[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5272882B2 - Generated water atomizer for fuel cell vehicles - Google Patents

Generated water atomizer for fuel cell vehicles Download PDF

Info

Publication number
JP5272882B2
JP5272882B2 JP2009114386A JP2009114386A JP5272882B2 JP 5272882 B2 JP5272882 B2 JP 5272882B2 JP 2009114386 A JP2009114386 A JP 2009114386A JP 2009114386 A JP2009114386 A JP 2009114386A JP 5272882 B2 JP5272882 B2 JP 5272882B2
Authority
JP
Japan
Prior art keywords
pipe
fuel cell
exhaust
water
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009114386A
Other languages
Japanese (ja)
Other versions
JP2010263738A (en
Inventor
徹 昆沙賀
祐介 下簗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2009114386A priority Critical patent/JP5272882B2/en
Priority to US12/723,470 priority patent/US8697305B2/en
Publication of JP2010263738A publication Critical patent/JP2010263738A/en
Application granted granted Critical
Publication of JP5272882B2 publication Critical patent/JP5272882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、燃料電池で生成された生成水を霧状にして車体の外方に排出するための燃料電池車両の生成水霧化装置に関する。   The present invention relates to a generated water atomizing device for a fuel cell vehicle for forming generated water generated by a fuel cell into a mist and discharging it to the outside of a vehicle body.

燃料電池車両は、例えば電力を生成する燃料電池と、電力生成時に燃料電池が生じる生成水を貯留し得るタンクと、タンク内の水を霧状にして車体の外方に排出する生成水霧化装置を有している(特許文献1、2参照)。生成水霧化装置は、生成水が液体の状態で排出されることが好ましくない場合に用いられる。例えば冷寒地や冷凍庫内において生成水が路面に滴下して凍結することが好ましくない場合や、屋内において生成水が床面に滴下して水溜りになることを避けたい場合などに用いられる。   A fuel cell vehicle is, for example, a fuel cell that generates electric power, a tank that can store generated water generated by the fuel cell when generating electric power, and generated water atomization that discharges water in the tank to the outside of the vehicle body in a mist form It has a device (see Patent Documents 1 and 2). The generated water atomizer is used when the generated water is not preferably discharged in a liquid state. For example, it is used when it is not preferable that the generated water drops on the road surface and freezes in a cold region or in a freezer, or when it is desired to prevent the generated water from dripping on the floor surface and becoming a water pool indoors.

特開2007−141475号公報JP 2007-141475 A 特開2009−26498号公報JP 2009-26498 A

しかし従来の生成水霧化装置は、例えばタンク内の水を吸入しかつ加圧するポンプと、加圧した水を霧状に噴射する微小ノズルを有している(特許文献1参照)。あるいは生成水を排出するノズルと、ノズルを取り巻くエア管を有しており、エア管にエアコンプレッサで加圧された高温エアが供給されることでノズルから排出された生成水が微粒化され得る(特許文献2参照)。しかしノズルによって水を霧状にする場合、水の粒径は、ノズル先端の開口部の内径寸法や外周縁の面取り形状等に大きく影響を受ける。そのためノズルは、高い加工精度が必要であり、高価になる問題がある。そこで本発明は、安価に構成され得る燃料電池車両の生成水霧化装置を提供することを目的とする。   However, the conventional generated water atomizer has, for example, a pump that sucks and pressurizes water in a tank, and a minute nozzle that jets pressurized water in a mist form (see Patent Document 1). Or it has the nozzle which discharges generated water, and the air pipe which surrounds the nozzle, and the generated water discharged from the nozzle can be atomized by supplying high-temperature air pressurized by an air compressor to the air pipe (See Patent Document 2). However, when water is atomized by the nozzle, the particle size of the water is greatly affected by the inner diameter of the opening at the tip of the nozzle, the chamfered shape of the outer periphery, and the like. For this reason, the nozzle requires high processing accuracy and is expensive. Therefore, an object of the present invention is to provide a generated water atomization device for a fuel cell vehicle that can be configured at low cost.

前記課題を解決するために本発明は、各請求項に記載の通りの構成を備える燃料電池車両の生成水霧化装置であることを特徴とする。請求項1に記載の発明によると、管の一部がくびれているベンチュリ部を備える排気管と、生成水が貯留され得るタンク内の水をタンク側から排気管に導入するための導入管を有している。導入管は、タンク側から排気管に向けて延出する第一管部材と、第一管部材から排気管内を延出しかつ側壁部に水供給口が設けられた第二管部材と、第二管部材から排気管の径方向に突出しかつベンチュリ部の近傍もしくは内部に配設される水切部材を有している。水供給口を通って第二管部材の外周面に供給された水が水切部材の端部に移動して水切部材の端部において排気管内を流れる気体によって霧状にされる。   In order to solve the above-mentioned problems, the present invention is a generated water atomization device for a fuel cell vehicle having the configuration as described in each claim. According to the first aspect of the present invention, the exhaust pipe having the venturi portion in which a part of the pipe is constricted, and the introduction pipe for introducing the water in the tank in which the generated water can be stored into the exhaust pipe from the tank side are provided. Have. The introduction pipe includes a first pipe member extending from the tank side toward the exhaust pipe, a second pipe member extending from the first pipe member into the exhaust pipe and having a water supply port on the side wall, and a second pipe member It has a draining member that protrudes from the pipe member in the radial direction of the exhaust pipe and is disposed in the vicinity of or inside the venturi. The water supplied to the outer peripheral surface of the second pipe member through the water supply port moves to the end of the draining member and is atomized by the gas flowing in the exhaust pipe at the end of the draining member.

したがってタンク内の水は、ベンチュリ部の近傍もしくは内部に位置する水切部材の端部に移動する。排気管内を流れる気体は、ベンチュリ部において流速が速くなるために水切部材の端部で水が気体によって切り取られて霧状になる。また水切部材は、第二管部材から突出する簡易な構造であるために従来のノズルに比べて加工精度を必要とせず安価に構成され得る。   Therefore, the water in the tank moves to the end of the draining member located near or inside the venturi. Since the gas flowing through the exhaust pipe has a high flow velocity in the venturi, water is cut off by the gas at the end of the draining member and becomes a mist. Further, since the draining member has a simple structure protruding from the second pipe member, it does not require processing accuracy compared to the conventional nozzle and can be configured at a low cost.

請求項2に記載の発明によると、水切部材は、第二管部材の先端部に設けられて先端部を塞ぎかつ先端部の全周において径方向に突出している。したがって水切部材によって第二管部材の先端部を塞ぐことができるため、第二管部材の先端部を他の部材で塞ぐ構造に比べて導入管が安価に構成され得る。また水切部材は、第二管部材の先端部全周から突出するために先端部一部のみから突出する形態に比べて水を霧状にし得る量が多くなる。   According to invention of Claim 2, the draining member is provided in the front-end | tip part of the 2nd pipe member, plugs up a front-end | tip part, and protrudes in radial direction in the perimeter of a front-end | tip part. Therefore, since the tip part of the second pipe member can be closed by the draining member, the introduction pipe can be configured at a lower cost than the structure in which the tip part of the second pipe member is closed by another member. Further, since the draining member protrudes from the entire circumference of the distal end portion of the second pipe member, the amount of water that can be made into a mist is increased as compared with a form that protrudes only from a part of the distal end portion.

請求項3に記載の発明によると、排気管は、燃料電池のアノード側の排気とカソード側の排気を混合する希釈器の排気口に接続されている。第一管部材は、希釈器の内部においてまたは希釈器の壁面に接しつつタンク側から排気管に向けて延出している。   According to a third aspect of the present invention, the exhaust pipe is connected to the exhaust port of the diluter that mixes the anode side exhaust and the cathode side exhaust of the fuel cell. The first pipe member extends from the tank side toward the exhaust pipe while being in contact with the wall of the diluter or inside the diluter.

一般に燃料電池からの排気は、例えば50℃以上の高温である。そのため希釈器内の排気から希釈器内に設けられた第一管部材に熱が与えられ得る。あるいは排気から熱を受けた希釈器の壁面を介して第一管部材に排気の熱が与えられ得る。そして希釈器から排出された排気が排気管内を流れ、排気の熱が排気管内に設けられた第二管部材に与えられ得る。そのため寒冷地等において導入管(第一管部材、第二管部材)内の水が凍結して導入管が破損する問題が抑制され得る。燃料電池の停止時に導入管内の水が凍結した場合は、燃料電池の稼動によって導入管内の水が溶け得る。そのため寒冷地等においても生成水霧化装置を使用することができる。そして本発明は、排気の温度を利用するために他の熱源を利用する形態に比べて省電力と小型化が可能である。   In general, the exhaust from the fuel cell is at a high temperature of, for example, 50 ° C. or higher. Therefore, heat can be given to the first pipe member provided in the diluter from the exhaust gas in the diluter. Alternatively, the heat of the exhaust can be applied to the first pipe member through the wall surface of the diluter that has received heat from the exhaust. The exhaust discharged from the diluter flows through the exhaust pipe, and the heat of the exhaust can be given to the second pipe member provided in the exhaust pipe. Therefore, the problem that the water in the introduction pipe (first pipe member, second pipe member) freezes and the introduction pipe is damaged in a cold district or the like can be suppressed. If the water in the introduction pipe freezes when the fuel cell is stopped, the water in the introduction pipe can be melted by the operation of the fuel cell. Therefore, the generated water atomizer can be used even in cold districts. In addition, the present invention can save power and reduce the size as compared with a mode in which another heat source is used to use the temperature of the exhaust gas.

請求項4に記載の発明によると、第一管部材は、希釈器内において希釈器に取付けられたブラケットによって希釈器の内壁面から所定の距離離れた位置で保持されている。したがって冷寒地等において燃料電池が停止した場合は、先ず外気によって希釈器が冷却され、希釈器の内壁面で結露が生じる。第一管部材は、希釈器の壁面との間に設けられた空気層によって断熱されるために希釈器の壁面よりも遅れて冷える。そのため第一管部材の外表面に結露が生じることが抑制され、結露の凍結による第一管部材の破損等が抑制され得る。   According to invention of Claim 4, the 1st pipe member is hold | maintained in the position which left | separated predetermined distance from the inner wall face of the diluter by the bracket attached to the diluter in the diluter. Therefore, when the fuel cell stops in a cold region or the like, the diluter is first cooled by the outside air, and condensation occurs on the inner wall surface of the diluter. Since the first pipe member is insulated by the air layer provided between the wall surface of the diluter and cools later than the wall surface of the diluter. Therefore, the occurrence of condensation on the outer surface of the first pipe member can be suppressed, and damage to the first pipe member due to freezing of the condensation can be suppressed.

請求項5に記載の発明によると、第二管部材は、排気管内を流れる気体の流れと略平行でかつ排気管のベンチュリ部の断面略中心線に沿って延出している。一般に燃料電池車両は、エンジン車両に比べて騒音が少ない。そのため燃料電池車両に生成水霧化装置を設けることで騒音が発生すると問題になる場合がある。また騒音の大きさ(音響パワー)は、一般に管内を流れる気体の流速の8乗に比例するために、排気管内を流れる気体の流量が同じであれば、排気管内における流速の不均一(流速差)が小さい程、騒音が小さくなり得る。   According to the fifth aspect of the present invention, the second pipe member extends substantially along the center line of the cross section of the venturi portion of the exhaust pipe and is substantially parallel to the gas flow flowing in the exhaust pipe. In general, fuel cell vehicles have less noise than engine vehicles. Therefore, there may be a problem when noise is generated by providing the generated water atomizer in the fuel cell vehicle. Since the magnitude of noise (acoustic power) is generally proportional to the eighth power of the flow velocity of the gas flowing in the pipe, if the flow rate of the gas flowing in the exhaust pipe is the same, the flow velocity in the exhaust pipe is non-uniform (difference in flow velocity). ) Is smaller, noise can be reduced.

これに対して本発明の第二管部材は、排気管内を流れる気体の流れと略平行であるため、排気管内を流れる気体に対して直交する形態等に比べて排気管内の気体の流れを妨げる面積が小さくなる。これにより排気管内の気体の流速が前記形態等に比べて不均一になり難い。さらに第二管部材は、ベンチュリ部の断面略中心線に沿って延出しているために、排気管の壁面の近傍に沿って延出する際に生じ得る流速の遅い領域が生じ難い。そのため第二管部材は排気管内の気体の流速を不均一にし難い。かくして本発明によると生成水霧化装置を設けることによる騒音が小さくなり得る。   On the other hand, the second pipe member of the present invention is substantially parallel to the flow of gas flowing in the exhaust pipe, and therefore hinders the flow of gas in the exhaust pipe as compared to a form orthogonal to the gas flowing in the exhaust pipe. The area becomes smaller. Thereby, the flow velocity of the gas in the exhaust pipe is less likely to be non-uniform compared to the above-described form. Furthermore, since the second pipe member extends along the substantially center line of the cross section of the venturi portion, it is difficult to generate a region with a low flow rate that may occur when extending along the vicinity of the wall surface of the exhaust pipe. Therefore, it is difficult for the second pipe member to make the flow rate of the gas in the exhaust pipe nonuniform. Thus, according to the present invention, noise caused by providing the generated water atomizer can be reduced.

フォークリフトの側面図である。It is a side view of a forklift. 燃料電池システムの構成図である。It is a block diagram of a fuel cell system. 生成水霧化装置近傍における燃料電池システムの構成部品の断面図である。It is sectional drawing of the component of the fuel cell system in the vicinity of the produced water atomizer. 導入管の一部正面図である。It is a partial front view of an introduction pipe. 水切部材近傍における導入管と排気管の一部断面図である。It is a partial sectional view of an introduction pipe and an exhaust pipe in the vicinity of a draining member. 希釈器およびタンクの一部と導入管およびブラケットの斜視図である。FIG. 4 is a perspective view of a part of a diluter and a tank, an introduction pipe and a bracket. 他の実施形態にかかる導入管の一部正面図である。It is a partial front view of the introduction pipe concerning other embodiments. 他の実施形態にかかる希釈器およびタンクの一部と導入管およびブラケットの斜視図である。It is a perspective view of a part of dilution machine and tank concerning other embodiments, an introduction pipe, and a bracket. 他の実施形態にかかる生成水霧化装置近傍における燃料電池システムの構成部品の断面図である。It is sectional drawing of the component of the fuel cell system in the vicinity of the produced water atomizer concerning other embodiment. 他の実施形態にかかる水切部材近傍における導入管と排気管の一部断面図である。It is a partial sectional view of an introduction pipe and an exhaust pipe in the vicinity of a draining member according to another embodiment.

本発明の一つの実施形態を図1〜6にしたがって説明する。図1に示すように車両10は、産業車両の一つである屋内などで使用されるフォークリフトであって荷役装置12を有している。荷役装置12は、車体11の前部に立設されたマスト12aと、マスト12aに昇降可能に取付けられたリフトブラケット12bと、リフトブラケット12bに取付けられたフォーク12cを有している。フォーク12cとリフトブラケット12bは、マスト12aに装着されたリフトシリンダ12dとマスト12aによって昇降され得る。   One embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, a vehicle 10 is a forklift that is used for indoor use, which is one of industrial vehicles, and includes a cargo handling device 12. The cargo handling device 12 includes a mast 12a erected on the front portion of the vehicle body 11, a lift bracket 12b attached to the mast 12a so as to be movable up and down, and a fork 12c attached to the lift bracket 12b. The fork 12c and the lift bracket 12b can be moved up and down by a lift cylinder 12d and a mast 12a attached to the mast 12a.

図1に示すように車両10は、車体11の前下部に駆動輪(前輪)13を有し、車体11の後下部に後輪14を有している。車体11の前側内部には駆動輪13に動力を付与する走行用モータ15が設けられている。車体11の後側内部には、燃料電池21と水素タンク22などを備える燃料電池システム20が設けられている。燃料電池21が生成した電力は、リフトシリンダ12d等の油圧源になる油圧ポンプ(図示省略)と走行用モータ15などに供給される。   As shown in FIG. 1, the vehicle 10 has drive wheels (front wheels) 13 at the front lower portion of the vehicle body 11 and rear wheels 14 at the rear lower portion of the vehicle body 11. A traveling motor 15 that applies power to the drive wheels 13 is provided inside the front side of the vehicle body 11. A fuel cell system 20 including a fuel cell 21 and a hydrogen tank 22 is provided inside the rear side of the vehicle body 11. The electric power generated by the fuel cell 21 is supplied to a hydraulic pump (not shown) serving as a hydraulic pressure source such as the lift cylinder 12d, the traveling motor 15, and the like.

燃料電池システム20は、図2に示すように燃料電池21と、生成水を貯留し得るタンク5と、タンク5内の水を霧状にする生成水霧化装置(気化器)1を有している。燃料電池21は、例えば固体高分子型であって、アノード側に管路25を介して水素タンク22が接続される。これによりアノード側に水素タンク22から水素が供給される。燃料電池21のカソード側には管路27を介して加湿器24が接続され、加湿器24には管路26を介してコンプレッサ23が接続される。したがってコンプレッサ23によって酸化剤ガスである酸素を含む空気が加圧されて加湿器24に供給される。そして加湿器24において酸素に水分が供給され、該酸素を含む空気が燃料電池21のカソード側に供給される。   As shown in FIG. 2, the fuel cell system 20 includes a fuel cell 21, a tank 5 that can store generated water, and a generated water atomizer (vaporizer) 1 that makes the water in the tank 5 into a mist. ing. The fuel cell 21 is, for example, a solid polymer type, and a hydrogen tank 22 is connected to the anode side via a conduit 25. Thereby, hydrogen is supplied from the hydrogen tank 22 to the anode side. A humidifier 24 is connected to the cathode side of the fuel cell 21 via a conduit 27, and a compressor 23 is connected to the humidifier 24 via a conduit 26. Therefore, the air containing oxygen which is the oxidant gas is pressurized by the compressor 23 and supplied to the humidifier 24. Then, moisture is supplied to oxygen in the humidifier 24, and air containing the oxygen is supplied to the cathode side of the fuel cell 21.

燃料電池21のアノードに供給された水素分子は、水素イオンになって電解質膜に含まれる水分を伴ってカソード側へ移動する。カソードに供給された空気中の酸素分子は、酸素イオンになって水素イオンと結合して生成水になる。生成水は、カソードに供給された空気の排気とともに管路28を介して加湿器24に供給され、一部が加湿器24にて抽出されて再利用される。残りの生成水は、排気とともに管路29を介して希釈器4に排出される(カソード側の排気)。   Hydrogen molecules supplied to the anode of the fuel cell 21 become hydrogen ions and move to the cathode side along with moisture contained in the electrolyte membrane. Oxygen molecules in the air supplied to the cathode become oxygen ions and combine with hydrogen ions to form product water. The generated water is supplied to the humidifier 24 through the conduit 28 together with the exhaust of the air supplied to the cathode, and a part of the generated water is extracted by the humidifier 24 and reused. The remaining produced water is discharged to the diluter 4 through the conduit 29 together with the exhaust (exhaust on the cathode side).

燃料電池21のカソード側の水や窒素の一部は、逆拡散してアノード側へ移動する。そしてアノード側でこれらの濃度が高くなると発電効率が低下する。これを抑制するためにアノード側には図2に示すようにパージガス用管路30が接続されている。管路30に設けられた開閉弁31は、燃料電池21が所定時間稼動を継続した時点で図示省略の制御装置によって制御されて開放される。これによってアノード側に溜まった水分と窒素が水素ガスと共にパージガス用管路30を介して希釈器4側へ排出される(アノード側の排気)。   A part of the water or nitrogen on the cathode side of the fuel cell 21 is reversely diffused and moves to the anode side. When these concentrations increase on the anode side, the power generation efficiency decreases. In order to suppress this, a purge gas conduit 30 is connected to the anode side as shown in FIG. The on-off valve 31 provided in the pipe line 30 is controlled and opened by a control device (not shown) when the fuel cell 21 continues to operate for a predetermined time. As a result, moisture and nitrogen accumulated on the anode side are discharged together with hydrogen gas to the diluter 4 side through the purge gas conduit 30 (exhaust on the anode side).

希釈器4は、図2,3に示すように管路29,30が接続される吸気口4a,4bと排気管3が接続される排気口4cを有している。希釈器4の下側には、仕切板5aを介してタンク5が一体に設けられており、仕切板5aに開口穴5a1が形成されている。したがって燃料電池21から排出されたカソード側とアノード側の排気は、比重差によって希釈器4内において気体と液体(生成水)に分離されて、液体になった生成水が開口穴5a1を通ってタンク5に貯留される。また希釈器4では、アノード側の排気に含まれる水素の濃度がカソード側の排気に含まれる空気によって希釈され得る。そして希釈器4内の気体は、排気管3へ排出される。   As shown in FIGS. 2 and 3, the diluter 4 has intake ports 4 a and 4 b to which pipe lines 29 and 30 are connected and an exhaust port 4 c to which the exhaust pipe 3 is connected. A tank 5 is integrally provided below the diluter 4 via a partition plate 5a, and an opening hole 5a1 is formed in the partition plate 5a. Therefore, the cathode-side and anode-side exhaust discharged from the fuel cell 21 is separated into gas and liquid (product water) in the diluter 4 due to the difference in specific gravity, and the product water that has become liquid passes through the opening hole 5a1. Stored in the tank 5. Further, in the diluter 4, the concentration of hydrogen contained in the anode-side exhaust can be diluted with air contained in the cathode-side exhaust. The gas in the diluter 4 is discharged to the exhaust pipe 3.

図3に示すように生成水霧化装置1は、タンク5から排気管3に延出する導入管2を有している。導入管2は、L字状であって第一管部材2aと第二管部材2bと水切部材2cを一体に有している。第一管部材2aは、タンク5内を上下に延出する第一部2a1と、希釈器4内を第一部2a1から上方に延出する第二部2a2と、第二部2a2の上端部から排気管3に向けて水平方向に延出する第三部2a3を一体に有している。   As shown in FIG. 3, the generated water atomizer 1 has an introduction pipe 2 that extends from a tank 5 to an exhaust pipe 3. The introduction pipe 2 is L-shaped and integrally includes a first pipe member 2a, a second pipe member 2b, and a draining member 2c. The first pipe member 2a includes a first part 2a1 extending up and down in the tank 5, a second part 2a2 extending up from the first part 2a1 in the diluter 4, and an upper end of the second part 2a2. And a third portion 2a3 extending in the horizontal direction toward the exhaust pipe 3.

第一管部材2aの第一部2a1は、図3,6に示すように下端部がタンク5に貯留された水の水面よりも下側に位置し、上端部は仕切板5aの開口穴5a1内に位置している。第二部2a2は、希釈器4の内壁面4dから所定の距離(例えば排気口4cの直径の0.5〜2倍距離)離れた位置においてブラケット6によって保持されている。ブラケット6は、希釈器4の内壁面4dに取付けられる取付部6aと、取付部6aから略垂直に延出する延出部6bを有しており、延出部6bの端部に第二部2a2が溶接されている。   As shown in FIGS. 3 and 6, the first part 2a1 of the first pipe member 2a has a lower end located below the surface of the water stored in the tank 5, and the upper end is an opening 5a1 in the partition plate 5a. Located in. The second part 2a2 is held by the bracket 6 at a position away from the inner wall surface 4d of the diluter 4 by a predetermined distance (for example, 0.5 to 2 times the diameter of the exhaust port 4c). The bracket 6 has an attachment portion 6a attached to the inner wall surface 4d of the diluter 4, and an extension portion 6b extending substantially perpendicularly from the attachment portion 6a, and a second part is provided at the end of the extension portion 6b. 2a2 is welded.

第二管部材2bは、図3に示すように第一管部材2aの第三部2a3から水平方向に延出しており、円筒状の排気管3の断面略中心線上(好ましくは断面中心線上)に位置している。第二管部材2bの先端部近傍(例えば先端部から5mm以内の位置)の側壁部には、図4に示すように複数の水供給口2b1が形成されている。水供給口2b1は、例えば円孔であって周方向に所定の間隔で形成されている。   As shown in FIG. 3, the second pipe member 2b extends in the horizontal direction from the third portion 2a3 of the first pipe member 2a, and is substantially on the cross-sectional center line of the cylindrical exhaust pipe 3 (preferably on the cross-sectional center line). Is located. As shown in FIG. 4, a plurality of water supply ports 2b1 are formed in the side wall near the tip of the second pipe member 2b (for example, a position within 5 mm from the tip). The water supply ports 2b1 are, for example, circular holes and are formed at predetermined intervals in the circumferential direction.

水切部材2cは、図4に示すように第二管部材2bの径よりも大きい径を有する円板状であって、第二管部材2bの端部に取付けられている。水切部材2cは、第二管部材2bの先端部を塞ぐ塞ぎ部2c1と、第二管部材2bよりも径外方に突出する突部2c2を有している。突部2c2は、第二管部材2bの全周から略垂直に突出している。水切部材2cは、図3,5に示すように排気管3のベンチュリ部3bの近傍に設置される。   As shown in FIG. 4, the draining member 2c has a disk shape having a diameter larger than the diameter of the second pipe member 2b, and is attached to the end of the second pipe member 2b. The draining member 2c has a blocking portion 2c1 that closes the tip end portion of the second pipe member 2b, and a protrusion 2c2 that protrudes radially outward from the second pipe member 2b. The protrusion 2c2 protrudes substantially vertically from the entire circumference of the second pipe member 2b. The draining member 2c is installed in the vicinity of the venturi portion 3b of the exhaust pipe 3 as shown in FIGS.

排気管3は、図3,5に示すように入口側管部3aとベンチュリ部3bと広がり管部3cを一体に有している。入口側管部3aは、円筒状で全長において内外周径が略同じであり、入口側管部3aの一端部3a1が希釈器4の排気口4cに接続される。ベンチュリ部3bは、管の内周径の一部がくびれた部分であって入口側管部3aよりも内周径が小さい。広がり管部3cは、ベンチュリ部3bから出口部3c1に向けて徐々に内周径が大きくなっている。したがって排気管3を流れ得る気体は、ベンチュリ部3b内またはベンチュリ部3bの近傍において最も速くなる。   As shown in FIGS. 3 and 5, the exhaust pipe 3 integrally includes an inlet side pipe portion 3 a, a venturi portion 3 b, and a spread pipe portion 3 c. The inlet side pipe portion 3 a is cylindrical and has substantially the same inner and outer diameters in the entire length, and one end portion 3 a 1 of the inlet side pipe portion 3 a is connected to the exhaust port 4 c of the diluter 4. The venturi portion 3b is a portion where a part of the inner peripheral diameter of the tube is constricted, and has an inner peripheral diameter smaller than that of the inlet side tube portion 3a. The expanding pipe portion 3c has an inner diameter that gradually increases from the venturi portion 3b toward the outlet portion 3c1. Therefore, the gas that can flow through the exhaust pipe 3 is fastest in the venturi portion 3b or in the vicinity of the venturi portion 3b.

図3に示すように排気管3内の圧力は、圧力損失によって希釈器4とタンク5内の圧力に比べて低くなっている。またベンチュリ部3bは、入口側管部3aよりも圧力が低くなっている。圧力損失による圧力差を利用してタンク5に貯留された水は、導入管2に吸い上げられ得る。水は、導入管2の第一管部材2aと第二管部材2b内を流れて、図5に示すように水供給口2b1を通って第二管部材2bの内側から外周面側に移動する。   As shown in FIG. 3, the pressure in the exhaust pipe 3 is lower than the pressure in the diluter 4 and the tank 5 due to pressure loss. The venturi portion 3b has a lower pressure than the inlet side tube portion 3a. The water stored in the tank 5 using the pressure difference due to the pressure loss can be sucked into the introduction pipe 2. Water flows in the first pipe member 2a and the second pipe member 2b of the introduction pipe 2 and moves from the inside of the second pipe member 2b to the outer peripheral surface side through the water supply port 2b1 as shown in FIG. .

次に水は、図5に示すように第二管部材2bの外周面に沿って水切部材2cに向けて軸方向に流れ、水切部材2cの突部2c2に沿って径方向に流れ、水切部材2cの外周端部に移動する。水切部材2cの外周端部に到達した水は、水切部材2cの周りを流れる排気によって切り取られて霧状になる。特にベンチュリ部3bの近傍は、排気の流速が速いため、水切部材2cから切り取られる水の径が小さくなる。これにより水が霧状になって、排気とともに排気管3から車体11(図1参照)の外の大気中へ排出される。   Next, as shown in FIG. 5, the water flows in the axial direction toward the draining member 2c along the outer peripheral surface of the second pipe member 2b, and flows in the radial direction along the protrusion 2c2 of the draining member 2c. It moves to the outer peripheral end of 2c. The water that has reached the outer peripheral end of the draining member 2c is cut out by the exhaust gas flowing around the draining member 2c to become a mist. In particular, in the vicinity of the venturi portion 3b, the flow rate of the exhaust gas is high, so the diameter of the water cut from the draining member 2c is small. Thereby, water becomes mist-like and is discharged from the exhaust pipe 3 into the atmosphere outside the vehicle body 11 (see FIG. 1) together with the exhaust gas.

以上のように生成水霧化装置1は、図3に示すようにベンチュリ部3bを備える排気管3と導入管2を有している。導入管2は、第一管部材2aと、水供給口2b1が設けられた第二管部材2bと、第二管部材2bから排気管3の径方向に突出しかつベンチュリ部3bの近傍に配設される水切部材2cを有している。水供給口2b1を通って第二管部材2bの外周面に供給された水が水切部材2cの端部に移動して水切部材2cの端部において排気管3内を流れる気体によって霧状にされる。   As described above, the generated water atomizer 1 has the exhaust pipe 3 and the introduction pipe 2 each including the venturi portion 3b as shown in FIG. The introduction pipe 2 protrudes in the radial direction of the exhaust pipe 3 from the first pipe member 2a, the second pipe member 2b provided with the water supply port 2b1, and the venturi portion 3b. The draining member 2c is provided. The water supplied to the outer peripheral surface of the second pipe member 2b through the water supply port 2b1 moves to the end of the draining member 2c and is atomized by the gas flowing in the exhaust pipe 3 at the end of the draining member 2c. The

したがってタンク5内の水は、ベンチュリ部3bの近傍に位置する水切部材2cの端部に移動する。排気管3内を流れる気体は、ベンチュリ部3bにおいて流速が速くなるために水切部材2cの端部で水が気体によって切り取られて霧状になる。水切部材2cは、第二管部材から突出する簡易な構造であるために従来のノズルに比べて加工精度を必要とせず安価に構成され得る。   Therefore, the water in the tank 5 moves to the end of the draining member 2c located in the vicinity of the venturi portion 3b. Since the gas flowing in the exhaust pipe 3 has a high flow velocity in the venturi portion 3b, water is cut off by the gas at the end of the draining member 2c and becomes a mist. Since the draining member 2c has a simple structure protruding from the second pipe member, it does not require processing accuracy compared to the conventional nozzle and can be configured at a low cost.

また水切部材2cは、図4に示すように第二管部材2bの先端部に設けられて先端部を塞ぎかつ先端部の全周において径方向に突出している。したがって水切部材2cによって第二管部材2bの先端部を塞ぐことができるために、第二管部材2bの先端部を他の部材で塞ぐ構造に比べて導入管2が安価に構成され得る。また水切部材2cは、第二管部材2bの先端部全周から突出するために先端部一部のみから突出する形態に比べて水を霧状にし得る量が多くなる。   Further, as shown in FIG. 4, the draining member 2c is provided at the distal end portion of the second pipe member 2b, closes the distal end portion, and projects radially in the entire circumference of the distal end portion. Therefore, since the distal end portion of the second pipe member 2b can be closed by the draining member 2c, the introduction pipe 2 can be configured at a lower cost than a structure in which the distal end portion of the second pipe member 2b is closed by another member. Moreover, since the draining member 2c protrudes from the entire circumference of the distal end portion of the second pipe member 2b, the amount of water that can be made into a mist is increased as compared with a configuration that protrudes from only a part of the distal end portion.

また排気管3は、図2,3に示すように燃料電池21のアノード側の排気とカソード側の排気を混合する希釈器4の排気口4cに接続されている。第一管部材2aは、希釈器4の内部においてタンク5側から排気管3に向けて延出している。   2 and 3, the exhaust pipe 3 is connected to an exhaust port 4c of the diluter 4 for mixing the anode side exhaust and the cathode side exhaust of the fuel cell 21. The first pipe member 2 a extends from the tank 5 side toward the exhaust pipe 3 inside the diluter 4.

燃料電池21からの排気は、例えば50℃以上の高温である。そのため希釈器4内の排気から希釈器4内に設けられた第一管部材2aに熱が与えられ得る。そして希釈器4から排出された排気が排気管3内を流れ、排気の熱が排気管3内に設けられた第二管部材2bに与えられ得る。そのため寒冷地等において導入管2内の水が凍結して導入管2が破損する問題が抑制され得る。燃料電池21の停止時に導入管2内の水が凍結した場合は、燃料電池21の稼動によって導入管2内の水が溶け得る。そのため寒冷地等においても生成水霧化装置1を使用することができる。そして本形態は、排気の温度を利用するために他の熱源を利用する形態に比べて省電力と小型化が可能である。   The exhaust from the fuel cell 21 is at a high temperature of, for example, 50 ° C. or higher. Therefore, heat can be applied from the exhaust gas in the diluter 4 to the first pipe member 2 a provided in the diluter 4. The exhaust discharged from the diluter 4 flows in the exhaust pipe 3, and the heat of the exhaust can be given to the second pipe member 2 b provided in the exhaust pipe 3. Therefore, the problem that water in the introduction pipe 2 freezes and the introduction pipe 2 is damaged in a cold district or the like can be suppressed. If the water in the introduction pipe 2 freezes when the fuel cell 21 is stopped, the water in the introduction pipe 2 can be melted by the operation of the fuel cell 21. Therefore, the generated water atomizer 1 can be used even in cold regions. This embodiment can save power and can be reduced in size as compared with a configuration using another heat source in order to use the temperature of the exhaust gas.

また第一管部材2aは、図6に示すように希釈器4内において希釈器4に取付けられたブラケット6によって希釈器4の内壁面4dから所定の距離離れた位置で保持されている。したがって冷寒地等において燃料電池21が停止した場合は、先ず外気によって希釈器4が冷却され、希釈器4の内壁面4dで結露が生じる。第一管部材2aは、希釈器4の壁面4dとの間に設けられた空気層によって断熱されるために希釈器4の壁面4dよりも遅れて冷える。そのため第一管部材2aの外表面に結露が生じることが抑制され、結露の凍結による第一管部材2aの破損等が抑制され得る。   Further, as shown in FIG. 6, the first pipe member 2 a is held in the diluter 4 at a position away from the inner wall surface 4 d of the diluter 4 by a predetermined distance by a bracket 6 attached to the diluter 4. Therefore, when the fuel cell 21 is stopped in a cold region or the like, the diluter 4 is first cooled by the outside air, and condensation occurs on the inner wall surface 4 d of the diluter 4. Since the first pipe member 2a is insulated by the air layer provided between the wall surface 4d of the diluter 4 and cools later than the wall surface 4d of the diluter 4. Therefore, the occurrence of condensation on the outer surface of the first pipe member 2a is suppressed, and damage to the first pipe member 2a due to freezing of the condensation can be suppressed.

また第二管部材2bは、図3,5に示すように排気管3内を流れる気体の流れと略平行でかつ排気管3のベンチュリ部3bの断面略中心線に沿って延出している。一般に燃料電池車両10は、エンジン車両に比べて騒音が少ない。そのため燃料電池車両10に生成水霧化装置1を設けることで騒音が発生すると問題になる場合がある。また騒音の大きさ(音響パワー)は、一般に管内を流れる気体の流速の8乗に比例するために、排気管3内を流れる気体の流量が同じであれば、排気管3内における流速の不均一(流速差)が小さい程、騒音が小さくなり得る。   Moreover, the 2nd pipe member 2b is extended along the cross-sectional substantially center line of the venturi part 3b of the exhaust pipe 3, substantially parallel to the flow of the gas which flows through the inside of the exhaust pipe 3, as shown in FIG. In general, the fuel cell vehicle 10 has less noise than the engine vehicle. Therefore, there may be a problem when noise is generated by providing the generated water atomizer 1 in the fuel cell vehicle 10. In addition, since the magnitude of noise (acoustic power) is generally proportional to the eighth power of the flow velocity of the gas flowing in the pipe, if the flow rate of the gas flowing in the exhaust pipe 3 is the same, the flow velocity in the exhaust pipe 3 is not affected. The smaller the uniformity (flow velocity difference), the smaller the noise.

これに対して本形態の第二管部材2bは、排気管3内を流れる気体の流れと略平行であるため、排気管3内を流れる気体に対して直交する形態等に比べて排気管3内の気体の流れを妨げる面積が小さくなり、これにより排気管3内の気体の流速が前記形態等に比べて不均一になり難い。さらに第二管部材2bは、ベンチュリ部3bの断面略中心線に沿って延出しているために、排気管3の壁面の近傍に沿って延出する際に生じ得る流速の遅い領域を生じ難い。そのため第二管部材2bは排気管3内の気体の流速を不均一にし難い。かくして本形態によると生成水霧化装置1を設けることによる騒音が小さくなり得る。   On the other hand, the second pipe member 2b of the present embodiment is substantially parallel to the flow of gas flowing in the exhaust pipe 3, so that the exhaust pipe 3 is compared with a form orthogonal to the gas flowing in the exhaust pipe 3. The area that obstructs the flow of the gas in the inside becomes small, so that the flow velocity of the gas in the exhaust pipe 3 is less likely to be non-uniform compared to the above-described form. Furthermore, since the second pipe member 2b extends along the substantially center line of the cross section of the venturi portion 3b, it is difficult to generate a region with a low flow rate that may occur when extending along the vicinity of the wall surface of the exhaust pipe 3. . Therefore, it is difficult for the second pipe member 2b to make the flow velocity of the gas in the exhaust pipe 3 uneven. Thus, according to the present embodiment, noise caused by providing the generated water atomizer 1 can be reduced.

また導入管2は、図3に示すように内壁面4dから離れた位置で保持されている。そのため希釈器4内の気体が導入管2の第一管部材2aに当って気体の流速の不均一が大きくなった場合でも、その不均一は導入管2と内壁面4dの間の整流部4eによって小さくなり得る。そして希釈器4内から排気管3へ流れる流速の不均一が小さくなるため、排気管3内で生じ得る騒音が小さくなる。また図2に示すように排気管3の下流側にはマフラーが設けられていない。そのため排気管3の排気に含まれている水がマフラーによって液化される問題も生じない。   Further, the introduction pipe 2 is held at a position away from the inner wall surface 4d as shown in FIG. Therefore, even when the gas in the diluter 4 hits the first pipe member 2a of the introduction pipe 2 and the non-uniformity in the gas flow velocity becomes large, the non-uniformity is the rectifying portion 4e between the introduction pipe 2 and the inner wall surface 4d. Can be smaller. And since the non-uniformity of the flow velocity flowing from the inside of the diluter 4 to the exhaust pipe 3 is reduced, noise that can be generated in the exhaust pipe 3 is reduced. Further, as shown in FIG. 2, no muffler is provided on the downstream side of the exhaust pipe 3. Therefore, the problem that the water contained in the exhaust of the exhaust pipe 3 is liquefied by the muffler does not occur.

(他の実施の形態)
本発明は、上記実施の形態に限定されず以下の形態等であっても良い。例えば図4に示す第二管部材2bは、円孔状の水供給口2b1を有している。しかし第二管部材2bが図4に示す水供給口2b1に代えて、図7に示すように先端部から延出するスリット状の水供給口2b2を有していても良い。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and may be the following form. For example, the second pipe member 2b shown in FIG. 4 has a circular hole-shaped water supply port 2b1. However, the second pipe member 2b may have a slit-shaped water supply port 2b2 extending from the tip as shown in FIG. 7 instead of the water supply port 2b1 shown in FIG.

図6に示す導入管2の第一管部材2aは、ブラケット6によって希釈器4の内壁面4dから所定の距離離れた位置で保持されている。しかし第一管部材2aが図8に示すブラケット7によって希釈器4の内壁面4dに接した状態で延出し、下部が仕切板5aに形成された貫通穴5a2を貫通してタンク5に貯留された水の水面よりも下側に位置しても良い。この形態によると第一管部材2aは、希釈器4内の排気から直接熱を受け得る、あるいは排気から熱を受けた希釈器4の壁面を介して排気の熱を受け得る。   The first pipe member 2 a of the introduction pipe 2 shown in FIG. 6 is held at a position away from the inner wall surface 4 d of the diluter 4 by a predetermined distance by the bracket 6. However, the first pipe member 2a extends with the bracket 7 shown in FIG. 8 in contact with the inner wall surface 4d of the diluter 4, and the lower part passes through the through hole 5a2 formed in the partition plate 5a and is stored in the tank 5. It may be located below the surface of the water. According to this embodiment, the first pipe member 2a can receive heat directly from the exhaust in the diluter 4, or can receive heat from the exhaust through the wall surface of the diluter 4 that has received heat from the exhaust.

図3に示す導入管2の第一管部材2aは、希釈器4内を通ってタンク5から排気管3に延出している。しかし導入管2に代えて図9に示す導入管8を有していても良い。導入管8は、第一管部材8aと第二管部材8bと水切部材8cを有している。第一管部材8aは、希釈器4の外壁面に接しつつタンク5から排気管3に向けて延出する第一部8a1と、排気管3の外周面に沿って延出する第二部8a2を有している。第一部8a1の下端部に形成された接続口8a3がタンク5に形成された排水口5bに接続されている。なお第一管部材8aは、図示省略の保温材によって覆うことで外気に露出されることが防止されることが好ましい。これにより第一管部材8aは、排気から熱を受けた希釈器4の壁面を介して排気の熱を受け得る。   The first pipe member 2 a of the introduction pipe 2 shown in FIG. 3 extends from the tank 5 to the exhaust pipe 3 through the diluter 4. However, instead of the introduction pipe 2, an introduction pipe 8 shown in FIG. The introduction pipe 8 includes a first pipe member 8a, a second pipe member 8b, and a draining member 8c. The first pipe member 8a includes a first part 8a1 extending from the tank 5 toward the exhaust pipe 3 while being in contact with the outer wall surface of the diluter 4, and a second part 8a2 extending along the outer peripheral surface of the exhaust pipe 3. have. A connection port 8 a 3 formed at the lower end of the first part 8 a 1 is connected to a drain port 5 b formed in the tank 5. The first pipe member 8a is preferably prevented from being exposed to the outside air by being covered with a heat insulating material (not shown). Thereby, the 1st pipe member 8a can receive the heat of exhaust via the wall surface of the diluter 4 which received heat from exhaust.

図9に示すように第二管部材8bは、排気管3の入口側管部3a内を径方向に延出する第一部8b1と、第一部8b1から軸方向に延出する第二部8b2を有している。第二部8b2は、円筒状の排気管3の断面略中心線に沿って延出している。第二部8b2の先端部には第二部8b2の内側から外周面に水が供給され得る水供給口8b3が形成されている。水切部材8cは、第二管部材8bの端部に設けられており、第二管部材8bに対して径方向に突出しかつベンチュリ部3bの近傍に位置している。   As shown in FIG. 9, the second pipe member 8b includes a first part 8b1 extending in the radial direction in the inlet side pipe part 3a of the exhaust pipe 3, and a second part extending in the axial direction from the first part 8b1. 8b2. The second portion 8b2 extends along the substantially center line of the cross section of the cylindrical exhaust pipe 3. A water supply port 8b3 through which water can be supplied from the inside of the second part 8b2 to the outer peripheral surface is formed at the tip of the second part 8b2. The draining member 8c is provided at the end of the second pipe member 8b, protrudes in the radial direction with respect to the second pipe member 8b, and is positioned in the vicinity of the venturi part 3b.

図5に示す導入管2は、排気管3に対して軸方向に延出する第二管部材2bと、排気管3に対して径方向に第二管部材2bから突出する水切部材2cを有している。しかし図5に示す導入管2に代えて図10に示す導入管9を有していても良い。導入管9は、第一管部材9aと第二管部材9bと水切部材9cを有している。第一管部材9aはタンク側から排気管3の外周面に延出している。第二管部材9bは、排気管3の外周面から排気管3の壁面を貫通して排気管3の内周側に延出している。   The introduction pipe 2 shown in FIG. 5 has a second pipe member 2b extending in the axial direction with respect to the exhaust pipe 3, and a draining member 2c protruding from the second pipe member 2b in the radial direction with respect to the exhaust pipe 3. doing. However, instead of the introduction pipe 2 shown in FIG. 5, an introduction pipe 9 shown in FIG. 10 may be provided. The introduction pipe 9 has a first pipe member 9a, a second pipe member 9b, and a draining member 9c. The first pipe member 9 a extends from the tank side to the outer peripheral surface of the exhaust pipe 3. The second pipe member 9 b extends from the outer peripheral surface of the exhaust pipe 3 to the inner peripheral side of the exhaust pipe 3 through the wall surface of the exhaust pipe 3.

図10に示すように第二管部材9bの先端部は、ベンチュリ部3b内において排気管3に対して径方向でかつ上流側から下流側に(図右方向に)斜めに延出している。第二管部材9bの先端部には第二管部材9bの内側から外周面に水が供給され得る水供給口9b1が形成されている。水切部材9cは、第二管部材9bの端部に設けられており、第二管部材9bに対して径方向に突出し、排気管3に対して径方向でかつ軸方向に斜めに延出している。   As shown in FIG. 10, the distal end portion of the second pipe member 9b extends diagonally with respect to the exhaust pipe 3 from the upstream side to the downstream side (rightward in the figure) in the venturi portion 3b. A water supply port 9b1 through which water can be supplied from the inside of the second tube member 9b to the outer peripheral surface is formed at the tip of the second tube member 9b. The draining member 9c is provided at the end of the second pipe member 9b, protrudes in the radial direction with respect to the second pipe member 9b, and extends in the radial direction and obliquely in the axial direction with respect to the exhaust pipe 3. Yes.

図2に示すように導入管2の水切部材2cは排気管3内に設けられており、排気管3は燃料電池21の排気側に接続されている。しかしコンプレッサに接続された排気管を有しており、その排気管に形成されたベンチュリ部の近傍または内部に導入管の水切部材が設置される形態であっても良い。   As shown in FIG. 2, the draining member 2 c of the introduction pipe 2 is provided in the exhaust pipe 3, and the exhaust pipe 3 is connected to the exhaust side of the fuel cell 21. However, it may have an exhaust pipe connected to the compressor, and the drainage member of the introduction pipe may be installed near or inside the venturi formed in the exhaust pipe.

図4,7に示す水切部材2cの突部2c2は、上下流面(図中の左右面)が平行な平面状である。しかし突部2c2の下流面(図中の右面)の外周部に面取り(テーパ面)を設けても良い。これにより水切部材2cの端部において霧状にされる水の径をさらに小さくすることができる。また図4,7に示す導入管2は、水供給口2b1,2b2を有しているが、水供給口2b1,2b2から排出される水量が多くなりすぎることを抑制するために導入管2の一部に絞りを設けても良い。   The protrusion 2c2 of the draining member 2c shown in FIGS. 4 and 7 has a planar shape with parallel upper and downstream surfaces (left and right surfaces in the drawings). However, a chamfer (tapered surface) may be provided on the outer peripheral portion of the downstream surface (right surface in the drawing) of the protrusion 2c2. Thereby, the diameter of the water made into mist in the edge part of the draining member 2c can be made still smaller. 4 and 7 have the water supply ports 2b1 and 2b2, but in order to prevent the amount of water discharged from the water supply ports 2b1 and 2b2 from being excessively large, A diaphragm may be provided in a part.

図4,7に示す導入管2は、第二管部材2bの先端部近傍に水供給口2b1,2b2が形成されており、第二管部材2bの先端部に水切部材2cが設けられている。しかし第二管部材に一つまたは複数の穴が形成されており、各穴の下流側(図右側)に第二管部材の外表面から排気管に対して径方向に突出する一つまたは複数の水切部材が設けられても良い。   4 and 7, water supply ports 2b1 and 2b2 are formed in the vicinity of the tip of the second pipe member 2b, and a draining member 2c is provided at the tip of the second pipe member 2b. . However, one or more holes are formed in the second pipe member, and one or more holes project radially from the outer surface of the second pipe member to the exhaust pipe on the downstream side (right side in the figure) of each hole. A water draining member may be provided.

図3に示す排気管3は、入口側管部3aとベンチュリ部3bと広がり管部3cを有している。しかし排気管が入口側管部を有しておらずベンチュリ部と広がり管部のみを有していている形態でも良い。図1に示す車両10は、産業車両であるが自動車やバスなどの車両であっても良い。   The exhaust pipe 3 shown in FIG. 3 has an inlet side pipe part 3a, a venturi part 3b, and a spread pipe part 3c. However, the exhaust pipe may not have the inlet side pipe part but may have only the venturi part and the spreading pipe part. The vehicle 10 shown in FIG. 1 is an industrial vehicle, but may be a vehicle such as an automobile or a bus.

1…生成水霧化装置
2,8,9…導入管
2a,8a,9a…第一管部材
2b,8b,9b…第二管部材
2b1,2b2,9b1…水供給口
2c,8c,9c…水切部材
3…排気管
3b…ベンチュリ部
4…希釈器
4c…排気口
4d…内壁面
5…タンク
5a…仕切板
6,7…ブラケット
10…燃料電池車両
11…車体
12…荷役装置
13…駆動輪
15…走行用モータ
20…燃料電池システム
21…燃料電池
22…水素タンク
23…コンプレッサ
24…加湿器
DESCRIPTION OF SYMBOLS 1 ... Generated water atomizer 2, 8, 9 ... Introducing pipe 2a, 8a, 9a ... 1st pipe member 2b, 8b, 9b ... 2nd pipe member 2b1, 2b2, 9b1 ... Water supply port 2c, 8c, 9c ... Drainage member 3 ... exhaust pipe 3b ... venturi part 4 ... dilutor 4c ... exhaust port 4d ... inner wall surface 5 ... tank 5a ... partition plate 6, 7 ... bracket 10 ... fuel cell vehicle 11 ... vehicle body 12 ... loading device 13 ... drive wheel DESCRIPTION OF SYMBOLS 15 ... Motor 20 ... Fuel cell system 21 ... Fuel cell 22 ... Hydrogen tank 23 ... Compressor 24 ... Humidifier

Claims (5)

燃料電池で生成された生成水を霧状にして車体の外方に排出するための燃料電池車両の生成水霧化装置であって、
管の内周径の一部がくびれているベンチュリ部を備える排気管と、前記生成水が貯留され得るタンク内の水を前記タンク側から前記排気管に導入するための導入管を有し、
前記導入管は、前記タンク側から前記排気管に向けて延出する第一管部材と、前記第一管部材から前記排気管内を延出しかつ側壁部に水供給口が設けられた第二管部材と、前記第二管部材から前記排気管の径方向に突出しかつ前記ベンチュリ部の近傍もしくは内部に配設される水切部材を有し、
前記水切部材は、前記第二管部材の端部を塞ぐ塞ぎ部と、前記水供給口よりも下流側において前記第二管部材よりも径外方に突出する突部を有し、
前記水供給口を通って前記第二管部材の外周面に供給された水が前記水切部材の前記突部の端部に移動して前記突部の端部において前記排気管内を流れる気体によって霧状にされることを特徴とする燃料電池車両の生成水霧化装置。

A generated water atomization device for a fuel cell vehicle for making the generated water generated by the fuel cell into a mist and discharging it to the outside of the vehicle body,
An exhaust pipe having a venturi portion in which a part of the inner peripheral diameter of the pipe is constricted, and an introduction pipe for introducing water in the tank in which the generated water can be stored from the tank side to the exhaust pipe,
The introduction pipe includes a first pipe member extending from the tank side toward the exhaust pipe, and a second pipe extending from the first pipe member into the exhaust pipe and provided with a water supply port on a side wall portion. A draining member that projects from the second pipe member in the radial direction of the exhaust pipe and is disposed in the vicinity of or inside the venturi portion,
The draining member has a blocking portion that closes an end portion of the second pipe member, and a protrusion that protrudes radially outward from the second pipe member on the downstream side of the water supply port,
The water supplied to the outer peripheral surface of the second pipe member through the water supply port moves to the end of the protrusion of the drainage member and is fogged by the gas flowing in the exhaust pipe at the end of the protrusion A water atomization device for a fuel cell vehicle characterized by being made into a shape.

請求項1に記載の燃料電池車両の生成水霧化装置であって、
水切部材は、第二管部材の先端部に設けられて前記先端部を塞ぎかつ前記先端部の全周において径方向に突出していることを特徴とする燃料電池車両の生成水霧化装置。
It is the production | generation water atomization apparatus of the fuel cell vehicle of Claim 1, Comprising:
A water atomizing device for a fuel cell vehicle, characterized in that the draining member is provided at a distal end portion of the second pipe member, closes the distal end portion, and protrudes in the radial direction along the entire circumference of the distal end portion.
請求項1または2に記載の燃料電池車両の生成水霧化装置であって、
排気管は、燃料電池のアノード側の排気とカソード側の排気を混合する希釈器の排気口に接続されており、
第一管部材は、前記希釈器の内部においてまたは前記希釈器の壁面に接しつつタンク側から排気管に向けて延出していることを特徴とする燃料電池車両の生成水霧化装置。
A generated water atomization device for a fuel cell vehicle according to claim 1 or 2,
The exhaust pipe is connected to the exhaust port of a diluter that mixes the exhaust on the anode side and the exhaust on the cathode side of the fuel cell,
The first pipe member extends from the tank side toward the exhaust pipe inside the diluter or in contact with the wall surface of the diluter, and is a generated water atomizer for a fuel cell vehicle.
請求項3に記載の燃料電池車両の生成水霧化装置であって、
第一管部材は、希釈器内において前記希釈器に取付けられたブラケットによって前記希釈器の内壁面から所定の距離離れた位置で保持されていることを特徴とする燃料電池車両の生成水霧化装置。
It is the production | generation water atomization apparatus of the fuel cell vehicle of Claim 3, Comprising:
The first pipe member is held in a diluter by a bracket attached to the diluter at a position away from the inner wall surface of the diluter by a predetermined distance. apparatus.
請求項1〜4のいずれか一つに記載の燃料電池車両の生成水霧化装置であって、
第二管部材は、排気管内を流れる気体の流れと略平行でかつ前記排気管のベンチュリ部の断面略中心線に沿って延出していることを特徴とする燃料電池車両の生成水霧化装置。
It is the production | generation water atomization apparatus of the fuel cell vehicle as described in any one of Claims 1-4,
The generated water atomizing device for a fuel cell vehicle, characterized in that the second pipe member extends substantially along the center line of the cross section of the venturi portion of the exhaust pipe and is substantially parallel to the flow of the gas flowing in the exhaust pipe .
JP2009114386A 2009-03-16 2009-05-11 Generated water atomizer for fuel cell vehicles Expired - Fee Related JP5272882B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009114386A JP5272882B2 (en) 2009-05-11 2009-05-11 Generated water atomizer for fuel cell vehicles
US12/723,470 US8697305B2 (en) 2009-03-16 2010-03-12 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114386A JP5272882B2 (en) 2009-05-11 2009-05-11 Generated water atomizer for fuel cell vehicles

Publications (2)

Publication Number Publication Date
JP2010263738A JP2010263738A (en) 2010-11-18
JP5272882B2 true JP5272882B2 (en) 2013-08-28

Family

ID=43361352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114386A Expired - Fee Related JP5272882B2 (en) 2009-03-16 2009-05-11 Generated water atomizer for fuel cell vehicles

Country Status (1)

Country Link
JP (1) JP5272882B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197077A (en) * 1997-01-06 1998-07-31 Daikin Ind Ltd Refrigerating apparatus
JP2006032134A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Water storage equipment for storing water in fuel cell system and fuel cell system

Also Published As

Publication number Publication date
JP2010263738A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
US8697305B2 (en) Fuel cell system
US9564647B2 (en) Fuel cell system
JP5272883B2 (en) Generated water atomizer for fuel cell vehicles
JP2010218802A (en) Fuel cell system
JP6272726B2 (en) Vehicle exhaust structure
US20150188161A1 (en) Air supply apparatus and method for fuel cell
JP2010263737A (en) Fuel cell vehicle with generated water atomization device
JP5316431B2 (en) Fuel cell system
JP2011129377A (en) Fuel cell system
JP5272882B2 (en) Generated water atomizer for fuel cell vehicles
JP2010218803A (en) Fuel cell system
JP2013076527A (en) Outdoor unit for air conditioner
JP2009026498A (en) Fuel cell vehicle
JP2008311066A (en) Fuel cell system
JP4375480B2 (en) Polymer electrolyte fuel cell
JP2009123586A (en) Fuel cell system
JP5464047B2 (en) Fuel cell system
JP2005129463A (en) Movable body
US10224557B2 (en) Fuel cell system
JP4882265B2 (en) Fuel exhaust gas dilution system for fuel cell system
KR20090009343A (en) Water trap device of fuel cell vehicle
JP6059972B2 (en) Fuel cell system
JP7153607B2 (en) Diluter in fuel cell system
JP5956832B2 (en) Fuel cell system and industrial vehicle with fuel cell
CN209690158U (en) For the conduit assembly on ICP spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees