[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5275069B2 - DC / AC circuit ground fault detection method for non-grounded AC circuit - Google Patents

DC / AC circuit ground fault detection method for non-grounded AC circuit Download PDF

Info

Publication number
JP5275069B2
JP5275069B2 JP2009025074A JP2009025074A JP5275069B2 JP 5275069 B2 JP5275069 B2 JP 5275069B2 JP 2009025074 A JP2009025074 A JP 2009025074A JP 2009025074 A JP2009025074 A JP 2009025074A JP 5275069 B2 JP5275069 B2 JP 5275069B2
Authority
JP
Japan
Prior art keywords
ground fault
circuit
neutral point
zero
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009025074A
Other languages
Japanese (ja)
Other versions
JP2010183737A (en
Inventor
崇 元治
樹生 松岡
脩 中村
正徳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hasegawa Electric Co Ltd
Original Assignee
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasegawa Electric Co Ltd filed Critical Hasegawa Electric Co Ltd
Priority to JP2009025074A priority Critical patent/JP5275069B2/en
Publication of JP2010183737A publication Critical patent/JP2010183737A/en
Application granted granted Critical
Publication of JP5275069B2 publication Critical patent/JP5275069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC/AC circuit ground fault detecting method for a non-grounding AC circuit, for easy reduction of cost in the entire ground fault accident protection system of an AC circuit and a DC circuit in an AC/DC power distribution system. <P>SOLUTION: The ground fault accident of a DC circuit 30 connected, through a rectifier 20, to a non-grounding AC circuit 10 on the secondary side of a main transformer 1, is detected through a change in a DC potential of a grounding resistor 50 for limiting a DC ground fault current which is arranged at an AC ground fault sensor 40 on the AC circuit 10 side. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、工場変圧器などの主変圧器二次側の非接地系交流回路に整流器を介して直流回路を接続した非接地系交流回路における直流・交流回路地絡検出方法に関する。   The present invention relates to a DC / AC circuit ground fault detection method in a non-grounded AC circuit in which a DC circuit is connected to a non-grounded AC circuit on the secondary side of a main transformer such as a factory transformer via a rectifier.

一次側配電線路の三相交流を電力需要家の主変圧器で変圧し、三相整流器で整流して直流負荷に給電する交直配電系統は、主変圧器二次側に非接地系交流回路を備える。非接地系交流回路は、非接地三相交流回路、この非接地三相交流回路に準じる高抵抗接地三相交流回路である。非接地系交流回路に三相整流器を介して接続される直流回路に直流負荷が設置される。このような交直配電系統においては、交流回路側を非接地系にすることで、交流側地絡の事故電流を小さく抑制する。また、通常は交流回路側に交流地絡を検出する交流地絡センサが常設され、この交流地絡センサは等価的に高抵抗を挿入した状態で接地されている。また、直流回路側には必要に応じて直流地絡を検出する直流地絡センサ(例えば、特許文献1参照)が配設される。   The AC / DC distribution system that transforms the three-phase AC of the primary distribution line with the main transformer of the power consumer, rectifies it with the three-phase rectifier, and supplies the DC load with the ungrounded AC circuit on the secondary side of the main transformer. Prepare. The non-grounded AC circuit is a non-grounded three-phase AC circuit and a high-resistance grounded three-phase AC circuit according to the non-grounded three-phase AC circuit. A DC load is installed in a DC circuit connected to the non-grounded AC circuit via a three-phase rectifier. In such an AC / DC power distribution system, the AC circuit side is set to a non-grounded system, so that the fault current of the AC side ground fault is suppressed to be small. In addition, an AC ground fault sensor for detecting an AC ground fault is normally installed on the AC circuit side, and this AC ground fault sensor is grounded in a state where a high resistance is equivalently inserted. Further, a DC ground fault sensor (for example, see Patent Document 1) that detects a DC ground fault is disposed on the DC circuit side as necessary.

図5に示す交直配電系統は、主変圧器1の二次側の非接地系交流回路10に交流地絡センサ40を設置し、直流回路30に直流地絡センサ70を設置している。交流回路10の三相三線それぞれに遮断器11が介挿され、三相三線それぞれは対地静電容量Coを有する。交流回路10にダイオードブリッジの三相整流器20を介し直流回路30を接続し、直流回路30の正極端子31と負極端子32に直流負荷33を接続する。   In the AC / DC distribution system shown in FIG. 5, an AC ground fault sensor 40 is installed in the non-grounded AC circuit 10 on the secondary side of the main transformer 1, and a DC ground fault sensor 70 is installed in the DC circuit 30. The circuit breaker 11 is inserted in each of the three-phase three-wires of the AC circuit 10, and each of the three-phase three-wires has a ground capacitance Co. A DC circuit 30 is connected to the AC circuit 10 via a diode bridge three-phase rectifier 20, and a DC load 33 is connected to a positive terminal 31 and a negative terminal 32 of the DC circuit 30.

交流地絡センサ40は、図5に示す零相変圧器(EVT)を使用した様式と、図示しない零相電圧分圧器(ZPD)を使用した様式が一般的である。図5の交流地絡センサ40は、主変圧器1の二次側三相三線に接続した零相変圧器(EVT)41と、零相変圧器41の中性点接地線42に流れる零相電流を検出する零相変流器(ZCT)43を備えるが、いずれか一方を備えればよい。零相変圧器41の一次側がEVT保護ヒューズFを介して主変圧器二次側に接続される。零相変圧器41の三次側に交流電流制限抵抗45を介して交流地絡継電器46が接続される。交流回路10のいずれか一端子に地絡事故が発生すると、零相変圧器41の中性点接地線42に零相電流Ioが流れ、これを零相変流器43に接続された地絡継電器44が検出する。地絡継電器44は、零相電流Ioを検出すると、交流地絡発生のアラーム等の表示を行い、必要に応じて遮断器11を開いて交流回路10を保護する。又は、地絡継電器46が零相電圧Voを検出して、交流回路10を保護する。地絡継電器46の交流電流制限抵抗45は、零相変圧器41に流れる零相電流Ioを抑制して、零相変圧器41の過負荷を防止する。   The AC ground fault sensor 40 generally has a mode using a zero phase transformer (EVT) shown in FIG. 5 and a mode using a zero phase voltage divider (ZPD) (not shown). The AC ground fault sensor 40 of FIG. 5 includes a zero-phase transformer (EVT) 41 connected to the secondary-side three-phase three-wire of the main transformer 1 and a zero-phase flowing through the neutral point ground line 42 of the zero-phase transformer 41. Although a zero-phase current transformer (ZCT) 43 for detecting current is provided, either one may be provided. The primary side of the zero-phase transformer 41 is connected to the secondary side of the main transformer via the EVT protection fuse F. An AC ground fault relay 46 is connected to the tertiary side of the zero-phase transformer 41 via an AC current limiting resistor 45. When a ground fault occurs at any one terminal of the AC circuit 10, a zero-phase current Io flows through the neutral ground line 42 of the zero-phase transformer 41, and this is connected to the zero-phase current transformer 43. The relay 44 detects. When detecting the zero-phase current Io, the ground fault relay 44 displays an AC ground fault alarm or the like, and opens the circuit breaker 11 to protect the AC circuit 10 as necessary. Alternatively, the ground fault relay 46 detects the zero-phase voltage Vo and protects the AC circuit 10. The alternating current limiting resistor 45 of the ground fault relay 46 suppresses the zero-phase current Io flowing through the zero-phase transformer 41 and prevents the zero-phase transformer 41 from being overloaded.

直流回路30は、三相整流器20で整流された直流電圧を平滑する平滑リアクトル34と平滑コンデンサ35を備える。平滑コンデンサ35に並列的に直流地絡センサ70が設置される。直流地絡センサ70は、直流回路30の正極側または負極側で地絡した直流地絡電流Idgを検出する地絡検出器と、この地絡検出器の地絡電流検出信号に基づいてアラームを発生させ、必要に応じて直流回路を開回路に制御する駆動制御器を備える。直流地絡センサ70が直流地絡電流Idgを検出して、直流回路30を開回路に制御すると、直流地絡電流が無くなり、直流回路30が自己の地絡事故から保護されると共に、交流回路10への波及が防止される。   The DC circuit 30 includes a smoothing reactor 34 and a smoothing capacitor 35 that smooth the DC voltage rectified by the three-phase rectifier 20. A DC ground fault sensor 70 is installed in parallel with the smoothing capacitor 35. The DC ground fault sensor 70 has a ground fault detector for detecting a DC ground fault current Idg grounded on the positive side or the negative side of the DC circuit 30, and an alarm based on a ground fault current detection signal of the ground fault detector. A drive controller for generating and controlling the DC circuit to an open circuit as necessary is provided. When the DC ground fault sensor 70 detects the DC ground fault current Idg and controls the DC circuit 30 to be an open circuit, the DC ground fault current disappears, the DC circuit 30 is protected from its own ground fault, and the AC circuit Ripple to 10 is prevented.

特開2005−137095号公報JP 2005-137095 A

図5のような交直配電系統に設置される交流回路側の交流地絡センサと直流回路側の直流地絡センサのそれぞれは、対応する交流回路、直流回路を地絡事故から保護する機能に優れる。これら地絡センサそれぞれは、大型で高価であり、特に、直流地絡センサが高価であり、交直配電系統の地絡事故保護システム全体を高価なものにしている。また、共通の交流回路に複数の直流回路を接続した配電系統においては、複数の直流回路それぞれに高価な直流地絡センサを配備することが設備投資的に難しい。   Each of the AC ground fault sensor on the AC circuit side and the DC ground fault sensor on the DC circuit side installed in the AC / DC power distribution system as shown in FIG. 5 has an excellent function of protecting the corresponding AC circuit and DC circuit from a ground fault. . Each of these ground fault sensors is large and expensive. In particular, the DC ground fault sensor is expensive, making the entire ground fault protection system of the AC / DC power distribution system expensive. In a distribution system in which a plurality of DC circuits are connected to a common AC circuit, it is difficult to install an expensive DC ground fault sensor in each of the plurality of DC circuits.

また、直流回路の直流地絡センサには、直流地絡を検出した場合にアラームのみを出して、交流回路から直流回路への給電を継続させ、直流回路の停電を回避するように機能するものがある。さらに、共通の交流回路に接続された複数の直流回路の中には、直流地絡センサを配備しない直流回路がある。前者のような直流地絡センサを有する直流回路や、後者のような直流地絡センサを装備しない直流回路に直流地絡が発生すると、交流回路側に直流地絡電流が流れて、次のような不具合が発生することがある。   In addition, the DC ground fault sensor of the DC circuit functions so that only an alarm is issued when a DC ground fault is detected, power supply from the AC circuit to the DC circuit is continued, and a power failure of the DC circuit is avoided. There is. Further, among a plurality of DC circuits connected to a common AC circuit, there is a DC circuit in which no DC ground fault sensor is provided. When a DC ground fault occurs in a DC circuit having a DC ground fault sensor like the former or a DC circuit not equipped with a DC ground fault sensor like the latter, a DC ground fault current flows to the AC circuit side, and May cause trouble.

例えば、図5の配電系統の直流回路30に示すように、負極端子32側で直流地絡が発生すると、平滑コンデンサ35の端子電圧が電池電圧となり、交流回路10の三相三線の配電系統と零相変圧器41の中性点接地を経由して、図5の破線矢印方向に直流地絡電流Idgが流れる。また、正極端子31側で直流地絡が発生すると、図5の破線矢印と反対方向に直流地絡電流Idgが流れる。このような直流地絡電流Idgが零相変圧器41に流れると、零相変圧器41が直流偏磁して励磁電流が過大となり、保護ヒューズFの溶断を引き起こす。ヒューズ設置がない場合は、過大な励磁電流と直流地絡電流Idgの継続した流れで、零相変圧器焼損に至る可能性が生じる。そのため、交流地絡センサ側には直流地絡電流による零相変圧器焼損防止のための対策が必要となり、交流地絡センサがさらに高価になり、地絡事故保護システム全体が尚更に高価になる不具合があった。   For example, as shown in the DC circuit 30 of the distribution system in FIG. 5, when a DC ground fault occurs on the negative terminal 32 side, the terminal voltage of the smoothing capacitor 35 becomes the battery voltage, and the three-phase three-wire distribution system of the AC circuit 10 A DC ground fault current Idg flows in the direction of the broken line arrow in FIG. 5 via the neutral point ground of the zero-phase transformer 41. Further, when a DC ground fault occurs on the positive electrode terminal 31 side, a DC ground fault current Idg flows in the direction opposite to the dashed arrow in FIG. When such a DC ground fault current Idg flows through the zero-phase transformer 41, the zero-phase transformer 41 is DC-biased and the excitation current becomes excessive, causing the protective fuse F to blow. If no fuse is installed, the continuous flow of excessive excitation current and DC ground fault current Idg may lead to zero-phase transformer burning. For this reason, it is necessary to take measures for preventing the zero-phase transformer from being burned out due to the DC ground fault current on the AC ground fault sensor side, the AC ground fault sensor becomes more expensive, and the entire ground fault accident protection system becomes even more expensive. There was a bug.

本発明の目的とするところは、地絡事故保護システム全体のコスト低減を容易にする非接地系交流回路における直流・交流回路地絡検出方法を提供することにある。   An object of the present invention is to provide a DC / AC circuit ground fault detection method in an ungrounded AC circuit that facilitates cost reduction of the entire ground fault protection system.

上記目的を達成する本発明方法は、主変圧器二次側の非接地系交流回路に接続された直流回路の地絡事故を、交流回路側の交流地絡センサに配設した直流地絡電流制限用接地抵抗の直流電位変化で検出することを特徴とする。   The method of the present invention to achieve the above object is to provide a DC ground fault current arranged in an AC ground fault sensor on the AC circuit side in the event of a ground fault in a DC circuit connected to a non-grounded AC circuit on the secondary side of the main transformer. It is detected by a change in DC potential of the limiting grounding resistor.

ここで、非接地系交流回路は、零相変圧器(EVT)や零相変流器(ZCT)を備えた交流地絡センサを有する非接地系三相交流回路の他、零相電圧分圧器(ZPD)の交流地絡センサを有する高抵抗接地回路にも適用できる。交流回路に配設した直流地絡電流制限用接地抵抗は、交流回路の交流に対する非接地系を崩さない抵抗値のもので、一端が交流回路側に接続され、他端が接地される。直流回路側に地絡事故が発生すると、大地を経由することで直流地絡電流Idgが直流地絡電流制限用接地抵抗に流れ、この接地抵抗の端子電圧が変位する。この電圧変位を検出し、監視することで、直流回路側の地絡事故発生が検出でき、直流地絡発生に対する保護対策を速やかに実行することができる。このように交流回路側で直流回路側の直流地絡を検出し監視することで、直流回路側に高価な直流地絡センサを配備しなくても、直流地絡事故の交流回路側への波及が防止でき、交流と直流の両地絡事故保護システムのコスト低減が容易となる。   Here, the ungrounded AC circuit includes a non-grounded three-phase AC circuit having an AC ground fault sensor having a zero-phase transformer (EVT) and a zero-phase current transformer (ZCT), and a zero-phase voltage divider. The present invention can also be applied to a high resistance grounding circuit having a (ZPD) AC ground fault sensor. The grounding resistor for limiting the DC ground fault current disposed in the AC circuit has a resistance value that does not break the non-grounding system for AC in the AC circuit, and one end is connected to the AC circuit side and the other end is grounded. When a ground fault occurs on the DC circuit side, the DC ground fault current Idg flows to the DC ground fault current limiting ground resistor through the ground, and the terminal voltage of the ground resistor is displaced. By detecting and monitoring this voltage displacement, the occurrence of a ground fault on the DC circuit side can be detected, and a protective measure against the occurrence of a DC ground fault can be quickly implemented. By detecting and monitoring the DC ground fault on the DC circuit side on the AC circuit side in this way, it is possible to spread a DC ground fault accident to the AC circuit side without installing an expensive DC ground fault sensor on the DC circuit side. It is easy to reduce the cost of both AC and DC ground fault protection systems.

本発明方法においては、直流地絡電流制限用接地抵抗は、交流回路に交流地絡センサとして配設した交流地絡検出用零相変圧器の一次側中性点接地線に介挿した中性点抵抗とすることを特徴とするIn the method of the present invention, the grounding resistor for limiting the DC ground fault current is neutralized by being inserted into the primary side neutral point ground line of the zero-phase transformer for AC ground fault detection arranged as an AC ground fault sensor in the AC circuit. characterized by a point resistance.

ここでの交流地絡検出用零相変圧器は、図5に示す零相変圧器41と同様な既存設備が適用できる。この既存の零相変圧器41を適用した場合、その既存の中性点接地線42に直流地絡電流制限用接地抵抗として中性点抵抗を直列接続する。このような中性点抵抗は小型で安価なものが使用でき、交流と直流の両地絡事故保護システムのコスト低減が尚一層に容易となる。また、中性点抵抗は、直流地絡電流Idgによる零相変圧器の偏磁を抑制して、零相変圧器側のヒューズ溶断や変圧器本体の焼損を防止する。さらに、中性点抵抗は、交流回路側の交流地絡電流を検出する交流地絡センサとして兼用することができ、交流回路側の交流地絡センサ全体を簡略なものにする。   The existing equipment similar to the zero-phase transformer 41 shown in FIG. 5 can be applied to the zero-phase transformer for AC ground fault detection here. When this existing zero-phase transformer 41 is applied, a neutral point resistor is connected in series as a DC ground fault current limiting ground resistor to the existing neutral point ground line 42. Such a neutral point resistor can be small and inexpensive, and the cost of both the AC and DC ground fault protection systems can be further reduced. Further, the neutral point resistance suppresses the bias of the zero-phase transformer due to the DC ground fault current Idg, and prevents the fuse blown on the zero-phase transformer side or the transformer body from burning. Further, the neutral point resistance can be used also as an AC ground fault sensor for detecting an AC ground fault current on the AC circuit side, thereby simplifying the entire AC ground fault sensor on the AC circuit side.

また、本発明においては、上記中性点抵抗に直列接続した直流阻止用コンデンサと、中性点抵抗とコンデンサの直列接続状態と中性点抵抗からコンデンサを切り離して直列接続状態を解除する切換スイッチを有する構造とし、中性点抵抗の直流電位変化による直流回路の地絡事故検出信号に基づいて切換スイッチで中性点抵抗とコンデンサを直列接続状態に切り換えることを特徴とするIn the present invention, the DC blocking capacitor connected in series to the neutral point resistor, the series connection state of the neutral point resistor and the capacitor, and the changeover switch for disconnecting the capacitor from the neutral point resistor and releasing the series connection state a structure having, characterized in that switching the neutral point resistor and capacitor in series connection state changeover switch based on ground fault detection signal of the direct current circuit from the DC potential change of the neutral point resistor.

ここでの切換スイッチは、直流回路側に地絡事故が発生するまで中性点抵抗側を閉路している自動式遷移スイッチで、零相変圧器側の中性点接地線に中性点抵抗のみが直列接続された状態を維持し、中性点抵抗による直流地絡検出の機能が保持される。中性点抵抗の電圧変位で直流回路の地絡事故発生が検出されると、この検出信号で切換スイッチが自動で切り換わり、中性点抵抗とコンデンサが直列接続された状態が維持される。このとき、直流地絡電流Idgはコンデンサで阻止されて零相変圧器に流入せず、零相変圧器が直流地絡電流Idgによる偏磁から保護される。かつ、コンデンサは、交流電流は通電するので、零相変圧器側の交流用地絡検出機能を損なうことなく継続させる。   The change-over switch here is an automatic transition switch that closes the neutral point resistance side until a ground fault occurs on the DC circuit side. The neutral point resistance is connected to the neutral point ground line on the zero-phase transformer side. Only the series connection is maintained, and the function of detecting the DC ground fault by the neutral point resistance is maintained. When the occurrence of a ground fault in the DC circuit is detected due to the voltage displacement of the neutral point resistance, the changeover switch is automatically switched by this detection signal, and the state where the neutral point resistor and the capacitor are connected in series is maintained. At this time, the DC ground fault current Idg is blocked by the capacitor and does not flow into the zero-phase transformer, and the zero-phase transformer is protected from the demagnetization due to the DC ground fault current Idg. And since an alternating current supplies with electricity, a capacitor | condenser is continued without impairing the AC ground fault detection function by the side of a zero phase transformer.

本発明においては、上記中性点抵抗の大きさを、直流地絡電流Idgにより交流地絡センサの零相変圧器の飽和を生じさせない抵抗値に設定することができる。このようにすることで、直流地絡事故発生時における零相変圧器の励磁電流過大化が抑制でき、零相変圧器側のヒューズ溶断、変圧器焼損などのトラブル発生が防止できる。   In the present invention, the magnitude of the neutral point resistance can be set to a resistance value that does not cause saturation of the zero-phase transformer of the AC ground fault sensor by the DC ground fault current Idg. By doing so, it is possible to suppress excessive excitation current of the zero-phase transformer at the time of occurrence of a DC ground fault, and it is possible to prevent troubles such as blown fuses and transformer burnout on the zero-phase transformer side.

さらに、本発明においては、直流地絡電流制限用接地抵抗は、交流回路に交流地絡センサとして交流地絡検出用零相電圧分圧器を配設した主変圧器の二次側の一端子に接続した直流検出用高抵抗とすることができる。ここでの直流検出用高抵抗は、交流回路を高抵抗接地回路とすると共に、主変圧器の過度の偏磁を防止し、零相電圧分圧器のインピーダンスバランスを崩さない程度(例えば、1MΩ程度)の高抵抗値を有し、主変圧器の二次側三相三線のいずれか一端子に接続される。零相電圧分圧器は、交流回路側で発生した交流地絡事故を三相の零相電圧に基づいて検出する既存のものが適用できる。   Furthermore, in the present invention, the DC ground fault current limiting grounding resistor is connected to one terminal on the secondary side of the main transformer in which an AC ground fault detecting zero-phase voltage divider is provided as an AC ground fault sensor in the AC circuit. The connected high resistance for DC detection can be obtained. The high resistance for DC detection here is such that the AC circuit is a high resistance grounding circuit, prevents excessive biasing of the main transformer, and does not disturb the impedance balance of the zero-phase voltage divider (for example, about 1 MΩ) ) And is connected to one terminal of the secondary side three-phase three-wire of the main transformer. As the zero-phase voltage divider, an existing one that detects an AC ground fault occurring on the AC circuit side based on the three-phase zero-phase voltage can be applied.

また、本発明においては、直流地絡電流制限用接地抵抗の直流電位の変化分と変化方向の正負を監視することにより、直流回路の地絡発生を検出し、地絡抵抗値の把握および直流回路の正極側か負極側のいずれで直流地絡事故が発生したかの地絡極を判定することができる。   In the present invention, the occurrence of a ground fault in the DC circuit is detected by monitoring the change in the DC potential of the ground resistor for limiting the DC ground fault current and the sign of the change direction. It is possible to determine a ground fault pole as to whether a DC ground fault has occurred on the positive side or the negative side of the circuit.

本発明方法によれば、交流回路側の交流地絡センサで直流回路側の直流地絡発生を検出するようにしたので、直流回路側に高価な直流地絡センサを配備しなくても、直流地絡事故発生の検出ができ、交流と直流の両地絡事故保護システムのコスト低減が容易となる優れた効果を奏し得る。また、直流地絡事故時に零相変圧器中性点接地線にコンデンサ挿入をすることで、直流地絡事故の交流回路側への波及が防止できると共に、一部直流回路の事故時でも交流回路側の交流地絡センサの運転継続が可能となり、交流と直流系統の供給信頼性が良くなる。   According to the method of the present invention, since the occurrence of the DC ground fault on the DC circuit side is detected by the AC ground fault sensor on the AC circuit side, the direct current can be detected even if an expensive DC ground fault sensor is not provided on the DC circuit side. The occurrence of a ground fault can be detected, and the excellent effect of facilitating cost reduction of both AC and DC ground fault protection systems can be achieved. In addition, by inserting a capacitor in the zero-phase transformer neutral point grounding wire in the event of a DC ground fault, the DC ground fault can be prevented from spreading to the AC circuit side, and even in the event of some DC circuit faults, the AC circuit The operation of the AC ground fault sensor on the side can be continued, and the supply reliability of the AC and DC systems is improved.

本発明方法の実施の形態を示す配電系統の回路図である。It is a circuit diagram of a power distribution system showing an embodiment of the method of the present invention. 他の実施の形態を示す回路図である。It is a circuit diagram which shows other embodiment. 他の実施の形態を示す回路図である。It is a circuit diagram which shows other embodiment. 他の実施の形態を示す回路図である。It is a circuit diagram which shows other embodiment. 従来の直流・交流回路地絡検出方法を説明するための配電系統の回路図である。It is a circuit diagram of a power distribution system for demonstrating the conventional DC / AC circuit ground fault detection method.

以下、本発明を、図1〜図4の実施の形態を参照して説明する。
[実施の形態1]
The present invention will be described below with reference to the embodiments shown in FIGS.
[Embodiment 1]

図1は、図5の交直配電系統に適用したもので、図5と同一または相当部分には同一符号を付して説明の重複を避ける。図1と図5の相違点は、直流回路30から直流地絡センサを省略した点と、非接地系交流回路10に交流地絡センサ40として配備した零相変圧器41の中性点接地線42に直流地絡電流制限用接地抵抗50を追加的に介挿した点である。図1に示す接地抵抗50は、零相変圧器41の中性点を接地する中性点抵抗51である。図1と後述する図2の説明において、直流地絡電流制限用接地抵抗50を中性点抵抗51と称する。   FIG. 1 is applied to the AC / DC power distribution system of FIG. 5, and the same or corresponding parts as in FIG. The difference between FIG. 1 and FIG. 5 is that the DC ground fault sensor is omitted from the DC circuit 30 and the neutral point ground line of the zero-phase transformer 41 provided as the AC ground fault sensor 40 in the non-grounded AC circuit 10. 42, a grounding resistor 50 for limiting a DC ground fault current is additionally inserted. A grounding resistor 50 shown in FIG. 1 is a neutral point resistor 51 that grounds the neutral point of the zero-phase transformer 41. In FIG. 1 and FIG. 2 to be described later, the DC ground fault current limiting grounding resistor 50 is referred to as a neutral point resistor 51.

本発明方法においては、中性点抵抗51に並列接続した中性点直流電位検出器52で検出される中性点直流電圧の変位に基づいて直流回路30側の直流地絡発生状況を検知し監視する。この監視は、具体的に次のように行う。   In the method of the present invention, the DC ground fault occurrence state on the DC circuit 30 side is detected based on the displacement of the neutral point DC voltage detected by the neutral point DC potential detector 52 connected in parallel to the neutral point resistor 51. Monitor. This monitoring is specifically performed as follows.

図1の状態において、直流回路30の負極側で直流地絡事故が発生すると、図5の場合と同様に大地を経由して直流地絡電流Idgが流れる。この直流地絡電流Idgは中性点抵抗51に接地側からの負方向で流れ、中性点直流電位検出器52が中性点直流電位Vngを検出する。この中性点直流電位Vngの正負を判定することで、直流回路30の正極側か負極側のいずれで直流地絡が発生したことが判定できる。また、直流地絡電流Idgが流れるときの地絡抵抗をRdg、中性点抵抗51の抵抗値をRng、直流回路30の整流器直流電圧をVdcとすると、地絡抵抗Rdgが(1)式で求まる。
Rdg=Rng[(Vdc/2)−Vng]/Vng……(1)
In the state of FIG. 1, when a DC ground fault occurs on the negative electrode side of the DC circuit 30, a DC ground fault current Idg flows through the ground as in the case of FIG. This DC ground fault current Idg flows through the neutral point resistor 51 in the negative direction from the ground side, and the neutral point DC potential detector 52 detects the neutral point DC potential Vng. By determining whether the neutral point DC potential Vng is positive or negative, it can be determined that a DC ground fault has occurred on either the positive side or the negative side of the DC circuit 30. Further, when the ground fault resistance when the DC ground fault current Idg flows is Rdg, the resistance value of the neutral point resistor 51 is Rng, and the rectifier DC voltage of the DC circuit 30 is Vdc, the ground fault resistance Rdg is expressed by the following equation (1). I want.
Rdg = Rng [(Vdc / 2) −Vng] / Vng (1)

このような直流地絡電流Idgの検出による直流地絡事故の検出や、直流地絡発生事故極の判定、地絡抵抗Rdgの測定といった多項目に亘る検出結果から、直流回路側の多機能な地絡事故保護システムが構築でき、直流回路30側から高価な専用の直流地絡センサを省略することができる。   From the detection results over many items such as detection of a DC ground fault by detecting the DC ground fault current Idg, determination of a DC ground fault occurrence accident pole, and measurement of the ground fault resistance Rdg, a multi-function on the DC circuit side is obtained. A ground fault protection system can be constructed, and an expensive dedicated DC ground fault sensor can be omitted from the DC circuit 30 side.

また、中性点抵抗51は、零相変圧器41側に流入する直流地絡電流Idgを抑制する直流制限抵抗として作用する。そのため、零相変圧器41側の鉄心の直流偏磁が抑制され、過大な励磁電流が抑制されて、保護ヒューズFの溶断発生や、零相変圧器41の焼損発生が防止できる。
[実施の形態2]
The neutral point resistor 51 acts as a DC limiting resistor that suppresses the DC ground fault current Idg flowing into the zero-phase transformer 41 side. As a result, the DC bias of the iron core on the zero-phase transformer 41 side is suppressed, the excessive excitation current is suppressed, and the occurrence of blowout of the protective fuse F and the occurrence of burnout of the zero-phase transformer 41 can be prevented.
[Embodiment 2]

次に、図2の実施の形態を説明する。図2は、図1の一部回路を変更したもので、中性点抵抗51に直流阻止用コンデンサ53を直列接続し、中性点抵抗51とコンデンサ53の直列接続状態と中性点抵抗51からコンデンサ53を切り離して直列接続状態を解除する切換スイッチ54を追加している。図2の実線で示す切換スイッチ54は、中性点接地線42に中性点抵抗51を直列接続し、中性点抵抗51からコンデンサ53を切り離した状態を保持する。この状態で上述した直流回路30側の直流地絡監視動作が行われる。この直流地絡監視動作において、中性点抵抗51の電圧変位で直流回路30の地絡事故発生が検出されると、この検出信号で切換スイッチ54が図2の鎖線で示すようにコンデンサ53側に切り換わり、中性点抵抗51とコンデンサ53が直列接続された状態が保持される。   Next, the embodiment of FIG. 2 will be described. FIG. 2 shows a modification of a part of the circuit shown in FIG. 1. A direct current blocking capacitor 53 is connected in series to a neutral point resistor 51, and the neutral point resistor 51 and the capacitor 53 are connected in series and the neutral point resistor 51. A changeover switch 54 is added to release the series connection state by disconnecting the capacitor 53. The changeover switch 54 indicated by the solid line in FIG. 2 maintains a state where the neutral point resistor 51 is connected in series to the neutral point ground line 42 and the capacitor 53 is disconnected from the neutral point resistor 51. In this state, the DC ground fault monitoring operation on the DC circuit 30 side described above is performed. In this DC ground fault monitoring operation, when the occurrence of a ground fault in the DC circuit 30 is detected by the voltage displacement of the neutral point resistor 51, the changeover switch 54 is connected to the capacitor 53 side as shown by the chain line in FIG. The neutral point resistor 51 and the capacitor 53 are connected in series.

地絡事故発生の検出信号に基づいて切換スイッチ54が自動でコンデンサ53側に切り換わると、直流地絡電流Idgはコンデンサ53で阻止されて零相変圧器41に流入せず、零相変圧器41側が直流地絡電流Idgによる偏磁から保護される。また、コンデンサ53は、直流を阻止するが交流は通電するので、交流回路10側の交流地絡センサとしての零相変圧器41側の交流用地絡検出機能は継続する。
[実施の形態3]
When the changeover switch 54 is automatically switched to the capacitor 53 side based on the detection signal of the occurrence of the ground fault, the DC ground fault current Idg is blocked by the capacitor 53 and does not flow into the zero phase transformer 41, and the zero phase transformer. The 41 side is protected from the demagnetization due to the DC ground fault current Idg. Further, since the capacitor 53 blocks direct current but energizes alternating current, the AC ground fault detection function on the zero-phase transformer 41 side as the AC ground fault sensor on the AC circuit 10 side continues.
[Embodiment 3]

図1と図2は、交流回路10側の交流地絡センサ40として零相変圧器41を使用した場合の実施の形態である。図3に交流地絡センサ40として零相電圧分圧器(ZPD)61を使用した実施の形態を示す。図3の場合、交流回路10に交流地絡センサ40として交流地絡検出用零相電圧分圧器61を配設し、主変圧器1の二次側の一端子に直流地絡電流制限用接地抵抗50として直流検出用高抵抗55を介挿している。直流検出用高抵抗55に並列接続した直流電位検出器56で検出した直流電圧の変化分や正負を監視することで、図1の場合と同様に直流回路30の直流地絡発生が検出され、地絡抵抗Rdgが算出される。   1 and 2 show an embodiment in which a zero-phase transformer 41 is used as the AC ground fault sensor 40 on the AC circuit 10 side. FIG. 3 shows an embodiment in which a zero-phase voltage divider (ZPD) 61 is used as the AC ground fault sensor 40. In the case of FIG. 3, an AC ground fault detection zero-phase voltage divider 61 is arranged in the AC circuit 10 as the AC ground fault sensor 40, and a DC ground fault current limiting ground is connected to one terminal on the secondary side of the main transformer 1. A DC detection high resistance 55 is inserted as the resistance 50. By monitoring the change or positive / negative of the DC voltage detected by the DC potential detector 56 connected in parallel to the DC detection high resistance 55, the occurrence of a DC ground fault in the DC circuit 30 is detected as in FIG. A ground fault resistance Rdg is calculated.

直流検出用高抵抗55は、交流回路10を高抵抗接地回路とすると共に、主変圧器1の過度の偏磁を抑制し、零相電圧分圧器61のインピーダンスバランスを崩さない程度の例えば1MΩ程度の高抵抗値の抵抗体である。直流検出用高抵抗55は、高抵抗値の単体の他、直流検出用高抵抗に直流地絡電流検出用分圧端子を配置したものであってもよい。図3に示す、零相電圧分圧器61は、交流回路10側で発生した交流地絡事故を三相の零相電圧に基づいて検出する既存のものが適用できる。   The high resistance 55 for direct current detection uses the alternating current circuit 10 as a high resistance ground circuit, suppresses excessive biasing of the main transformer 1 and does not disturb the impedance balance of the zero-phase voltage divider 61, for example, about 1 MΩ. It is a resistor having a high resistance value. The DC detection high resistance 55 may be one in which a DC ground fault current detection voltage dividing terminal is arranged in the DC detection high resistance in addition to a single high resistance value. As the zero-phase voltage divider 61 shown in FIG. 3, an existing one that detects an AC ground fault occurring on the AC circuit 10 side based on the three-phase zero-phase voltage can be applied.

例えば、零相電圧分圧器61は、交流回路10の三相それぞれに一端を接続したコンデンサC1〜C3と、各コンデンサC1〜C3の他端に接続した共通の零相電流検出用コンデンサC4と、コンデンサC4に並列に接続した絶縁変圧器62を備える。零相電圧検出用コンデンサC4が接地される。交流回路10に交流地絡事故が発生していないとき、絶縁変圧器62の出力電圧はゼロである。交流回路10の三相三線のいずれか一端子に交流地絡事故が発生すると、コンデンサC1〜C3のいずれかから零相電流検出用コンデンサC4に電圧が供給され、絶縁変圧器62の二次側電圧が上昇して交流地絡事故発生が検出される。   For example, the zero-phase voltage divider 61 includes capacitors C1 to C3 having one end connected to each of the three phases of the AC circuit 10, and a common zero-phase current detecting capacitor C4 connected to the other ends of the capacitors C1 to C3. An insulation transformer 62 connected in parallel to the capacitor C4 is provided. The zero-phase voltage detection capacitor C4 is grounded. When no AC ground fault has occurred in the AC circuit 10, the output voltage of the isolation transformer 62 is zero. When an AC ground fault occurs at any one of the three-phase three-wire terminals of the AC circuit 10, a voltage is supplied from any of the capacitors C1 to C3 to the zero-phase current detection capacitor C4, and the secondary side of the insulation transformer 62 The voltage rises and the occurrence of an AC ground fault is detected.

図3の交直配電系統の場合、直流回路30側で地絡事故が発生すると、直流地絡電流Idgは直流検出用高抵抗55に大幅に電流制限されて流れ、この制限電流による直流検出用高抵抗55の電位変化で直流地絡発生が検出される。直流地絡発生が検出された後も直流地絡電流Idgは、直流検出用高抵抗55に大幅に電流制限されて流れる。この制限された電流は、主変圧器側に偏磁を引き起こさない。
[実施の形態4]
In the case of the AC / DC power distribution system of FIG. 3, when a ground fault occurs on the DC circuit 30 side, the DC ground fault current Idg is largely current-limited by the DC detection high resistance 55 and flows. The occurrence of a DC ground fault is detected by the potential change of the resistor 55. Even after the occurrence of the DC ground fault is detected, the DC ground fault current Idg flows while the current is greatly limited by the DC detection high resistance 55. This limited current does not cause biasing on the main transformer side.
[Embodiment 4]

また、主変圧器1への直流地絡電流Idgの流入を確実に防止するため、例えば、図4に示すように直流検出用高抵抗55と直列に開閉スイッチ57を設け、直流地絡発生と共に開閉スイッチ57を開路させる。このようにすることで、図2のような直流阻止用コンデンサを使用することなく、交流地絡センサ40の機能を継続させることができる。   In order to reliably prevent the DC ground fault current Idg from flowing into the main transformer 1, for example, an open / close switch 57 is provided in series with the DC detection high resistance 55 as shown in FIG. The open / close switch 57 is opened. By doing so, the function of the AC ground fault sensor 40 can be continued without using the DC blocking capacitor as shown in FIG.

尚、本発明方法を実施する形態は、図1〜図4に限らず、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the form which implements the method of this invention is not restricted to FIGS. 1-4, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

1 主変圧器
10 交流回路
20 三相整流器
30 直流回路
33 直流負荷
40 交流地絡センサ
41 交流地絡検出用零相変圧器
42 中性点接地線
43 零相変流器
51 中性点抵抗
52 中性点直流電位検出器
53 直流阻止用コンデンサ
54 切換スイッチ
55 直流検出用高抵抗
56 直流電位検出器
57 開閉スイッチ
61 交流地絡検出用零相電圧分圧器
Idg 直流地絡電流
DESCRIPTION OF SYMBOLS 1 Main transformer 10 AC circuit 20 Three-phase rectifier 30 DC circuit 33 DC load 40 AC ground fault sensor 41 Zero phase transformer for AC ground fault detection 42 Neutral point ground wire 43 Zero phase current transformer 51 Neutral point resistance 52 Neutral point DC potential detector 53 DC blocking capacitor 54 Changeover switch 55 High resistance for DC detection 56 DC potential detector 57 Open / close switch 61 Zero phase voltage divider for AC ground fault detection
Idg DC ground fault current

Claims (1)

主変圧器二次側の非接地系交流回路に接続された直流回路の地絡事故を、前記交流回路側の交流地絡センサに配設した直流地絡電流制限用接地抵抗の直流電位変化で検出し、
前記接地抵抗は、前記交流回路に交流地絡センサとして配設した交流地絡検出用零相変圧器の一次側中性点接地線に介挿した中性点抵抗であり、
前記中性点抵抗に直列接続した直流阻止用コンデンサと、前記中性点抵抗と前記コンデンサの直列接続状態と前記中性点抵抗から前記コンデンサを切り離して直列接続状態を解除する切換スイッチを有し、
前記中性点抵抗の直流電位変化による前記直流回路の地絡事故検出信号に基づいて前記切換スイッチで前記中性点抵抗と前記コンデンサを直列接続状態に切り換えることを特徴とする非接地系交流回路における直流・交流回路地絡検出方法。
A ground fault in a DC circuit connected to a non-grounded AC circuit on the secondary side of the main transformer is caused by a change in the DC potential of a ground resistor for limiting the DC ground fault current disposed in the AC ground fault sensor on the AC circuit side. detected,
The grounding resistance is a neutral point resistance inserted in a primary side neutral point grounding wire for an AC ground fault detection zero-phase transformer arranged as an AC ground fault sensor in the AC circuit,
A DC blocking capacitor connected in series to the neutral point resistor, a series connection state of the neutral point resistor and the capacitor, and a changeover switch that disconnects the capacitor from the neutral point resistor and releases the series connection state. ,
A non-grounded AC circuit , wherein the neutral point resistor and the capacitor are switched to a series connection state by the changeover switch based on a ground fault detection signal of the DC circuit due to a DC potential change of the neutral point resistor. DC / AC circuit ground fault detection method.
JP2009025074A 2009-02-05 2009-02-05 DC / AC circuit ground fault detection method for non-grounded AC circuit Active JP5275069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025074A JP5275069B2 (en) 2009-02-05 2009-02-05 DC / AC circuit ground fault detection method for non-grounded AC circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025074A JP5275069B2 (en) 2009-02-05 2009-02-05 DC / AC circuit ground fault detection method for non-grounded AC circuit

Publications (2)

Publication Number Publication Date
JP2010183737A JP2010183737A (en) 2010-08-19
JP5275069B2 true JP5275069B2 (en) 2013-08-28

Family

ID=42764808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025074A Active JP5275069B2 (en) 2009-02-05 2009-02-05 DC / AC circuit ground fault detection method for non-grounded AC circuit

Country Status (1)

Country Link
JP (1) JP5275069B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599651B2 (en) * 2015-02-19 2017-03-21 Nec Energy Solutions, Inc. Systems and methods of detecting ground faults in energy storage and/or generation systems that employ DC/AC power conversion systems
CN108051695B (en) * 2018-01-18 2024-02-27 广州优维电子科技有限公司 AC/DC ground fault analyzer and ground fault finding and positioning system
CN112886556B (en) * 2021-03-04 2022-12-16 中国南方电网有限责任公司 Single-phase earth fault control protection method for flexible direct current transmission alternating current connection line area

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828810B2 (en) * 1976-11-24 1983-06-18 株式会社東芝 Ground fault detection device
JPS61135329A (en) * 1984-12-05 1986-06-23 富士電機株式会社 Ground-fault accident detection system for field circuit
JP2001231159A (en) * 2000-02-17 2001-08-24 Hitachi Ltd Grounding protection method and device of low-voltage ac bus

Also Published As

Publication number Publication date
JP2010183737A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
JP5466302B2 (en) System and method for a multiphase ground fault circuit breaker
CA2190000C (en) Detector for monitoring the integrity of a ground connection to an electrical appliance
CA2236283C (en) Ground fault circuit interrupter system with uncommitted contacts
CN106066450B (en) Insulation monitoring device with voltage monitoring and method based on same
US7103486B2 (en) Device for monitoring a neutral and earth break and electrical switchgear apparatus comprising such a device
JP7263251B2 (en) Real-time detection/recovery system for power line failures in power distribution system and its construction method
KR100920113B1 (en) OCGR protection algorithm for preventing mal-operation by Reverse power
KR20200018514A (en) Real-time detection and recovery system and its construction method in case of power line failure in distribution system
KR101008416B1 (en) Over current relay protection device for preventing mal-operation by reverse power and the driving method thereof
JP5768741B2 (en) Earth leakage breaker
JP5275069B2 (en) DC / AC circuit ground fault detection method for non-grounded AC circuit
KR102068625B1 (en) Electric failure master detector
JP6509029B2 (en) Distribution board
KR101612488B1 (en) Hybrid transformer
KR101840288B1 (en) Electrical leakage current circuit breaker
KR20150134563A (en) Power system in the event of power failure recovery device
KR200440531Y1 (en) Circuit breaker
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
CA2741382A1 (en) Measuring transient electrical activity in aircraft power distribution systems
KR20190049662A (en) Electric fault master recovery device(breaker)
KR101522955B1 (en) Circuit braker capable of protecting open phase
KR100610258B1 (en) Intelligent earth leakage breaker system
JP3772038B2 (en) AC generator operation protection device
KR20180082844A (en) Electric fault master recovery device(breaker)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250