is fy, fy = (fxn + fxn−1 +... + Fxn−99) / 100
It can be expressed. This is realized by the filter operation 35 in FIG.

図1中の近接検知判定値演算手段14はfyの値により近接判定値fHの値を決める。検知電極の長さが1mか2mかfyの値によって判別して、それぞれ被検知物が近接した時の静電容量の変化によって変化する発振周波数値をfHとして設定している。
fy>(f10+f20)/2 の時 fH=5.94kH
fy<(f10+f20)/2 の時 fH=2.70kH
近接判定値fHはこの実施例では2段階の切り替えにしたが、段数を多くしても、また計算式より求めることも可能である。また回路、素子などの浮遊容量等の影響で計算式とずれる場合もあり、実測して周波数fyと判定値fHを求めマップ化しても良い。
The proximity detection determination value calculation means 14 in FIG. 1 determines the proximity determination value fH based on the value of fy. The length of the detection electrode is determined by a value of 1 m, 2 m, or fy, and an oscillation frequency value that changes due to a change in capacitance when the detection object approaches is set as fH.
When fy> (f10 + f20) / 2, fH = 5.94 kH
When fy <(f10 + f20) / 2, fH = 2.70 kH
Although the proximity determination value fH is switched in two steps in this embodiment, it can be obtained from a calculation formula even if the number of stages is increased. In some cases, the calculation formula may deviate due to the influence of stray capacitances of circuits, elements, etc., and the frequency fy and the determination value fH may be obtained by actual measurement and mapped.

図1中の判定手段15はfxnとfyとfHを比較し被検知物が近接したかどうかを図3中の検知判定ルーチン37で判定する。被検知物が近接すると静電容量が増加するが、発振周波数は低下するのでfxnが低下した場合に近接と判断する。fxnとfy−fHを比較し、fxn<fy−fHなら被検知物近接と判定して検知信号を出力する。この実施例では周波数の値で近接検知を判定したが、発振周波数から静電容量Cx(検知電極の長さ),ΔCx1を計算しΔCx1>1pFの時に近接検知を判定することも可能である。同様にフィルター演算手段、近接検知判定手段も静電容量で実現することも可能である。また静電容量を電圧値、デューティー比などに置き換えて実現することも可能である。   The determination means 15 in FIG. 1 compares fxn, fy, and fH, and determines whether or not the detected object is close by the detection determination routine 37 in FIG. When the object to be detected approaches, the capacitance increases. However, since the oscillation frequency decreases, it is determined that the proximity is detected when fxn decreases. fxn and fy−fH are compared, and if fxn <fy−fH, it is determined that the object is to be detected and a detection signal is output. In this embodiment, the proximity detection is determined based on the frequency value, but it is also possible to determine the proximity detection when ΔCx1> 1 pF by calculating the capacitance Cx (the length of the detection electrode) and ΔCx1 from the oscillation frequency. Similarly, the filter calculation means and the proximity detection determination means can also be realized by electrostatic capacity. It can also be realized by replacing the capacitance with a voltage value, a duty ratio, or the like.

Claims (3)

検知電極に被検知物が近接したことを検知電極の静電容量の増加から検知する近接検知センサーにおいて、前記静電容量の増加により発振周波数が低下する発振回路と、前記発振周波数を経時的に計測する周波数計測手段と、経時的に計測した周波数計測値fxnの早い変化を除去した周波数フィルター値fyを出力する周波数フィルター値演算手段と、前記周波数フィルター値fyに対応してあらかじめ決められた複数の近接検知判定値周波数fHを切り替え出力する近接検知判定周波数値演算手段と、前記周波数計測値fxnが前記周波数フィルター値fyより前記近接検知判定値周波数fH以上低下したこと(fxn<fy−fH)を検出する近接検知周波数判定手段からなる近接検知センサー。 In a proximity detection sensor that detects that an object to be detected has approached a detection electrode from an increase in capacitance of the detection electrode, an oscillation circuit in which an oscillation frequency decreases due to the increase in capacitance, and the oscillation frequency over time Frequency measuring means for measuring, frequency filter value calculating means for outputting a frequency filter value fy from which an early change in the frequency measurement value fxn measured over time is removed, and a plurality of predetermined numbers corresponding to the frequency filter value fy Proximity detection determination frequency value calculating means for switching and outputting the proximity detection determination value frequency fH, and that the frequency measurement value fxn is lower than the frequency filter value fy by the proximity detection determination value frequency fH or more (fxn <fy−fH). Proximity detection sensor comprising proximity detection frequency determination means for detecting 請求項1において、前記検知電極は大地と略平行に架設された導電体で、検知範囲に合わせてその長さを変化させることを特徴とした近接検知センサー。 2. The proximity detection sensor according to claim 1, wherein the detection electrode is a conductor laid substantially parallel to the ground, and its length is changed in accordance with a detection range. 請求項1又は2において、前記発振回路の発振素子がCMOSインバーターであり、その出力端子に接続した抵抗の他端に検知電極と、コイルとそれぞれ一端が接地されたコンデンサーによる共振回路の一端を接続し、前記共振回路の他の端子を前記CMOSインバーターの入力端子に接続したことを特徴とした近接検知センサー。


3. The oscillation element of the oscillation circuit according to claim 1, wherein the oscillation element of the oscillation circuit is a CMOS inverter, and the other end of the resistor connected to the output terminal thereof is connected to one end of the resonance circuit by a capacitor and a capacitor each having one end grounded. And the other terminal of the said resonance circuit was connected to the input terminal of the said CMOS inverter, The proximity detection sensor characterized by the above-mentioned.


JP2009060377A 2009-03-13 2009-03-13 Capacitive proximity sensor Expired - Fee Related JP5284834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060377A JP5284834B2 (en) 2009-03-13 2009-03-13 Capacitive proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060377A JP5284834B2 (en) 2009-03-13 2009-03-13 Capacitive proximity sensor

Publications (2)

Publication Number Publication Date
JP2010216808A JP2010216808A (en) 2010-09-30
JP5284834B2 true JP5284834B2 (en) 2013-09-11

Family

ID=42975832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060377A Expired - Fee Related JP5284834B2 (en) 2009-03-13 2009-03-13 Capacitive proximity sensor

Country Status (1)

Country Link
JP (1) JP5284834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917797A (en) * 2017-05-12 2018-11-30 商升特公司 Proximity sensor and method with nonlinear filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014103978A1 (en) * 2014-03-24 2015-09-24 Ditf Deutsche Institute Für Textil- Und Faserforschung Stuttgart Sensorgarn

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922630Y2 (en) * 1979-02-06 1984-07-05 松下電工株式会社 Detection device
JP2661693B2 (en) * 1987-10-27 1997-10-08 アイシン精機株式会社 Personnel detection device
JP4249357B2 (en) * 1999-12-01 2009-04-02 ケイエステクノ株式会社 Object-intrusive capacitive sensor in urban environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917797A (en) * 2017-05-12 2018-11-30 商升特公司 Proximity sensor and method with nonlinear filter

Also Published As

Publication number Publication date
JP2010216808A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
US8599169B2 (en) Touch sense interface circuit
US8587329B2 (en) Circuit arrangement for determination of a measuring capacitance
JP4971504B2 (en) Sensor device for capacitively detecting intervals
JP6632163B2 (en) Signal processing circuit and method for fingerprint sensor
WO2014022525A2 (en) Smoke detection using change in permittivity of capacitor air dielectric
JPWO2009044920A1 (en) Capacitive proximity sensor and proximity detection method
WO2016107910A1 (en) Capacitive sensor
JP5284834B2 (en) Capacitive proximity sensor
JP2013516625A (en) Electrostatic potential level sensor element and hardware / software configuration of fuel system
JPH0729467A (en) Electrostatic capacity type proximity sensor
US7944217B2 (en) Object proximity detector and object position detector
US20130057302A1 (en) Capacitive measuring circuit insensitive to high-frequency interference
CN111771109B (en) Electrostatic capacitance detection device
CN110945791B (en) High sensitivity capacitive sensor circuit
TWI425197B (en) Time-domain temperature sensor
JPH0634307A (en) Capacitance type displacement sensor
CN112161673B (en) Accurate capacitive liquid level detection circuit and adjustment mode
JP4170112B2 (en) Obstacle discrimination device for vehicle
JP4605870B2 (en) Touch sensor
JP5605577B2 (en) Capacitive touch sensor
TWI414148B (en) Object proximity detector and object position detector
JP5102716B2 (en) Capacitive proximity sensor
JP4514850B2 (en) Pachinko machine contact detection device and method of manufacturing pachinko machine
KR101665187B1 (en) A sensing technique based on dielectric changes in metal capacitor
CN111201582B (en) Input device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

R150 Certificate of patent or registration of utility model

Ref document number: 5284834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees