JP5273438B2 - Method for calculating solubility of peptide-added biomolecule, peptide tag design method and inclusion body formation prevention method using the same - Google Patents
Method for calculating solubility of peptide-added biomolecule, peptide tag design method and inclusion body formation prevention method using the same Download PDFInfo
- Publication number
- JP5273438B2 JP5273438B2 JP2008003983A JP2008003983A JP5273438B2 JP 5273438 B2 JP5273438 B2 JP 5273438B2 JP 2008003983 A JP2008003983 A JP 2008003983A JP 2008003983 A JP2008003983 A JP 2008003983A JP 5273438 B2 JP5273438 B2 JP 5273438B2
- Authority
- JP
- Japan
- Prior art keywords
- amino acid
- solubility
- peptide
- added
- biomolecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 28
- 210000003000 inclusion body Anatomy 0.000 title claims description 35
- 238000013461 design Methods 0.000 title description 2
- 230000002265 prevention Effects 0.000 title description 2
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 143
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 141
- 150000001413 amino acids Chemical class 0.000 claims abstract description 92
- 238000004364 calculation method Methods 0.000 claims abstract description 26
- 238000012887 quadratic function Methods 0.000 claims abstract description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 7
- 108020001507 fusion proteins Proteins 0.000 claims description 23
- 102000037865 fusion proteins Human genes 0.000 claims description 23
- 239000002904 solvent Substances 0.000 claims description 19
- 210000004027 cell Anatomy 0.000 claims description 12
- 238000000611 regression analysis Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 230000000813 microbial effect Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 5
- 239000000654 additive Substances 0.000 abstract description 4
- 230000000996 additive effect Effects 0.000 abstract description 3
- 238000007796 conventional method Methods 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 93
- 235000001014 amino acid Nutrition 0.000 description 51
- 229940024606 amino acid Drugs 0.000 description 51
- 235000009697 arginine Nutrition 0.000 description 25
- 241000894007 species Species 0.000 description 24
- 238000007792 addition Methods 0.000 description 18
- 125000000539 amino acid group Chemical group 0.000 description 18
- 239000004475 Arginine Substances 0.000 description 15
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 15
- 239000002244 precipitate Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 150000001484 arginines Chemical class 0.000 description 10
- 102100038023 DNA fragmentation factor subunit beta Human genes 0.000 description 9
- 241000588724 Escherichia coli Species 0.000 description 9
- 108010042238 caspase-activated deoxyribonuclease Proteins 0.000 description 9
- 235000018977 lysine Nutrition 0.000 description 9
- 108010039627 Aprotinin Proteins 0.000 description 8
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 8
- 239000004472 Lysine Substances 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 8
- 238000004220 aggregation Methods 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 239000012460 protein solution Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N aspartic acid group Chemical group N[C@@H](CC(=O)O)C(=O)O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 102220105280 rs879254406 Human genes 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 108010033276 Peptide Fragments Proteins 0.000 description 4
- 102000007079 Peptide Fragments Human genes 0.000 description 4
- 239000008351 acetate buffer Substances 0.000 description 4
- 235000003704 aspartic acid Nutrition 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 238000000990 heteronuclear single quantum coherence spectrum Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 101800000263 Acidic protein Proteins 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 101710093543 Probable non-specific lipid-transfer protein Proteins 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 238000012916 structural analysis Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Chemical compound OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 2
- 240000009305 Pometia pinnata Species 0.000 description 2
- 235000017284 Pometia pinnata Nutrition 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000006919 peptide aggregation Effects 0.000 description 2
- 230000004845 protein aggregation Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- DZLQXIFVQFTFJY-BYPYZUCNSA-N Cys-Gly-Gly Chemical group SC[C@H](N)C(=O)NCC(=O)NCC(O)=O DZLQXIFVQFTFJY-BYPYZUCNSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 150000001510 aspartic acids Chemical class 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 102000034238 globular proteins Human genes 0.000 description 1
- 108091005896 globular proteins Proteins 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 235000014705 isoleucine Nutrition 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 235000005772 leucine Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
本発明は、生体分子の凝集の熱力学モデルに基づいて、それら生体分子の溶解度をアミノ酸配列から計算する方法に関する。
さらに、本発明は、上記の計算方法を用いて所望の溶解度とするペプチドタグを設計する方法及び封入体(細胞内に蓄積する不活性型凝集)形成を防止する方法に関する。
The present invention relates to a method for calculating the solubility of biomolecules from amino acid sequences based on thermodynamic models of biomolecule aggregation.
Furthermore, the present invention relates to a method for designing a peptide tag having a desired solubility using the above calculation method and a method for preventing the formation of inclusion bodies (inactive aggregates accumulated in cells).
ポストゲノム時代においては、生命現象の仕組みや疾患の原因の解明に向けて、遺伝子情報に基づくタンパク質の構造と機能の解明研究が注目されている。生体内におけるタンパク質は熱力学的に安定なフォールド状態をもち、その天然構造をとったときに特定の機能を発現する。従って、生体内以外でも目的タンパク質を本来の立体構造(天然構造)を保持したまま合成することは、プロテオーム研究のみならず、工業的利用や医薬応用の分野においても非常に重要な課題である。
タンパク質は、熱やpH、塩濃度、還元剤の存在などの環境変化により変性し、活性が低下・失活するだけでなく、溶解度が大幅に低下する。これは、分子内の高次構造を支えている結合が切断され、フォールド状態が壊れるためであり、変性を起こしたタンパク質では、分子の内側にあった疎水性の高い部分が外側に露出し、溶媒(水)と接触するようになるために、タンパク質同士が凝集して沈澱する傾向がある。また、天然状態であっても、分子表面に疎水性残基が多い場合や等電点付近では、タンパク質同士が凝集して沈澱する傾向がある。
In the post-genomic era, research on elucidating the structure and function of proteins based on genetic information has attracted attention in order to elucidate the mechanism of biological phenomena and the causes of diseases. Proteins in the living body have a thermodynamically stable fold state and express a specific function when they take their natural structure. Therefore, synthesizing the target protein while maintaining the original three-dimensional structure (natural structure) outside the living body is a very important issue not only in proteomic research but also in industrial use and pharmaceutical application fields.
Proteins are denatured by environmental changes such as heat, pH, salt concentration, and the presence of a reducing agent, not only reducing or deactivating activity, but also greatly reducing solubility. This is because the bonds supporting the higher-order structure in the molecule are broken and the fold state is broken, and in the denatured protein, the highly hydrophobic part that was inside the molecule is exposed to the outside, In order to come into contact with the solvent (water), the proteins tend to aggregate and precipitate. Even in the natural state, proteins tend to aggregate and precipitate when there are many hydrophobic residues on the molecular surface or near the isoelectric point.
かかる凝集現象は、分子の濃度がある溶解限界濃度(溶解度)以上になると起きる。タンパク質の凝集を抑制する方法として、pHや温度、塩濃度などの溶媒条件を操作することにより溶解度を向上させる手法が一般に用いられる。例えば、高濃度の解析サンプルが必要とされるNMRによるタンパク質の構造解析においては、CHAPSなどの界面活性剤を低濃度添加することにより、タンパク質の溶解度を向上させることが行なわれる。
しかし、この手法は、タンパク質の溶解度が分子の疎水性・親水性で決定されるという定説に基づくもので、研究者の勘や経験に依存するところが大きく、溶媒条件の最適化には労力と時間が必要とされる。また、制御した溶媒条件下ではタンパク質の機能的立体構造が保持されないなどの問題がある
Such an aggregation phenomenon occurs when the concentration of molecules exceeds a certain solubility limit concentration (solubility). As a method for suppressing protein aggregation, a technique for improving solubility by manipulating solvent conditions such as pH, temperature and salt concentration is generally used. For example, in protein structure analysis by NMR, which requires a high concentration analysis sample, the solubility of the protein is improved by adding a low concentration of a surfactant such as CHAPS.
However, this method is based on the theory that protein solubility is determined by the hydrophobicity / hydrophilicity of the molecule, and depends heavily on the intuition and experience of researchers. Optimization of solvent conditions requires effort and time. Is needed. In addition, there is a problem that the functional three-dimensional structure of the protein is not maintained under controlled solvent conditions.
また、特許文献1には、タンパク質溶液中の沈殿剤濃度を上昇させたときの結晶周囲のタンパク質溶液の干渉縞の観察に基づき、溶解度曲線からタンパク質の溶解度を測定する方法が記載されている。
しかし、この方法も半経験的に溶解度を「予測」するものであり、精度が低い上、温度やpH、各種添加剤の濃度をパラメータとして膨大なスクリーニングから最適溶媒条件を求める必要があり、非効率的である。
この他、非特許文献1には、タンパク質のアミノ酸配列の凝集傾向性を理論計算から予測する方法が記載されている。しかし、計算式に用いるパラメータにはペプチドの溶解度の実測値を文献及び実験から求めており、精度が低く、工業的に利用するには汎用性が低い。
Patent Document 1 describes a method of measuring protein solubility from a solubility curve based on observation of interference fringes of a protein solution around a crystal when the concentration of a precipitant in the protein solution is increased.
However, this method also semi-empirically “predicts” the solubility, and it is necessary to determine the optimum solvent conditions from a large amount of screening with low accuracy and using the temperature, pH, and concentration of various additives as parameters. Efficient.
In addition, Non-Patent Document 1 describes a method for predicting aggregation tendency of amino acid sequences of proteins from theoretical calculation. However, as parameters used in the calculation formula, actual values of solubility of peptides are obtained from literature and experiments, and the accuracy is low, and the versatility is low for industrial use.
これに対し、本発明者らは、短い親水性アミノ酸からなるタグを目的タンパク質に付与することにより、該タグが付加された目的タンパク質の溶解度を飛躍的に向上させる方法を開発した(特許文献2参照)。この方法によれば、目的タンパク質の機能発現や立体構造に影響を及ぼすことなく、溶解度の向上を図ることができる。
この方法は、広い溶媒条件下で使用することができ、汎用性に優れた画期的な手法ではあるものの、原理的には経験則を数式化したものにとどまるものである。このため、タンパク質の溶解現象を厳密に定義する方法論の確立が望まれている。
On the other hand, the present inventors have developed a method for dramatically improving the solubility of a target protein to which the tag is added by attaching a tag consisting of a short hydrophilic amino acid to the target protein (Patent Document 2). reference). According to this method, the solubility can be improved without affecting the functional expression or the three-dimensional structure of the target protein.
Although this method can be used under a wide range of solvent conditions and is an epoch-making method with excellent versatility, in principle it is only a mathematical expression of an empirical rule. For this reason, establishment of a methodology for strictly defining the protein dissolution phenomenon is desired.
遺伝子工学が発展した現在において、大量合成法から得られたさまざまな組換えタンパク質が医薬品や食品、診断等の幅広い分野で利用されている。中でも、大腸菌は増殖が速く培養が容易であるため、大量合成用の宿主として汎用されている。
しかし、大腸菌を用いた組換えタンパク質の発現系では、産生される目的タンパク質の多くが不溶性となり、不活性な封入体(インクルージョンボディ)を形成する。このため、得られたタンパク質は、変性剤などで立体構造を完全に壊した状態にした後、さらにリフォールディング (巻き戻し)することが必要である。
従来、目的タンパク質を可溶化状態で得るために、MBP(マルトースバインディングプロテイン)などの溶解度の高いタンパク質(溶解度向上タグ)を目的タンパク質との融合タンパク質として発現させる方法やタンパク質濃度や添加物の種類を最適化する方法、透析法、希釈法などの様々な方法が適宜組み合わせて使用されている。
しかしながら、これらの方法は、いずれも目的とするタンパク質毎に個々的に対処されるものであり、収率も低い場合がある。また、上記溶解度向上タグを用いる方法では、タグとして用いるタンパク質の分子量が10kD以上と嵩高であり、そのためタグの付加により目的タンパク質の機能や構造に影響が生じるなどの問題があるため、タグ部分の除去が必要であり、コストや手間がかかる。
However, in a recombinant protein expression system using E. coli, most of the produced target protein becomes insoluble and forms an inactive inclusion body (inclusion body). For this reason, it is necessary to further refold (rewind) the obtained protein after making the three-dimensional structure completely broken with a denaturant or the like.
Conventionally, in order to obtain the target protein in a solubilized state, a method for expressing a highly soluble protein (solubility enhancing tag) such as MBP (maltose binding protein) as a fusion protein with the target protein, protein concentration, and type of additive Various methods such as an optimization method, a dialysis method, and a dilution method are used in appropriate combination.
However, these methods are individually addressed for each target protein, and the yield may be low. In addition, in the method using the above-described solubility-improving tag, the molecular weight of the protein used as the tag is 10 kD or more, and there is a problem that the addition of the tag affects the function or structure of the target protein. Removal is necessary, which is costly and troublesome.
以上のように、現在ペプチドやタンパク質(一般的には生体分子)の凝集を理論的に「正しく」表現した熱力学モデルは存在しておらず、精度良くシステマティックに溶解度を調節する方法はない。従って、目的タンパク質毎に実験データを積み重ねる経験的な手法により、定性的な溶解度予測を行っているのが実情である。このため、プロテオーム研究やペプチド合成などの膨大な母集団の網羅的解析においては、より効率良く定量的な溶解度予測ができ、汎用性の高い可溶化技術の開発が期待されている。
そこで、本発明は、任意の溶液条件下における目的タンパク質の溶解度を、実際に合成する前にアミノ酸配列情報に基づく理論計算から予測する方法を確立するとともに、この理論計算により溶解度向上ペプチドタグを設計して、機能や立体構造、熱安定性などを変えることなく、該タグの付与によるタンパク質の溶解度を向上させる方法を提供する。また、該タグを用いて大腸菌を宿主とする発現系における封入体の形成を防止する方法を提供することを目的とする。
As described above, there is currently no thermodynamic model that theoretically “correctly” represents aggregation of peptides and proteins (generally, biomolecules), and there is no method for adjusting the solubility systematically with high accuracy. Therefore, the actual situation is that qualitative solubility prediction is performed by an empirical method of accumulating experimental data for each target protein. For this reason, in comprehensive analysis of a vast population such as proteome research and peptide synthesis, it is possible to predict quantitative solubility more efficiently, and development of a highly versatile solubilization technique is expected.
Therefore, the present invention establishes a method for predicting the solubility of a target protein under an arbitrary solution condition from a theoretical calculation based on amino acid sequence information before actually synthesizing it, and designing a peptide tag for improving solubility by this theoretical calculation. Thus, there is provided a method for improving the solubility of a protein by providing the tag without changing the function, the three-dimensional structure, the thermal stability, or the like. Another object of the present invention is to provide a method for preventing the formation of inclusion bodies in an expression system using Escherichia coli as a host using the tag.
本発明者らは、ペプチドやタンパク質の「溶解度」を新しい視点から解決するために鋭意研究を行った結果、
(1)溶解度(溶解限界濃度)以上になると生体分子同士の凝集が起こる現象に着目し、この凝集の起こりやすさ(即ち「溶解(限界濃)度」)は、Oosawa&Kasaiの分子会合モデル(非特許文献2参照)に基づき、生体分子の会合体にさらに1分子が会合する(図1)のに伴うギブス自由エネルギー(以下、会合自由エネルギーと略す。)ΔGAggrによって表すことができること、
(2)任意のアミノ酸配列からなるペプチドの会合自由エネルギーΔGAggrは、該ペプチドを構成する全種類のアミノ酸(全アミノ酸種)における各アミノ酸種Xの会合自由エネルギーΔGx Aggrの総和により計算されるとともに、ΔGx Aggrは該ペプチドに含まれるアミノ酸種の個数(残基数)の2次関数で近似的に表されること、
(3)熱力学的理論に基づきアミノ酸配列から計算したペプチドが付加された生体分子の溶解度の理論値は実測値とほぼ同じであり、且つ該ペプチドを構成するアミノ酸の種類と個数の組み合わせが同じであるときは、アミノ酸の配列パターンに関係なく、その溶解度がほぼ同じ値になるため、計算により所望の溶解度が得られるアミノ酸配列を設計(同定)できること、
(4)(3)にて設計した高い溶解度をもたらすアミノ酸配列からなるペプチドタグを目的タンパク質に付加することで、封入体をはじめとした凝集体の形成を防止できること、
を見出し、本発明を完成するに至った。
As a result of intensive studies to solve the “solubility” of peptides and proteins from a new viewpoint,
(1) Focusing on the phenomenon in which biomolecules aggregate when the solubility (solubility limit concentration) is exceeded, the ease of this aggregation (ie, “dissolution (limit concentration)”) is determined by the molecular association model of Oosawa & Kasai (non- based on Patent Document 2), further one molecule associates with the association of biological molecules (Figure 1) Gibbs associated to the free energy (hereinafter, referred to as association free energy.) can be represented by .DELTA.G Aggr,
(2) The association free energy ΔG Aggr of a peptide having an arbitrary amino acid sequence is calculated by the sum of the association free energy ΔG x Aggr of each amino acid species X in all types of amino acids (all amino acid species) constituting the peptide. And ΔG x Aggr is approximately represented by a quadratic function of the number of amino acid species (residues) contained in the peptide,
(3) The theoretical value of the solubility of the biomolecule to which the peptide calculated from the amino acid sequence based on the thermodynamic theory is almost the same as the actually measured value, and the combination of the type and number of amino acids constituting the peptide is the same , The solubility is almost the same regardless of the amino acid sequence pattern, so that the amino acid sequence that can obtain the desired solubility by calculation can be designed (identified),
(4) The formation of aggregates including inclusion bodies can be prevented by adding to the target protein a peptide tag consisting of an amino acid sequence that provides high solubility designed in (3).
As a result, the present invention has been completed.
即ち、本発明において、
第1の発明は、生体分子(アミノ酸、ペプチド、蛋白質など)の末端に任意のアミノ酸配列からなるペプチドが付加されたペプチド付加生体分子の溶解度Sを熱力学的理論に基づき計算する方法であって、上記ペプチドの会合のギブス自由エネルギーΔGAggrは、下式(1)で表される上記アミノ酸配列を構成するアミノ酸種Xの残基数Nの二次関数により定義されたΔGX Aggrの総和として算出し、該ペプチドの会合のギブス自由エネルギーΔGAggrを用いて、下式(2)により上記ペプチド付加生体分子の溶解度Sを計算する方法を要旨とする。
ΔGX Aggr=ΔGAggr0+ΔGX Aggr1N+ΔGX Aggr2N2 式(1)
(上式(1)中、Xは上記生体分子に付加されるアミノ酸種、ΔGX Aggrは該アミノ酸種Xの上記生体分子への付加に伴う会合のギブス自由エネルギー(すなわち、該アミノ酸種Xの会合自由エネルギー)(J/mol)、ΔGAggr0は上記生体分子の会合のギブス自由エネルギー(J/mol)、ΔGX Aggr1は該アミノ酸種Xの会合のギブス自由エネルギーの1次の項(J/mol)、ΔGX Aggr2は該アミノ酸種Xの会合のギブス自由エネルギーの2次の項(J/mol)、Nは付加したペプチドに含まれる上記アミノ酸種Xの残基数をそれぞれ表す。)
S=exp(ΔGAggr/RT) 式(2)
(上式(2)中、Sは上記ペプチド付加生体分子の溶解度、Rは気体定数、Tは絶対温度、ΔGAggrは上記ペプチドに含まれる全てのアミノ酸種Xに対する各アミノ酸種Xの会合自由エネルギーΔGX Aggrの総和(ΣΔGX Aggr(J/mol))をそれぞれ表す。)
ここで、標準とする生体分子(標準生体分子)の末端に上記アミノ酸種Xのうちの1種類のアミノ酸種xが付加された変異体を作成し、該変異体を任意の溶媒に対して溶解限界濃度以上に添加した時の可溶性画分の溶液濃度を測定し、上記アミノ酸種xの残基数nを変化させたときの溶解度の変化から、回帰分析法により上記アミノ酸種xの会合のギブス自由エネルギーΔGx Aggr1,ΔGx Aggr2を下式(3)により算出することができる。
s=exp((ΔGx Aggr1n+ΔGx Aggr2n2)/RT) 式(3)
(上式(3)中、sは上記変異体の溶解度と上記標準生体分子の溶解度との比、Rは気体定数、Tは絶対温度、xは上記標準生体分子に付加された特定の種類のアミノ酸種、nは該アミノ酸種xの残基数、ΔGx Aggr1は該アミノ酸種xの会合のギブス自由エネルギーの1次の項(J/mol)、ΔGx Aggr2は該アミノ酸種xの会合のギブス自由エネルギーの2次の項(J/mol)をそれぞれ表す。)
第2の発明は、上記アミノ酸種Xの種類とその残基数Nの組合せパターンの中から、上記ペプチドのアミノ酸配列を選択する際に、上述の溶解度計算方法により各組合せパターンにおけるペプチド付加生体分子の溶解度Sを計算し、該溶解度Sが所望の値となる組合せパターンを選択して、上記ペプチドのアミノ酸配列を設計する方法を要旨とする。
第3の発明は、菌体内又は試験管内で目的タンパク質を、上述の方法により設計したペプチドタグとの融合タンパク質として発現させることにより、上記目的タンパク質の封入体形成を防止する方法を要旨とする。
That is, in the present invention,
The first invention is a method for calculating the solubility S of a peptide-added biomolecule in which a peptide having an arbitrary amino acid sequence is added to the end of a biomolecule (amino acid, peptide, protein, etc.) based on thermodynamic theory. The Gibbs free energy ΔG Aggr of the peptide association is the sum of ΔG X Aggr defined by a quadratic function of the number N of residues of amino acid species X constituting the amino acid sequence represented by the following formula (1): The gist is a method of calculating and calculating the solubility S of the peptide-added biomolecule by the following formula (2) using the Gibbs free energy ΔG Aggr of the peptide association.
ΔG X Aggr = ΔG Aggr0 + ΔG X Aggr1 N + ΔG X Aggr2 N 2 Formula (1)
(In the above formula (1), X is the amino acid species added to the biomolecule, ΔG X Aggr is the Gibbs free energy of association associated with the addition of the amino acid species X to the biomolecule (ie, the amino acid species X (Association free energy) (J / mol), ΔG Aggr0 is the Gibbs free energy (J / mol) of the association of the biomolecule, ΔG X Aggr1 is the first term of the Gibbs free energy of association of the amino acid species X (J / mol), ΔG X Aggr2 is the second term (J / mol) of the Gibbs free energy of association of the amino acid species X, and N is the number of residues of the amino acid species X contained in the added peptide.
S = exp (ΔG Aggr / RT) Equation (2)
(In the above formula (2), S is the solubility of the peptide-added biomolecule, R is the gas constant, T is the absolute temperature, ΔG Aggr is the free energy of association of each amino acid species X with respect to all amino acid species X contained in the peptide Represents the sum of ΔG X Aggr (ΣΔG X Aggr (J / mol)).)
Here, a variant in which one amino acid species x of the amino acid species X is added to the end of a standard biomolecule (standard biomolecule) is prepared, and the variant is dissolved in an arbitrary solvent. The concentration of the soluble fraction when added above the limit concentration is measured, and from the change in solubility when the number of residues n of the amino acid species x is changed, the Gibbs association of the amino acid species x is determined by regression analysis. The free energies ΔG x Aggr1 and ΔG x Aggr2 can be calculated by the following equation (3).
s = exp ((ΔG x Aggr1 n + ΔG x Aggr2 n 2 ) / RT) Equation (3)
(In the above formula (3), s is the ratio between the solubility of the mutant and the solubility of the standard biomolecule, R is the gas constant, T is the absolute temperature, and x is a specific type added to the standard biomolecule. Amino acid species, n is the number of residues of the amino acid species x, ΔG x Aggr1 is the first term (J / mol) of the Gibbs free energy of association of the amino acid species x, and ΔG x Aggr2 is the association of the amino acid species x Represents the second order term (J / mol) of Gibbs free energy.)
When the amino acid sequence of the peptide is selected from the combination patterns of the type of amino acid species X and the number N of residues thereof, the second invention provides peptide-added biomolecules in each combination pattern by the solubility calculation method described above. The gist is a method of designing the amino acid sequence of the peptide by calculating the solubility S of the peptide, selecting a combination pattern in which the solubility S has a desired value, and selecting the combination pattern.
The gist of the third invention is a method of preventing inclusion body formation of the target protein by expressing the target protein as a fusion protein with the peptide tag designed by the above-described method in the fungus body or in a test tube.
天然構造を有するタンパク質では、一部のアミノ酸はタンパク質の内部に埋もれており、溶媒(水)と接触していないので、タンパク質の溶解性を決定する要因として、内側にあるアミノ酸の影響は小さい。そこで、本発明においては、タンパク質の溶解度をOosawa&Kasaiの分子会合モデルに基づいて理論的に求めるに際し、該タンパク質を構成する全アミノ酸の特性を考慮するのではなく、該タンパク質表面に露出した、末端側のアミノ酸数残基の会合自由エネルギーを用いる。このとき、該末端側にあるアミノ酸数残基を、タンパク質に付加されたペプチドとみなし、このペプチドの溶解度を理論計算により求める方法を提供する。このように、末端側のアミノ酸のみに着目し、該末端側のアミノ酸の会合の起こりやすさを示すミクロな値と、タンパク質間の会合の起こりやすさを示すマクロな値から溶解度を決定することにより、対象とするタンパク質や溶媒条件に制限されず、ペプチドの溶解度を理論計算により精度良く求めることができる。
ここで、該ペプチドタグが付与される対象は、タンパク質に限らずペプチド(本発明では、1アミノ酸も「ペプチド」に拡張して定義する。)を含む生体分子とすることができ、その状態(変性状態または天然状態)、構成するアミノ酸の種類や個数、及びその組み合わせ等について特に限定されない。
かかる生体分子に付加される上記ペプチドとしては、低分子量で立体構造を形成しないものであれば良く、アミノ酸残基数が30残基以下が好ましく、20残基以下がより好ましい。特に3〜15残基の場合には、顕著な溶解度の向上と目的生体分子に対する影響が小さい点で優れた効果が得られる。また、その分子量は、約30,000までが好ましい。アミノ酸残基数や分子量が上記範囲内である場合には、上式(1)で表される近似式において補正パラメータが必要とならず、また上記生体分子を解析研究や医療応用などに利用する場合に、該ペプチドを除去することなく、付加されたままの状態で利用が可能となる点で優れている。
In a protein having a natural structure, some amino acids are buried in the protein and are not in contact with the solvent (water), and therefore, the influence of the amino acid on the inside is small as a factor that determines the solubility of the protein. Therefore, in the present invention, when theoretically determining the solubility of a protein based on the molecular association model of Oosawa & Kasai, the characteristics of all amino acids constituting the protein are not considered but the terminal side exposed on the protein surface is exposed. The association free energy of several amino acid residues is used. At this time, there is provided a method in which several amino acid residues on the terminal side are regarded as a peptide added to a protein, and the solubility of this peptide is determined by theoretical calculation. In this way, paying attention only to the amino acid on the terminal side, the solubility is determined from a micro value indicating the likelihood of the association of the amino acid on the terminal side and a macro value indicating the likelihood of the association between the proteins. Thus, the solubility of the peptide can be obtained with high accuracy by theoretical calculation without being limited by the target protein and solvent conditions.
Here, the target to which the peptide tag is attached is not limited to a protein, and can be a biomolecule including a peptide (in the present invention, one amino acid is defined by being expanded to “peptide”), and its state ( There are no particular restrictions on the modified state or the natural state), the type and number of amino acids constituting the amino acid, combinations thereof, and the like.
The peptide added to such a biomolecule is not particularly limited as long as it has a low molecular weight and does not form a three-dimensional structure. The number of amino acid residues is preferably 30 residues or less, and more preferably 20 residues or less. Particularly in the case of 3 to 15 residues, an excellent effect is obtained in that the solubility is significantly improved and the influence on the target biomolecule is small. The molecular weight is preferably up to about 30,000. When the number of amino acid residues and the molecular weight are within the above ranges, no correction parameter is required in the approximate expression represented by the above formula (1), and the biomolecule is used for analytical research or medical application. In some cases, it is excellent in that the peptide can be used as it is without being removed.
モノマー分子同士が結合し凝集していく際にエネルギー(会合自由エネルギー、ΔGAggr)を要する。その値は分子を構成するアミノ酸種によって異なるが、各アミノ酸に対して2つのパラメータ(会合自由エネルギーΔGX Aggr1とΔGX Aggr2)を用いることにより、構成アミノ酸の会合自由エネルギーΔGX Aggrの総和を計算することで、溶解度を求めることができる。 Energy (association free energy, ΔG Aggr ) is required when the monomer molecules are bonded and aggregated. The value varies depending on the amino acid species constituting the molecule, but by using two parameters (association free energy ΔG X Aggr1 and ΔG X Aggr2 ) for each amino acid, the sum of the association free energies ΔG X Aggr of the constituent amino acids is obtained. By calculating, the solubility can be obtained.
上記ΔGX Aggr1及びΔGX Aggr2は、任意の溶液条件下で実験的に決定することができる。
この決定方法としては、標準とする生体分子(標準サンプル)に付加されるアミノ酸の残基数を変化させたときの溶解度曲線を通常の方法により求め、この結果から回帰分析法により求めることができる。具体的には、以下の手順により決定できる。
先ず標準サンプルの末端に所定のアミノ酸種xを1〜数個付加してアミノ酸残基数の異なる該生体分子の変異体を作成する(Kato.A. et al.,Biopolymers.,vol.85,no.1,p12−18,2006参照)。
該変異体としては、例えば上記アミノ酸残基数が1,3,5,7となるように付加されたものが挙げられる。
次に、得られた変異体を溶媒に任意の条件下で、見かけ上溶解が限界をやや超えた状態(溶液が少し白濁する状態)になるまで添加し、得られた溶液を平衡状態に至るまで遠心分離して上清と沈殿に分ける。続いて、沈殿を除き、上清(可溶性画分)を得る。
ここで使用する溶媒としては、水溶液系であれば特に限定されず、通常使用されるものがいずれも使用可能である。また、緩衝液は使用する溶媒のpHにあわせて、適宜選択されればよく、例えばグリシン緩衝液、アセテート緩衝液、フォスフェート緩衝液、Tris緩衝液等が挙げられる。濃度は、適宜選択すれば良いが、溶解度への影響を最小限に抑えるために50mM程度であることが好ましい。
また、温度やpH、塩濃度など、その他の溶媒条件は、適宜選択すれば良く、例えば温度4℃、pH7.0等が挙げられる。
上記遠心条件としては、生化学分野において通常使用される条件であれば特に限定されず、例えば20,000×gで4℃にて1時間等が使用可能である。この時、平衡状態に至っていることを確認することが必要である。例えば、得られた可溶性画分を測定条件下で保管した後、例えば6,12,24時間経過毎に再度濃度を測定し、濃度が変わらないことを確認すればよい。また、凝集の可逆性を確認する必要がある。例えば、測定に用いた緩衝液を不溶性画分に加え、該不溶性画分が可溶性画分に移行することで可逆性が確認できる。
そして、この可溶性画分の溶液濃度を分光光度計により測定し、これを溶解度と規定して、上記アミノ酸の残基数を変数とする溶解度曲線を求める。
そして、上記アミノ酸の残基数を変化させたときの溶解度の変化から、回帰分析法により上記アミノ酸の会合自由エネルギーΔGx Aggr1,ΔGx Aggr2を上式(3)により決定する。
上記標準サンプルとしては、特に制限されないが、発現・精製が容易で、分光学的にサンプル濃度を測定することが可能なトリプトファン又はチロシンを含み、且つ測定条件下で完全に天然状態又は完全に変性状態であるものであればよい。また、溶解度が数100μM〜1mMであることが好ましい。更に、分子量は2,000以上でることが好ましく、1万程度であることがより好ましい。具体的に例示すれば、ウシ膵臓トリプシン阻害物質BPTI(Bovine Pancreatic Trypsin Inhibitor)の変異体であるBPTI−21やBPTI−22(BPTIの第21位、第22位がそれぞれ置換されたもの)、或いはBPTI−22の第40〜58位のアミノ酸配列からなるペプチド断片をSS結合により管状化したもの、Cys(GlyAlaAlaSerAlaAla)4CysGlyGly配列を基本として人工設計したペプチド断片等が挙げられる。
The above ΔG X Aggr1 and ΔG X Aggr2 can be experimentally determined under any solution condition.
As this determination method, a solubility curve when the number of amino acid residues added to a standard biomolecule (standard sample) is changed can be obtained by an ordinary method, and a regression analysis method can be obtained from this result. . Specifically, it can be determined by the following procedure.
First, one to several predetermined amino acid species x are added to the end of a standard sample to create a variant of the biomolecule having a different number of amino acid residues (Kato. A. et al., Biopolymers., Vol. 85, No. 1, p12-18, 2006).
Examples of the mutant include those added so that the number of amino acid residues is 1, 3, 5, and 7, for example.
Next, the obtained mutant is added to the solvent under any condition until the apparent dissolution slightly exceeds the limit (the solution becomes slightly cloudy), and the resulting solution is brought into an equilibrium state. Centrifuge until separated into supernatant and precipitate. Subsequently, the precipitate is removed and a supernatant (soluble fraction) is obtained.
The solvent used here is not particularly limited as long as it is an aqueous solution system, and any commonly used solvent can be used. The buffer solution may be appropriately selected according to the pH of the solvent used, and examples thereof include glycine buffer solution, acetate buffer solution, phosphate buffer solution, Tris buffer solution and the like. The concentration may be appropriately selected, but is preferably about 50 mM in order to minimize the influence on the solubility.
Moreover, what is necessary is just to select suitably other solvent conditions, such as temperature, pH, and salt concentration, for example, temperature 4 degreeC, pH 7.0, etc. are mentioned.
The centrifugation condition is not particularly limited as long as it is a condition normally used in the biochemical field. For example, 20,000 × g and 1 hour at 4 ° C. can be used. At this time, it is necessary to confirm that the equilibrium state has been reached. For example, after storing the obtained soluble fraction under measurement conditions, the concentration may be measured again, for example, every 6, 12, or 24 hours to confirm that the concentration does not change. Moreover, it is necessary to confirm the reversibility of aggregation. For example, reversibility can be confirmed by adding the buffer used for the measurement to the insoluble fraction and transferring the insoluble fraction to the soluble fraction.
Then, the solution concentration of this soluble fraction is measured with a spectrophotometer, this is defined as solubility, and a solubility curve with the number of amino acid residues as a variable is obtained.
Then, from the change in solubility when the number of amino acid residues is changed, the association free energies ΔG x Aggr1 and ΔG x Aggr2 of the amino acids are determined by the above equation (3) by regression analysis.
The standard sample is not particularly limited, but includes tryptophan or tyrosine that is easy to express and purify, and capable of spectroscopically measuring the sample concentration, and is completely in the natural state or completely denatured under the measurement conditions. What is in a state should just be. Further, the solubility is preferably several hundreds μM to 1 mM. Furthermore, the molecular weight is preferably 2,000 or more, more preferably about 10,000. Specifically, BPTI-21 and BPTI-22 (both BPTI at positions 21 and 22), which are mutants of the bovine pancreatic trypsin inhibitor BPTI (Bovine Pancreatic Trypsin Inhibitor), or Examples thereof include a peptide fragment composed of an amino acid sequence at positions 40 to 58 of BPTI-22, which is tubularly formed by SS bond, and a peptide fragment artificially designed based on a Cys (GlyAlaAlaSerAlaAla) 4 CysGlyGly sequence.
以上のようにして、全20種類のアミノ酸について、任意の溶媒条件下における2つのパラメータΔGX Aggr1とΔGX Aggr2を求めることで、該パラメータは各アミノ酸固有の値であるので、任意のアミノ酸配列を有する種々のペプチドの会合自由エネルギー(ΔGAggr)を自在に求めることができ、更にこのペプチドの会合自由エネルギーΔGAggr(該ペプチドに含まれる上記アミノ酸種Xの会合自由エネルギーΔGX Aggrの総和ΣΔGX Aggr)から熱力学的理論に基づく上式(2)により該ペプチドが付加された生体分子の溶解度を求めることができる。
かかるパラメータは、pH依存性が低く、比較的広いpH範囲で補正を加えずに、上式(2)に用いることができるが、温度と塩濃度の溶媒条件に対しては変化が大きく、適宜補正が必要になる。
また、物理化学的性質が比較的似ているアミノ酸同士(ロイシンとイソロイシン、アスパラギンとグルタミン酸など)のパラメータは、比較的同じ値を示す傾向にある。従って、開発コストを抑えるために、代表的なアミノ酸のパラメータを決定し、それらを他のアミノ酸のパラメータとして代用することで、求めたいサンプルのおおよその溶解度を見積もることも有効である。
このようにペプチド付加生体分子の溶解度をアミノ酸配列から計算する方法は、汎用性が高く、タンパク質が関係する先端研究開発分野や医療応用分野等において溶解度に起因する問題を解決するための手法として有効である
As described above, by obtaining two parameters ΔG X Aggr1 and ΔG X Aggr2 under arbitrary solvent conditions for all 20 types of amino acids, the parameters are values specific to each amino acid. The free energy of association (ΔG Aggr ) of various peptides having the above can be determined freely, and further the free energy of association ΔG Aggr of this peptide (the sum ΣΔG of the free energy of association ΔG X Aggr of the amino acid species X contained in the peptide) X Aggr ) can determine the solubility of the biomolecule to which the peptide is added according to the above equation (2) based on thermodynamic theory.
Such a parameter has low pH dependence and can be used in the above formula (2) without correction in a relatively wide pH range, but changes greatly with respect to the solvent conditions of temperature and salt concentration, and is appropriately adjusted. Correction is required.
In addition, parameters of amino acids having relatively similar physicochemical properties (leucine and isoleucine, asparagine and glutamic acid, etc.) tend to show relatively the same value. Therefore, in order to reduce development costs, it is also effective to estimate the approximate solubility of a sample to be obtained by determining representative amino acid parameters and substituting them as parameters for other amino acids.
Thus, the method of calculating the solubility of peptide-added biomolecules from amino acid sequences is highly versatile and effective as a method for solving problems caused by solubility in advanced research and development fields and medical application fields related to proteins. Is
第2の発明は、上式(1)〜(3)を用いることで、所望の溶解度を有するペプチドタグを設計(同定)する方法である。
例えば、後述のように、2つのパラメータΔGX Aggr1,ΔGX Aggr2の値が高いアルギニンやリジンの組み合わせによるアミノ酸配列からなるペプチドタグにおいては、高い溶解度が得られる。
図3に、高い溶解度を導くタグを付加したことによるNMRスペクトルの改善状態を示す。図3(A)は、“BPTI−22(3.8mM)”のHSQCスペクトルであり、該濃度(3.8mM)では写真のサンプルは白濁していて沈殿が多いため、クロスピークの形が不均一でブロードになっていることから解析不能であることがわかる。これ対し、図3(B)は、BPTI−22のC末端に5個のアルギニン(R)を付加した変異体(“BPTI−22―C5R(3.8mM)”)の同一測定時間(20分)におけるHSQCスペクトルであり、同じ分子量であるにもかかわらず写真のサンプルでは沈殿が減少しており溶解度が向上したため、良好なスペクトルの質が得られることがわかる。
The second invention is a method of designing (identifying) a peptide tag having a desired solubility by using the above formulas (1) to (3).
For example, as described later, a peptide tag consisting of an amino acid sequence composed of a combination of arginine or lysine having a high value of two parameters ΔG X Aggr1 and ΔG X Aggr2 provides high solubility.
FIG. 3 shows an improved state of the NMR spectrum by adding a tag that leads to high solubility. FIG. 3 (A) is an HSQC spectrum of “BPTI-22 (3.8 mM)”, and at this concentration (3.8 mM), the photograph sample is cloudy and has a lot of precipitates, so the shape of the cross peak is not good. Since it is uniform and broad, it is understood that analysis is impossible. On the other hand, FIG. 3 (B) shows the same measurement time (20 minutes) of a mutant (“BPTI-22-C5R (3.8 mM)”) in which 5 arginines (R) were added to the C-terminus of BPTI-22. The HSQC spectrum in FIG. 5 shows that although the sample has the same molecular weight, precipitation is reduced and solubility is improved, so that good spectral quality can be obtained.
かかるペプチドタグのアミノ酸の残基数としては、タグ自体の分子量が大きすぎると、目的タンパク質の機能発現や精製、構造解析などに影響を及ぼす虞があるため、好ましくは1〜20残基、さらに好ましくは3〜15残基である。 As the number of amino acid residues of such a peptide tag, if the molecular weight of the tag itself is too large, it may affect the functional expression, purification, structural analysis, etc. of the target protein. Preferably it is 3-15 residues.
第3の発明は、第1または第2の発明による方法で設計したペプチドタグを、目的タンパク質に付与することにより、封入体の形成を防止するタンパク質の合成方法である。
上記目的タンパク質については、状態(変性または天然)や、構成するアミノ酸の種類、個数、組合せについて特に限定されない。
The third invention is a method for synthesizing a protein that prevents the formation of inclusion bodies by attaching a peptide tag designed by the method according to the first or second invention to a target protein.
The target protein is not particularly limited with respect to the state (denatured or natural) and the type, number, and combination of amino acids constituting it.
第3の発明におけるペプチドタグのアミノ酸残基数は1〜20残基であり、好ましくは、3〜15残基、より好ましくは、5〜10残基である。アミノ酸残基数が上記範囲内である場合には、溶解度が向上し、封入体としての発現を抑えることができる。アミノ酸残基数が上記範囲を超えると、ペプチドタグ自体の分子量が大きすぎるために、目的タンパク質の機能発現や精製、構造解析などに影響を及ぼす虞が生じる。
菌体内での封入体形成抑制能は、目的タンパク質の末端にペプチドタグを融合させた融合タンパク質を発現・精製し、菌体破砕後、遠心を行い、可溶性画分と不溶性画分におけるそれぞれの濃度をSDS−PAGEにより定量化して求める。また、試験管内での凝集体形成抑制能は、目的タンパク質の末端にペプチドタグを融合させた融合タンパク質を発現・精製し、遠心分離後、可溶性画分の濃度を分光学的に定量化して求める。
封入体形成抑制能は付加するペプチドタグの長さと関係があり、使用するペプチドタグのアミノ酸残基数に依存して、封入体の発現量が減少する。
実際に、Caspase-Activated DNase (CAD)タンパク質の第1〜86位のアミノ酸配列からなるペプチド断片のC末端にアミノ酸残基数の異なる3種類のペプチドタグを融合させた変異体をそれぞれ作成し、封入体への影響を解析したところ、溶解度の向上を可能にするペプチドタグを付加することで封入体が抑制されることが明らかになった。
例えば、9残基のアミノ酸からなるペプチドタグを付加したとき、封入体形成が9割以上防止できるようになった。このことは、封入体の形成が、タンパク質の溶解度と相関関係にあることを示唆している。従って、本発明により設計される溶解度向上ペプチドタグを用いることにより、汎用性の高い封入体の形成抑制技術を提供することができる。
The number of amino acid residues of the peptide tag in the third invention is 1 to 20 residues, preferably 3 to 15 residues, and more preferably 5 to 10 residues. When the number of amino acid residues is within the above range, solubility is improved and expression as an inclusion body can be suppressed. If the number of amino acid residues exceeds the above range, the molecular weight of the peptide tag itself is too large, which may affect the functional expression, purification, structural analysis, etc. of the target protein.
The ability to suppress inclusion body formation in the microbial cell is expressed and purified from a fusion protein in which a peptide tag is fused to the end of the target protein. After disrupting the microbial cell, centrifugation is performed, and each concentration in the soluble and insoluble fractions is determined. Is quantified by SDS-PAGE. In addition, the ability to suppress the formation of aggregates in a test tube is obtained by expressing and purifying a fusion protein in which a peptide tag is fused to the end of the target protein, centrifuging and then quantifying the concentration of the soluble fraction spectroscopically. .
Inclusion body formation suppression ability is related to the length of the peptide tag to be added, and the expression level of the inclusion body decreases depending on the number of amino acid residues of the peptide tag used.
Actually, each of the Caspase-Activated DNase (CAD) proteins was created by fusing three types of peptide tags with different amino acid residues to the C-terminus of the peptide fragment consisting of the amino acid sequence at positions 1 to 86, Analysis of the effect on inclusion bodies revealed that inclusion bodies were suppressed by adding a peptide tag that allowed for improved solubility.
For example, when a peptide tag consisting of 9-residue amino acids is added, inclusion body formation can be prevented by 90% or more. This suggests that inclusion body formation correlates with protein solubility. Therefore, by using the solubility-improving peptide tag designed according to the present invention, a highly versatile inclusion body formation suppression technique can be provided.
このようなペプチドタグは、目的タンパク質のN末端、C末端のいずれかに付与しても良いし、N末端、及びC末端の両末端に付与しても構わないが、目的タンパク質の立体構造によってはN末端、及びC末端の両末端にペプチドタグを付与することにより、これらに相互作用を生じ、目的タンパク質の機能発現や立体構造に影響を及ぼす場合もあり得る。そのような場合には、N末端かC末端のいずれかにペプチドタグを付与すると良い。
また、該ペプチドタグには必要に応じてリンカーを付与しても良い。リンカーとしては、グリシン、及び/またはプロリンを挙げることができ、1〜5残基程度、好ましくは2〜5残基程度とする。該ペプチドタグにリンカーを付与するのは、タグ自体に柔軟性を持たせること、及び目的タンパク質と設計されるペプチドタグとの間に距離を置くことにより、それらの間における相互作用を防止することを目的とするためである。
Such a peptide tag may be added to either the N-terminus or C-terminus of the target protein, or may be added to both the N-terminus and C-terminus, but depending on the three-dimensional structure of the target protein. May give a peptide tag to both the N-terminus and C-terminus, thereby causing an interaction between them and affecting the functional expression and three-dimensional structure of the target protein. In such a case, a peptide tag may be added to either the N-terminus or C-terminus.
Moreover, you may provide a linker to this peptide tag as needed. Examples of the linker include glycine and / or proline, which is about 1 to 5 residues, preferably about 2 to 5 residues. Attaching a linker to the peptide tag is to make the tag itself flexible and to prevent interaction between them by placing a distance between the target protein and the designed peptide tag. This is for the purpose.
上記ペプチドタグを目的タンパク質に付与して融合タンパク質を得る方法としては、特に制限されるものではないが、例えば該融合タンパク質を発現する遺伝子を用いた遺伝子組み換えにより、セルフリー(インビトロ)合成や大腸菌や酵母などの宿主を形質転換し、得られた宿主を培養することによりこれを得る方法、シンセサイザーなどを用いた化学的合成による方法などを挙げることができる。 The method for obtaining the fusion protein by attaching the peptide tag to the target protein is not particularly limited. For example, cell-free (in vitro) synthesis or E. coli by gene recombination using a gene that expresses the fusion protein. Examples thereof include a method for transforming a host such as yeast and yeast and culturing the obtained host, and a method for chemical synthesis using a synthesizer.
本願第1の発明は、従来の疎水性・親水性モデルに基づく溶解度計算法とは異なり、生体分子の凝集の熱力学モデルを用い、1分子の会合自由エネルギーの値と生体分子の溶解度の関係から溶解度を熱力学法則に従った物理化学的に理論計算するものであり、タンパク質発現やペプチド合成を行う前に、高い精度で定量的に溶解度を予測することを可能にする。
従って、
1.溶解度が低いペプチドやタンパク質を取り扱う場合や高濃度でタンパク質を溶解する必要がある場合(高濃度での機能解析やNMRによる構造解析)など、或いはプロテインチップやマイクロバイオリアクターの作成、精製の高率化など、溶解度が問題となる種々の場合において、膨大な母集団のペプチドやタンパク質を対象とする網羅的解析を行う際に、予め効率良くターゲットを選定することができる。
2.対象ペプチドや目的タンパク質の溶解度計算において、任意のpH、温度、塩濃度などの溶媒条件下で使用可能であり、汎用性に優れた溶解度予測を行うことができる。これにより、例えば図2に示すような、アミノ酸配列、溶媒条件、タンパク質の立体構造を入力データとする溶解度計算システムの開発への応用が期待できる。
The first invention of the present application uses a thermodynamic model of aggregation of biomolecules, unlike a conventional method for calculating solubility based on a hydrophobic / hydrophilic model, and the relationship between the value of free energy associated with one molecule and the solubility of the biomolecule. The physicochemical theoretical calculation of the solubility according to the laws of thermodynamics is made possible, and it is possible to predict the solubility quantitatively with high accuracy before protein expression or peptide synthesis.
Therefore,
1. When dealing with peptides and proteins with low solubility or when it is necessary to dissolve proteins at high concentrations (functional analysis at high concentrations or structural analysis by NMR), or the high rate of creation and purification of protein chips and microbioreactors In various cases where solubility is a problem, such as crystallization, a target can be efficiently selected in advance when conducting a comprehensive analysis on a huge population of peptides and proteins.
2. In the calculation of the solubility of the target peptide or target protein, it can be used under solvent conditions such as any pH, temperature, salt concentration, etc., and solubility prediction excellent in versatility can be performed. As a result, for example, application to the development of a solubility calculation system using amino acid sequences, solvent conditions, and protein three-dimensional structure as input data can be expected as shown in FIG.
また、第2の発明によれば、上記溶解度を求める方法を用いることで、所望の溶解度とするペプチドタグを設計することができる。
従って、
3.溶解度が低いペプチドやタンパク質を解析対象とする場合に、解析対象の機能や構造、安定性などを変えずに、その溶解度を飛躍的に向上させることが可能なペプチドタグを付与すること等で、効率的な解析を可能にし、解析コストの削減を図ることが可能になる。
4.ペプチド合成に際し、予め対象とするペプチドの溶解度を設計することができる。
Moreover, according to the second invention, a peptide tag having a desired solubility can be designed by using the method for obtaining the solubility.
Therefore,
3. When a peptide or protein with low solubility is to be analyzed, by adding a peptide tag that can dramatically improve its solubility without changing the function, structure, stability, etc. of the analysis target, etc. It enables efficient analysis and can reduce the analysis cost.
4). In peptide synthesis, the solubility of the target peptide can be designed in advance.
さらに、第3の発明は、タンパク質の凝集性の傾向と大腸菌内の封入体形成の強い相関関係に着目した知見に基づくものであり、上述のようにして設計したタグを目的タンパク質に付加することにより、大腸菌内において封入体の形成を防止できる。
従って、
5.可溶化したタンパク質を産生することができ、収量の向上が図られる。
6.数種類のペプチドタグで大抵のタンパク質の溶解度向上が可能となり、汎用性の高い封入体防止発現ベクターの開発への応用が期待できる。
Furthermore, the third invention is based on the knowledge focusing on the strong correlation between the tendency of protein aggregation and inclusion body formation in E. coli, and the tag designed as described above is added to the target protein. Thus, inclusion bodies can be prevented from forming in E. coli.
Therefore,
5. Solubilized protein can be produced, and the yield can be improved.
6). Several types of peptide tags can improve the solubility of most proteins, and can be expected to be applied to the development of highly versatile inclusion body-preventing expression vectors.
実施例1
〔融合タンパク質の合成〕
本実施例1では、目的タンパク質として難溶性タンパク質ウシ膵臓トリプシン阻害タンパク質(Bovine Pancreatic Trypsin Inhibitor;BPTI)において22個のAlaを有する変異体BPTI−22(58aa、分子量5,880)を使用した。
タンパク質の発現には、pMMHaBPTI−22発現ベクター(J.Mol.Biol.,Vol.298,p493−501,2000参照)を用いた。この発現ベクターは、Stratagene社製の試薬キット(商品名:QuikChangeIIXLSite−Directed Mutagenesis Kit)を用いてtrpΔLEリーダー配列のN末端にHisタグ配列が付加してある。
この発現ベクターで大腸菌JM109(DE3)pLysSをトランスフォーメーションし、得られたコロニーを50μg/mlのアンピシリンと34μg/mlのクロラムフェニコールを含む100mlのLB培地に直接植菌し、37℃で6時間振盪培養した。その後、2LのLB培地に植菌し、 37℃で一晩振盪培養した。得られた培養液を500mlの遠心管に移し、5,000×g、4℃にて20分間遠心分離を行い、集菌した。集菌後の菌体を100mMTris−HCl緩衝液(pH8.7)に懸濁し、7,000×g、4℃にて20分間再び遠心して洗浄した。
洗浄後の菌体は、培養液2L分の菌体を50mlの遠沈管にて集菌し、菌体重量に対して約10倍量の緩衝液A(50mMTris−HCl(pH8.7)、150mMNaCl)に懸濁した。懸濁液を氷冷しながら、懸濁液が半透明になるまで超音波破砕を行った。
破砕後、7,000×g、4℃にて20分間遠心分離を行って上清を除き、不溶性画分を得た。
再び不溶性画分を緩衝液B(50mMTris−HCl(pH8.7)、1容積%NP−40、1重量%Deoxycholic acid、1mMEDTA)で懸濁し、超音波破砕を行なった。液が白色になるまでこの操作を3回繰り返した。
目的タンパク質は大腸菌内で封入体を形成するため、遠心後は不溶性画分を得た。
続いて、不溶性画分(封入体を形成をしたタンパク質)を6MGuHCl(pH8.7)で可溶させ、BPTI変異体分子内のCys5とCys55においてS−S結合をさせるために、10時間攪拌させ空気酸化させた。その後、50mMTris−HCl緩衝液(pH8.7)で透析を行い、6MGuHClを除くと沈殿が現れた。これは、目的タンパク質に付加しているtrpΔLEリーダー配列を持つタグタンパク質がpH8.7において沈殿するために、目的タンパク質も沈殿するためである。
この沈殿を7,000×g、4℃にて20分間遠心分離で回収し、沈殿重量に対して10倍量の70%formic acidを加え、室温にて6時間CNBr反応(10mg/ml CNBr/70% formic acid)を行い、目的タンパク質からタグタンパク質を切断した。
更に、約2時間Speed vacした後、mill-Qで一晩透析した。そして、10mMリン酸塩緩衝液(pH6.0)で透析を一晩行った。透析後、7,000×g、4℃にて20分間遠心分離を行い、沈殿(タグタンパク質)を除き、可溶性画分から融合タンパク質(上記BPTI−22のN末端又はC末端にGGnR配列(nはアルギニン(R)の残基数であり、n=1,3,5)を有するペプチドタグが付加された融合タンパク質)を得た。
この溶液に酢酸を加え、HPLCにより精製した。精製に用いた逆相カラム(YMC−Pack PROTEIN−RP S,5μm)は25%アセトニトリルで平衡化させ、タンパク質をカラムに吸着させた。吸着後、リニアグラジエント(25〜60%,アセトニトリルの増加率:1%/分)をかけ、カラムに吸着させたタンパク質を溶出させた。
そして、溶出液の220nmにおける吸光度をオンラインで測定した。この時、流速は8.0ml/分とした。
吸光度にピークが現れたフラクションをESI−TOFMS“JMS−T100X”(日本電子社製)を用いて分子量を同定し、精製標品を凍結乾燥し、−80℃で保存した。
〔パラメータΔGX Aggr1、ΔGX Aggr2の決定〕
このようにして得られた融合タンパク質(C末端にGGnR配列を有するペプチドタグが付加された融合タンパク質)を100mM酢酸緩衝液(pH4.7)に溶解し、生じた沈殿を20,000×g、4℃で1時間の遠心分離により除去した。尚、タンパク質は基本的にすべての実験操作において氷上で取り扱った。
分光光度計により280nmの吸光度を測定して、20℃、pH7.0における溶解限界濃度を求め、これを溶解度とした。そして、“付加したアミノ酸残基数”と“溶解度”との関係を実験的に求めた。その結果を図4に示す。
図4中、横軸は付加したアミノ酸残基数、縦軸は溶解度をそれぞれ示し、標準ペプチド(何も付加していない)の溶解度を“1”とした。
続いて、この溶解度曲線から(即ち、実験的に求めた“溶解度”から)付加したアミノ酸の個数Nに対する回帰分析法によって2つのパラメータΔGX Aggr1、ΔGX Aggr2(J/mol)を求めた。
この結果、アルギニン(R)のΔGR Aggr1は4.72J/mol、ΔGR Aggr2は143.65J/molと決定した。
また、アルギニンと同様にして、リジン(K)についても2つのパラメータΔGX Aggr1、ΔGX Aggr2(J/mol)を求めたところ、ΔGK Aggr1は4.72J/mol、ΔGK Aggr2は130.47J/molとなった。
Example 1
[Synthesis of fusion protein]
In this Example 1, mutant BPTI-22 (58aa, molecular weight 5,880) having 22 Ala in the poorly soluble protein bovine pancreatic trypsin inhibitor (BPTI) was used as the target protein.
A pMMHaBPTI-22 expression vector (see J. Mol. Biol., Vol. 298, p493-501, 2000) was used for protein expression. This expression vector has a His tag sequence added to the N-terminus of the trpΔLE leader sequence using a reagent kit (trade name: QuikChange II XLsite-Directed Mutagenesis Kit) manufactured by Stratagene.
Escherichia coli JM109 (DE3) pLysS was transformed with this expression vector, and the resulting colonies were directly inoculated into 100 ml of LB medium containing 50 μg / ml ampicillin and 34 μg / ml chloramphenicol, and 6 ° C. at 6 ° C. Cultured with shaking for hours. Thereafter, the cells were inoculated into 2 L of LB medium and cultured with shaking at 37 ° C. overnight. The resulting culture was transferred to a 500 ml centrifuge tube and centrifuged at 5,000 × g for 20 minutes at 4 ° C. to collect the cells. The collected cells were suspended in 100 mM Tris-HCl buffer (pH 8.7) and washed again by centrifugation at 7,000 × g and 4 ° C. for 20 minutes.
The washed cells are collected in 2 ml of the culture solution in a 50 ml centrifuge tube, and about 10 times the amount of buffer A (50 mM Tris-HCl (pH 8.7), 150 mM NaCl). ). While the suspension was ice-cooled, ultrasonic crushing was performed until the suspension became translucent.
After crushing, centrifugation was performed at 7,000 × g and 4 ° C. for 20 minutes to remove the supernatant, and an insoluble fraction was obtained.
The insoluble fraction was again suspended in buffer B (50 mM Tris-HCl (pH 8.7), 1% by volume NP-40, 1% by weight Deoxycholic acid, 1 mM EDTA), and sonicated. This operation was repeated 3 times until the liquid became white.
Since the target protein forms inclusion bodies in E. coli, an insoluble fraction was obtained after centrifugation.
Subsequently, the insoluble fraction (protein forming the inclusion body) is solubilized with 6MGuHCl (pH 8.7), and stirred for 10 hours in order to cause S—S binding at Cys5 and Cys55 in the BPTI mutant molecule. Oxidized with air. Thereafter, dialysis was carried out with 50 mM Tris-HCl buffer (pH 8.7), and a precipitate appeared when 6 MGuHCl was removed. This is because the target protein also precipitates because the tag protein having the trpΔLE leader sequence added to the target protein precipitates at pH 8.7.
The precipitate was collected by centrifugation at 7,000 × g and 4 ° C. for 20 minutes, 10 times the amount of 70% formal acid was added to the weight of the precipitate, and the CNBr reaction (10 mg / ml CNBr / 70% formal acid), and the tag protein was cleaved from the target protein.
Furthermore, after speed vac for about 2 hours, it dialyzed overnight with mill-Q. Then, dialysis was performed overnight with 10 mM phosphate buffer (pH 6.0). After dialysis, centrifugation was performed at 7,000 × g and 4 ° C. for 20 minutes, the precipitate (tag protein) was removed, and the fusion protein (GGnR sequence (n is the N-terminal or C-terminal of BPTI-22) was removed from the soluble fraction. A fusion protein to which a peptide tag having arginine (R) residues and n = 1, 3, 5) was added was obtained.
Acetic acid was added to this solution and purified by HPLC. The reverse phase column (YMC-Pack PROTEIN-RP S, 5 μm) used for purification was equilibrated with 25% acetonitrile, and the protein was adsorbed onto the column. After adsorption, a linear gradient (25-60%, acetonitrile increase rate: 1% / min) was applied to elute the protein adsorbed on the column.
Then, the absorbance at 220 nm of the eluate was measured online. At this time, the flow rate was 8.0 ml / min.
The fraction in which the peak appeared in the absorbance was identified using ESI-TOFMS “JMS-T100X” (manufactured by JEOL Ltd.), the purified preparation was lyophilized and stored at −80 ° C.
[ Determination of parameters ΔG X Aggr1 and ΔG X Aggr2 ]
The fusion protein thus obtained (a fusion protein to which a peptide tag having a GGnR sequence at the C terminus was added) was dissolved in 100 mM acetate buffer (pH 4.7), and the resulting precipitate was 20,000 × g, Removed by centrifugation at 4 ° C. for 1 hour. Proteins were basically handled on ice in all experimental operations.
The absorbance at 280 nm was measured with a spectrophotometer to determine the solubility limit concentration at 20 ° C. and pH 7.0, and this was used as the solubility. The relationship between “number of added amino acid residues” and “solubility” was experimentally determined. The result is shown in FIG.
In FIG. 4, the horizontal axis represents the number of added amino acid residues, the vertical axis represents the solubility, and the solubility of the standard peptide (nothing added) was set to “1”.
Subsequently, two parameters ΔG X Aggr1 and ΔG X Aggr2 (J / mol) were obtained from this solubility curve (ie, from the “solubility” obtained experimentally) by regression analysis with respect to the number N of added amino acids.
As a result, ΔG R Aggr1 of arginine (R) was determined to be 4.72 J / mol, and ΔG R Aggr2 was determined to be 143.65 J / mol.
Similarly to arginine, when two parameters ΔG X Aggr1 and ΔG X Aggr2 (J / mol) were determined for lysine (K), ΔG K Aggr1 was 4.72 J / mol and ΔG K Aggr2 was 130. It became 47 J / mol.
〔ペプチドタグ融合タンパク質の溶解度計算〕
実験では、ペプチドタグを付与していないBPTI−22タンパク質と、アルギニンタグ(RRRGG、RRRRRGG(「GG」はリンカー残基として付与))をBPTI−22のN末端に付加した融合タンパク質との溶解度を測定した。
即ち、各タンパク質に100mM酢酸緩衝液(pH4.7)を白濁(凝集)するまで加え(約100μl)、これらタンパク質溶液20,000×gを4℃、1時間の条件下で遠心分離した。そして、該タンパク質溶液の可溶性画分について、分光光度計にて280nmにおける吸光度を計測し、タンパク質濃度を求め、この測定値を溶解度とした。
この結果、上記ペプチドタグを付与した融合タンパク質の溶解度は、BPTI−22タンパク質の溶解度(1.70mM)と比較して、アミノ酸配列がRRRGGであるペプチドタグを付加した場合(溶解度は2.70mM)で1.59倍、アミノ酸配列がRRRRRGGであるペプチドタグを付加した場合(溶解度は6.20mM)で3.65倍それぞれ実験的に向上することを確認した。
一方、上述のようにして求めたアルギニンのΔGR Aggr1(4.72J/mol)及びΔGR Aggr2(143.65J/mol)を上式(1)に代入し、上記ペプチドタグのΔGR Aggrを求めた。
ここで、該ペプチドタグはいずれもアルギニンのみから構成されているので、ΔGR Aggr=ΔGAggrとなり、該ペプチドタグの溶解度は上式(2)から導かれる。
アルギニンを3個付加したタンパク質の溶解度は以下のとおり;
ΔGAggr=4.72×3+143.65×32=1307.01J/mol
となり、277.15K(4°C)における両タンパク質の溶解度の比は
S=exp(1307.01/(8.314×277.15))=1.76
よって、4°Cの温度では、アルギニンを3個付加したタンパク質の溶解度は付加していないものより溶解度が1.76倍向上すると計算され、上記の実験で測定した1.59倍とよく一致した。
同じようにアルギニンを5個付加したタンパク質の溶解度は以下のとおり;
ΔGAggr=4.72×5(=23.6)+143.65×52(3591.25)=3614.85J/mol
となり、277.15K(4°C)での両タンパク質の溶解度の比は
S=exp(3614.85/(8.314×277.15))=4.80
よって、4°Cの温度では、アルギニンを5個付加したタンパク質の溶解度は付加していないものより溶解度が4.80倍向上すると計算され、上記の実験で測定した3.65倍と24%の誤差で理論値と実測値が一致した。
以上のようにして求めた計算による溶解度の値と実測値を比較したところ、両者は近似しており、本発明の計算方法により、精度良く溶解度の計算を行うことができることが検証された。
また、ペプチドタグの溶解度は、タグを構成するアミノ酸の種類と個数を変数に依存しており、それらアミノ酸の配列順序には大きく左右されないことが確認できた。
[Calculation of solubility of peptide tag fusion protein]
In the experiment, the solubility of the BPTI-22 protein without the peptide tag and the fusion protein in which the arginine tag (RRRGG, RRRRRGG (“GG” is given as a linker residue)) was added to the N-terminus of BPTI-22 was measured. It was measured.
That is, 100 mM acetate buffer (pH 4.7) was added to each protein until it became cloudy (aggregated) (about 100 μl), and these protein solutions 20,000 × g were centrifuged at 4 ° C. for 1 hour. And about the soluble fraction of this protein solution, the light absorbency in 280 nm was measured with the spectrophotometer, the protein concentration was calculated | required, and this measured value was made into solubility.
As a result, the solubility of the fusion protein to which the peptide tag is added is compared with the solubility of the BPTI-22 protein (1.70 mM) when the peptide tag whose amino acid sequence is RRRGG is added (solubility is 2.70 mM). When a peptide tag having an amino acid sequence of RRRRRGG was added (solubility is 6.20 mM), it was confirmed to improve 3.65 times respectively.
On the other hand, ΔG R Aggr1 (4.72 J / mol) and ΔG R Aggr2 (143.65 J / mol) of arginine obtained as described above are substituted into the above formula (1), and ΔG R Aggr of the peptide tag is Asked.
Here, since all the peptide tags are composed only of arginine, ΔG R Aggr = ΔG Aggr and the solubility of the peptide tag is derived from the above equation (2).
The solubility of the protein with the addition of 3 arginines is as follows:
ΔG Aggr = 4.72 × 3 + 143.65 × 3 2 = 1307.01 J / mol
The solubility ratio of both proteins at 277.15 K (4 ° C.) is S = exp (1307.01 / (8.314 × 277.15)) = 1.76
Therefore, at a temperature of 4 ° C, the solubility of the protein added with 3 arginines was calculated to be 1.76 times better than that without the protein, which was in good agreement with the 1.59 times measured in the above experiment. .
Similarly, the solubility of the protein with the addition of 5 arginines is as follows:
ΔG Aggr = 4.72 × 5 (= 23.6) + 143.65 × 5 2 (3591.25) = 361.85 J / mol
And the ratio of the solubilities of both proteins at 277.15 K (4 ° C.) is S = exp (361.85 / (8.314 × 277.15)) = 4.80
Thus, at a temperature of 4 ° C, the solubility of the protein with 5 arginines added was calculated to be 4.80 times better than that with no added protein, 3.65 times and 24% measured in the above experiment. The theoretical value and the measured value agreed with each other.
When the solubility value obtained by the calculation as described above was compared with the actual measurement value, they were approximated, and it was verified that the solubility calculation can be performed with high accuracy by the calculation method of the present invention.
Moreover, it was confirmed that the solubility of the peptide tag depends on the type and number of amino acids constituting the tag depending on variables, and is not greatly influenced by the sequence of these amino acids.
次に、このペプチドタグが付与された融合タンパク質溶液3.8mMと、該ペプチドタグ付与がないBPTI−22溶液を解析サンプルとして用い、NMR法により15N−HSQCスペクトルをそれぞれ測定した。
この結果を図3に示す。ここでは、BPTI−22のC末端に5個のアルギニン(R)を付加した変異体(“BPTI−22―C5R(3.8mM)”)と、BPTI−22との同一測定時間(20分)におけるHSQCスペクトルを比較した。図3から明らかなよう、上記融合タンパク質においては、S/N比、クロスピークの線幅及び形態でスペクトル質の評価から、測定時間がタグなしの試料の約1/8で得られる上、上質なNMRスペクトルが得られた。従って、上記ペプチドタグの付加により、タンパク質の機能、構造及び安定性を変えずに、その溶解度を大きく向上させることが可能となることが明らかとなった。
Next, the fusion protein solution 3.8 mM to which the peptide tag was added and the BPTI-22 solution without the peptide tag were used as analysis samples, and 15N-HSQC spectra were measured by NMR method.
The result is shown in FIG. Here, the same measurement time (20 minutes) between a mutant in which 5 arginines (R) are added to the C-terminus of BPTI-22 (“BPTI-22-C5R (3.8 mM)”) and BPTI-22 The HSQC spectra at were compared. As is clear from FIG. 3, in the above fusion protein, the spectral quality is evaluated by S / N ratio, cross-peak line width and form, and the measurement time is obtained in about 1/8 of the untagged sample. NMR spectra were obtained. Therefore, it has been clarified that the addition of the peptide tag can greatly improve the solubility without changing the function, structure and stability of the protein.
実施例2
本実施例2では、目的タンパク質として難溶性タンパク質ウシ膵臓トリプシン阻害タンパク質(Bovine Pancreatic Trypsin Inhibitor;BPTI)において22個のAlaを有する変異体BPTI−22のN末端にリジン残基を3,5個付加し、計算結果と比較した。
実験では、ペプチドタグを付与していないBPTI−22タンパク質と、リジンタグ(KKKGG、KKKKKGG)をBPTI−22のN末端に付加した融合タンパク質との溶解度を実例1と同様の方法で測定した。
即ち、各タンパク質に100mM酢酸緩衝液(pH4.7)を白濁(凝集)するまで加え(約100μl)、これらタンパク質溶液20,000×gを4℃、1時間の条件下で遠心分離した。そして、該タンパク質溶液の可溶性画分について、分光光度計にて280nmにおける吸光度を計測し、タンパク質濃度を求め、この測定値を溶解度とした。
この結果、上記ペプチドタグを付与した融合タンパク質の溶解度は、BPTI−22タンパク質の溶解度(1.70mM)と比較して、アミノ酸配列がKKKGGであるペプチドタグを付加した場合(溶解度は2.66mM)で1.56倍、アミノ酸配列がKKKKKGGであるペプチドタグを付加した場合(溶解度は5.37mM)で3.16倍それぞれ実験的に向上することを確認した。
一方、上述のようにして求めたリジンのΔGK Aggr1(4.72J/mol)及びΔGK Aggr2(130.47J/mol)を上式(1)に代入し、上記ペプチドタグのΔGK Aggrを求めた。
ここで、該ペプチドタグはいずれもリジンのみから構成されているので、ΔGK Aggr=ΔGAggrとなり、該ペプチドタグの溶解度は上式(2)から導かれる。
リジンを3個付加したタンパク質の溶解度は以下のとおり;
ΔGAggr=4.72×3+130.47×32=1188.39J/mol
となり、277.15K(4°C)における両タンパク質の溶解度の比は
S=exp(1188.39/(8.314×277.15))=1.67
よって、4°Cの温度では、リジンを3個付加したタンパク質の溶解度は付加していないものより溶解度が1.67倍向上すると計算され、上記の実験で測定した1.56倍とよく一致した。
同じようにリジンを5個付加したタンパク質の溶解度は以下のとおり;
ΔGAggr=4.72×5(=23.6)+130.47×52(3261.75)=3285.35J/mol
となり、277.15K(4°C)での両タンパク質の溶解度の比は
S=exp(3285.35/(8.314×277.15))=4.16
よって、4°Cの温度では、リジンを5個付加したタンパク質の溶解度は付加していないものより溶解度が4.16倍向上すると計算され、上記の実験で測定した3.16倍と24%の誤差の範囲で一致した。
以上のようにして求めた計算による溶解度の値と実測値を比較したところ、両者は近似しており、本発明の計算方法により、精度良く溶解度の計算を行うことができることが検証された。
Example 2
In this Example 2, 3, 5 lysine residues were added to the N-terminus of mutant BPTI-22 having 22 Ala in the poorly soluble protein bovine pancreatic trypsin inhibitor (BPTI) as the target protein. And compared with the calculation results.
In the experiment, the solubility of a BPTI-22 protein without a peptide tag and a fusion protein in which a lysine tag (KKKGG, KKKKKGG) was added to the N-terminus of BPTI-22 was measured in the same manner as in Example 1.
That is, 100 mM acetate buffer (pH 4.7) was added to each protein until it became cloudy (aggregated) (about 100 μl), and these protein solutions 20,000 × g were centrifuged at 4 ° C. for 1 hour. And about the soluble fraction of this protein solution, the light absorbency in 280 nm was measured with the spectrophotometer, the protein concentration was calculated | required, and this measured value was made into solubility.
As a result, the solubility of the fusion protein to which the peptide tag is added is compared with the solubility of the BPTI-22 protein (1.70 mM) when a peptide tag whose amino acid sequence is KKKGG is added (solubility is 2.66 mM). When a peptide tag having an amino acid sequence of KKKKKGG was added (solubility was 5.37 mM), it was confirmed to improve 3.16 times experimentally.
On the other hand, ΔG K Aggr1 (4.72 J / mol) and ΔG K Aggr2 (130.47 J / mol) of lysine obtained as described above are substituted into the above formula (1), and ΔG K Aggr of the peptide tag is Asked.
Here, since all of the peptide tags are composed only of lysine, ΔG K Aggr = ΔG Aggr and the solubility of the peptide tag is derived from the above equation (2).
The solubility of the protein with three lysine additions is as follows:
ΔG Aggr = 4.72 × 3 + 130.47 × 3 2 = 1188.39 J / mol
And the ratio of the solubilities of both proteins at 277.15 K (4 ° C.) is S = exp (1188.39 / (8.314 × 277.15)) = 1.67
Therefore, at a temperature of 4 ° C, the solubility of the protein added with 3 lysines was calculated to be 1.67 times higher than that without the protein, which was in good agreement with the 1.56 times measured in the above experiment. .
Similarly, the solubility of 5 proteins added with lysine is as follows:
ΔG Aggr = 4.72 × 5 (= 23.6) + 130.47 × 5 2 (326.75) = 328.35 J / mol
And the ratio of the solubilities of both proteins at 277.15 K (4 ° C.) is S = exp (328.35 / (8.314 × 277.15)) = 4.16
Thus, at a temperature of 4 ° C, the solubility of the protein with 5 lysine added was calculated to be 4.16 times better than that without the protein added, 3.16 times and 24% measured in the above experiment. It matched in the range of error.
When the solubility value obtained by the calculation as described above was compared with the actual measurement value, they were approximated, and it was verified that the solubility calculation can be performed with high accuracy by the calculation method of the present invention.
実施例3
〔アミノ酸Xの種類とその残基数Nの組合せパターン〕
先ず、pAEDベクター を用いて<1>目的タンパク質、<2>目的タンパク質の末端にペプチドタグが付与された融合タンパク質、<3>該融合タンパク質にHisタグを さらに付与したサンプル、<4>上記目的タンパク質の末端にHisタグが付与されたサンプル、の四つのコンストラクトを大腸菌内 で発現させた。
ここで、上記目的タンパク質には、分子量6kD〜30kDのBPTを用いた。また、上記ペプチドタグとしては、GGRn配列(nはアルギニン(R)の残基数であり、n=1,3,5)からなるものを用いた。
そして、各コンストラクトが目的タンパク質に対して溶解度向上が最大になるように配列を再設計した。
アルギニンを1個付加したタンパク質の溶解度は以下のとおり;
ΔGX Aggr=4.72×1+143.65×12=2317.28J/mol
よって、300Kの温度では、アルギニンを1個付加したタンパク質の溶解度は付加していないものより溶解度が1.06倍向上すると計算される。
また、アルギニンを3個付加したタンパク質の溶解度は以下のとおり;
ΔGX Aggr=4.72×3+143.65×32=1307.01J/mol
よって、300Kの温度では、アルギニンを3個付加したタンパク質の溶解度は付加していないものより溶解度が1.71倍向上すると計算される。
同じようにアルギニンを5個付加したタンパク質の溶解度は以下のとおり;
ΔGX Aggr=4.72×5+143.65×52=3614.85J/mol
よって、300Kの温度では、アルギニンを5個付加したタンパク質の溶解度は付加していないものより溶解度が4.26倍向上すると計算される。
以上の計算結果から、アミノ酸5残基が付与された場合に溶解度が最大となった。
この結果より、各コンストラクトが目的タンパク質に対して溶解度向上が最大になるペプチドタグのアミノ酸配列は、GG5Rであることがわかった。
〔溶解度向上タグによる封入体形成防止〕
実施例4
本実施例4では、目的タンパク質として塩基性タンパク質CAD(Caspase−Activated Dnase)の第34位のCysをSerに置換した変異体の第1〜86位のアミノ酸配列を有するペプチド断片CAD1-86C34S変異体を使用した。
先ず、CAD1-86C34S変異体のC末端側に3,6,9個のアルギニン残基をペプチドタグとして付加した融合タンパク質を作成し、それぞれC0R(付加数0)、C3R(付加数3)、C6R(付加数6)、C9R(付加数9)とした。
Example 3
[Combination pattern of amino acid X types and the number of residues N]
First, using a pAED vector, <1> the target protein, <2> a fusion protein in which a peptide tag is added to the end of the target protein, <3> a sample in which a His tag is further added to the fusion protein, <4> the above object Four constructs, a sample with a His tag at the end of the protein, were expressed in E. coli.
Here, BPT having a molecular weight of 6 kD to 30 kD was used as the target protein. As the peptide tag, a peptide consisting of a GGRn sequence (n is the number of residues of arginine (R), n = 1, 3, 5) was used.
The sequence was redesigned so that each construct had the greatest improvement in solubility with respect to the target protein.
The solubility of the protein with one arginine added is as follows:
ΔG X Aggr = 4.72 × 1 + 143.65 × 1 2 = 2317.28 J / mol
Therefore, at a temperature of 300K, the solubility of a protein with one arginine added is calculated to be 1.06 times higher than that without a protein.
In addition, the solubility of the protein added with 3 arginines is as follows:
ΔG X Aggr = 4.72 × 3 + 143.65 × 3 2 = 1307.01 J / mol
Therefore, at a temperature of 300 K, the solubility of the protein with 3 arginines added is calculated to be 1.71 times higher than that without the protein.
Similarly, the solubility of the protein with the addition of 5 arginines is as follows:
ΔG X Aggr = 4.72 × 5 + 143.65 × 5 2 = 361.85 J / mol
Therefore, at a temperature of 300K, the solubility of the protein with 5 arginines added is calculated to be 4.26 times higher than that without.
From the above calculation results, the solubility was maximized when 5 amino acid residues were added.
From this result, it was found that the amino acid sequence of the peptide tag that maximizes the solubility of each construct in the target protein was GG5R.
[Preventing inclusion body formation with solubility enhancement tags]
Example 4
In Example 4, a peptide fragment CAD 1-86 C34S having an amino acid sequence of positions 1 to 86 of a mutant in which Cys at position 34 of a basic protein CAD (Caspase-Activated Dnase) is substituted with Ser as a target protein. Mutants were used.
First, fusion proteins in which 3, 6 and 9 arginine residues were added as peptide tags to the C-terminal side of the CAD 1-86 C34S mutant were prepared. C0R (addition number 0) and C3R (addition number 3), respectively. , C6R (addition number 6) and C9R (addition number 9).
即ち、大腸菌BL21(DE3)pLysSを宿主として用い、培養温度を25℃とした場合と37℃とした場合についてそれぞれ調べた。OD590nm=0.6〜0.7の範囲でIPTGを添加し、発現誘導を行った。その後、4時間培養し、ODを測定後、200μlにおけるOD値が8.0になるように各サンプルを調整した。
これらのサンプルを精製し、菌体破砕後、15,000×gで15分間遠心を行い、上清(可溶性画分)と沈殿(不溶性画分)をそれぞれ回収し、沈殿には10mMトリス緩衝液(pH8.0)200μlを加え、SDG−PAGEにより定量解析し、封入体形成への影響を調べた。この結果を図5に示す。
図5より、25℃の培養条件では、アルギニン残基の付加数が増える(タグの長さが長くなる)ほど、不溶性画分(ppt)中のタンパク質量が減少し(即ち、可溶性画分(sup)中のタンパク質量が増加し)ており、付加するアミノ酸が長くなるにつれて溶解度が向上し、封入体形成防止に効果があることがわかった。なお、アルギニン系タグ付加が37℃で溶解効果を発揮せず25℃で効果を持つのは、CAD1-86C34S変異体は高温では構造を形成できず、凝集しやすい状態になるが、25℃では構造を形成し、タグを付加することで封入体形成を防止できると考えられ、他にも不安定なタンパク質に於いては、タグを付加すると同時に培養温度を下げることでタグの効果が最大限に利用できると思われる。
このように、塩基性タンパク質が形成する封入体の防止には、アルギニンを基本とした溶解度向上ペプチドタグが効果的なことが明らかになった。
That is, when Escherichia coli BL21 (DE3) pLysS was used as a host and the culture temperature was set to 25 ° C. and 37 ° C. were examined. IPTG was added in the range of OD590 nm = 0.6 to 0.7 to induce expression. Thereafter, the cells were cultured for 4 hours, and after measuring the OD, each sample was adjusted so that the OD value at 200 μl was 8.0.
After purifying these samples and disrupting the cells, they were centrifuged at 15,000 × g for 15 minutes to recover the supernatant (soluble fraction) and the precipitate (insoluble fraction), respectively. (PH 8.0) 200 μl was added and quantitative analysis was performed by SDG-PAGE to examine the influence on inclusion body formation. The result is shown in FIG.
From FIG. 5, under the culture conditions of 25 ° C., the amount of protein in the insoluble fraction (ppt) decreases as the number of arginine residues added (the tag length increases) (ie, the soluble fraction ( The amount of protein in sup) is increased), and as the amino acid to be added becomes longer, the solubility is improved, and it was found that there is an effect in preventing inclusion body formation. Note that arginine-based tagging does not exhibit a dissolution effect at 37 ° C. and has an effect at 25 ° C. The CAD 1-86 C34S mutant cannot form a structure at high temperatures and tends to aggregate. At ℃, it is thought that inclusion forms can be prevented by forming a structure and adding a tag. For other unstable proteins, the tag effect can be improved by lowering the culture temperature at the same time as adding the tag. It seems that it can be used to the maximum.
Thus, it was revealed that a peptide tag with improved solubility based on arginine is effective in preventing inclusion bodies formed by basic proteins.
実施例5
本実施例5では、目的タンパク質として酸性タンパク質N−intein(127aa、分子量14388.2)を使用した。
実施例4と同様にして、N−inteinタンパク質のC末端に3,6,9個のアスパラギン酸をペプチドタグとして付加した融合タンパク質を作成し、それぞれC0R(付加数0)、C3R(付加数3)、C6R(付加数6)、C9R(付加数9)とした。
発現宿主にはBL21(DE3)pLysSを使用し、培養温度を37℃とした。OD590nm=0.6〜0.7の範囲でIPTGを添加して発現誘導した。その後、4時間培養し、実施例4と同様にして封入体形成への影響を調べた。この結果を図6に示す。
図6に示すように、全菌体 (all) についてはサンプル間で発現量に殆ど差異は見られないものの、可溶性画分(sup)では大きく異なり、アスパラギン酸残基数が多くなるとともに可溶性画分での発現量が増え、C9Dでは殆どすべてのタンパク質が可溶性画分として発現した。即ち、アスパラギン酸残基を9残基付加することにより、N−inteinが形成する封入体を防止できることがわかった。
このことから、酸性タンパク質が形成する封入体の防止には、アスパラギン酸系タグの付加が有効であることが明らかになった。
また、実施例4及び実施例5より、溶解度向上ペプチドタグの封入体形成防止効果は、塩基性・酸性のいずれのタンパク質でも得られることが明らかになった。
更に、CAD1-86C34S変異体の等電点(pI)及びアルギニンのpKaはそれぞれ9.77及び12.5であり、一方N−inteinの等電点(pI)及びアスパラギン酸のpKaはそれぞれ4.36及び3.9〜4.0であることから、封入体形成を防止するための溶解度向上ペプチドタグは、目的タンパク質の等電点を基にして設計することが効果的であると予想された。
Example 5
In Example 5, acidic protein N-intein (127aa, molecular weight 14388.2) was used as the target protein.
In the same manner as in Example 4, fusion proteins were prepared by adding 3,6,9 aspartic acids as peptide tags to the C-terminus of the N-intein protein, and C0R (addition number 0) and C3R (addition number 3), respectively. ), C6R (addition number 6), and C9R (addition number 9).
BL21 (DE3) pLysS was used as an expression host, and the culture temperature was 37 ° C. Expression was induced by adding IPTG in the range of OD590 nm = 0.6 to 0.7. Thereafter, the cells were cultured for 4 hours, and the influence on inclusion body formation was examined in the same manner as in Example 4. The result is shown in FIG.
As shown in FIG. 6, although there is almost no difference in the expression level between all the cells (all), the soluble fraction (sup) is greatly different, and the number of aspartic acid residues increases and the soluble fraction increases. The expression level in minutes increased, and almost all proteins were expressed as soluble fractions in C9D. That is, it was found that inclusion bodies formed by N-intein can be prevented by adding 9 aspartic acid residues.
From this, it has been clarified that addition of an aspartic acid-based tag is effective in preventing inclusion bodies formed by acidic proteins.
Moreover, from Example 4 and Example 5, it became clear that the inclusion body formation prevention effect of the solubility improvement peptide tag can be obtained with both basic and acidic proteins.
Furthermore, the isoelectric point (pI) of the CAD 1-86 C34S mutant and the pKa of arginine are 9.77 and 12.5, respectively, while the isoelectric point (pI) of N-intein and the pKa of aspartic acid are respectively Since it is 4.36 and 3.9 to 4.0, it is expected that it is effective to design a peptide tag with improved solubility for preventing inclusion body formation based on the isoelectric point of the target protein. It was done.
本発明は、例えば、以下のようなケースに応用が示唆される。
・バイオリアクター、プロテインチップなどで高濃度の酵素・タンパク質を使用したいとき。
・インクジェットプリンターなどにおいて、インク使用中に溶解度が低くなった際に、有機物が沈殿することを防ぎたいとき。
・ペプチド(タンパク質)の封入体の形成の傾向性を予測したいとき。
・ペプチド、ホルモン、酵素、変性タンパク質等、溶解度が低い球状タンパク質、膜タンパク質等を可溶化したいとき。
The present invention is suggested to be applied to the following cases, for example.
・ When you want to use a high concentration of enzyme or protein in a bioreactor or protein chip.
-In an inkjet printer, etc., when it is desired to prevent organic matter from precipitating when the solubility becomes low during ink use.
・ When you want to predict the tendency of formation of inclusion bodies of peptides (proteins).
・ When you want to solubilize low-solubility globular proteins, membrane proteins, etc., such as peptides, hormones, enzymes, and denatured proteins.
ΔGAggr 会合自由エネルギー ΔG Aggr meeting free energy
Claims (5)
ΔGX Aggr=ΔGAggr0+ΔGX Aggr1N+ΔGX Aggr2N2 式(1)
(上式(1)中、Xは上記生体分子に付加されるアミノ酸種、ΔGX Aggrは該アミノ酸種Xの上記生体分子への付加に伴う会合のギブス自由エネルギー(J/mol)、ΔGAggr0は上記生体分子の会合のギブス自由エネルギー(J/mol)、ΔGX Aggr1は該アミノ酸種Xの会合のギブス自由エネルギーの1次の項(J/mol)、ΔGX Aggr2は該アミノ酸種Xの会合のギブス自由エネルギーの2次の項(J/mol)、Nは付加したペプチドに含まれる上記アミノ酸種Xの残基数をそれぞれ表す。)
S=exp(ΔGAggr/RT) 式(2)
(上式(2)中、Sは上記ペプチド付加生体分子の溶解度、Rは気体定数、Tは絶対温度、ΔGAggrは上記ペプチドに含まれる全てのアミノ酸種Xに対する各アミノ酸種Xの会合自由エネルギーΔGX Aggrの総和(ΣΔGX Aggr(J/mol))をそれぞれ表す。)
A method of calculating the solubility S of a peptide-added biomolecule in which a peptide having an arbitrary amino acid sequence is added to the end of the biomolecule based on a thermodynamic theory, wherein the Gibbs free energy ΔG Aggr of the peptide association is Calculated as the sum of ΔG X Aggr defined by the quadratic function of the number N of residues of amino acid species X constituting the amino acid sequence represented by formula (1), and the Gibbs free energy ΔG Aggr of the peptide association is A solubility calculation method comprising using the following formula (2) to calculate the solubility S of the peptide-added biomolecule.
ΔG X Aggr = ΔG Aggr0 + ΔG X Aggr1 N + ΔG X Aggr2 N 2 formula (1)
(In the above formula (1), X is an amino acid species added to the biomolecule, ΔG X Aggr is the Gibbs free energy (J / mol) of association associated with addition of the amino acid species X to the biomolecule, ΔG Aggr0 Is the Gibbs free energy (J / mol) of the association of the biomolecule, ΔG X Aggr1 is the first term (J / mol) of the Gibbs free energy of association of the amino acid species X, and ΔG X Aggr2 is the amino acid species X (Second term of Gibbs free energy of association (J / mol), N represents the number of residues of amino acid species X contained in the added peptide)
S = exp (ΔG Aggr / RT) Equation (2)
(In the above formula (2), S is the solubility of the peptide-added biomolecule, R is the gas constant, T is the absolute temperature, ΔG Aggr is the free energy of association of each amino acid species X with respect to all amino acid species X contained in the peptide Represents the sum of ΔG X Aggr (ΣΔG X Aggr (J / mol)).)
s=exp((ΔGx Aggr1n+ΔGx Aggr2n2)/RT) 式(3)
(上式(3)中、sは上記変異体の溶解度と上記標準生体分子の溶解度との比、Rは気体定数、Tは絶対温度、xは上記標準生体分子に付加された特定の種類のアミノ酸種、nは該アミノ酸種xの残基数、ΔGx Aggr1は該アミノ酸種xの会合のギブス自由エネルギーの1次の項(J/mol)、ΔGx Aggr2は該アミノ酸種xの会合のギブス自由エネルギーの2次の項(J/mol)をそれぞれ表す。)
A variant in which one amino acid species x of the above amino acid species X is added to the end of a standard biomolecule, and the variant is added to an arbitrary solvent at a concentration higher than the solubility limit concentration. The solution concentration of the soluble fraction is measured, and from the change in solubility when the number of residues n of the amino acid species x is changed, the Gibbs free energy ΔG x Aggr1 , ΔG x of the association of the amino acid species x is determined by regression analysis. The solubility calculation method according to claim 1, wherein Aggr2 is calculated by the following formula (3).
s = exp ((ΔG x Aggr1 n + ΔG x Aggr2 n 2 ) / RT) Equation (3)
(In the above formula (3), s is the ratio between the solubility of the mutant and the solubility of the standard biomolecule, R is the gas constant, T is the absolute temperature, and x is a specific type added to the standard biomolecule. Amino acid species, n is the number of residues of the amino acid species x, ΔG x Aggr1 is the first term (J / mol) of the Gibbs free energy of association of the amino acid species x, and ΔG x Aggr2 is the association of the amino acid species x Represents the second order term (J / mol) of Gibbs free energy.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008003983A JP5273438B2 (en) | 2007-11-22 | 2008-01-11 | Method for calculating solubility of peptide-added biomolecule, peptide tag design method and inclusion body formation prevention method using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007303780 | 2007-11-22 | ||
JP2007303780 | 2007-11-22 | ||
JP2008003983A JP5273438B2 (en) | 2007-11-22 | 2008-01-11 | Method for calculating solubility of peptide-added biomolecule, peptide tag design method and inclusion body formation prevention method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009145313A JP2009145313A (en) | 2009-07-02 |
JP5273438B2 true JP5273438B2 (en) | 2013-08-28 |
Family
ID=40916053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008003983A Active JP5273438B2 (en) | 2007-11-22 | 2008-01-11 | Method for calculating solubility of peptide-added biomolecule, peptide tag design method and inclusion body formation prevention method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5273438B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017115853A1 (en) | 2015-12-28 | 2017-07-06 | 出光興産株式会社 | Peptide tag and tagged protein including same |
WO2019031446A1 (en) * | 2017-08-07 | 2019-02-14 | 国立大学法人東京農工大学 | Antigen composition |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6986261B2 (en) * | 2017-12-22 | 2021-12-22 | 国立大学法人東京農工大学 | Method for improving expression level and yield of recombinant polypeptide |
CN116246717B (en) * | 2021-12-08 | 2024-06-28 | 中国科学院大连化学物理研究所 | Additive screening method for improving solubility of ferrocyanide in water |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006188507A (en) * | 2004-12-10 | 2006-07-20 | Tokyo Univ Of Agriculture & Technology | Method for improving solubility of protein |
US20090148406A1 (en) * | 2005-07-02 | 2009-06-11 | Arecor Limited | Stable Aqueous Systems Comprising Proteins |
-
2008
- 2008-01-11 JP JP2008003983A patent/JP5273438B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017115853A1 (en) | 2015-12-28 | 2017-07-06 | 出光興産株式会社 | Peptide tag and tagged protein including same |
US10808253B2 (en) | 2015-12-28 | 2020-10-20 | Idemitsu Kosan Co., Ltd. | Peptide tag and tagged protein including same |
WO2019031446A1 (en) * | 2017-08-07 | 2019-02-14 | 国立大学法人東京農工大学 | Antigen composition |
JPWO2019031446A1 (en) * | 2017-08-07 | 2020-07-27 | 国立大学法人東京農工大学 | Antigen composition |
JP2022160632A (en) * | 2017-08-07 | 2022-10-19 | 国立大学法人東京農工大学 | antigen composition |
JP7194442B2 (en) | 2017-08-07 | 2022-12-22 | 国立大学法人東京農工大学 | antigen composition |
Also Published As
Publication number | Publication date |
---|---|
JP2009145313A (en) | 2009-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6883529B2 (en) | Methods and products for synthesizing fusion proteins | |
Boutz et al. | Discovery of a thermophilic protein complex stabilized by topologically interlinked chains | |
Trabbic‐Carlson et al. | Expression and purification of recombinant proteins from Escherichia coli: Comparison of an elastin‐like polypeptide fusion with an oligohistidine fusion | |
Richards et al. | Analysis of the structural properties of cAMP-responsive element-binding protein (CREB) and phosphorylated CREB | |
De Marco et al. | The solubility and stability of recombinant proteins are increased by their fusion to NusA | |
Hassouneh et al. | Elastin‐like polypeptides as a purification tag for recombinant proteins | |
Poget et al. | The structure of a tunicate C-type lectin from Polyandrocarpa misakiensis complexed with D-galactose | |
Morin et al. | Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling electron paramagnetic resonance spectroscopy | |
US9353161B2 (en) | Streptavidin mutein exhibiting reversible binding for biotin and streptavidin binding peptide tagged proteins | |
Amor-Mahjoub et al. | The effect of the hexahistidine-tag in the oligomerization of HSC70 constructs | |
JP5273438B2 (en) | Method for calculating solubility of peptide-added biomolecule, peptide tag design method and inclusion body formation prevention method using the same | |
Scheich et al. | An automated in vitro protein folding screen applied to a human dynactin subunit | |
Perrett et al. | Expanding the pressure technique: insights into protein folding from combined use of pressure and chemical denaturants | |
Weeks et al. | N‐Terminal Modification of Proteins with Subtiligase Specificity Variants | |
WO2000040706A1 (en) | Process for producing transglutaminase | |
US20110129935A1 (en) | Protein stability assay using a fluorescent reporter of protein folding | |
Narmandakh et al. | Purification of recombinant mandelate racemase: improved catalytic activity | |
Saeki et al. | Localized nature of the transition-state structure in goat α-lactalbumin folding | |
Jonak | Bacterial elongation factors EF-Tu, their mutants, chimeric forms, and domains: isolation and purification | |
Maier et al. | Dynamitin mutagenesis reveals protein–protein interactions important for dynactin structure | |
Yagi et al. | Addition of negatively charged residues can reverse the decrease in the solubility of an acidic protein caused by an artificially introduced non-polar surface patch | |
Zhang et al. | Expression and purification of soluble human cystatin C in Escherichia coli with maltose-binding protein as a soluble partner | |
James et al. | Nuclear Magnetic Resonance of Biological Macromolecules, Part B | |
Nguyen et al. | In vivo biotinylated calpastatin improves the affinity purification of human m-calpain | |
Ugwumba et al. | Using a genetically encoded fluorescent amino acid as a site-specific probe to detect binding of low-molecular-weight compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20080201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130423 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130501 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5273438 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |