[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5255270B2 - Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate - Google Patents

Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate Download PDF

Info

Publication number
JP5255270B2
JP5255270B2 JP2007335796A JP2007335796A JP5255270B2 JP 5255270 B2 JP5255270 B2 JP 5255270B2 JP 2007335796 A JP2007335796 A JP 2007335796A JP 2007335796 A JP2007335796 A JP 2007335796A JP 5255270 B2 JP5255270 B2 JP 5255270B2
Authority
JP
Japan
Prior art keywords
fine particles
oxide fine
inorganic oxide
weight
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007335796A
Other languages
Japanese (ja)
Other versions
JP2009155496A (en
Inventor
広泰 西田
龍久 内野
庸一 石原
幸雄 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2007335796A priority Critical patent/JP5255270B2/en
Publication of JP2009155496A publication Critical patent/JP2009155496A/en
Application granted granted Critical
Publication of JP5255270B2 publication Critical patent/JP5255270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、比較的高い屈折率を有し、さらには耐擦傷性、耐摩耗性、耐衝撃性、耐候性、耐光性、耐汗性、耐熱水性、密着性、透明性、染色性などの性状に優れた硬化性塗膜を基材上に形成するための塗布液や塗料を調製する際に使用されるコアシェル構造を有する無機酸化物微粒子、該微粒子を含む分散ゾルおよび光学基材用塗布液に関するものである。
The present invention has a relatively high refractive index, and further, such as scratch resistance, abrasion resistance, impact resistance, weather resistance, light resistance, sweat resistance, hot water resistance, adhesion, transparency, dyeability, etc. Inorganic oxide fine particles having a core-shell structure used when preparing a coating liquid or paint for forming a curable coating film with excellent properties on a substrate, a dispersion sol containing the fine particles, and an optical substrate coating It is about liquid.

近年、眼鏡レンズなどの光学基材の材料としては、無機ガラス基材に代わってプラスチック基材が使用されることが多くなっている。これは、プラスチック基材が軽量性、耐衝撃性、加工性、染色性などの面で優れた特性を備えているためである。しかし、該プラスチック基材は、無機ガラス基材に較べて傷つきやすいという欠点を有している。   In recent years, as a material for optical base materials such as eyeglass lenses, plastic base materials are increasingly used in place of inorganic glass base materials. This is because the plastic substrate has excellent characteristics in terms of lightness, impact resistance, processability, dyeability, and the like. However, the plastic substrate has a drawback that it is easily damaged compared to an inorganic glass substrate.

そこで、この欠点を回避するため、プラスチック基材を用いた光学レンズの表面には、通常、シリコーン系の硬化性塗膜、すなわちハードコート層が設けられている。さらに、比較的高い屈折率を有するプラスチック基材を光学レンズの材料として使用した場合には、該プラスチック基材とハードコート層との間に起こる光の干渉(干渉縞として現れる)を避けるため、前記ハードコート層に無機酸化物微粒子を含ませて、その屈折率を前記プラスチック基材の屈折率に合わせるような処置が施されている。   Therefore, in order to avoid this drawback, a silicone-based curable coating film, that is, a hard coat layer is usually provided on the surface of an optical lens using a plastic substrate. Furthermore, when a plastic substrate having a relatively high refractive index is used as the material of the optical lens, in order to avoid light interference (appears as interference fringes) between the plastic substrate and the hard coat layer, The hard coat layer contains inorganic oxide fine particles, and the refractive index is adjusted to match the refractive index of the plastic substrate.

このような特性を備えたシリコーン系硬化性塗膜、例えばハードコート層をプラスチック基材上に形成するための塗布液や塗料については、様々な開発が行われ、数多くの出願がなされている。
また、眼鏡レンズなどの光学基材(プラスチックレンズ)を製造する際には、無色透明で屈折率が高く、しかも耐擦傷性、耐摩耗性、耐衝撃性、耐候性、耐光性、耐汗性、耐熱水性、密着性、染色性などの性状に優れた硬化性塗膜を形成するための塗布液が求められており、これについても、現在に至るまで数多くの出願がなされている。
Various developments have been made and many applications have been made for coating liquids and paints for forming a silicone-based curable coating film having such characteristics, for example, a hard coat layer on a plastic substrate.
When manufacturing optical substrates (plastic lenses) such as eyeglass lenses, they are colorless and transparent, have a high refractive index, and are scratch resistant, abrasion resistant, impact resistant, weather resistant, light resistant, and sweat resistant. In addition, a coating liquid for forming a curable coating film excellent in properties such as hot water resistance, adhesion, and dyeability has been demanded, and many applications have been filed to date.

例えば、特許文献1には、シリカ、酸化鉄、酸化チタン、酸化セリウム、酸化ジルコニウム、酸化アンチモン、酸化亜鉛または酸化スズの少なくともいずれかを含む酸化物微粒子もしくはそれらの混合物またはそれらの複合酸化物からなる微粒子と有機ケイ素化合物とを含有する高屈折率コーティング組成物が開示されている。しかしながら、これらの微粒子を含む塗布液を用いて形成された硬化性塗膜は、比較的高い屈折率を有するものの、耐候性に優れているとは云えなかった。   For example, Patent Document 1 discloses oxide fine particles containing at least one of silica, iron oxide, titanium oxide, cerium oxide, zirconium oxide, antimony oxide, zinc oxide and tin oxide, or a mixture thereof or a composite oxide thereof. A high refractive index coating composition containing fine particles and an organosilicon compound is disclosed. However, a curable coating film formed using a coating solution containing these fine particles has a relatively high refractive index, but cannot be said to have excellent weather resistance.

その背景としては、眼鏡レンズなどの光学基材においては、軽量化を求めてプラスチックレンズなどの厚さが薄くなり、これに伴って塗膜の高屈折率化が進められたため、高屈折率特性を有するチタン酸化物の含有量を増加させる傾向にあったが、その反面、光触媒活性を有するチタン酸化物によって塗膜の耐候性が損ねられることになった。   As the background, in optical base materials such as eyeglass lenses, the thickness of plastic lenses and so on has been reduced in order to reduce weight, and as a result, the higher refractive index of coating films has been promoted. However, the weather resistance of the coating film was impaired by the titanium oxide having photocatalytic activity.

そこで、本出願人らは、チタン系酸化物を含む核粒子の表面に、ケイ素、ジルコニウムおよび/またはアルミニウムの複合酸化物で被覆してなる微粒子と有機ケイ素化合物とを含有する塗膜形成用塗布液を開発し、これを出願している。すなわち、チタン系酸化物を含む核粒子を前記複合酸化物で被覆することによって、該核粒子中に含まれるチタン酸化物の光触媒活性を抑えたものである。 Therefore, the present applicants have applied a coating film-forming coating containing fine particles formed by coating a composite oxide of silicon, zirconium and / or aluminum on the surface of a core particle containing a titanium-based oxide and an organosilicon compound. A liquid has been developed and applied for. That is, the photocatalytic activity of the titanium oxide contained in the core particles is suppressed by coating the core particles containing the titanium-based oxide with the composite oxide.

例えば、特許文献2には、(1)酸化チタン微粒子を核として、その表面を酸化ジルコニウムおよび酸化ケイ素で被覆した微粒子、(2)酸化チタンおよび酸化ジルコニウムの固溶体からなる複合酸化物微粒子を核として、その表面を酸化ケイ素で被覆した微粒子、(3)チタンとケイ素との複合酸化物微粒子を核として、その表面を酸化ケイ素と、酸化ジルコニウムおよび/または酸化アルミニウムで被覆した微粒子、(4)チタン、ケイ素およびジルコニウムの複合酸化物微粒子を核として、その表面を酸化ケイ素、酸化ジルコニウムおよび酸化アルミニウムの少なくとも1種で被覆した微粒子と、有機ケイ素化合物とを含む被膜形成用塗布液が開示されている。すなわち、この特許文献2に係る発明では、アナターゼ型の結晶構造を有するチタン含有核粒子の表面を酸化ケイ素、酸化ジルコニウムおよび酸化アルミニウムから選ばれた少なくとも1種で被覆して得られる、コアシェル構造を有する無機酸化物微粒子が用いられている。 For example, in Patent Document 2, (1) fine particles having titanium oxide fine particles as nuclei and surfaces thereof coated with zirconium oxide and silicon oxide, and (2) complex oxide fine particles made of a solid solution of titanium oxide and zirconium oxide are used as nuclei. Fine particles whose surfaces are coated with silicon oxide, (3) fine particles whose surface is coated with silicon oxide and zirconium oxide and / or aluminum oxide, using fine oxide fine particles of titanium and silicon as a nucleus, and (4) titanium. A coating liquid for forming a film is disclosed, which comprises fine particles of silicon and zirconium composite oxide as a core and the surface of which is coated with at least one of silicon oxide, zirconium oxide and aluminum oxide, and an organosilicon compound. . That is, in the invention according to Patent Document 2, a core-shell structure obtained by coating the surface of titanium-containing core particles having an anatase type crystal structure with at least one selected from silicon oxide, zirconium oxide, and aluminum oxide. Inorganic oxide fine particles are used.

また、特許文献3には、チタンおよびスズの複合固溶体酸化物を核粒子として、その表面をケイ素酸化物とジルコニウムおよび/またはアルミニウムの酸化物との複合酸化物で被覆した複合酸化物微粒子と、有機ケイ素化合物とを含む被膜形成用塗布液が開示されている。すなわち、この特許文献3に係る発明では、ルチル型の結晶構造を有するチタン含有核粒子の表面をケイ素酸化物とジルコニウムおよび/またはアルミニウムの酸化物との複合酸化物で被覆して得られる、コアシェル構造を有する無機酸化物微粒子が用いられている。 Patent Document 3 discloses composite oxide fine particles in which a composite solid solution oxide of titanium and tin is used as a core particle, and the surface thereof is coated with a composite oxide of silicon oxide and zirconium and / or aluminum oxide; A coating forming coating solution containing an organosilicon compound is disclosed. That is, in the invention according to Patent Document 3, a core-shell obtained by coating the surface of titanium-containing core particles having a rutile crystal structure with a composite oxide of silicon oxide and zirconium and / or aluminum oxide. Inorganic oxide fine particles having a structure are used.

これらの特許文献2および特許文献3に記載された発明によれば、屈折率1.52〜1.67の範囲においては、優れた耐候性を有しているばかりでなく、その他の性状、例えば耐擦傷性、耐摩耗性、耐衝撃性、耐光性、耐汗性、耐熱水性、密着性、透明性、染色性などの性状においても優れた特性を有する硬化性塗膜を得ることができる。
しかし、昨今では、1.70以上、さらに詳しくは1.71〜1.76の屈折率を有する光学基材(プラスチックレンズ)が開発され、これに見合った硬化性塗膜を形成するための塗布液が求められているが、塗膜の屈折率を高めるためには、前記核粒子中に含まれるチタン含有量をさらに増加させるか、あるいは前記被覆層の厚さをさらに薄くする必要があった。その結果、上記の高い屈折率を有する硬化性塗膜は得られるものの、その耐候性は損なわれる傾向にあった。
According to the invention described in these Patent Documents 2 and 3, in the range of refractive index 1.52 to 1.67, not only has excellent weather resistance, but also other properties such as A curable coating film having excellent properties in properties such as scratch resistance, abrasion resistance, impact resistance, light resistance, sweat resistance, hot water resistance, adhesion, transparency, and dyeability can be obtained.
However, recently, an optical substrate (plastic lens) having a refractive index of 1.70 or more, more specifically, 1.71 to 1.76 has been developed, and coating for forming a curable coating film corresponding to this has been developed. Although a liquid is required, in order to increase the refractive index of the coating film, it is necessary to further increase the titanium content contained in the core particles or to further reduce the thickness of the coating layer. . As a result, although a curable coating film having a high refractive index was obtained, its weather resistance tended to be impaired.

一方、プラスチック基材の表面に前記のハードコート層を形成して、さらにその上に反射防止膜を設けた、眼鏡レンズなどの光学レンズは、耐衝撃性に劣るという欠点を有している。
この欠点を解決する手段としては、(1)熱硬化性ウレタン樹脂と酸化チタンを含有するコロイド状金属酸化物微粒子とを含むプライマー層を形成する方法(たとえば、特許文献4)や、(2)ポリウレタン樹脂と酸化亜鉛、二酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ベリリウム、酸化アンチモン、酸化タングステン、酸化セリウム等の金属酸化物微粒子とを含むプライマー層を形成する方法(たとえば、特許文献5)などが知られている。ここで、前記金属酸化物微粒子は、塗膜の屈折率調整(光の干渉抑制)や塗膜強度を向上させるために添加されているが、上記のハードコート層の場合と同様に、光学レンズの高屈折率化に対応させることを目的として該微粒子中のチタン含有量を高めると、塗膜の耐候性が悪化するという問題があった。
On the other hand, an optical lens such as a spectacle lens in which the hard coat layer is formed on the surface of a plastic substrate and an antireflection film is further provided thereon has a disadvantage that it is inferior in impact resistance.
As means for solving this drawback, (1) a method of forming a primer layer containing a thermosetting urethane resin and colloidal metal oxide fine particles containing titanium oxide (for example, Patent Document 4), (2) A method for forming a primer layer containing polyurethane resin and fine metal oxide particles such as zinc oxide, silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, tin oxide, beryllium oxide, antimony oxide, tungsten oxide, cerium oxide (for example, Patent Document 5) is known. Here, the metal oxide fine particles are added to adjust the refractive index of the coating film (inhibition of light interference) and improve the strength of the coating film. As in the case of the hard coat layer, an optical lens is used. When the titanium content in the fine particles is increased for the purpose of adapting to a higher refractive index, the weather resistance of the coating film is deteriorated.

特開平7−325201号公報JP 7-325201 A 特開平8−048940号公報JP-A-8-048940 特開2000−204301号公報JP 2000-204301 A 特開平6−118203号公報JP-A-6-118203 特開平6―337376号公報JP-A-6-337376

本発明者らは、上記のような問題を解決して高い屈折率と耐候性とを兼ね備えた硬化性塗膜を形成するための塗布液が得られないかどうかについて鋭意研究を重ねた結果、上記のコアシェル構造を有する無機酸化物微粒子中にカリウム化合物(ただし、以下に述べる理由から、酸化物としてのK2Oを除く)を含ませればよいことを見いだし、本発明を完成するに至った。
すなわち、本発明は、カリウム化合物(酸化物としてのK2Oを除くものとし、以下同じ)を特定の範囲で含ませた、コアシェル構造を有する無機酸化物微粒子を提供することを目的としている。さらに、本発明は、前記無機酸化物微粒子を含む水分散ゾルや有機溶媒分散ゾルなどの分散液、および該分散液を用いて調製されたハードコート形成用塗布液やプライマー層形成用塗布液などの光学基材用塗布液を提供することを目的としている。
As a result of intensive studies as to whether or not a coating solution for forming a curable coating film having a high refractive index and weather resistance by solving the above-mentioned problems can be obtained, It has been found that the inorganic oxide fine particles having the core-shell structure may contain a potassium compound (excluding K 2 O as an oxide for the reasons described below), and the present invention has been completed. .
That is, an object of the present invention is to provide inorganic oxide fine particles having a core-shell structure containing a potassium compound (excluding K 2 O as an oxide, the same shall apply hereinafter) in a specific range. Furthermore, the present invention provides a dispersion such as an aqueous dispersion sol or an organic solvent dispersion sol containing the inorganic oxide fine particles, a hard coat forming coating solution or a primer layer forming coating solution prepared using the dispersion, and the like. It aims at providing the coating liquid for optical base materials of this.

本発明に係るコアシェル構造を有する無機酸化物微粒子は、
チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、ケイ素と、ジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物で被覆した無機酸化物微粒子であって、
該微粒子中にカリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたことを特徴としている。
ここで、前記無機酸化物微粒子中には、前記金属元素の酸化物からなる固体酸を含むことが好ましい。
また、前記無機酸化物微粒子中に含まれるカリウム化合物の少なくとも一部は、固体酸と化合した形態で存在することが好ましい。
The inorganic oxide fine particles having a core-shell structure according to the present invention are:
The surface of a core particle composed of titanium oxide fine particles and / or composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon, Inorganic oxide fine particles coated with silicon and an oxide and / or composite oxide of one or more metal elements selected from zirconium, aluminum and antimony,
The fine particles contain a potassium compound (excluding K 2 O as an oxide) in an amount of 1.0 to 8.0% by weight in terms of K 2 O.
Here, it is preferable that the inorganic oxide fine particles contain a solid acid composed of an oxide of the metal element.
Moreover, it is preferable that at least a part of the potassium compound contained in the inorganic oxide fine particles is present in a form combined with a solid acid.

前記カリウム化合物は、前記核粒子中にK2O換算基準で0.0〜5.0重量%含み、前記被覆層中にK2O換算基準で1.0〜7.0重量%含むことが好ましい。
また、前記核粒子は、アナターゼ型の結晶構造を有するチタン系複合酸化物微粒子であることが好ましい。
さらに、前記核粒子は、ルチル型の結晶構造を有するチタン系複合酸化物微粒子であることが好ましい。
The potassium compound is contained in the core particles in an amount of 0.0 to 5.0% by weight in terms of K 2 O, and in the coating layer in an amount of 1.0 to 7.0% by weight in terms of K 2 O. preferable.
The core particles are preferably titanium-based composite oxide fine particles having an anatase type crystal structure.
Further, the core particles are preferably titanium-based composite oxide fine particles having a rutile crystal structure.

前記核粒子上への被覆は、前記核粒子の重量をCで表し、前記被覆層の重量をSで表したとき、その重量比(S/C)が、酸化物基準で7/100〜150/100の範囲となるように行うことが好ましい。
また、前記微粒子の平均粒子径は、動的光散乱法で測定したとき、4〜40nmの範囲にあることが好ましい。
さらに、前記微粒子の比表面積は、70〜450m2/gの範囲にあることが好ましい。
The coating on the core particles is expressed by the weight ratio (S / C) of 7/100 to 150 on the oxide basis when the weight of the core particles is represented by C and the weight of the coating layer is represented by S. / 100 is preferable to be performed.
The average particle size of the fine particles is preferably in the range of 4 to 40 nm when measured by a dynamic light scattering method.
Further, the specific surface area of the fine particles is preferably in the range of 70 to 450 m 2 / g.

本発明に係る分散ゾルは、上記のコアシェル構造を有する無機酸化物微粒子を水中に分散させてなる水分散ゾルであることが好ましい。
さらに、本発明に係る分散ゾルは、上記のコアシェル構造を有する無機酸化物微粒子を水に可溶な有機溶媒中に分散させてなる有機溶媒分散ゾルであることが好ましい。
The dispersion sol according to the present invention is preferably a water dispersion sol obtained by dispersing the inorganic oxide fine particles having the core-shell structure in water.
Furthermore, the dispersion sol according to the present invention is preferably an organic solvent dispersion sol obtained by dispersing the inorganic oxide fine particles having the core-shell structure in an organic solvent soluble in water.

本発明に係る光学基材用塗布液は、
(1)チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、ケイ素と、ジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物で被覆した無機酸化物微粒子中に、カリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたコアシェル構造を有する無機酸化物微粒子、および
(2)下記一般式(I)で表される有機ケイ素化合物および/またはその加水分解物
を含むことを特徴としている。
1 a2 bSi(OR34-(a+b) (I)
(式中、R1は炭素数1〜6のアルキル基、ビニル基を含有する炭素数8以下の有機基、エポキシ基を含有する炭素数8以下の有機基、メタクリロキシ基を含有する炭素数8以下の有機基、メルカプト基を含有する炭素数1〜5の有機基またはアミノ基を含有する炭素数1〜5の有機基であり、R2は炭素数1〜3のアルキル基、アルキレン基、シクロアルキル基もしくはハロゲン化アルキル基またはアリル基であり、R3は炭素数1〜3のアルキル基、アルキレン基またはシクロアルキル基である。また、aは0または1の整数、bは0、1または2の整数である。)
The coating liquid for optical substrates according to the present invention is
(1) Titanium oxide fine particles and / or core particles composed of composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon Potassium compounds (as oxides) are formed in inorganic oxide fine particles whose surface is coated with silicon and an oxide and / or composite oxide of one or more metal elements selected from zirconium, aluminum and antimony. Inorganic oxide fine particles having a core-shell structure containing 1.0 to 8.0% by weight (excluding K 2 O) in terms of K 2 O, and (2) organosilicon represented by the following general formula (I) It is characterized by containing a compound and / or a hydrolyzate thereof.
R 1 a R 2 b Si (OR 3 ) 4- (a + b) (I)
(In the formula, R 1 is an alkyl group having 1 to 6 carbon atoms, an organic group having 8 or less carbon atoms containing a vinyl group, an organic group having 8 or less carbon atoms containing an epoxy group, and 8 carbon atoms containing a methacryloxy group. The following organic group, an organic group having 1 to 5 carbon atoms containing a mercapto group or an organic group having 1 to 5 carbon atoms containing an amino group, R 2 is an alkyl group having 1 to 3 carbon atoms, an alkylene group, A cycloalkyl group, a halogenated alkyl group or an allyl group, R 3 is an alkyl group having 1 to 3 carbon atoms, an alkylene group or a cycloalkyl group, a is an integer of 0 or 1, b is 0, 1 Or an integer of 2.)

前記無機酸化物微粒子は、有機ケイ素化合物またはアミン系化合物で表面処理されたものであることが好ましい。
また、前記光学基材用塗布液中に、さらに未架橋エポキシ化合物を含むことが好ましい。
さらに、前記光学基材用塗布液は、ハードコート層形成用塗布液であることが好ましい。
It is preferable that the inorganic oxide fine particles are surface-treated with an organosilicon compound or an amine compound.
Moreover, it is preferable that the coating liquid for optical substrates further contains an uncrosslinked epoxy compound.
Furthermore, it is preferable that the coating liquid for an optical substrate is a coating liquid for forming a hard coat layer.

本発明に係る光学基材用塗布液は、
(1)チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、ケイ素と、ジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物で被覆した無機酸化物微粒子中に、カリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたコアシェル構造を有する無機酸化物微粒子、および
(2)熱硬化性樹脂または熱可塑性樹脂
を含むことを特徴としている。
The coating liquid for optical substrates according to the present invention is
(1) Titanium oxide fine particles and / or core particles composed of composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon Potassium compounds (as oxides) are formed in inorganic oxide fine particles whose surface is coated with silicon and an oxide and / or composite oxide of one or more metal elements selected from zirconium, aluminum and antimony. inorganic oxide particles having a K 2 except O) of K 2 O equivalent value at 1.0 to 8.0 wt% included so-shell structure, and (2) include a thermosetting resin or a thermoplastic resin It is a feature.

前記無機酸化物微粒子は、有機ケイ素化合物またはアミン系化合物で表面処理されたものであることが好ましい。
また、前記熱硬化性樹脂は、ウレタン系樹脂、エポキシ系樹脂、メラミン系樹脂およびシリコーン系樹脂から選ばれた1種または2種以上の熱硬化性樹脂であることが好ましい。
さらに、前記熱可塑性樹脂は、アクリル系樹脂、ウレタン系樹脂およびエステル系樹脂から選ばれた1種または2種以上の熱可塑性樹脂であることが好ましい。
また、前記光学基材用塗布液は、プライマー層形成用塗布液であることが好ましい。
なお、上記の光学基材用塗布液を塗布するための光学基材は、プラスチックレンズであることが好ましい。
It is preferable that the inorganic oxide fine particles are surface-treated with an organosilicon compound or an amine compound.
Moreover, it is preferable that the said thermosetting resin is 1 type, or 2 or more types of thermosetting resins chosen from urethane type resin, epoxy resin, melamine type resin, and silicone type resin.
Further, the thermoplastic resin is preferably one or more thermoplastic resins selected from acrylic resins, urethane resins and ester resins.
The optical substrate coating solution is preferably a primer layer forming coating solution.
In addition, it is preferable that the optical base material for apply | coating said coating liquid for optical base materials is a plastic lens.

本発明に係るコアシェル構造を有する無機酸化物微粒子によれば、該微粒子中に含まれるカリウム化合物によってチタン酸化物の持つ光触媒活性を抑えることができるので、該チタン酸化物の含有量を高めることができる。これにより、光触媒活性能が比較的低く、しかも高屈折率特性を備えた無機酸化物微粒子が得られる。
また、本発明に係る前記無機酸化物微粒子を含む塗布液、例えばハードコート層形成用塗布液を用いれば、1.52以上、特に1.70以上の比較的高い屈折率を有し、しかも耐候性に優れた硬化性塗膜を基材上に容易に形成することができる。さらに、耐擦傷性、耐摩耗性、耐衝撃性、耐光性、耐汗性、耐熱水性、密着性、染色性などの性状に優れた無色透明な硬化性塗膜を形成することができる。
よって、本発明に係る光学基材用塗布液は、プラスチックレンズなどの光学基材上に、ハードコート層やプライマー層を形成する際に好適に使用することができる。
According to the inorganic oxide fine particles having the core-shell structure according to the present invention, the photocatalytic activity of the titanium oxide can be suppressed by the potassium compound contained in the fine particles, so that the content of the titanium oxide can be increased. it can. Thereby, inorganic oxide fine particles having a relatively low photocatalytic activity and a high refractive index characteristic can be obtained.
Further, when a coating liquid containing the inorganic oxide fine particles according to the present invention, for example, a coating liquid for forming a hard coat layer is used, it has a relatively high refractive index of 1.52 or more, particularly 1.70 or more, and weather resistance. A curable coating film having excellent properties can be easily formed on a substrate. Furthermore, a colorless and transparent curable coating film excellent in properties such as scratch resistance, abrasion resistance, impact resistance, light resistance, sweat resistance, hot water resistance, adhesion, and dyeability can be formed.
Therefore, the coating liquid for optical substrates according to the present invention can be suitably used when forming a hard coat layer or a primer layer on an optical substrate such as a plastic lens.

以下、本発明に係るコアシェル構造を有する無機酸化物微粒子、該微粒子を含む分散ゾルおよび光学基材用塗布液について具体的に説明する。   Hereinafter, the inorganic oxide fine particles having a core-shell structure according to the present invention, the dispersion sol containing the fine particles, and the coating liquid for optical substrates will be specifically described.

[無機酸化物微粒子]
本発明に係るコアシェル構造を有する無機酸化物微粒子は、
チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、ケイ素と、ジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物で被覆した無機酸化物微粒子であって、
該微粒子中にカリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたものである。
[Inorganic oxide fine particles]
The inorganic oxide fine particles having a core-shell structure according to the present invention are:
The surface of a core particle composed of titanium oxide fine particles and / or composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon, Inorganic oxide fine particles coated with silicon and an oxide and / or composite oxide of one or more metal elements selected from zirconium, aluminum and antimony,
The fine particles contain a potassium compound (excluding K 2 O as an oxide) in an amount of 1.0 to 8.0% by weight on a K 2 O conversion basis.

本発明において、コアシェル構造を有する無機酸化物微粒子とは、金属元素の酸化物微粒子および/または複合酸化物微粒子からなる核粒子の表面を、金属元素の酸化物および/または複合酸化物で被覆した無機酸化物微粒子を意味し、これらの成分についてさらに詳しく述べれば、以下の通りである。
核粒子としての前記チタニウム酸化物微粒子は、化学式TiO2で表される化合物の微粒子である。しかし、前記チタン系複合酸化物微粒子には、チタニウムと前記元素とを組み合わせて得られる様々な化合物の微粒子があり、これらの化合物の一部を化学式で模式的に表せば、[化1]および[化2]に示す通りである。
また、その結晶構造は、該化合物の調製条件(使用元素や各元素の含有量等を含む)によっても異なるが、主にアナターゼ型、ルチル型またはその混在型に分類される。しかし、本発明においては、アナターゼ型の結晶構造を有するチタン系複合酸化物の微粒子またはルチル型の結晶構造を有するチタン系複合酸化物の微粒子であることが好ましい。
In the present invention, the inorganic oxide fine particles having a core-shell structure are obtained by coating the surface of core particles composed of metal element oxide fine particles and / or composite oxide fine particles with metal element oxide and / or composite oxide. Meaning inorganic oxide fine particles, these components will be described in more detail as follows.
The titanium oxide fine particles as the core particles are fine particles of a compound represented by the chemical formula TiO 2 . However, the titanium-based composite oxide fine particles include fine particles of various compounds obtained by combining titanium and the element. If some of these compounds are schematically represented by chemical formulas, [Chemical Formula 1] and As shown in [Chemical Formula 2].
The crystal structure is mainly classified into anatase type, rutile type or a mixed type thereof, although it varies depending on the preparation conditions of the compound (including elements used and the content of each element). However, in the present invention, fine particles of a titanium-based composite oxide having an anatase type crystal structure or fine particles of a titanium-based composite oxide having a rutile type crystal structure are preferable.

Figure 0005255270
Figure 0005255270

Figure 0005255270
Figure 0005255270

また、被覆物としての前記複合酸化物には、ケイ素と前記元素とを組み合わせて得られる複数の化合物があり、これらの化合物の一部を化学式で模式的に表せば、[化3]に示す通りである。 In addition, the composite oxide as a coating includes a plurality of compounds obtained by combining silicon and the element. If a part of these compounds is schematically represented by a chemical formula, [Chemical Formula 3] Street.

Figure 0005255270
Figure 0005255270

上記の無機酸化物微粒子において、前記核粒子上への前記複合酸化物の被覆は、核粒子の重量をCで表し、被覆層の重量をSで表したとき、その重量比(S/C)が、酸化物基準で7/100〜150/100、好ましくは12/100〜40/100の範囲となるように行うことが望ましい。ここで、前記重量比が7/100未満であると、チタン酸化物による光触媒活性を抑えることが難しくなり、結果として塗膜の耐候性が悪くなったり、あるいは紫外線照射時に塗膜の変色(たとえば、青灰色に変化)が起こったりするので、好ましくない。また、前記重量比が150/100を超えると、前記核粒子を含む水分散ゾルと前記被覆層を形成するための水溶液を混合したとき、該水分散ゾルの安定性が悪くなるばかりでなく、被覆層が厚くなって前記核粒子中に含まれるチタン系酸化物を遮蔽する度合いが高まるため、結果として塗膜の屈折率を低くしてしまうので、好ましくない   In the inorganic oxide fine particles, the coating of the composite oxide on the core particles is expressed by weight ratio (S / C) when the weight of the core particles is represented by C and the weight of the coating layer is represented by S. However, it is desirable to carry out in a range of 7/100 to 150/100, preferably 12/100 to 40/100 on the oxide basis. Here, when the weight ratio is less than 7/100, it is difficult to suppress the photocatalytic activity due to the titanium oxide, and as a result, the weather resistance of the coating film is deteriorated, or the coating film is discolored during ultraviolet irradiation (for example, , Change to blue-gray) is not preferable. Further, when the weight ratio exceeds 150/100, when the aqueous dispersion sol containing the core particles and the aqueous solution for forming the coating layer are mixed, not only the stability of the aqueous dispersion sol is deteriorated, Since the degree of shielding the titanium-based oxide contained in the core particles is increased by increasing the thickness of the coating layer, the refractive index of the coating film is lowered as a result.

本発明において、前記無機酸化物微粒子中には、カリウム化合物をK2O換算基準で1.0〜8.0重量%、好ましくは1.5〜6.5重量%含ませることが必要である。ここで、前記含有量が1.0重量%未満であると、塗膜の耐候性を向上させることが難しくなったり、あるいは塗膜の変色を抑えることが難しくなったりするので、好ましくない。また、前記含有量が8.0重量%を超えると、該カリウム化合物が溶出して水分散ゾルのpHを高めてしまうため、結果として該水分散ゾルの安定性が悪くなるので、好ましくない。
しかし、本発明においては、カリウム酸化物としてのK2Oは、前記カリウム化合物の中から除外される。これは、K2O自体が比較的安定であるため、本発明でいう「塗膜の耐候性」を向上させる効能は殆どないからである。さらに付言すれば、本発明に係る前記無機酸化物微粒子の調製工程において、前記のK2Oが該微粒子中に形成されることもない。
In the present invention, it is necessary that the inorganic oxide fine particles contain a potassium compound in an amount of 1.0 to 8.0% by weight, preferably 1.5 to 6.5% by weight in terms of K 2 O. . Here, when the content is less than 1.0% by weight, it is difficult to improve the weather resistance of the coating film, or it is difficult to suppress discoloration of the coating film, which is not preferable. On the other hand, when the content exceeds 8.0% by weight, the potassium compound is eluted and the pH of the water-dispersed sol is increased. As a result, the stability of the water-dispersed sol is deteriorated, which is not preferable.
However, in the present invention, K 2 O as a potassium oxide is excluded from the potassium compounds. This is because K 2 O itself is relatively stable and therefore has little effect on improving the “weather resistance of the coating film” in the present invention. In addition, in the preparation process of the inorganic oxide fine particles according to the present invention, the K 2 O is not formed in the fine particles.

さらに、前記カリウム化合物は、前記核粒子中にK2O換算基準で0.0〜5.0重量%、好ましくは1.0〜4.5重量%含み、前記被覆層中にK2O換算基準で1.0〜7.0重量%、好ましくは1.5〜6.5重量%含むことが望ましい。ここで、前記核粒子中には、カリウム化合物を必ずしも含ませる必要はないが、チタン系酸化物(チタニウム酸化物のほかに、チタン系複合酸化物を含む)の光触媒活性を抑えるためには、K2O換算基準で5.0重量%以下の範囲から適宜選択して含ませることが好ましい。しかし、当該含有量が5.0重量%を超えると、水分散ゾルの安定性が悪くなるので、好ましくない。
一方、前記被覆層中に含ませるカリウム含有量は、前記核粒子中に含まれるカリウム含有量などによっても異なるが、K2O換算基準で1.0重量%以上とすることが好ましい。ここで、当該含有量が1.0重量%未満であると、粒子の成長が必要以上に促進されることがあり、また前記含有量が7.0重量%を超えると、粒子の安定性が悪くなるので、好ましくない。
Further, the potassium compound, the 0.0 to 5.0 wt% in the nucleus particles in K 2 O equivalent value preferably comprises 1.0 to 4.5 wt%, K 2 O converted to the coating layer It is desirable to contain 1.0 to 7.0% by weight, preferably 1.5 to 6.5% by weight on the basis. Here, the core particles do not necessarily contain a potassium compound, but in order to suppress the photocatalytic activity of a titanium-based oxide (including a titanium-based composite oxide in addition to titanium oxide) It is preferable to appropriately select from the range of 5.0% by weight or less in terms of K 2 O conversion. However, when the content exceeds 5.0% by weight, the stability of the water-dispersed sol is deteriorated, which is not preferable.
On the other hand, the potassium content contained in the coating layer varies depending on the potassium content contained in the core particles, but is preferably 1.0% by weight or more on a K 2 O conversion basis. Here, if the content is less than 1.0% by weight, particle growth may be promoted more than necessary, and if the content exceeds 7.0% by weight, the stability of the particles may be increased. Since it gets worse, it is not preferable.

前記無機酸化物微粒子中には、該微粒子の調製時に副生される前記金属元素の酸化物からなる固体酸、すなわちZrO2・TiO2、ZrO2・SiO2、SiO2・TiO2、SnO2・TiO2、SnO2・SiO2、SiO2・Al23、SiO2・Sb25、Sb25・ZrO2などの固体酸が含まれることが好ましい。これは、前記カリウム化合物の共存下でこれらの固体酸が多く含まれると、塗膜の耐候性を向上させるばかりでなく、紫外線照射時の塗膜の変色(たとえば、青灰色への変色)を抑えることができるためである。その理由は、必ずしも明らかではないが、前記固体酸の作用により、紫外線を照射した時に起こる種々の反応(たとえば、Ti4+ + e- → Ti3+)が抑制されるためと考えられる。
また、チタン系酸化物(チタニウム酸化物のほかに、チタン系複合酸化物を含む)の表面には、塩基として働くOH基と、酸として働くO・H基が存在していると言われている。そこで、前者の活性基(すなわち、OH基)に対しては、前記の固体酸が作用し、さらに後者の活性基(すなわち、O・H基)に対しては、前記のカリウムイオンが作用して、前記チタン系酸化物の表面活性を抑制していることが考えられる。さらに、これらの相互作用は、OH基のフリーラジカル化(・OH)を抑制して、種々の有機物(たとえば、プラスチックレンズやプライマー組成物など)との反応を阻害していることも考えられる。
In the inorganic oxide fine particles, a solid acid composed of an oxide of the metal element by-produced when the fine particles are prepared, that is, ZrO 2 · TiO 2 , ZrO 2 · SiO 2 , SiO 2 · TiO 2 , SnO 2. · TiO 2, SnO 2 · SiO 2, SiO 2 · Al 2 O 3, SiO 2 · Sb 2 O 5, Sb 2 O 5 · ZrO 2 may contain a solid acid, such as preferred. This is because when these solid acids are contained in the presence of the potassium compound, not only the weather resistance of the coating film is improved, but also the coating film is discolored during ultraviolet irradiation (for example, discoloration to blue-gray). This is because it can be suppressed. The reason is not necessarily clear, but it is considered that various reactions (for example, Ti 4+ + e → Ti 3+ ) that occur when irradiated with ultraviolet rays are suppressed by the action of the solid acid.
In addition, it is said that there are OH groups that act as bases and O.H groups that act as acids on the surface of titanium-based oxides (including titanium-based composite oxides in addition to titanium oxides). Yes. Therefore, the solid acid acts on the former active group (namely, OH group), and the potassium ion acts on the latter active group (namely, O.H group). It is considered that the surface activity of the titanium-based oxide is suppressed. Furthermore, it is considered that these interactions inhibit the reaction with various organic substances (for example, plastic lenses, primer compositions, etc.) by suppressing free radicalization (.OH) of OH groups.

さらに、前記無機酸化物微粒子中に含まれるカリウム化合物の少なくとも一部は、該微粒子中に含まれる前記固体酸と化合した形態で存在することが好ましい。すなわち、該微粒子中に上記のような固体酸が形成されると、前記無機酸化物微粒子の調製時に加えられたカリウム化合物に由来するカリウムイオンがこれらの固体酸と反応して固定化され易いため、たとえカリウムイオンの量を増加させても、分散液中のpH変動は小さく、またゾルの安定性に対しても余り大きな影響を及ぼすことがないためである。
なお、このように、カリウムイオンと固体酸とが反応して得られる化合物としては、例えば、xSiO2・yK・zZrO2、xSiO2・yK・zTiO2、xSiO2・yK・zSnO2などが挙げられる。
このようにして、前記無機酸化物微粒子の調製工程で加えられたカリウム化合物は、イオン化されて上記のような作用効果をもたらし、結果として塗膜の耐候性を向上させているものと察せられる。なお、カリウム酸化物としてのK2Oの場合は、結晶性でもあり、上記のような作用効果をもたらすことができないばかりか、前記微粒子中に固定することが難しいので、これを多く含むとゾルの安定性にも大きな影響を及ぼすことになる。
Furthermore, it is preferable that at least a part of the potassium compound contained in the inorganic oxide fine particles is present in a form combined with the solid acid contained in the fine particles. That is, when the solid acid as described above is formed in the fine particles, potassium ions derived from the potassium compound added at the time of preparing the inorganic oxide fine particles are easily reacted with these solid acids and immobilized. This is because even if the amount of potassium ions is increased, the pH variation in the dispersion is small and the sol stability is not significantly affected.
Examples of compounds obtained by reacting potassium ions with solid acids in this way include xSiO 2 .yK.zZrO 2 , xSiO 2 .yK.zTiO 2 , xSiO 2 .yK.zSnO 2 and the like. It is done.
Thus, it is thought that the potassium compound added in the preparation process of the inorganic oxide fine particles is ionized to bring about the above-described effects, thereby improving the weather resistance of the coating film. In addition, in the case of K 2 O as a potassium oxide, it is also crystalline, and not only can not provide the above-mentioned effects but also difficult to fix in the fine particles. It will have a great impact on the stability of the product.

前記無機酸化物微粒子の平均粒子径は、下記に記載する動的光散乱法で測定したとき、4〜40nmの範囲にあることが好ましい。ここで、前記平均粒子径が4nm未満であると、この無機酸化物微粒子を含むゾルを所望の濃度まで濃縮したとき、該ゾルの安定性が悪くなり、また前記平均粒子径が40nmを超えると、塗膜の透過率が悪くなるので、好ましくない。
また、前記無機酸化物微粒子の比表面積は、70〜450m2/gの範囲にあることが好ましい。ここで、前記比表面積が70m2/g未満であると、塗膜の透過率が悪くなり、また前記比表面積が450m2/gを超えると、この無機酸化物微粒子を含むゾルを所望の濃度まで濃縮したとき、該ゾルの安定性が悪くなるので、好ましくない。
The average particle diameter of the inorganic oxide fine particles is preferably in the range of 4 to 40 nm when measured by the dynamic light scattering method described below. Here, when the average particle diameter is less than 4 nm, when the sol containing the inorganic oxide fine particles is concentrated to a desired concentration, the stability of the sol is deteriorated, and when the average particle diameter exceeds 40 nm. Since the transmittance of the coating film is deteriorated, it is not preferable.
The specific surface area of the inorganic oxide fine particles is preferably in the range of 70 to 450 m 2 / g. Here, when the specific surface area is less than 70 m 2 / g, the transmittance of the coating film is deteriorated, and when the specific surface area exceeds 450 m 2 / g, a sol containing the inorganic oxide fine particles is obtained at a desired concentration. When the solution is concentrated to a low concentration, the stability of the sol is deteriorated.

[分散ゾル]
水分散ゾル
本発明に係るコアシェル構造を有する無機酸化物微粒子を含む水分散ゾルは、前記無機酸化物微粒子を純水などの水中に均一に分散させてなるもので、該無機酸化物微粒子の固形分含有量が5〜30重量%の範囲にあることが好ましい。ここで、前記固形分含有量が5重量%未満であると、表面処理剤との反応性が悪くなるばかりでなく、溶媒置換に使用する溶媒使用量が多くなって、経済的でなくなる。また、前記固形分含有量が30重量%を超えると、水分散ゾルの安定性が悪くなるので、好ましくない。
[Dispersed sol]
Water-dispersed sol A water-dispersed sol containing inorganic oxide fine particles having a core-shell structure according to the present invention is obtained by uniformly dispersing the inorganic oxide fine particles in water such as pure water. It is preferable that the content is in the range of 5 to 30% by weight. Here, when the solid content is less than 5% by weight, not only the reactivity with the surface treatment agent is deteriorated, but also the amount of the solvent used for solvent substitution is increased, which is not economical. On the other hand, when the solid content exceeds 30% by weight, the stability of the water-dispersed sol is deteriorated, which is not preferable.

有機溶媒分散ゾル
本発明に係るコアシェル構造を有する無機酸化物微粒子を含む有機溶媒分散ゾルは、前記無機酸化物微粒子を水に可溶な有機溶媒などの中に均一に分散させてなるもので、該無機酸化物微粒子の固形分含有量が20〜40重量%の範囲にあることが好ましい。
このような水に可溶な有機溶媒としては、メタノ-ル、エタノ-ル、ブタノール、プロパノール、イソプロピルアルコ-ルなどのアルコール類や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類から選択して使用することが好ましい。その理由は、塗布膜の乾燥速度が比較的速く、成膜し易いためである。ただし、必要に応じて前記の水に可溶な有機溶媒の一部または全部を、水に難溶性な有機溶媒と置換して使用してもよいことは勿論である。ここで、前記固形分含有量が20重量%未満であると、光学基材用塗布液の固形分含有量が低下するため、塗膜の膜厚が薄くなって、膜硬度が低下するので、好ましくない。また、前記固形分含有量が40重量%を超えると、有機溶媒分散ゾルの安定性が悪くなるので、好ましくない。
Organic solvent dispersion sol An organic solvent dispersion sol containing inorganic oxide fine particles having a core-shell structure according to the present invention is obtained by uniformly dispersing the inorganic oxide fine particles in an organic solvent soluble in water, The solid content of the inorganic oxide fine particles is preferably in the range of 20 to 40% by weight.
Examples of such water-soluble organic solvents include alcohols such as methanol, ethanol, butanol, propanol, isopropyl alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether. It is preferable to use selected from ethers such as The reason is that the drying speed of the coating film is relatively fast and it is easy to form a film. However, as a matter of course, a part or all of the organic solvent soluble in water may be used by substituting with an organic solvent hardly soluble in water as necessary. Here, when the solid content is less than 20% by weight, the solid content of the coating liquid for an optical substrate is reduced, so the film thickness of the coating film is reduced, and the film hardness is reduced. It is not preferable. On the other hand, if the solid content exceeds 40% by weight, the stability of the organic solvent-dispersed sol is deteriorated, which is not preferable.

[調製方法]
本発明に係るコアシェル構造を有する無機酸化物微粒子および該微粒子を含む分散ゾルの調製方法を述べれば、概ね以下の通りである。ただし、本発明は、前記無機酸化物微粒子中にカリウム化合物(酸化物としてのK2Oを除く)を特定の範囲で含ませることを特徴とするものであるので、これらの調製方法に限定されるものではない。
[Preparation method]
The preparation method of inorganic oxide fine particles having a core-shell structure and a dispersed sol containing the fine particles according to the present invention is generally as follows. However, the present invention is characterized in that the inorganic oxide fine particles contain a potassium compound (excluding K 2 O as an oxide) in a specific range, and thus is limited to these preparation methods. It is not something.

アナターゼ型結晶構造を有するチタン系複合酸化物微粒子
(1)核粒子としての無機酸化物微粒子を含む水分散ゾルの調製例
四塩化チタンをTiO2換算基準で約1〜3重量%含む四塩化チタン水溶液と、アンモニア(NH3)を約10〜20重量%含むアンモニア水とを混合して、pH約8〜9の白色スラリー液を得る。次いで、このスラリーを濾過した後、純水で洗浄して、固形分含有量が約8〜10重量%の含水チタン酸ケーキを得る。
次に、このケーキに、過酸化水素を約30〜40重量%含む過酸化水素水と純水とを加えた後、約70〜90℃の温度で約0.5〜5時間、撹拌下で加熱して、過酸化チタン酸をTiO2換算基準で約1〜3重量%含む過酸化チタン酸水溶液を得る。この過酸化チタン酸水溶液は、透明な黄褐色でpHは約7.5〜8.5である。
Titanium-based composite oxide particles (1) of titanium tetrachloride containing about 1-3 wt% Preparation Example of titanium tetrachloride aqueous dispersion sol containing inorganic oxide particles as core particles in terms of TiO 2 basis having an anatase type crystal structure An aqueous solution and aqueous ammonia containing about 10 to 20% by weight of ammonia (NH 3 ) are mixed to obtain a white slurry having a pH of about 8 to 9. The slurry is then filtered and washed with pure water to obtain a hydrous titanate cake having a solid content of about 8 to 10% by weight.
Next, hydrogen peroxide containing about 30 to 40% by weight of hydrogen peroxide and pure water were added to the cake, and then stirred at a temperature of about 70 to 90 ° C. for about 0.5 to 5 hours. By heating, an aqueous solution of titanate peroxide containing about 1 to 3% by weight of titanate peroxide based on TiO 2 is obtained. This aqueous solution of titanic acid peroxide is transparent yellowish brown and has a pH of about 7.5 to 8.5.

次いで、前記過酸化チタン酸水溶液に、平均粒子径が約4〜12nmのシリカ微粒子を含む、酸化ケイ素(SiO2)を約10〜20重量%含むシリカゾルと純水とを混合して、オートクレーブ中で約160〜170℃の温度で約15〜40時間、加熱する。
次に、得られたゾルを室温まで冷却した後、限外濾過膜装置を用いて濃縮して、固形分含有量が約5〜30重量%の水分散ゾルを得る。この水分散ゾル中に含まれる無機酸化物微粒子は、アナターゼ型の結晶構造を有する、チタンとケイ素とを含む複合酸化物微粒子であり、本発明でいう「核粒子」として使用される。
Then, the peroxide titanate solution, the average particle diameter comprising silica particulates about 4~12Nm, by mixing a silica sol and pure water containing about 10 to 20 wt% of silicon oxide (SiO 2), in an autoclave At about 160-170 ° C. for about 15-40 hours.
Next, the obtained sol is cooled to room temperature and then concentrated using an ultrafiltration membrane device to obtain an aqueous dispersion sol having a solid content of about 5 to 30% by weight. The inorganic oxide fine particles contained in the water-dispersed sol are composite oxide fine particles containing titanium and silicon having an anatase type crystal structure, and are used as “nuclear particles” in the present invention.

しかし、この方法から得られる無機酸化物微粒子には、カリウム化合物が含まれていないので、該微粒子中にカリウム化合物を含ませるためには、前記前記過酸化チタン酸水溶液にシリカゾルと純水とを加える際に、水酸化カリウム水溶液などを所望量、添加してオートクレーブ中で加熱処理するか、あるいは得られた水分散ゾル中に水酸化カリウム水溶液を所望量、添加すればよい。ただし、核粒子として使用される当該無機酸化物微粒子中には、必ずしもカリウム化合物を含む必要はないので、このような添加操作を行わなくてもよい。 However, since the inorganic oxide fine particles obtained from this method do not contain a potassium compound, in order to contain the potassium compound in the fine particles, silica sol and pure water are added to the aqueous peroxide titanate solution. At the time of addition, a desired amount of an aqueous potassium hydroxide solution may be added and heat-treated in an autoclave, or a desired amount of an aqueous potassium hydroxide solution may be added to the obtained water-dispersed sol. However, since the inorganic oxide fine particles used as the core particles do not necessarily contain a potassium compound, such an addition operation may not be performed.

なお、前記無機酸化物微粒子中に含まれるカリウム化合物の量が、K2O換算基準で5.0重量%を超える場合、あるいは所望量以上のカリウム化合物を含む場合には、添加される水酸化カリウムの量を調整するか、あるいはオートクレーブから得られた前記ゾル中に陽イオン交換樹脂を加えて撹拌した後、カリウムイオンを取り込んだ陽イオン交換樹脂を分離することによって、カリウム化合物の含有量を低減させることが好ましい。
このようにして、カリウム化合物をK2O換算基準で0.0〜5.0重量%含む無機酸化物微粒子(核粒子)を含む水分散ゾルを得ることができる。
さらに、前記無機酸化物微粒子中に、その他の金属成分、たとえばジルコニウムやセリウムなどを含ませる場合には、前記前記過酸化チタン酸水溶液にシリカゾルと純水とを加える際に、これらの金属を含む水溶液を所望量、添加してオートクレーブ中で加熱処理すればよい。これにより、チタンとこれらの金属とを含む複合酸化物微粒子を含む水分散ゾルが得られる。
In addition, when the amount of the potassium compound contained in the inorganic oxide fine particles exceeds 5.0% by weight on a K 2 O conversion basis, or when it contains a desired amount or more of the potassium compound, the added hydroxide is added. The amount of potassium compound is adjusted by adjusting the amount of potassium or by adding a cation exchange resin to the sol obtained from the autoclave and stirring, and then separating the cation exchange resin incorporating potassium ions. It is preferable to reduce.
In this manner, an aqueous dispersion sol containing inorganic oxide fine particles (core particles) containing 0.0 to 5.0% by weight of a potassium compound in terms of K 2 O can be obtained.
Furthermore, when other inorganic components such as zirconium and cerium are included in the inorganic oxide fine particles, these metals are included when silica sol and pure water are added to the aqueous solution of titanic peroxide. What is necessary is just to heat-process in an autoclave after adding desired amount of aqueous solution. As a result, an aqueous dispersion sol containing composite oxide fine particles containing titanium and these metals is obtained.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製例
オキシ塩化ジルコニルをZrO2換算基準で約1〜3重量%含むオキシ塩化ジルコニウム水溶液に、アンモニア(NH3)を約10〜20重量%含むアンモニア水を撹拌下で徐々に添加して、ジルコニウム含有ゲルを含むpH約8〜9のスラリー液を得る。次いで、このスラリーを濾過した後、純水で洗浄して、ジルコニウム成分をZrO2換算基準で約9〜11重量%含むケーキを得る。
次に、このケーキに、水酸化カリウム水溶液と純水を加えてアルカリ性にした後、過酸化水素(H22)を約30〜40重量%含む過酸化水素水を加えて、約30〜50℃の温度で加熱する。これにより、過酸化ジルコン酸をZrO2換算基準で約0.3〜1重量%含む過酸化ジルコン酸水溶液を得る。この過酸化ジルコン酸水溶液のpHは、約11〜13である。
(2) Preparation Example of Aqueous Dispersion Sol Containing Coated Inorganic Oxide Fine Particles Aqueous zirconium oxychloride containing about 1 to 3% by weight of zirconyl oxychloride in terms of ZrO 2 , and about 10 to 20% of ammonia (NH 3 ) % Aqueous ammonia is gradually added under stirring to obtain a slurry liquid having a pH of about 8 to 9 containing zirconium-containing gel. The slurry is then filtered and then washed with pure water to obtain a cake containing about 9 to 11% by weight of the zirconium component on a ZrO 2 conversion basis.
Next, after adding potassium hydroxide aqueous solution and pure water to the cake to make it alkaline, hydrogen peroxide containing about 30 to 40% by weight of hydrogen peroxide (H 2 O 2 ) is added, and about 30 to Heat at a temperature of 50 ° C. As a result, an aqueous zirconate peroxide solution containing about 0.3 to 1% by weight of zirconate peroxide in terms of ZrO 2 is obtained. The pH of this aqueous zirconate peroxide solution is about 11-13.

一方、市販の水ガラスを純水にて希釈した後、陽イオン交換樹脂を用いて脱アルカリして、ケイ素成分をSiO2換算基準で約1〜3重量%含む珪酸水溶液を得る。この珪酸水溶液のpHは、約2〜3である。
次に、上記で得られた無機酸化物微粒子(核粒子)を含む水分散ゾルに純水を加えて撹拌することにより、固形分含有量が約1〜3重量%の水分散ゾルを得る。次いで、この水分散ゾルを約80〜95℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液と珪酸水溶液を徐々に添加し、さらに添加終了後約0.5〜2時間熟成する。
次いで、得られた混合液のpHを必要に応じて7〜10に調整した後、この混合液をオートクレーブに入れて、約160〜170℃の温度で約16〜20時間、加熱する。
On the other hand, after diluting a commercially available water glass with pure water, it is dealkalized using a cation exchange resin to obtain a silicic acid aqueous solution containing about 1 to 3% by weight of a silicon component on a SiO 2 conversion basis. The pH of this aqueous silicic acid solution is about 2-3.
Next, pure water is added to the aqueous dispersion sol containing the inorganic oxide fine particles (nuclear particles) obtained above and stirred to obtain an aqueous dispersion sol having a solid content of about 1 to 3% by weight. Next, the aqueous dispersion sol is heated to a temperature of about 80 to 95 ° C., and then the zirconic acid aqueous solution and the silicic acid aqueous solution are gradually added thereto, followed by aging for about 0.5 to 2 hours after the addition.
Subsequently, after adjusting the pH of the obtained liquid mixture to 7-10 as needed, this liquid mixture is put into an autoclave and it heats at the temperature of about 160-170 degreeC for about 16-20 hours.

次に、得られたゾルを室温まで冷却した後、限外濾過膜装置を用いて濃縮して、固形分含有量が約10〜30重量%の水分散ゾルを得る。この水分散ゾル中に含まれる無機酸化物微粒子は、アナターゼ型の結晶構造を有する、チタンとケイ素とを含む複合酸化物微粒子(核粒子)の表面を、ジルコニウムとケイ素とを含む複合酸化物で被覆してなる無機酸化物微粒子である。この無機酸化物微粒子を含む水分散ゾルの外観は、通常、透明な淡乳白色を呈している。 Next, the obtained sol is cooled to room temperature and then concentrated using an ultrafiltration membrane device to obtain an aqueous dispersion sol having a solid content of about 10 to 30% by weight. The inorganic oxide fine particles contained in the water-dispersed sol are complex oxides containing zirconium and silicon on the surface of the composite oxide fine particles (core particles) containing titanium and silicon having an anatase type crystal structure. It is inorganic oxide fine particles formed by coating. The appearance of the water-dispersed sol containing the inorganic oxide fine particles is usually transparent and light milky white.

なお、前記無機酸化物微粒子の被覆層中に含まれるカリウム化合物の量が、K2O換算基準で7.0重量%を超える場合、あるいは所望量以上のカリウム化合物を含む場合には、添加される水酸化カリウムの量を調整するか、あるいはオートクレーブから得られた前記ゾル中に陽イオン交換樹脂を加えて撹拌した後、カリウムイオンを取り込んだ陽イオン交換樹脂を分離することによって、カリウム化合物の含有量を低減させることが好ましい。
一方、前記カリウム化合物の含有量が、K2O換算基準で1.0重量%未満である場合には、添加される水酸化カリウムの量を調整することが好ましい。
It is added when the amount of the potassium compound contained in the coating layer of the inorganic oxide fine particles exceeds 7.0% by weight on the K 2 O conversion basis, or when the potassium compound contains a desired amount or more. After adjusting the amount of potassium hydroxide or adding a cation exchange resin to the sol obtained from the autoclave and stirring, the cation exchange resin incorporating the potassium ions is separated to thereby remove the potassium compound. It is preferable to reduce the content.
On the other hand, when the content of the potassium compound is less than 1.0% by weight in terms of K 2 O, it is preferable to adjust the amount of potassium hydroxide added.

このようにして、カリウム化合物をK2O換算基準で1.0〜7.0重量%含む複合酸化物(被覆層)で被覆してなる無機酸化物微粒子を含む水分散ゾルを得ることができる。
さらに、前記無機酸化物微粒子の被覆層中に、その他の金属成分、たとえばアルミニウムやアンチモンなどを含ませる場合には、前記過酸化ジルコン酸水溶液に、予め調製したこれらの金属を含む水溶液と前記珪酸水溶液を添加してオートクレーブ中で加熱処理すればよい。これにより、ケイ素とこれらの金属とを含む複合酸化物微粒子を含む水分散ゾルが得られる。
In this manner, an aqueous dispersion sol containing inorganic oxide fine particles formed by coating a composite oxide (coating layer) containing 1.0 to 7.0% by weight of a potassium compound in terms of K 2 O can be obtained. .
Furthermore, when other metal components such as aluminum and antimony are included in the coating layer of the inorganic oxide fine particles, the aqueous solution containing these metals prepared in advance and the silicic acid in the aqueous zirconate peroxide solution What is necessary is just to heat-process in an autoclave by adding aqueous solution. As a result, an aqueous dispersion sol containing composite oxide fine particles containing silicon and these metals can be obtained.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製例
上記で得られた無機酸化物微粒子を含む水分散ゾルを、表面処理剤としてのテトラエトキシシランを溶解させたメタノール溶液に撹拌下で添加した後、約40〜60℃の温度で約1〜20時間、加熱する。
次に、この混合溶液を室温まで冷却してから、限外濾過膜装置を用いて分散媒を水からメタノールに置換する。
(3) Preparation Example of Methanol Dispersion Sol Containing Coated Inorganic Oxide Fine Particles The aqueous dispersion sol containing inorganic oxide fine particles obtained above was stirred in a methanol solution in which tetraethoxysilane as a surface treatment agent was dissolved. Followed by heating at a temperature of about 40-60 ° C. for about 1-20 hours.
Next, after cooling this mixed solution to room temperature, the dispersion medium is replaced from water to methanol using an ultrafiltration membrane device.

さらに、得られたメタノール分散液を限外濾過膜装置で濃縮して、固形分含有量が10〜30重量%の無機酸化物微粒子を含むメタノール分散ゾルを調製する。
このようにして得られる無機酸化物微粒子(すなわち、アナターゼ型の結晶構造を有する、チタンとケイ素とを含む複合酸化物微粒子の表面を、ジルコニウムとケイ素とを含む複合酸化物で被覆してなる微粒子)を含むメタノール分散ゾルの外観は、透明な淡青白色である。また、前記無機酸化物微粒子の平均粒子径は、動的光散乱法で測定したとき、約4〜40nmの範囲にある。
Further, the obtained methanol dispersion is concentrated by an ultrafiltration membrane device to prepare a methanol dispersion sol containing inorganic oxide fine particles having a solid content of 10 to 30% by weight.
Inorganic oxide fine particles thus obtained (that is, fine particles obtained by coating the surface of a composite oxide fine particle containing titanium and silicon having an anatase type crystal structure with a composite oxide containing zirconium and silicon. The appearance of the methanol-dispersed sol containing) is a transparent light blue white. The average particle diameter of the inorganic oxide fine particles is in the range of about 4 to 40 nm when measured by a dynamic light scattering method.

ルチル型結晶構造を有するチタン系複合酸化物微粒子
(1)核粒子としての無機酸化物微粒子を含む水分散ゾルの調製例
四塩化チタンをTiO2換算基準で約7〜8重量%含む四塩化チタン水溶液と、アンモニア(NH3)を約10〜20重量%含むアンモニア水とを混合して、pH約9〜10の白色スラリー液を得る。次いで、このスラリーを濾過した後、純水で洗浄して、固形分含有量が約8〜14重量%の含水チタン酸ケーキを得る。
次に、このケーキに、過酸化水素(H22)を約30〜40重量%含む過酸化水素水と純水とを加えた後、約70〜90℃の温度で約0.5〜5時間、撹拌下で加熱して、過酸化チタン酸をTiO2に換算基準で約1〜3重量%含む過酸化チタン酸水溶液を得る。この過酸化チタン酸水溶液は、透明な黄褐色でpHは約7.5〜8.5である。
Titanium-based composite oxide fine particles having a rutile crystal structure (1) Preparation example of water-dispersed sol containing inorganic oxide fine particles as core particles Titanium tetrachloride containing about 7-8 wt% of titanium tetrachloride on a TiO 2 basis An aqueous solution and aqueous ammonia containing about 10 to 20% by weight of ammonia (NH 3 ) are mixed to obtain a white slurry having a pH of about 9 to 10. The slurry is then filtered and washed with pure water to obtain a hydrous titanate cake having a solid content of about 8 to 14% by weight.
Next, after adding hydrogen peroxide water containing about 30 to 40% by weight of hydrogen peroxide (H 2 O 2 ) and pure water to this cake, the temperature is about 70 to 90 ° C. By heating with stirring for 5 hours, an aqueous solution of titanic acid peroxide containing about 1 to 3% by weight of titanic acid peroxide in terms of TiO 2 is obtained. This aqueous solution of titanic acid peroxide is transparent yellowish brown and has a pH of about 7.5 to 8.5.

次いで、前記過酸化チタン酸水溶液に陽イオン交換樹脂を混合して、これに、スズ酸カリウムをSnO2換算基準で約0.5〜2重量%含むスズ酸カリウム水溶液を撹拌下で徐々に添加する。
次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離した後、平均粒子径が約4〜12nmのシリカ微粒子を含む、酸化ケイ素(SiO2)を約10〜20重量%含むシリカゾルと純水とを混合して、オートクレーブ中で約160〜170℃の温度で約15〜20時間、加熱する。
次に、得られたゾルを室温まで冷却した後、限外濾過膜装置で濃縮して、固形分含有量が約5〜30重量%の水分散ゾルを得る。この水分散ゾル中に含まれる無機酸化物微粒子は、ルチル型の結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子であり、本発明でいう「核粒子」として使用される。
Next, a cation exchange resin is mixed with the aqueous solution of titanic acid titanate, and an aqueous potassium stannate solution containing about 0.5 to 2% by weight of potassium stannate in terms of SnO 2 is gradually added thereto with stirring. To do.
Next, after separating the cation exchange resin incorporating potassium ions and the like, silica sol containing silica fine particles having an average particle diameter of about 4 to 12 nm and containing about 10 to 20% by weight of silicon oxide (SiO 2 ) and pure water. And heated in an autoclave at a temperature of about 160-170 ° C. for about 15-20 hours.
Next, the obtained sol is cooled to room temperature and then concentrated by an ultrafiltration membrane device to obtain an aqueous dispersion sol having a solid content of about 5 to 30% by weight. The inorganic oxide fine particles contained in the water-dispersed sol are composite oxide fine particles containing titanium, tin and silicon having a rutile crystal structure, and are used as “nuclear particles” in the present invention.

この方法から得られる無機酸化物微粒子(核粒子)には、カリウム化合物が含まれているが、従来において、このカリウム化合物は塗膜の屈折率などに悪影響を及ぼす不純物として考えられていたため、陽イオン交換樹脂を用いてその含有量がK2O換算基準で約0.5重量%以下となるように可能な限り除去されていた。しかし、本願発明においては、前記カリウム化合物の含有量がK2O換算基準で5重量%以下であればよく、できれば1.0〜4.5重量%の範囲にあることが好ましい。すなわち、前記含有量がK2O換算基準で5重量%を超えなければ、高価な陽イオン交換樹脂を用いてこれを必ずしも除去する必要はない。ただし、前記含有量がK2O換算基準で1.0重量%未満である場合は、以下で述べる被覆層中に含まれるカリウム化合物の含有量を増加させて調整することが好ましい。 The inorganic oxide fine particles (nuclear particles) obtained from this method contain a potassium compound. However, since this potassium compound has been conventionally considered as an impurity that adversely affects the refractive index of the coating film, it is positively charged. The ion exchange resin was removed as much as possible so that its content was about 0.5% by weight or less in terms of K 2 O. However, in the present invention, the content of the potassium compound is as long 5 wt% or less K 2 O equivalent value is preferably in the range of 1.0 to 4.5% by weight if possible. That is, if the content does not exceed 5% by weight in terms of K 2 O, it is not always necessary to remove this using an expensive cation exchange resin. However, when the content is less than 1.0% by weight in terms of K 2 O, it is preferable to adjust by increasing the content of the potassium compound contained in the coating layer described below.

なお、前記無機酸化物微粒子(核粒子)に含まれるカリウム化合物の含有量を増減させる方法については、上記の「アナターゼ型結晶構造を有するチタン系複合酸化物微粒子」に関する説明のところで述べた方法と同様である。
このようにして、カリウム化合物をK2O換算基準で0.0〜5.0重量%含む無機酸化物微粒子(核粒子)を含む水分散ゾルを得ることができる。
さらに、前記無機酸化物微粒子中に、その他の金属成分、たとえばジルコニウムやセリウムなどを含ませる場合には、前記前記過酸化チタン酸水溶液にシリカゾルと純水とを加える際に、これらの金属を含む水溶液を所望量、添加してオートクレーブ中で加熱処理すればよい。これにより、チタンとこれらの金属とを含む複合酸化物微粒子を含む水分散ゾルが得られる。
The method for increasing or decreasing the content of the potassium compound contained in the inorganic oxide fine particles (nuclear particles) is the same as the method described in the explanation regarding the “titanium composite oxide fine particles having anatase type crystal structure” above. It is the same.
In this manner, an aqueous dispersion sol containing inorganic oxide fine particles (core particles) containing 0.0 to 5.0% by weight of a potassium compound in terms of K 2 O can be obtained.
Furthermore, when other inorganic components such as zirconium and cerium are included in the inorganic oxide fine particles, these metals are included when silica sol and pure water are added to the aqueous solution of titanic peroxide. What is necessary is just to heat-process in an autoclave after adding desired amount of aqueous solution. As a result, an aqueous dispersion sol containing composite oxide fine particles containing titanium and these metals is obtained.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製例
上記の「アナターゼ型結晶構造を有するチタン系複合酸化物微粒子」に関する説明のところで述べた方法と同様な方法で、過酸化ジルコン酸水溶液および珪酸水溶液を得る。
一方、上記で得られた無機酸化物微粒子(核粒子)を含む水分散ゾルに純水を加えて撹拌することにより、固形分含有量が約1〜3重量%の水分散ゾルを得る。次いで、この水分散ゾルを約80〜95℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液と前記珪酸水溶液を徐々に添加し、さらに添加終了後約0.5〜2時間熟成する。
次いで、得られた混合液のpHを必要に応じて7〜10に調整した後、この混合液をオートクレーブに入れて、約160〜170℃の温度で約16〜20時間、加熱する。
(2) Preparation Example of Aqueous Dispersion Sol Containing Coated Inorganic Oxide Fine Particles Zirconic acid peroxide is produced in the same manner as described in the above explanation regarding “titanium-based composite oxide fine particles having anatase type crystal structure”. An aqueous solution and an aqueous silicic acid solution are obtained.
On the other hand, an aqueous dispersion sol having a solid content of about 1 to 3% by weight is obtained by adding pure water to the aqueous dispersion sol containing the inorganic oxide fine particles (core particles) obtained above and stirring. Next, the aqueous dispersion sol is heated to a temperature of about 80 to 95 ° C., and then the zirconic acid aqueous solution and the silicic acid aqueous solution are gradually added thereto, followed by aging for about 0.5 to 2 hours after the addition is completed. .
Subsequently, after adjusting the pH of the obtained liquid mixture to 7-10 as needed, this liquid mixture is put into an autoclave and it heats at the temperature of about 160-170 degreeC for about 16-20 hours.

次に、得られたゾルを室温まで冷却した後、限外濾過膜装置で濃縮して、固形分含有量が約10〜30重量%の水分散ゾルを得る。この水分散ゾル中に含まれる無機酸化物微粒子は、ルチル型の結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子(核粒子)の表面を、ジルコニウムとケイ素とを含む複合酸化物で被覆してなる無機酸化物微粒子である。この無機酸化物微粒子を含む水分散ゾルの外観は、通常、透明な淡乳白色を呈している。 Next, the obtained sol is cooled to room temperature and then concentrated by an ultrafiltration membrane device to obtain an aqueous dispersion sol having a solid content of about 10 to 30% by weight. The inorganic oxide fine particles contained in this water-dispersed sol are composed of a complex oxide containing zirconium and silicon on the surface of a composite oxide fine particle (core particle) containing titanium, tin and silicon having a rutile crystal structure. Inorganic oxide fine particles formed by coating with The appearance of the water-dispersed sol containing the inorganic oxide fine particles is usually transparent and light milky white.

なお、前記無機酸化物微粒子の被覆層中に含まれるカリウム化合物の含有量を増減させる方法については、上記の「アナターゼ型結晶構造を有するチタン系複合酸化物微粒子」関する説明のところで述べた方法と同様である。
このようにして、カリウム化合物をK2O換算基準で1.0〜7.0重量%含む複合酸化物(被覆層)で被覆してなる無機酸化物微粒子を含む水分散ゾルを得ることができる。
さらに、前記無機酸化物微粒子の被覆層中に、その他の金属成分、たとえばアルミニウムやアンチモンなどを含ませる場合には、前記過酸化ジルコン酸水溶液に、予め調製したこれらの金属を含む水溶液と前記珪酸水溶液を添加してオートクレーブ中で加熱処理すればよい。これにより、ケイ素とこれらの金属とを含む複合酸化物微粒子を含む水分散ゾルが得られる。
The method for increasing or decreasing the content of the potassium compound contained in the coating layer of the inorganic oxide fine particles is the same as the method described in the explanation regarding the “titanium composite oxide fine particles having an anatase type crystal structure” above. It is the same.
In this manner, an aqueous dispersion sol containing inorganic oxide fine particles formed by coating a composite oxide (coating layer) containing 1.0 to 7.0% by weight of a potassium compound in terms of K 2 O can be obtained. .
Furthermore, when other metal components such as aluminum and antimony are included in the coating layer of the inorganic oxide fine particles, the aqueous solution containing these metals prepared in advance and the silicic acid in the aqueous zirconate peroxide solution What is necessary is just to heat-process in an autoclave by adding aqueous solution. As a result, an aqueous dispersion sol containing composite oxide fine particles containing silicon and these metals can be obtained.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製例
上記で得られた無機酸化物微粒子を含む水分散ゾルを、表面処理剤としてのテトラエトキシシランを溶解させたメタノール溶液に撹拌下で添加した後、約40〜60℃の温度で約1〜20時間、加熱する。
次に、この混合溶液を室温まで冷却してから、限外濾過膜装置を用いて分散媒を水からメタノールに置換する。
(3) Preparation Example of Methanol Dispersion Sol Containing Coated Inorganic Oxide Fine Particles The aqueous dispersion sol containing inorganic oxide fine particles obtained above was stirred in a methanol solution in which tetraethoxysilane as a surface treatment agent was dissolved. Followed by heating at a temperature of about 40-60 ° C. for about 1-20 hours.
Next, after cooling this mixed solution to room temperature, the dispersion medium is replaced from water to methanol using an ultrafiltration membrane device.

さらに、得られたメタノール分散液を限外濾過膜装置で濃縮して、固形分含有量が10〜30重量%の無機酸化物微粒子を含むメタノール分散ゾルを調製する。
このようにして得られる無機酸化物微粒子(すなわち、ルチル型の結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子の表面を、ジルコニウムとケイ素とを含む複合酸化物で被覆してなる微粒子)を含むメタノール分散ゾルの外観は、透明な淡青白色である。また、前記無機酸化物微粒子の平均粒子径は、動的光散乱法で測定したとき、約4〜40nmの範囲にある。
Further, the obtained methanol dispersion is concentrated by an ultrafiltration membrane device to prepare a methanol dispersion sol containing inorganic oxide fine particles having a solid content of 10 to 30% by weight.
Inorganic oxide fine particles obtained in this way (that is, the surface of a composite oxide fine particle containing titanium, tin and silicon having a rutile-type crystal structure is coated with a composite oxide containing zirconium and silicon. The appearance of the methanol-dispersed sol containing fine particles is a transparent light blue white. The average particle diameter of the inorganic oxide fine particles is in the range of about 4 to 40 nm when measured by a dynamic light scattering method.

[光学基材用塗布液]
光学基材用塗布液A
本発明に係る光学基材用塗布液Aは、
(1)チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、ケイ素と、ジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物で被覆した無機酸化物微粒子中に、カリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたコアシェル構造を有する無機酸化物微粒子、および
(2)下記一般式(I)で表される有機ケイ素化合物および/またはその加水分解物
を含むものである。
1 a2 bSi(OR34-(a+b) (I)
(式中、R1は炭素数1〜6のアルキル基、ビニル基を含有する炭素数8以下の有機基、エポキシ基を含有する炭素数8以下の有機基、メタクリロキシ基を含有する炭素数8以下の有機基、メルカプト基を含有する炭素数1〜5の有機基またはアミノ基を含有する炭素数1〜5の有機基であり、R2は炭素数1〜3のアルキル基、アルキレン基、シクロアルキル基もしくはハロゲン化アルキル基またはアリル基であり、R3は炭素数1〜3のアルキル基、アルキレン基またはシクロアルキル基である。また、aは0または1の整数、bは0、1または2の整数である。)
[Coating liquid for optical substrate]
Coating liquid A for optical substrates
The coating liquid A for an optical substrate according to the present invention is:
(1) Nuclear particles composed of titanium oxide fine particles and / or composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon Potassium compounds (as oxides) are formed in inorganic oxide fine particles whose surface is coated with silicon and an oxide and / or composite oxide of one or more metal elements selected from zirconium, aluminum and antimony. inorganic oxide particles having a K except 2 O) K 2 O equivalent value at 1.0 to 8.0 wt% included so-shell structure, and (2) an organosilicon represented by the following general formula (I) It contains a compound and / or a hydrolyzate thereof.
R 1 a R 2 b Si (OR 3 ) 4- (a + b) (I)
(In the formula, R 1 is an alkyl group having 1 to 6 carbon atoms, an organic group having 8 or less carbon atoms containing a vinyl group, an organic group having 8 or less carbon atoms containing an epoxy group, and 8 carbon atoms containing a methacryloxy group. The following organic group, an organic group having 1 to 5 carbon atoms containing a mercapto group or an organic group having 1 to 5 carbon atoms containing an amino group, R 2 is an alkyl group having 1 to 3 carbon atoms, an alkylene group, A cycloalkyl group, a halogenated alkyl group or an allyl group, R 3 is an alkyl group having 1 to 3 carbon atoms, an alkylene group or a cycloalkyl group, a is an integer of 0 or 1, b is 0, 1 Or an integer of 2.)

前記無機酸化物微粒子は、有機ケイ素化合物(以下、「有機ケイ素化合物(1)」という)またはアミン系化合物で表面処理されたものであることが好ましい。
前記の表面処理に使用される有機ケイ素化合物としては、加水分解性基を有する従来公知のシランカップリング剤を用いることができ、その種類は、用途や溶媒の種類などに応じて適宜選定される。これらのシランカップリング剤は、1種類だけでなく2種類以上を使用してもよい。この有機ケイ素化合物(1)としては、具体的には、以下の(a)〜(d)の化合物が挙げられる。
It is preferable that the inorganic oxide fine particles have been surface-treated with an organosilicon compound (hereinafter referred to as “organosilicon compound (1)”) or an amine compound.
As the organosilicon compound used for the surface treatment, a conventionally known silane coupling agent having a hydrolyzable group can be used, and the type thereof is appropriately selected according to the use, the type of solvent, and the like. . These silane coupling agents may be used alone or in combination of two or more. Specific examples of the organosilicon compound (1) include the following compounds (a) to (d).

(a)一般式R3SiXで表される単官能性シラン
(式中、Rは、アルキル基、フェニル基、ビニル基、メタクリロキシ基、メルカプト基、アミノ基またはエポキシ基を有する有機基を表し、Xは、アルコキシ基、クロロ基等の加水分解性基を表す。)
その代表例としては、トリメチルエトキシシラン、ジメチルフェニルエトキシシラン、ジメチルビニルエトキシシラン等が挙げられる。
(b)一般式R2SiX2で表される二官能性シラン
(式中、RおよびXは前記同様である。)
その代表例としては、ジメチルジエトキシシラン、ジフェニルジエトキシシラン等が挙げられる。
(A) a monofunctional silane represented by the general formula R 3 SiX (wherein R represents an organic group having an alkyl group, a phenyl group, a vinyl group, a methacryloxy group, a mercapto group, an amino group or an epoxy group; X represents a hydrolyzable group such as an alkoxy group or a chloro group.)
Typical examples include trimethylethoxysilane, dimethylphenylethoxysilane, dimethylvinylethoxysilane, and the like.
(B) Bifunctional silane represented by the general formula R 2 SiX 2 (wherein R and X are as defined above).
Representative examples include dimethyldiethoxysilane, diphenyldiethoxysilane, and the like.

(c)一般式RSiX3で表される三官能性シラン
(式中、RおよびXは前記同様である。)
その代表例としては、メチルトリエトキシシラン、フェニルトリエトキシシラン等が挙げられる。
(d)一般式SiX4で表される四官能性シラン
(式中、Xは前記同様である。)
その代表例としては、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランなどが挙げられる。
(C) Trifunctional silane represented by the general formula RSiX 3 (wherein R and X are as defined above).
Typical examples include methyltriethoxysilane and phenyltriethoxysilane.
(D) Tetrafunctional silane represented by the general formula SiX 4 (wherein X is as defined above).
Typical examples include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane.

この表面処理に際し、前記有機ケイ素化合物(1)は、前記無機酸化物微粒子と混合した後にその加水分解性基を加水分解させてもよく、あるいはその加水分解性基を部分加水分解または加水分解させた後に前記無機酸化物微粒子と混合して更に必要に応じて加水分解させてもよい。
また、この表面処理の操作が終了した段階では、前記加水分解性基のすべてが、前記無機酸化物微粒子の被覆層の表面に存在する−OH基と反応した状態となっていることが好ましいが、その一部が未反応のまま残存した状態であってもよい。なお、この表面処理を行なう場合には、前記無機酸化物微粒子として、その被覆層表面に−OH基を有する無機酸化物微粒子を使用することが望ましい。
In this surface treatment, the organosilicon compound (1) may be hydrolyzed with a hydrolyzable group after mixing with the inorganic oxide fine particles, or may be partially hydrolyzed or hydrolyzed with the hydrolyzable group. Then, it may be mixed with the inorganic oxide fine particles and further hydrolyzed as necessary.
Further, at the stage where the surface treatment operation is completed, it is preferable that all of the hydrolyzable groups are in a state of reacting with —OH groups present on the surface of the coating layer of the inorganic oxide fine particles. , A part of which may remain unreacted. When performing this surface treatment, it is desirable to use inorganic oxide fine particles having —OH groups on the surface of the coating layer as the inorganic oxide fine particles.

前記アミン系化合物としては、アンモニア;エチルアミン、トリエチルアミン、イソプロピルアミン、n−プロピルアミン等のアルキルアミン;ベンジルアミン等のアラルキルアミン;ピペリジン等の脂環式アミン;モノエタノールアミン、トリエタノールアミン等のアルカノールアミン;テトラメチルアンモニウム塩、テトラメチルアンモニウムハイドロオキサイド等の第4級アンモニウム塩または第4級アンモニウムハイドロオキサイドなどが挙げられる。   Examples of the amine compounds include ammonia; alkylamines such as ethylamine, triethylamine, isopropylamine and n-propylamine; aralkylamines such as benzylamine; alicyclic amines such as piperidine; alkanols such as monoethanolamine and triethanolamine. Amines; quaternary ammonium salts such as tetramethylammonium salt and tetramethylammonium hydroxide, or quaternary ammonium hydroxide.

前記無機酸化物微粒子と混合して使用される、上記一般式(I)で表される有機ケイ素化合物(以下、「有機ケイ素化合物(2)」という)としては、アルコキシシラン化合物がその代表例として挙げられ、具体的には、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、トリメチルクロロシラン、α−グルシドキシメチルトリメトキシシラン、α−グリシドキシエチルトリメトキシシラン、β−グリシドキシエチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)−エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)−エチルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキキシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジエトキキシランなどがある。これらの中でも、テトラエトキシシラン、メチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)−エチルトリメトキシシランなどを使用することが好ましい。また、これらの有機ケイ素化合物(2)は、1種類だけでなく2種類以上を使用してもよい。   A typical example of the organosilicon compound represented by the above general formula (I) (hereinafter referred to as “organosilicon compound (2)”) used by mixing with the inorganic oxide fine particles is an alkoxysilane compound. Specifically, tetraethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, trimethylchlorosilane, α-glucidoxymethyltrimethoxysilane, α-glycidoxyethyl Trimethoxysilane, β-glycidoxyethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyl Methyldiethoxysilane, β- (3,4-epoxy Cyclohexyl) -ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) -ethyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ- Examples include aminopropylmethyldimethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldiethoxysilane. Among these, tetraethoxysilane, methyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, etc. Is preferably used. Moreover, these organosilicon compounds (2) may use not only one type but also two or more types.

また、本発明に係る光学基材用塗布液Aを調製する際に、前記有機ケイ素化合物(2)は、無溶媒下またはアルコール等の極性有機溶媒中で、酸および水の存在下で部分加水分解または加水分解した後に、前記無機酸化物微粒子と混合することが好ましい。ただし、有機ケイ素化合物(2)は、前記無機酸化物微粒子と混合した後に、部分加水分解または加水分解してもよい。   In preparing the coating liquid A for an optical substrate according to the present invention, the organosilicon compound (2) is partially hydrolyzed in the absence of a solvent or in a polar organic solvent such as alcohol in the presence of an acid and water. It is preferable to mix with the inorganic oxide fine particles after decomposition or hydrolysis. However, the organosilicon compound (2) may be partially hydrolyzed or hydrolyzed after being mixed with the inorganic oxide fine particles.

このようにして、本発明に係る光学基材用塗布液Aは、前記有機ケイ素化合物(2)および/またはその加水分解物と前記無機酸化物微粒子とを混合して調製されるが、その混合割合は、前記有機ケイ素化合物(2)をSiO2基準に換算した重量をXで表し、前記無機酸化物微粒子の重量をYで表したとき、その重量比(X/Y)が30/70〜90/10の範囲にあることが好ましい。ここで、前記重量比が30/70未満であると、光学基材との密着性が低下し、また前記重量比が90/10を超えると、塗膜の屈折率が低くなってしまうので、好ましくない。 Thus, the coating liquid A for an optical substrate according to the present invention is prepared by mixing the organosilicon compound (2) and / or a hydrolyzate thereof and the inorganic oxide fine particles. As for the ratio, when the weight of the organosilicon compound (2) converted to SiO 2 is represented by X and the weight of the inorganic oxide fine particles is represented by Y, the weight ratio (X / Y) is 30/70 to It is preferable to be in the range of 90/10. Here, when the weight ratio is less than 30/70, the adhesiveness with the optical substrate is lowered, and when the weight ratio exceeds 90/10, the refractive index of the coating film is lowered. It is not preferable.

本発明に係る光学基材用塗布液Aは、ハードコート層の染色性や、プラスチックレンズ基材等への密着性を向上させ、更にはクラック発生を防止するために、上記の成分に加えて、未架橋エポキシ化合物を含有していてもよい。
この未架橋エポキシ化合物としては、たとえば1,6−ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル等が挙げられる。これらの中でも1,6−ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテルなどを使用することが好ましい。また、これらの未架橋エポキシ化合物は、1種類だけでなく2種類以上を使用してもよい。
In addition to the above components, the coating liquid A for an optical substrate according to the present invention improves the dyeability of the hard coat layer and the adhesion to a plastic lens substrate, and further prevents the occurrence of cracks. In addition, an uncrosslinked epoxy compound may be contained.
Examples of the uncrosslinked epoxy compound include 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, and the like. Among these, it is preferable to use 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, or the like. Moreover, these uncrosslinked epoxy compounds may use not only one type but also two or more types.

さらに、本発明に係る光学基材用塗布液Aは、上記以外の成分、たとえば界面活性剤、レベリング剤または紫外線吸収剤、さらには特許文献2、特許文献3、特開平11−310755号公報、国際出願公報WO2007/046357などの従来公知の文献に記載されている有機化合物や無機化合物などを含んでいてもよい。
また、このようにして調製された光学基材用塗布液Aは、ハードコート層形成用塗布液として好適に使用することができる。
Furthermore, the coating liquid A for an optical substrate according to the present invention contains components other than those described above, for example, a surfactant, a leveling agent, or an ultraviolet absorber, as well as Patent Document 2, Patent Document 3, JP-A-11-310755, It may contain an organic compound or an inorganic compound described in a conventionally known document such as International Application Publication WO2007 / 046357.
Moreover, the coating liquid A for optical substrates prepared in this way can be suitably used as a coating liquid for forming a hard coat layer.

光学基材用塗布液B
本発明に係る光学基材用塗布液Bは、
(1)チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、ケイ素と、ジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物で被覆した無機酸化物微粒子中に、カリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたコアシェル構造を有する無機酸化物微粒子、および
(2)熱硬化性樹脂または熱可塑性樹脂
を含むものである。
Coating liquid B for optical substrates
The coating liquid B for an optical substrate according to the present invention is
(1) Nuclear particles composed of titanium oxide fine particles and / or composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon Potassium compounds (as oxides) are formed in inorganic oxide fine particles whose surface is coated with silicon and an oxide and / or composite oxide of one or more metal elements selected from zirconium, aluminum and antimony. Inorganic oxide fine particles having a core-shell structure containing 1.0 to 8.0% by weight (excluding K 2 O) in terms of K 2 O, and (2) a thermosetting resin or a thermoplastic resin.

前記無機酸化物微粒子は、有機ケイ素化合物またはアミン系化合物で表面処理されたものであることが好ましい。
前記の表面処理に使用される有機ケイ素化合物やアミン系化合物については、上記のものから適宜選択して使用することができるので、ここではその説明を省略する。
It is preferable that the inorganic oxide fine particles are surface-treated with an organosilicon compound or an amine compound.
The organosilicon compound and amine compound used for the surface treatment can be appropriately selected from the above and used, and thus the description thereof is omitted here.

前記無機酸化物微粒子と混合して使用される熱硬化性樹脂としては、たとえばウレタン系樹脂、エポキシ系樹脂、メラミン系樹脂、シリコーン系樹脂などが挙げられる。これらの中でも、ウレタン系樹脂やエポキシ系樹脂などを使用するこが好ましい。また、これらの熱硬化性樹脂は、1種類だけでなく2種類以上を使用してもよい。   Examples of the thermosetting resin used by mixing with the inorganic oxide fine particles include urethane resin, epoxy resin, melamine resin, and silicone resin. Among these, it is preferable to use a urethane resin, an epoxy resin, or the like. Further, these thermosetting resins may be used not only in one type but also in two or more types.

前記無機酸化物微粒子と混合して使用される熱可塑性樹脂としては、たとえばアクリル系樹脂、ウレタン系樹脂およびエステル系樹脂などが挙げられる。これらの中でも、ウレタン系樹脂やエステル系樹脂などを使用するこが好ましい。また、これらの熱可塑性樹脂は、1種類だけでなく2種類以上を使用してもよい。   Examples of the thermoplastic resin used by mixing with the inorganic oxide fine particles include acrylic resins, urethane resins and ester resins. Among these, it is preferable to use urethane resin, ester resin, or the like. Moreover, these thermoplastic resins may use not only one type but also two or more types.

さらに、本発明に係る光学基材用塗布液Bは、上記以外の成分、たとえば中和剤、界面活性剤または紫外線吸収剤、さらには国際出願公報WO2007/026529などの従来公知の文献に記載されている有機化合物や無機化合物などを含んでいてもよい。
また、このようにして調製された光学基材用塗布液Bは、プライマー層形成用塗布液として好適に使用することができる。
Furthermore, the coating liquid B for optical substrates according to the present invention is described in components other than those described above, for example, neutralizers, surfactants or ultraviolet absorbers, and further known literatures such as International Application Publication WO2007 / 026529. It may contain an organic compound or an inorganic compound.
Moreover, the coating liquid B for optical substrates prepared in this way can be used suitably as a coating liquid for primer layer formation.

[光学基材]
本発明で使用される光学基材としては、各種のプラスチック基材があり、これを光学レンズとして使用する場合には、ポリスチレン樹脂、アリル樹脂(特に、芳香族系アリル樹脂)、ポリカーボネート樹脂、ポリチオウレタン樹脂、ポリチオエポキシ樹脂などで構成されたプラスチックレンズ基材がある。また、光学レンズ以外に用いられるプラスチック基材としては、PMMA樹脂、ABS樹脂、エポキシ樹脂、ポリサルフォン樹脂などで構成されたプラスチック基材がある。
なお、本発明において使用される光学基材は、現在、市販または試験供給されているこれらのプラスチック基材から適宜選択して使用することができる。
[Optical substrate]
As the optical substrate used in the present invention, there are various plastic substrates. When this is used as an optical lens, polystyrene resin, allyl resin (especially aromatic allyl resin), polycarbonate resin, There is a plastic lens substrate made of thiourethane resin, polythioepoxy resin or the like. Moreover, as a plastic base material used other than an optical lens, there is a plastic base material made of PMMA resin, ABS resin, epoxy resin, polysulfone resin, or the like.
In addition, the optical base material used in this invention can be suitably selected from these plastic base materials currently marketed or test-supplied.

[測定方法]
次に、本発明の実施例その他で使用された測定方法および評価試験法を具体的に述べれば、以下の通りである。
(1)粒子の平均粒子径
無機酸化物微粒子の水分散ゾル(固形分含有量20重量%)7.0gを長さ3cm、幅2cm、高さ2cmの透過窓付き円柱状ステンレスセルに入れて、動的光散乱法による超微粒子粒度分析装置(Honeywell社製、型式9340-UPA150)を用いて、粒子径分布を測定し、これより平均粒子径を算出する。
[Measuring method]
Next, the measurement methods and evaluation test methods used in the examples and others of the present invention will be specifically described as follows.
(1) Average particle diameter of particles 7.0 g of water-dispersed sol of inorganic oxide fine particles (solid content 20% by weight) is placed in a cylindrical stainless steel cell with a transmission window having a length of 3 cm, a width of 2 cm, and a height of 2 cm. The particle size distribution is measured using an ultrafine particle size analyzer (Model 9340-UPA150, manufactured by Honeywell) using a dynamic light scattering method, and the average particle size is calculated therefrom.

(2)粒子の比表面積
無機酸化物微粒子の乾燥粉体を磁性ルツボ(B−2型)に約30ml採取し、300℃の温度で2時間乾燥後、デシケータに入れて室温まで冷却する。次に、サンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、比表面積(m2/g)をBET法にて測定する。
(2) Specific surface area of particles About 30 ml of a dry powder of inorganic oxide fine particles is collected in a magnetic crucible (B-2 type), dried at a temperature of 300 ° C. for 2 hours, then placed in a desiccator and cooled to room temperature. Next, 1 g of a sample is taken, and the specific surface area (m 2 / g) is measured by the BET method using a fully automatic surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Multisorb 12 type).

(3)粒子中に含まれる固体酸の有無
無機酸化物微粒子の水分散ゾルを磁性ルツボ(B−2型)に約30ml採取し、200℃で3時間乾燥後、デシケータに入れて室温まで冷却する。次に、サンプルを1.5g取り、MULTI MICRO CALORIMETER((株)東京理工製、MMC−511SV)を用いて、フリーの固体酸量(すなわち、固体酸残量)をアンモニアの吸着量として測定する。これにより、前記無機酸化物微粒子中に存在する固体酸の有無を確認する。
しかし、この測定方法から得られる固体酸量は、前記無機酸化物微粒子中に含まれる固体酸の総量を示すものではない。すなわち、前記微粒子の調製過程で前記カリウム化合物などと化合した固体酸は、アンモニアを吸着しないため、これを測定することができないからである。
(3) Presence / absence of solid acid contained in particles Collect about 30 ml of water-dispersed sol of inorganic oxide fine particles in a magnetic crucible (Type B-2), dry at 200 ° C. for 3 hours, place in a desiccator and cool to room temperature To do. Next, 1.5 g of a sample is taken, and the amount of free solid acid (that is, solid acid remaining amount) is measured as the amount of adsorption of ammonia using MULTI MICRO CALORIMETER (manufactured by Tokyo Riko Co., Ltd., MMC-511SV). . Thereby, the presence or absence of a solid acid present in the inorganic oxide fine particles is confirmed.
However, the amount of solid acid obtained from this measurement method does not indicate the total amount of solid acid contained in the inorganic oxide fine particles. That is, since the solid acid combined with the potassium compound or the like in the process of preparing the fine particles does not adsorb ammonia, it cannot be measured.

(4)核粒子の結晶形態
無機酸化物微粒子の水分散ゾルを磁性ルツボ(B−2型)に約30ml採取し、110℃12時間乾燥後、デシケータに入れて室温まで冷却する。次に、乳鉢にて15分粉砕後、X線回折装置(理学電気(株)製、RINT1400)を用いて結晶形態を測定する。
(4) Crystal form of core particle About 30 ml of water-dispersed sol of inorganic oxide fine particles is collected in a magnetic crucible (B-2 type), dried at 110 ° C. for 12 hours, then placed in a desiccator and cooled to room temperature. Next, after pulverizing for 15 minutes in a mortar, the crystal form is measured using an X-ray diffractometer (RINT1400, manufactured by Rigaku Corporation).

(5)粒子中に含まれる金属酸化物の含有量
無機酸化物微粒子の水分散ゾル(試料)をジルコニアボールに採取し、乾燥、焼成した後、Na22とNaOHを加えて溶融する。さらに、H2SO4とHClで溶解し、純水で希釈した後、ICP装置(島津製作所(株)製、ICPS−8100)を用いて、チタニウム、スズおよびシリカの含有量を酸化物換算基準(TiO2、SnO2およびSiO2)で測定する。
次いで、前記試料を白金皿に採取し、HFとH2SO4を加えて加熱し、HClで溶解する。さらに、これを純水で希釈した後、ICP装置((株)島津製作所製、ICPS−8100)を用いてジルコニウムの含有量を酸化物換算基準(ZrO2)で測定する。
次に、前記試料を白金皿に採取し、HFとH2SO4を加えて加熱し、HClで溶解する。さらに、これを純水で希釈した後、原子吸光装置((株)日立製作所製、Z−5300)を用いてカリウムの含有量を酸化物換算基準(K2O)で測定する。
(5) Content of metal oxide contained in particles Aqueous dispersion sol (sample) of inorganic oxide fine particles is collected in zirconia balls, dried and fired, and then Na 2 O 2 and NaOH are added and melted. Furthermore, after dissolving with H 2 SO 4 and HCl and diluting with pure water, the content of titanium, tin, and silica is converted to oxide using an ICP device (Shimadzu Corporation, ICPS-8100). Measured with (TiO 2 , SnO 2 and SiO 2 ).
Next, the sample is collected in a platinum dish, HF and H 2 SO 4 are added, heated, and dissolved with HCl. Furthermore, after diluting this with pure water, the content of zirconium is measured by an oxide conversion standard (ZrO 2 ) using an ICP device (manufactured by Shimadzu Corporation, ICPS-8100).
Then, the sample was taken in a platinum dish and heated by adding HF and H 2 SO 4, dissolved in HCl. Furthermore, after diluting this with pure water, the content of potassium is measured by an oxide conversion standard (K 2 O) using an atomic absorption device (manufactured by Hitachi, Ltd., Z-5300).

(6)外観(干渉縞)
内壁が黒色である箱の中に蛍光灯「商品名:メロウ5N」(東芝ライテック(株)製、三波長型昼白色蛍光灯)を取り付け、蛍光灯の光を以下に示す実施例基板および比較例基板の反射防止膜表面で反射させ、光の干渉による虹模様(干渉縞)の発生を目視にて確認し、以下の基準で評価する。
S:干渉縞が殆ど無い
A:干渉縞が目立たない
B:干渉縞が認められるが、許容範囲にある
C:干渉縞が目立つ
D:ぎらつきのある干渉縞がある。
(6) Appearance (interference fringes)
A fluorescent lamp “trade name: Mellow 5N” (manufactured by Toshiba Lighting & Technology Co., Ltd., three-wavelength daylight white fluorescent lamp) is mounted in a box whose inner wall is black, and the substrate of the example shown below and the comparison of the fluorescent light Example Reflection is performed on the surface of the antireflection film of the substrate, and the occurrence of rainbow patterns (interference fringes) due to light interference is visually confirmed, and evaluated according to the following criteria.
S: There is almost no interference fringe. A: The interference fringe is not conspicuous. B: Although the interference fringe is recognized, it is within an allowable range. C: The interference fringe is conspicuous. D: There is an interference fringe with glare.

(7)外観(曇り)
内壁が黒色である箱の中に蛍光灯「商品名:メロウ5N」(東芝ライテック(株)製、三波長型昼白色蛍光灯)を取り付け、以下に示す実施例基板および比較例基板を蛍光灯の直下に垂直に置き、これらの透明度(曇りの程度)を目視にて確認し、以下の基準で評価する。
A:曇りが無い
B:僅かに曇りがある
C:明らかな曇りがある
D:著しい曇りがある。
(7) Appearance (cloudy)
A fluorescent lamp "trade name: Mellow 5N" (manufactured by Toshiba Lighting & Technology Co., Ltd., three-wavelength daylight white fluorescent lamp) is mounted in a box whose inner wall is black, and the following example substrate and comparative example substrate are fluorescent lamps. The transparency (degree of cloudiness) is visually confirmed and evaluated according to the following criteria.
A: No haze B: Slight haze C: Clear haze D: Significant haze

(8)耐擦傷性試験
ハードコート層を形成した基板の表面をボンスタースチールウール♯0000(日本スチールウール(株)製)で手擦りし、傷の入り具合を目視にて判定し、以下の基準で評価する。
A:殆ど傷が入らない
B:若干の傷が入る
C:かなりの傷が入る
D:擦った面積のほぼ全面に傷が入る。
(8) Scratch resistance test The surface of the substrate on which the hard coat layer was formed was manually rubbed with Bonstar Steel Wool # 0000 (manufactured by Nippon Steel Wool Co., Ltd.), and the degree of damage was visually determined. Evaluate with.
A: Almost no flaws B: Some flaws enter C: Some flaws enter D: Most flawed areas are scratched.

(9)密着性試験
ハードコート層を形成した基板のレンズ表面に、ナイフにより1mm間隔で切れ目を入れ、1平方mmのマス目を100個形成し、セロハン製粘着テープを強く押し付けた後、プラスチックレンズ基板の面内方向に対して90度方向へ急激に引っ張り、この操作を合計5回行い、剥離しないマス目の数を数え、以下の基準で評価する。
良好:剥離していないマス目の数が95個以上
不良:剥離していないマス目の数が95個未満。
(9) Adhesion test The lens surface of the substrate on which the hard coat layer is formed is cut with a knife at intervals of 1 mm to form 100 squares of 1 mm square, and after strongly pressing the cellophane adhesive tape, the plastic Abruptly pulling in the 90 degree direction with respect to the in-plane direction of the lens substrate, this operation is performed a total of 5 times, the number of squares that do not peel off is counted, and the following criteria are evaluated.
Good: The number of cells not peeled is 95 or more. Bad: The number of cells not peeled is less than 95.

(10)耐候性試験
ハードコート層を形成した基板をキセノンウエザーメーター(スガ試験機(株)製X−75型)で曝露試験をした後、外観の確認および前記の密着性試験と同様の試験を行い、以下の基準で評価する。なお、曝露時間は、反射防止膜を有している基板は200時間、反射防止膜を有していない基板は50時間とする。
良好:剥離していないマス目の数が95個以上
不良:剥離していないマス目の数が95個未満。
(10) Weather resistance test The substrate on which the hard coat layer was formed was subjected to an exposure test using a xenon weather meter (X-75 type manufactured by Suga Test Instruments Co., Ltd.), and then the same test as the confirmation of appearance and the above-mentioned adhesion test And evaluate according to the following criteria. The exposure time is 200 hours for a substrate having an antireflection film and 50 hours for a substrate not having an antireflection film.
Good: The number of cells not peeled is 95 or more. Bad: The number of cells not peeled is less than 95.

(11)耐光性試験
退色試験用水銀ランプ(東芝(株)製H400−E)により紫外線を50時間照射し、試験前後のレンズ色の目視確認を行い、以下の基準で評価する。なお、ランプと試験片との照射距離は、70mmとし、ランプの出力は、試験片の表面温度が45±5℃となるように調整する。また、この試験は、反射防止膜をハードコート層の表面に施したプラスチックレンズを対象として行ったものである。
○:あまり変色が認められない
△:若干の変色が認められる
×:明らかな変色が認められる。
(11) Light resistance test UV light is irradiated for 50 hours with a mercury lamp for fading test (H400-E manufactured by Toshiba Corporation), the lens color before and after the test is visually confirmed, and evaluated according to the following criteria. The irradiation distance between the lamp and the test piece is 70 mm, and the output of the lamp is adjusted so that the surface temperature of the test piece is 45 ± 5 ° C. This test was conducted on a plastic lens having an antireflection film applied to the surface of the hard coat layer.
○: Not much discoloration is observed Δ: Some discoloration is recognized ×: Clear discoloration is observed

以下、本発明を実施例に基づき具体的に説明する。しかし、本発明は、これらの実施例に記載された範囲に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the scope described in these examples.

[実施例1]
アナターゼ型結晶構造を有するチタン系複合酸化物微粒子(1)およびゾル
(1)核粒子としての無機酸化物微粒子を含む水分散ゾルの調製
四塩化チタン(大阪チタニウムテクノロジ-ズ(株)製)をTiO2換算基準で2.0重量%含む四塩化チタン水溶液100kgと、アンモニアを15重量%含むアンモニア水(宇部興産(株)製)とを混合して、pH8.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、純水(触媒化成工業(株)製)で洗浄して、固形分含有量が10重量%の含水チタン酸ケーキ20kgを得た。
次に、このケーキ20kgに、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)22.84kgと純水57.16kgとを加えた後、80℃の温度で1時間、撹拌下で加熱して、過酸化チタン酸をTiO2換算基準で2重量%含む過酸化チタン酸水溶液100kgを得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.1であった。
[Example 1]
Preparation of water-dispersed sol containing titanium-based composite oxide fine particles (1) having anatase type crystal structure and inorganic oxide fine particles as sol (1) core particles Titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) A white slurry liquid having a pH of 8.5 was prepared by mixing 100 kg of titanium tetrachloride aqueous solution containing 2.0% by weight in terms of TiO 2 and ammonia water containing 15% by weight of ammonia (manufactured by Ube Industries). . Next, the slurry was filtered and then washed with pure water (manufactured by Catalyst Chemical Industry Co., Ltd.) to obtain 20 kg of a hydrous titanate cake having a solid content of 10% by weight.
Next, to this cake 20 kg, hydrogen peroxide containing 35% by weight of hydrogen peroxide (manufactured by Mitsubishi Gas Chemical Co., Inc.) 22.84 kg and pure water 57.16 kg were added, and then at a temperature of 80 ° C. The mixture was heated with stirring for a period of time to obtain 100 kg of an aqueous solution of titanic acid peroxide containing 2% by weight of titanic acid peroxide in terms of TiO 2 . This aqueous solution of titanic acid peroxide was transparent yellowish brown and had a pH of 8.1.

次いで、前記過酸化チタン酸水溶液22.5kgに、平均粒子径が7nmのシリカ微粒子を15重量%含むシリカゾル(触媒化成工業(株)製)496.5gと純水29.45kgとを混合して、オートクレーブ(耐圧硝子工業(株)製、120L)中にて165℃の温度で18時間、加熱した。
次に、得られたゾルを室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV−3010)を用いて濃縮して、固形分含有量が10重量%の水分散ゾル5.245kgを得た。
このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、アナターゼ型結晶構造を有する、チタンおよびケイ素を含む複合酸化物微粒子(以下、「無機酸化物微粒子1Ac」という)であった。さらに、この無機酸化物微粒子1Ac中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO288.0重量%およびSiO212.0重量%であった。
Next, 496.5 g of a silica sol (catalyst chemical industry Co., Ltd.) containing 15% by weight of silica fine particles having an average particle diameter of 7 nm and 29.5 kg of pure water were mixed with 22.5 kg of the aqueous solution of titanic acid peroxide. And heated in an autoclave (pressure-resistant glass industry, 120 L) at a temperature of 165 ° C. for 18 hours.
Next, after the obtained sol was cooled to room temperature, it was concentrated using an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.), and a water-dispersed sol 5 having a solid content of 10% by weight. Obtained 245 kg.
The inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above-mentioned method. As a result, composite oxide fine particles containing titanium and silicon having an anatase type crystal structure (hereinafter referred to as “inorganic oxide”). Referred to as “fine particles 1Ac”). Furthermore, when the content of the metal component contained in the inorganic oxide fine particle 1Ac was measured, it was 88.0% by weight of TiO 2 and 12.0% by weight of SiO 2 on the oxide conversion standard of each metal component. .

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製
オキシ塩化ジルコニウム(太陽鉱工(株)製)をZrO2換算基準で2重量%含むオキシ塩化ジルコニウム水溶液26.3kgに、アンモニアを15重量%含むアンモニア水を撹拌下で徐々に添加して、ジルコニウムの水和物を含むpH8.5のスラリー液を得た。次いで、このスラリーを濾過した後、純水で洗浄して、ジルコニウム成分をZrO2換算基準で10重量%のケーキ5.26kgを得た。
次に、このケーキ200gに純水1.80kgを加え、さらに水酸化カリウム(関東化学(株)製)を10重量%含む水酸化カリウム水溶液120gを加えてアルカリ性にした後、過酸化水素を35重量%含む過酸化水素水400gを加えて、50℃の温度に加熱してこのケーキを溶解した。さらに純水1.48kgを加えて、過酸化ジルコン酸をZrO2に換算基準で0.5重量%含む過酸化ジルコン酸水溶液4.0kgを得た。なお、この過酸化ジルコン酸水溶液のpHは、12であった。
(2) Preparation of water-dispersed sol containing coated inorganic oxide fine particles 26.3% of zirconium oxychloride aqueous solution containing 2% by weight of zirconium oxychloride (manufactured by Taiyo Mining Co., Ltd.) in terms of ZrO 2 , and 15% of ammonia. Aqueous ammonia containing wt% was gradually added with stirring to obtain a slurry solution having a pH of 8.5 containing zirconium hydrate. Subsequently, this slurry was filtered and then washed with pure water to obtain 5.26 kg of a cake having a zirconium component of 10% by weight in terms of ZrO 2 .
Next, 1.80 kg of pure water was added to 200 g of this cake, and 120 g of an aqueous potassium hydroxide solution containing 10% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was added to make it alkaline. 400 g of hydrogen peroxide containing wt% was added and heated to a temperature of 50 ° C. to dissolve this cake. Further, 1.48 kg of pure water was added to obtain 4.0 kg of an aqueous solution of zirconate peroxide containing 0.5 wt% of zirconate peroxide in terms of ZrO 2 on a conversion basis. The pH of the aqueous zirconate peroxide solution was 12.

一方、市販の水ガラス(AGCエスアイテック(株)製)を純水にて希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、ケイ素成分をSiO2換算基準で2重量%含む珪酸水溶液を得た。なお、この珪酸水溶液のpHは、2.3であった。
次に、前記工程(1)で得られた無機酸化物微粒子1Acを含む水分散ゾル3.0kgに純水12.0kgを加えて撹拌することにより、固形分含有量が2重量%の水分散ゾルを得た。次いで、この水分散ゾルを90℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液1020gと珪酸水溶液795gを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
次いで、この混合液をオートクレーブ(耐圧硝子工業(株)製、50L)に入れて、165℃の温度で18時間、加熱処理を行った。
次に、得られた混合液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、SIP−1013)で濃縮して、固形分含有量が20重量%の水分散ゾル1Aを得た。
On the other hand, after diluting commercially available water glass (manufactured by AGC S-Tech Co., Ltd.) with pure water, it is dealkalized using a cation exchange resin (manufactured by Mitsubishi Chemical Corporation), and the silicon component is converted into SiO 2 An aqueous silicic acid solution containing 2% by weight was obtained. The silicic acid aqueous solution had a pH of 2.3.
Next, 12.0 kg of pure water is added to 3.0 kg of the water-dispersed sol containing the inorganic oxide fine particles 1Ac obtained in the step (1), and the mixture is stirred to obtain an aqueous dispersion having a solid content of 2% by weight. A sol was obtained. Next, after heating this water-dispersed sol to a temperature of 90 ° C., 1020 g of the zirconic acid aqueous solution and 795 g of the silicic acid aqueous solution were gradually added thereto. Further, after the addition was completed, the mixture was stirred while maintaining the temperature at 90 ° C. Aged for 1 hour.
Next, this mixed solution was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 50 L) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
Next, after cooling the obtained liquid mixture to room temperature, it concentrates with an ultrafiltration membrane apparatus (Asahi Kasei Co., Ltd. make, SIP-1013), and the water dispersion sol 1A whose solid content is 20 weight% is obtained. Obtained.

このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、アナターゼ型の結晶構造を有する、チタンおよびケイ素を含む複合酸化物微粒子(核粒子)の表面を、ジルコニウムおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子(以下、「無機酸化物微粒子1Aw」という)であった。なお、この無機酸化物微粒子1Awを含む水分散ゾルの外観は、透明な淡乳白色であった。 When the inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above method, the surface of the composite oxide fine particles (nuclear particles) containing titanium and silicon having an anatase type crystal structure. Was an inorganic oxide fine particle (hereinafter, referred to as “inorganic oxide fine particle 1Aw”) coated with a composite oxide containing zirconium and silicon. The appearance of the water-dispersed sol containing the inorganic oxide fine particles 1Aw was transparent and light milky white.

さらに、前記無機酸化物微粒子1Aw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO282.2重量%、SiO214.6重量%、ZrO21.5重量%およびK2O1.7重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子1Ac(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO21.5重量%、SiO23.4重量%およびK2O1.7重量%であった。
また、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.06mmol/gであった。
さらに、前記無機酸化物微粒子1Awの平均粒子径は、上記の超微粒子粒度分析装置で測定したとき、10nmであり、またその乾燥粉体の比表面積は、223m2/gであった。
また、該無機酸化物微粒子中にK20が含まれているかどうかを、X線回折装置(理学電気(株)製、RINT1400)を用いて測定したところ、結晶物としてのK20のピークは検出されなかった。
Furthermore, when the metal component contained in the inorganic oxide fine particles 1Aw was measured, TiO 2 was 82.2% by weight, SiO 2 was 14.6% by weight, and ZrO 2 1.5 was 1.5 based on the oxide conversion standard of each metal component. Wt% and K 2 O 1.7 wt%. The measurement result of the whole particles, when the from the measurement results of the inorganic oxide fine particles 1Ac (core particles) was calculated content ratio of the metal component contained in the coating layer, ZrO 2 1.5 to the particle total amount Wt%, SiO 2 3.4 wt% and K 2 O 1.7 wt%.
The measured solid acid remaining contained in the inorganic oxide fine particles adsorbed NH 3 amount was 0.06 mmol / g.
Further, the average particle size of the inorganic oxide fine particles 1Aw was 10 nm as measured by the ultrafine particle size analyzer, and the specific surface area of the dry powder was 223 m 2 / g.
Further, whether or not K 2 0 is contained in the inorganic oxide fine particles was measured using an X-ray diffractometer (RINT 1400, manufactured by Rigaku Corporation), the peak of K 2 0 as a crystalline substance was measured. Was not detected.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
前記工程(2)で得られた無機酸化物微粒子1Awを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次に、この混合溶液を室温まで冷却してから、限外濾過膜を用いて分散媒を水からメタノール(中国精油(株)製)に置換した。
さらに、得られたメタノール分散液を限外濾過膜(旭化成(株)製、SIP−1013)で濃縮して、固形分含有量が20重量%の無機酸化物微粒子1Awを含むメタノール分散ゾル1Aを調製した。
このようにして得られる無機酸化物微粒子を含むメタノール分散ゾルの外観は、透明な淡青白色であった。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Water-dispersed sol containing inorganic oxide fine particles 1Aw obtained in the step (2) was treated with tetraethoxysilane (Tama Chemical Industry ( The product was added to a methanol solution in which the product was dissolved under stirring, and then heated at a temperature of 50 ° C. for 6 hours.
Next, after cooling this mixed solution to room temperature, the dispersion medium was replaced with methanol (manufactured by China Essential Oil Co., Ltd.) using an ultrafiltration membrane.
Further, the obtained methanol dispersion was concentrated with an ultrafiltration membrane (SIP-1013, manufactured by Asahi Kasei Co., Ltd.). Prepared.
The appearance of the methanol-dispersed sol containing the inorganic oxide fine particles thus obtained was a transparent light blue white.

[実施例2]
アナターゼ型結晶構造を有するチタン系複合酸化物微粒子(2)およびゾル
(1)核粒子としての無機酸化物微粒子を含む水分散ゾルの調製
四塩化チタン(大阪チタニウムテクノロジ-ズ(株)製)をTiO2換算基準で2.0重量%含む四塩化チタン水溶液100kgと、アンモニアを15重量%含むアンモニア水(宇部興産(株)製)とを混合して、pH8.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、純水で洗浄して、固形分含有量が10重量%の含水チタン酸ケーキ20kgを得た。
[Example 2]
Preparation of water-dispersed sol containing titanium-based composite oxide fine particles (2) having anatase type crystal structure and inorganic oxide fine particles as sol (1) core particles Titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) A white slurry liquid having a pH of 8.5 was prepared by mixing 100 kg of titanium tetrachloride aqueous solution containing 2.0% by weight in terms of TiO 2 and ammonia water containing 15% by weight of ammonia (manufactured by Ube Industries). . Next, this slurry was filtered and then washed with pure water to obtain 20 kg of a hydrous titanate cake having a solid content of 10% by weight.

次に、このケーキ5.0kgに、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)5.71kgと純水14.29kgとを加えた後、80℃の温度で1時間、撹拌下で加熱して、過酸化チタン酸をTiO2換算基準で2重量%含む過酸化チタン酸水溶液25kgを得た。さらに、純水25.0kgを加えて、過酸化チタン酸をTiO2換算基準で1重量%含む過酸化チタン酸水溶液を得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.3であった。 Next, after adding 5.71 kg of hydrogen peroxide containing 35 wt% hydrogen peroxide (Mitsubishi Gas Chemical Co., Ltd.) and 14.29 kg of pure water to 5.0 kg of this cake, a temperature of 80 ° C. And heated for 1 hour with stirring to obtain 25 kg of a titanic acid aqueous solution containing 2% by weight of titanic acid peroxide on a TiO 2 basis. Further, 25.0 kg of pure water was added to obtain an aqueous solution of titanic acid peroxide containing 1% by weight of titanic acid peroxide on a TiO 2 basis. This aqueous solution of titanic acid peroxide was transparent yellowish brown and had a pH of 8.3.

次いで、前記過酸化チタン酸水溶液50.0kgに陰イオン交換樹脂(三菱化学(株)製)3.0kgを加えた後、オキシ塩化ジルコニウムをZrO2換算基準で1重量%含むオキシ塩化ジルコニウム水溶液(太陽鉱工(株)製)5.0kgを徐々に添加して混合した。その後、前記陰イオン交換樹脂を分離除去した。さらに、平均粒子径が7nmのシリカ微粒子を15重量%含むシリカゾル(触媒化成工業(株)製)607gおよび純水(触媒化成工業(株)製)8.5kgを加えて混合した後、水酸化カリウムを1重量%含む水酸化カリウム水溶液(関東化学(株)製)を1.67kg加えて、オートクレーブ中にて165℃の温度で18時間、加熱した。 Next, after adding 3.0 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) to 50.0 kg of the aqueous solution of titanic acid peroxide, an aqueous zirconium oxychloride solution containing 1% by weight of zirconium oxychloride on a ZrO 2 conversion basis ( 5.0 kg of Taiyo Mining Co., Ltd.) was gradually added and mixed. Thereafter, the anion exchange resin was separated and removed. Further, after adding and mixing 607 g of silica sol (catalyst chemical industry Co., Ltd.) containing 15% by weight of silica fine particles having an average particle diameter of 7 nm and pure water (catalyst chemical industry Co., Ltd.) 8.5 kg, hydroxylation was performed. 1.67 kg of potassium hydroxide aqueous solution containing 1% by weight of potassium (manufactured by Kanto Chemical Co., Inc.) was added and heated in an autoclave at a temperature of 165 ° C. for 18 hours.

次に、得られたゾルを室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV−3010)で濃縮して、固形分含有量が10重量%の水分散ゾル6.4kgを得た。
このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、アナターゼ型結晶構造を有する、チタン、ケイ素、およびジルコニウムを含む複合酸化物微粒子(以下、「無機酸化物微粒子2Ac」という)であった。さらに、この無機酸化物微粒子2Ac中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO278.4重量%、SiO211.8重量%、ZrO27.8重量%およびK2O2.0重量%であった。
Next, after the obtained sol was cooled to room temperature, it was concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.), and 6.4 kg of an aqueous dispersion sol having a solid content of 10% by weight. Got.
The inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above method. As a result, composite oxide fine particles containing titanium, silicon, and zirconium having an anatase type crystal structure (hereinafter referred to as “ Inorganic oxide fine particles 2Ac ”). Furthermore, when the content of the metal component contained in the inorganic oxide fine particle 2Ac was measured, it was 78.4% by weight of TiO 2 , 11.8% by weight of SiO 2 , ZrO 2 based on the oxide conversion standard of each metal component. 7.8 and the weight percent and K 2 O2.0% by weight.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製
実施例1に示す方法と同様な条件下で、前記工程(1)で得られた無機酸化物微粒子2Acの表面を、ジルコニウム、ケイ素およびカリウムを含む複合酸化物で被覆してなる無機酸化物微粒子を含む水分散ゾル2Aを得た。
このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、アナターゼ型の結晶構造を有する、チタン、ケイ素およびジルコニウムを含む複合酸化物微粒子(核粒子)の表面を、ジルコニウムおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子(以下、「無機酸化物微粒子2Aw」という)であった。なお、この無機酸化物微粒子2Awを含む水分散ゾルの外観は、透明な淡乳白色であった。
(2) Preparation of water-dispersed sol containing coated inorganic oxide fine particles Under the same conditions as in Example 1, the surface of the inorganic oxide fine particles 2Ac obtained in the step (1) was treated with zirconium, silicon. Then, an aqueous dispersion sol 2A containing fine inorganic oxide particles coated with a complex oxide containing potassium was obtained.
The inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above method. As a result, composite oxide fine particles (nuclear particles) containing titanium, silicon, and zirconium having an anatase type crystal structure. These were inorganic oxide fine particles (hereinafter referred to as “inorganic oxide fine particles 2Aw”) obtained by coating the surface of the composite oxide with a complex oxide containing zirconium and silicon. The appearance of the water-dispersed sol containing the inorganic oxide fine particles 2Aw was transparent and light milky white.

また、前記無機酸化物微粒子2Aw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO273.5重量%、SiO214.4重量%、ZrO28.8重量%およびK2O3.3重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子2Ac(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO21.5重量%、SiO23.3重量%およびK2O1.4重量%であった。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.05mmol/gであった。
さらに、前記無機酸化物微粒子2Awの平均粒子径は、動的光散乱法で測定したとき、15nmであり、またその乾燥粉体の比表面積は、206m2/gであった。
Further, when the metal components contained in the inorganic oxide fine particles 2Aw were measured, TiO 2 was 73.5% by weight, SiO 2 was 14.4% by weight, ZrO 2 8.8 based on the oxide conversion standard of each metal component. Wt% and K 2 O 3.3 wt%. The measurement result of the whole particles, when the from the measurement results of the inorganic oxide fine particles 2Ac (core particles) was calculated content ratio of the metal component contained in the coating layer, ZrO 2 1.5 to the particle total amount wt%, it was SiO 2 3.3 wt% and K 2 O1.4% by weight.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.05 mmol / g.
Furthermore, the average particle diameter of the inorganic oxide fine particles 2Aw was 15 nm as measured by a dynamic light scattering method, and the specific surface area of the dry powder was 206 m 2 / g.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
前記工程(2)で得られた無機酸化物微粒子2Awを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次いで、実施例1に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子2Awを含むメタノール分散ゾル2Aを調製した。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Water-dispersed sol containing inorganic oxide fine particles 2Aw obtained in the step (2) was treated with tetraethoxysilane (Tama Chemical Industry ( The product was added to a methanol solution in which the product was dissolved under stirring, and then heated at a temperature of 50 ° C. for 6 hours.
Subsequently, solvent substitution was performed under the same conditions as in the method shown in Example 1 to prepare methanol-dispersed sol 2A containing inorganic oxide fine particles 2Aw having a solid content of 20% by weight.

[実施例3および比較例1]
アナターゼ型結晶構造を有するチタン系複合酸化物微粒子(3)〜(8)およびゾル
(1)核粒子としての無機酸化物微粒子を含む水分散ゾルの調製
実施例1に示す方法と同様な条件下で、過酸化チタン酸をTiO2換算基準で2重量%含む過酸化チタン酸水溶液100kgを得た。
次いで、前記過酸化チタン酸水溶液から12.87kgを取り、これらに平均粒子径が7nmのシリカ微粒子を15重量%含むシリカゾル(触媒化成工業(株)製)284gと純水(触媒化成工業(株)製)16.846kgを混合し、さらに水酸化カリウム(関東化学(株)製)を1重量%含む水酸化カリウム水溶液を表1に示す割合で加えて、オートクレーブ(耐圧硝子工業(株)製、50L)中にて165℃の温度で18時間、加熱した。
さらに、表1に示す割合で、前記過酸化チタン酸水溶液に前記シリカゾルおよび前記水酸化カリウム水溶液を加えて、上記と同様な条件下で、オートクレーブ中にて加熱処理を行った。
[Example 3 and Comparative Example 1]
Preparation of water-dispersed sol containing titanium-based composite oxide fine particles (3) to (8) having anatase type crystal structure and inorganic oxide fine particles as sol (1) core particles The same conditions as the method shown in Example 1 Thus, 100 kg of an aqueous solution of titanic acid peroxide containing 2% by weight of titanic acid peroxide in terms of TiO 2 was obtained.
Next, 287 g of silica sol (catalyst chemical industry Co., Ltd.) containing 12.87 kg of the titanic acid peroxide aqueous solution and 15% by weight of silica fine particles having an average particle diameter of 7 nm and pure water (catalyst chemical industry Co., Ltd.) )) 16.846 kg is mixed, and an aqueous solution of potassium hydroxide containing 1% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd.) is added in the ratio shown in Table 1, and then an autoclave (manufactured by Pressure Glass Industrial Co., Ltd.) is added. 50 L) at a temperature of 165 ° C. for 18 hours.
Further, the silica sol and the potassium hydroxide aqueous solution were added to the titanate aqueous solution at the ratio shown in Table 1, and heat treatment was performed in an autoclave under the same conditions as described above.

次に、得られたゾルを室温まで冷却した後、限外濾過膜装置(旭化成(株)製、SIP−1013)で濃縮して、固形分含有量が10重量%の水分散ゾルを得た。
このようにして得られた、それぞれの水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、アナターゼ型結晶構造を有する、チタンおよびケイ素を含む複合酸化物微粒子(以下、「無機酸化物微粒子3Ac〜8Ac」、という)であった。さらに、これらの無機酸化物微粒子3Ac〜8Ac中に含まれる金属成分の含有量を、実施例1の場合と同様に測定した。その結果を表1に示す。
Next, after cooling the obtained sol to room temperature, it was concentrated with an ultrafiltration membrane device (Asahi Kasei Co., Ltd., SIP-1013) to obtain an aqueous dispersion sol having a solid content of 10 wt%. .
The inorganic oxide fine particles contained in each water-dispersed sol thus obtained were measured by the above method. As a result, composite oxide fine particles containing titanium and silicon having an anatase type crystal structure (hereinafter referred to as “ Inorganic oxide fine particles 3Ac to 8Ac ”). Furthermore, the content of the metal component contained in these inorganic oxide fine particles 3Ac to 8Ac was measured in the same manner as in Example 1. The results are shown in Table 1.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製
実施例1に示す方法と同様な条件下で、ジルコニウム成分をZrO2換算基準で10重量%含むケーキ5.26kgを得た。
次に、このケーキ51gに純水461gを加えてジルコニウム成分をZrO2換算基準で1重量%含むスラリー液を調製した後、さらに水酸化カリウム(関東化学(株)製)を10重量%含む水酸化カリウム水溶液を102g加えてアルカリ性にした後、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)102gを加え、さらに純水を306g加えて、50℃の温度に加熱してこのケーキを溶解した。これにより、過酸化ジルコン酸をZrO2換算基準で0.5重量%含む過酸化ジルコン酸水溶液1020gを得た。
さらに、表1に示す割合で、前記ケーキに前記水酸化カリウム水溶液および前記過酸化水素水を加えて、上記と同様な条件下で、過酸化ジルコン酸をZrO2換算基準で0.5重量%含む過酸化ジルコン酸水溶液を得た。
(2) Preparation of water-dispersed sol containing coated inorganic oxide fine particles Under the same conditions as in Example 1, 5.26 kg of a cake containing 10% by weight of the zirconium component on a ZrO 2 conversion basis was obtained.
Next, after adding 461 g of pure water to 51 g of this cake to prepare a slurry liquid containing 1% by weight of the zirconium component in terms of ZrO 2, water containing 10% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Inc.). After adding 102 g of an aqueous potassium oxide solution to make it alkaline, 102 g of hydrogen peroxide containing 35% by weight of hydrogen peroxide (manufactured by Mitsubishi Gas Chemical Co., Ltd.) is added, and 306 g of pure water is further added to a temperature of 50 ° C. The cake was dissolved by heating. As a result, 1020 g of an aqueous zirconate peroxide solution containing 0.5% by weight of zirconate peroxide in terms of ZrO 2 was obtained.
Further, the potassium hydroxide aqueous solution and the hydrogen peroxide solution were added to the cake in the ratio shown in Table 1, and under the same conditions as described above, the zirconium zirconate was added at 0.5% by weight in terms of ZrO 2. An aqueous zirconate peroxide solution containing was obtained.

次いで、実施例1に示す方法と同様な条件下で、市販の水ガラス(AGCエスアイテック(株)製)を純水にて希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、ケイ素成分をSiO2換算基準で2重量%含む珪酸水溶液を得た。
次に、前記工程(1)で得られた無機酸化物微粒子3Ac〜8Acを含む水分散ゾル3.0kgにそれぞれ純水12.0kgを加えて撹拌することにより、固形分含有量が2重量%の水分散ゾルを得た。
Subsequently, after diluting a commercially available water glass (manufactured by AGC S-Tech Co., Ltd.) with pure water under the same conditions as in the method shown in Example 1, a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was used. The resulting solution was dealkalized to obtain a silicic acid aqueous solution containing 2% by weight of a silicon component on a SiO 2 conversion basis.
Next, 12.0 kg of pure water is added to 3.0 kg of the water-dispersed sol containing the inorganic oxide fine particles 3Ac to 8Ac obtained in the step (1) and stirred, so that the solid content is 2% by weight. An aqueous dispersion sol was obtained.

次いで、前記無機酸化物微粒子3Acの水分散ゾルを90℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液1020gと前記珪酸水溶液795gを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
さらに、前記無機酸化物微粒子4Ac〜8Acを含む水分散ゾルについても、表1に示す割合で、前記過酸化ジルコン酸水溶液および前記珪酸水溶液を添加して、上記と同様な条件下で熟成を行った。
次いで、これらの混合液をそれぞれオートクレーブに入れて、165℃の温度で18時間、加熱処理を行った。
次に、得られた混合液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、SIP−1013)を用いて濃縮して、固形分含有量が20重量%の水分散ゾル3A〜8Aを得た。
Next, after heating the water-dispersed sol of the inorganic oxide fine particles 3Ac to a temperature of 90 ° C., 1020 g of the zirconate aqueous solution and 795 g of the silicic acid aqueous solution are gradually added thereto. The mixture was aged for 1 hour under stirring while maintaining the temperature.
Further, the aqueous dispersion sol containing the inorganic oxide fine particles 4Ac to 8Ac is also subjected to aging under the same conditions as above by adding the aqueous zirconate peroxide solution and the aqueous silicic acid solution at the ratio shown in Table 1. It was.
Next, each of these liquid mixtures was put in an autoclave and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
Next, after cooling the obtained mixed liquid to room temperature, it is concentrated using an ultrafiltration membrane device (Asahi Kasei Co., Ltd., SIP-1013), and an aqueous dispersion sol having a solid content of 20% by weight. 3A-8A were obtained.

このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、アナターゼ型の結晶構造を有する、チタンおよびケイ素を含む複合酸化物微粒子(核粒子)の表面を、ジルコニウムおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子(以下、「無機酸化物微粒子3Aw〜8Aw」という)であった。
また、これらの無機酸化物微粒子3Aw〜8Aw中に含まれる金属成分の含有量を、実施例1の場合と同様に測定した。さらに、実施例1の場合と同様に、該微粒子中に含まれる固体酸残量をNH3吸着量として測定した。その結果を表1に示す。
When the inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above method, the surface of the composite oxide fine particles (nuclear particles) containing titanium and silicon having an anatase type crystal structure. Were inorganic oxide fine particles (hereinafter referred to as “inorganic oxide fine particles 3Aw to 8Aw”) formed by coating with a composite oxide containing zirconium and silicon.
Further, the content of the metal component contained in these inorganic oxide fine particles 3Aw to 8Aw was measured in the same manner as in Example 1. Further, in the same manner as in Example 1, the amount of solid acid contained in the fine particles was measured as the NH 3 adsorption amount. The results are shown in Table 1.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
前記工程(2)で得られた無機酸化物微粒子3Aw〜8Awを含む、それぞれの水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次いで、実施例1に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子3Aw〜8Awを含むメタノール分散ゾル3A〜8Aをそれぞれ調製した。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Tetraethoxysilane as a surface treatment agent for each water-dispersed sol containing inorganic oxide fine particles 3Aw to 8Aw obtained in the step (2). After adding to the methanol solution in which (Tama Chemical Co., Ltd. product) was dissolved, it heated at the temperature of 50 degreeC for 6 hours.
Subsequently, solvent substitution was performed under the same conditions as in the method shown in Example 1, and methanol dispersed sols 3A to 8A containing inorganic oxide fine particles 3Aw to 8Aw having a solid content of 20% by weight were prepared.

Figure 0005255270
Figure 0005255270

[比較例2]
アナターゼ型結晶構造を有するチタン系複合酸化物微粒子(9)およびゾル
(1)被覆した無機酸化物微粒子中に含まれるカリウム含有量の調整
実施例1の前記工程(2)で得られた無機酸化物微粒子1Awを含む水分散ゾル1A2000gに、陽イオン交換樹脂(三菱化学(株)製)50gを加えて、室温にて1時間撹拌した。
これにより、前記無機酸化物微粒子中に含まれるカリウム化合物の含有量を低減させた無機酸化物微粒子9Awを含む水分散ゾル9Aを得た。
このようにして得られた無機酸化物微粒子9Aw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO282.8重量%、SiO215.1重量%、ZrO21.6重量%およびK2O0.5重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子1Ac(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO21.6重量%、SiO23.8重量%およびK2O0.5重量%であった。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.09mmol/gであった。
[Comparative Example 2]
Adjustment of the potassium content contained in the titanium-based composite oxide fine particles (9) having an anatase type crystal structure and the sol (1) coated inorganic oxide fine particles Inorganic oxidation obtained in the step (2) of Example 1 50 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was added to 2000 g of an aqueous dispersion sol 1Aw containing 1 Aw of the material fine particles, and the mixture was stirred at room temperature for 1 hour.
As a result, an aqueous dispersion sol 9A containing inorganic oxide fine particles 9Aw in which the content of the potassium compound contained in the inorganic oxide fine particles was reduced was obtained.
When the metal components contained in the inorganic oxide fine particles 9Aw obtained in this way were measured, the oxide conversion standard of each metal component was 82.8% by weight of TiO 2 , 15.1% by weight of SiO 2 , ZrO. It was 2 1.6 wt% and K 2 O0.5% by weight. The measurement result of the entire particle, the more measurements of the inorganic oxide fine particles 1Ac (core particles) was calculated the content ratio of the metal component contained in the coating layer, ZrO 2 1.6 to the particle total amount wt%, it was SiO 2 3.8 wt% and K 2 O0.5% by weight.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.09 mmol / g.

(2)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
上記で得られた無機酸化物微粒子9Awを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次いで、実施例1に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子9Awを含むメタノール分散ゾル9Aを調製した。
(2) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd.) as a surface treating agent was used for the aqueous dispersion sol containing inorganic oxide fine particles 9Aw obtained above. After being added to a methanol solution in which was dissolved, the mixture was heated at a temperature of 50 ° C. for 6 hours.
Subsequently, solvent substitution was performed under the same conditions as in the method shown in Example 1, and a methanol-dispersed sol 9A containing inorganic oxide fine particles 9Aw having a solid content of 20% by weight was prepared.

[実施例4]
アナターゼ型結晶構造を有するチタン系複合酸化物微粒子(10)およびゾル
(1)被覆した無機酸化物微粒子中に含まれるカリウム含有量の調整
比較例1の前記工程(2)で得られた無機酸化物微粒子8Awを含む水分散ゾル8A2000gに、陽イオン交換樹脂(三菱化学(株)製)100gを加えて、室温にて1時間撹拌した。
[Example 4]
Adjustment of the potassium content contained in the titanium-based composite oxide fine particles (10) having an anatase type crystal structure and the sol (1) coated inorganic oxide fine particles Inorganic oxidation obtained in the step (2) of Comparative Example 1 100 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was added to 2000 g of an aqueous dispersion sol 8Aw containing product fine particles 8Aw, and the mixture was stirred at room temperature for 1 hour.

これにより、前記無機酸化物微粒子中に含まれるカリウム化合物の含有量を低減させた無機酸化物微粒子10Awを含む水分散ゾル10Aを得た。
このようにして得られた無機酸化物微粒子10Aw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO237.1重量%、SiO236.7重量%、ZrO219.2重量%およびK2O7.0重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子8Ac(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO219.2重量%、SiO231.6重量%およびK2O6.6重量%であった。ただし、この被覆層中に含まれるカリウム化合物の算定にあたっては、前記陽イオン交換樹脂による処理中に、前記前記無機酸化物微粒子8Acの核粒子中からはカリウムイオンなどが溶出しないとみなした。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.28mmol/gであった。
As a result, an aqueous dispersion sol 10A containing inorganic oxide fine particles 10Aw in which the content of the potassium compound contained in the inorganic oxide fine particles was reduced was obtained.
When the metal component contained in the thus obtained inorganic oxide fine particles 10Aw was measured, it was 37.1% by weight of TiO 2 , 36.7% by weight of SiO 2 , ZrO in terms of oxide conversion standard of each metal component. It was 2 19.2 wt% and K 2 O7.0 wt%. From the measurement result of the whole particle and the measurement result of the inorganic oxide fine particle 8Ac (nuclear particle), the content ratio of the metal component contained in the coating layer was calculated, and ZrO 2 19.2 with respect to the total amount of the particle. Wt%, SiO 2 31.6 wt% and K 2 O 6.6 wt%. However, in calculating the potassium compound contained in the coating layer, it was considered that potassium ions or the like did not elute from the core particles of the inorganic oxide fine particles 8Ac during the treatment with the cation exchange resin.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.28 mmol / g.

(2)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
上記で得られた無機酸化物微粒子10Awを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次いで、実施例1に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子10Awを含むメタノール分散ゾル10Aをそれぞれ調製した。
(2) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd.) as a surface treating agent was used for the water-dispersed sol containing inorganic oxide fine particles 10Aw obtained above. After being added to a methanol solution in which was dissolved, the mixture was heated at a temperature of 50 ° C. for 6 hours.
Subsequently, solvent substitution was performed under the same conditions as in the method shown in Example 1, and methanol-dispersed sols 10A containing inorganic oxide fine particles 10Aw having a solid content of 20% by weight were prepared.

[実施例5]
アナターゼ型結晶構造を有するチタン系複合酸化物微粒子(11)およびゾル
(1)核粒子中に含まれるカリウム含有量の調整
実施例3の前記工程(1)で得られた無機酸化物微粒子3Acを含む水分散ゾル3A
3.0kgに、水酸化カリウム(関東化学(株)製)を1重量%含む水酸化カリウム水溶液290gを加えて、室温にて1時間撹拌した。
これにより、前記無機酸化物微粒子(核粒子)中に含まれるカリウム化合物の含有量を増加させた無機酸化物微粒子11Acを含む水分散ゾル11Aを得た。なお、このように外部から添加したカリウム化合物も、前記無機酸化物微粒子の表面に付着して、該微粒子中に取り込まれていることが分かった。これは、該微粒子の表面に存在するO・H基とカリウムイオンとが反応したことによるものと考えられる。
このようにして得られた無機酸化物微粒子11Ac中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO286.9重量%、SiO211.8重量%およびK2O1.3重量%であった。
[Example 5]
Adjustment of content of potassium contained in titanium-based composite oxide fine particles (11) and sol (1) core particles having anatase type crystal structure Inorganic oxide fine particles 3Ac obtained in the step (1) of Example 3 Water dispersion sol 3A containing
To 3.0 kg, 290 g of a potassium hydroxide aqueous solution containing 1% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Inc.) was added and stirred at room temperature for 1 hour.
As a result, an aqueous dispersion sol 11A containing inorganic oxide fine particles 11Ac in which the content of the potassium compound contained in the inorganic oxide fine particles (core particles) was increased was obtained. In addition, it was found that the potassium compound added from the outside in this way also adheres to the surface of the inorganic oxide fine particles and is taken into the fine particles. This is considered to be due to the reaction between the O · H groups present on the surface of the fine particles and potassium ions.
When the metal component contained in the thus obtained inorganic oxide fine particles 11Ac was measured, TiO 2 was 86.9% by weight, SiO 2 was 11.8% by weight, and K based on the oxide conversion standard of each metal component. It was 2 O1.3% by weight.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製
実施例1に示す方法と同様な条件下で、前記工程(1)で得られた無機酸化物微粒子11Acの表面を、ジルコニウムおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子(以下、「無機酸化物微粒子11Aw」という)を含む水分散ゾル11Aを得た。
このようにして得られた無機酸化物微粒子11Aw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO281.1重量%、SiO214.5重量%、ZrO21.4重量%およびK2O3.0重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子11Ac(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO21.4重量%、SiO23.5重量%およびK2O1.8重量%であった。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.05mmol/gであった。
(2) Preparation of water-dispersed sol containing coated inorganic oxide fine particles Under the same conditions as in Example 1, the surface of the inorganic oxide fine particles 11Ac obtained in the step (1) was treated with zirconium and silicon. A water-dispersed sol 11A containing inorganic oxide fine particles (hereinafter referred to as “inorganic oxide fine particles 11Aw”) formed by coating with a composite oxide containing selenium was obtained.
When the metal component contained in the thus obtained inorganic oxide fine particles 11Aw was measured, 81.1% by weight of TiO 2 , 14.5% by weight of SiO 2 , ZrO on the basis of oxide conversion of each metal component. 2 1.4% by weight and K 2 O 3.0% by weight. From the measurement result of the whole particle and the measurement result of the inorganic oxide fine particle 11Ac (nuclear particle), the content ratio of the metal component contained in the coating layer was calculated, and ZrO 2 1.4 was calculated based on the total amount of the particle. % By weight, 3.5% by weight of SiO 2 and 1.8% by weight of K 2 O.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.05 mmol / g.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
上記で得られた無機酸化物微粒子11Awを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次いで、実施例1に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子11Awを含むメタノール分散ゾル11Aを調製した。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd.) as a surface treatment agent was used for the water-dispersed sol containing inorganic oxide fine particles 11Aw obtained above. After being added to a methanol solution in which was dissolved, the mixture was heated at a temperature of 50 ° C. for 6 hours.
Next, solvent replacement was performed under the same conditions as in the method shown in Example 1 to prepare a methanol-dispersed sol 11A containing inorganic oxide fine particles 11Aw having a solid content of 20% by weight.

[比較例3]
アナターゼ型結晶構造を有するチタン系複合酸化物微粒子(12)およびゾル
実施例1の工程(1)に示す方法(すなわち、核粒子1Acの調製)と同様な条件下で、アナターゼ型結晶構造を有する、チタンおよびケイ素を含む複合酸化物微粒子(以下、「無機酸化物微粒子12Ac」という)を含む水分散ゾルを調製した。
なお、該微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO288.0重量%およびSiO212.0重量%であった。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.02mmol/gであった。
次いで、実施例1の工程(2)に示す手段(すなわち、該微粒子の被覆)を施すことなく、実施例1の工程(3)に示す方法と同様な条件下で、該微粒子を含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で3時間、加熱した。
さらに、実施例1に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子12Awを含むメタノール分散ゾル12Aを調製した。
[Comparative Example 3]
Titanium-based composite oxide fine particles (12) having anatase-type crystal structure and sol Anatase-type under the same conditions as in the method shown in step (1) of Example 1 (i.e., preparation of core particle 1Ac) An aqueous dispersion sol having composite oxide fine particles containing titanium and silicon (hereinafter referred to as “inorganic oxide fine particles 12Ac”) having a crystal structure was prepared.
In addition, when the content of the metal component contained in the fine particles was measured, it was 88.0% by weight of TiO 2 and 12.0% by weight of SiO 2 on the basis of oxide conversion of each metal component.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.02 mmol / g.
Next, water dispersion containing the fine particles is performed under the same conditions as in the step (3) of Example 1 without applying the means shown in Step (2) of Example 1 (that is, coating of the fine particles). The sol was added with stirring to a methanol solution in which tetraethoxysilane (manufactured by Tama Chemical Co., Ltd.) as a surface treating agent was dissolved, and then heated at a temperature of 50 ° C. for 3 hours.
Furthermore, solvent substitution was performed under the same conditions as in the method shown in Example 1 to prepare a methanol-dispersed sol 12A containing inorganic oxide fine particles 12Aw having a solid content of 20% by weight.

[実施例6]
ルチル型結晶構造を有するチタン系複合酸化物微粒子(1)およびゾル
(1)核粒子としての無機酸化物微粒子を含む水分散ゾルの調製
四塩化チタン(大阪チタニウムテクノロジ-ズ(株)製)をTiO2換算基準で7.75重量%含む四塩化チタン水溶液93.665kgと、アンモニアを15重量%含むアンモニア水(宇部興産(株)製)36.295kgとを混合し、pH9.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、純水(触媒化成工業(株)製)で洗浄して、固形分含有量が10重量%の含水チタン酸ケーキ72.6kgを得た。
次に、このケーキに、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)83.0kgと純水411.4kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらに純水159kgを加えて、過酸化チタン酸をTiO2換算基準で1重量%含む過酸化チタン酸水溶液を726kg得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.5であった。
[Example 6]
Preparation of water-dispersed sol containing titanium-based composite oxide fine particles (1) having a rutile-type crystal structure and inorganic oxide fine particles as sol (1) core particles Titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) A white slurry having a pH of 9.5 is mixed with 93.665 kg of an aqueous titanium tetrachloride solution containing 7.75% by weight in terms of TiO 2 and 36.295 kg of aqueous ammonia containing 15% by weight of ammonia (manufactured by Ube Industries). A liquid was prepared. Next, this slurry was filtered and then washed with pure water (manufactured by Catalyst Chemical Industry Co., Ltd.) to obtain 72.6 kg of a hydrous titanate cake having a solid content of 10% by weight.
Next, 83.0 kg of hydrogen peroxide containing 35% by weight of hydrogen peroxide (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 411.4 kg of pure water are added to the cake, and then at a temperature of 80 ° C. for 1 hour. The mixture was heated under stirring, and 159 kg of pure water was further added to obtain 726 kg of an aqueous solution of titanic acid peroxide containing 1% by weight of titanic acid peroxide on a TiO 2 basis. This aqueous solution of titanic acid peroxide was transparent yellowish brown and had a pH of 8.5.

次いで、前記過酸化チタン酸水溶液72.9kgに陽イオン交換樹脂3.5kgを混合して、これに、スズ酸カリウム(昭和化工(株)製)をSnO2換算基準で1重量%含むスズ酸カリウム水溶液9.11kgを撹拌下で徐々に添加した。
次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂(三菱化学(株)製)を分離した後、平均粒子径が7nmのシリカ微粒子を15重量%含むシリカゾル(触媒化成工業(株)製)1.2kgと純水18.0kgとを混合して、オートクレーブ(耐圧硝子工業(株)製、120L)中で165℃の温度で18時間、加熱した。
Next, 3.5 kg of a cation exchange resin was mixed with 72.9 kg of the aqueous solution of titanic acid peroxide, and stannic acid containing 1% by weight of potassium stannate (manufactured by Showa Kako Co., Ltd.) in terms of SnO 2. 9.11 kg of aqueous potassium solution was gradually added under stirring.
Next, after separating a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) incorporating potassium ions and the like, silica sol (catalyst chemical industry Co., Ltd.) 1 containing 15% by weight of silica fine particles having an average particle diameter of 7 nm is obtained. 0.2 kg and 18.0 kg of pure water were mixed and heated in an autoclave (pressure-resistant glass industry, 120 L) at a temperature of 165 ° C. for 18 hours.

次に、得られたゾルを室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV−3010)で濃縮して、固形分含有量が10重量%の水分散ゾル10.0kgを得た。
このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、ルチル型結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子(以下、「無機酸化物微粒子1Bc」という)であった。さらに、この無機酸化物微粒子1Bc中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO273.7重量%、SnO29.3重量%、SiO215.7重量%およびK2O1.3重量%であった。
Next, after cooling the obtained sol to room temperature, it was concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.), and 10.0 kg of an aqueous dispersion sol having a solid content of 10% by weight. Got.
The inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above method. As a result, composite oxide fine particles containing a rutile crystal structure and containing titanium, tin and silicon (hereinafter referred to as “inorganic Oxide fine particles 1Bc). Furthermore, when the content of the metal component contained in the inorganic oxide fine particle 1Bc was measured, it was 73.7% by weight of TiO 2 , 9.3% by weight of SnO 2 , SiO 2 based on the oxide conversion standard of each metal component. It was 15.7 wt% and K 2 O1.3% by weight.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製
オキシ塩化ジルコニウム(太陽鉱工(株)製)をZrO2換算基準で2重量%含むオキシ塩化ジルコニウム水溶液26.3kgに、アンモニアを15重量%含むアンモニア水を撹拌下で徐々に添加して、pH8.5のスラリー液を得た。次いで、このスラリーを濾過した後、純水で洗浄して、ジルコニウム成分をZrO2に換算基準で10重量%含むケーキ5.26kgを得た。
次に、このケーキ200gに純水1.80kgを加え、さらに水酸化カリウム(関東化学(株)製)を10重量%含む水酸化カリウム水溶液120gを加えてアルカリ性にした後、過酸化水素を35重量%含む過酸化水素水400gを加えて、50℃の温度に加熱してこのケーキを溶解した。さらに、純水1.48kgを加えて、過酸化ジルコン酸をZrO2換算基準で0.5重量%含む過酸化ジルコン酸水溶液4.0kgを得た。なお、この過酸化ジルコン酸水溶液のpHは、12.2であった。
(2) Preparation of water-dispersed sol containing coated inorganic oxide fine particles 26.3 kg of zirconium oxychloride aqueous solution containing 2% by weight of zirconium oxychloride (manufactured by Taiyo Mining Co., Ltd.) in terms of ZrO 2 , and 15% of ammonia. Aqueous ammonia containing wt% was gradually added with stirring to obtain a slurry solution having a pH of 8.5. Next, this slurry was filtered and then washed with pure water to obtain 5.26 kg of a cake containing 10% by weight of a zirconium component in terms of ZrO 2 in terms of conversion.
Next, 1.80 kg of pure water was added to 200 g of this cake, and 120 g of an aqueous potassium hydroxide solution containing 10% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was added to make it alkaline. 400 g of hydrogen peroxide containing wt% was added and heated to a temperature of 50 ° C. to dissolve this cake. Further, 1.48 kg of pure water was added to obtain 4.0 kg of an aqueous zirconate peroxide solution containing 0.5 wt% of zirconate peroxide in terms of ZrO 2 . The aqueous zirconate peroxide solution had a pH of 12.2.

一方、市販の水ガラス(AGCエスアイテック(株)製)を純水にて希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、ケイ素成分をSiO2換算基準で2重量%含む珪酸水溶液を得た。なお、この珪酸水溶液液のpHは、2.3であった。
次に、前記工程(1)で得られた無機酸化物微粒子1Bcを含む水分散ゾル3.0kgに純水12.0kgを加えて撹拌することにより、固形分含有量が2重量%の水分散ゾルを得た。次いで、この水分散ゾルを90℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液1020gと珪酸水溶液795gを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
次いで、この混合液をオートクレーブ(耐圧硝子工業(株)製、50L)に入れて、165℃の温度で18時間、加熱処理を行った。
次に、得られた混合液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、SIP−1013)を用いて濃縮して、固形分含有量が20重量%の水分散ゾル1Bを得た。
On the other hand, after diluting commercially available water glass (manufactured by AGC S-Tech Co., Ltd.) with pure water, it is dealkalized using a cation exchange resin (manufactured by Mitsubishi Chemical Corporation), and the silicon component is converted into SiO 2 An aqueous silicic acid solution containing 2% by weight was obtained. The pH of the aqueous silicic acid solution was 2.3.
Next, 12.0 kg of pure water is added to 3.0 kg of the water-dispersed sol containing the inorganic oxide fine particles 1Bc obtained in the step (1), and the mixture is stirred to obtain an aqueous dispersion having a solid content of 2% by weight. A sol was obtained. Next, after heating this water-dispersed sol to a temperature of 90 ° C., 1020 g of the zirconic acid aqueous solution and 795 g of the silicic acid aqueous solution were gradually added thereto. Further, after the addition was completed, the mixture was stirred while maintaining the temperature at 90 ° C. Aged for 1 hour.
Next, this mixed solution was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 50 L) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
Next, after cooling the obtained mixed liquid to room temperature, it is concentrated using an ultrafiltration membrane device (Asahi Kasei Co., Ltd., SIP-1013), and an aqueous dispersion sol having a solid content of 20% by weight. 1B was obtained.

このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、ルチル型の結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子(核粒子)の表面を、ジルコニウムおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子(以下、「無機酸化物微粒子1Bw」という)であった。なお、この無機酸化物微粒子1Bwを含む水分散ゾルの外観は、透明な淡乳白色であった。
さらに、前記無機酸化物微粒子1Bw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO268.7重量%、SnO28.8重量%、SiO217.9重量%、ZrO21.5重量%およびK2O3.1重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子1Bc(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO21.5重量%、SiO23.3重量%およびK2O1.9重量%であった。
また、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.05mmol/gであった。
さらに、前記無機酸化物微粒子1Bwの平均粒子径は、動的光散乱法で測定したとき、15nmであり、またその乾燥粉体の比表面積は、224m2/gであった。
The inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above method. As a result, the composite oxide fine particles (nuclear particles) having a rutile crystal structure and containing titanium, tin and silicon. The surface was inorganic oxide fine particles (hereinafter referred to as “inorganic oxide fine particles 1Bw”) formed by coating a complex oxide containing zirconium and silicon. The appearance of the water-dispersed sol containing the inorganic oxide fine particles 1Bw was transparent and light milky white.
Furthermore, when the metal component contained in the inorganic oxide fine particles 1Bw was measured, it was 68.7% by weight of TiO 2 , 8.8% by weight of SnO 2 , 17.9% of SiO 2 on the basis of oxide conversion of each metal component. wt%, and ZrO 2 1.5 wt% and K 2 O3.1% by weight. From the measurement result of the whole particle and the measurement result of the inorganic oxide fine particle 1Bc (nuclear particle), the content ratio of the metal component contained in the coating layer was calculated, and ZrO 2 1.5 with respect to the total amount of the particle was calculated. wt%, it was SiO 2 3.3 wt% and K 2 O1.9% by weight.
Further, the residual amount of the solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, which was 0.05 mmol / g.
Furthermore, the average particle diameter of the inorganic oxide fine particles 1Bw was 15 nm as measured by a dynamic light scattering method, and the specific surface area of the dry powder was 224 m 2 / g.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
前記工程(2)で得られた無機酸化物微粒子1Bwを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次に、この混合溶液を室温まで冷却してから、限外濾過膜装置を用いて分散媒を水からメタノール(中国精油(株)製)に置換した。
さらに、得られたメタノール分散液を限外濾過膜装置(旭化成(株)製、SIP−1013)で濃縮して、固形分含有量が20重量%の無機酸化物微粒子1Bwを含むメタノール分散ゾル1Bを調製した。
このようにして得られる無機酸化物微粒子を含むメタノール分散ゾルの外観は、透明な淡青白色であった。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Water-dispersed sol containing inorganic oxide fine particles 1Bw obtained in the step (2) was treated with tetraethoxysilane (Tama Chemical Industry ( The product was added to a methanol solution in which the product was dissolved under stirring, and then heated at a temperature of 50 ° C. for 6 hours.
Next, after cooling this mixed solution to room temperature, the dispersion medium was replaced with water (manufactured by China Essential Oil Co., Ltd.) using water as an ultrafiltration membrane device.
Further, the obtained methanol dispersion was concentrated with an ultrafiltration membrane device (SIP-1013, manufactured by Asahi Kasei Co., Ltd.), and a methanol dispersion sol 1B containing inorganic oxide fine particles 1Bw having a solid content of 20% by weight. Was prepared.
The appearance of the methanol-dispersed sol containing the inorganic oxide fine particles thus obtained was a transparent light blue white.

[実施例7および比較例4]
ルチル型結晶構造を有するチタン系複合酸化物微粒子(2)〜(7)およびゾル
(1)核粒子としての無機酸化物微粒子を含む水分散ゾルの調製
実施例6に示す方法と同様な条件下で、過酸化チタン酸をTiO2換算基準で1重量%含む過酸化チタン酸水溶液726kgを得た。
次いで、前記過酸化チタン酸水溶液72.9kgに陽イオン交換樹脂3.5kgを混合して、これに、スズ酸カリウム(昭和化工(株)製)をSnO2換算基準で1重量%含むスズ酸カリウム水溶液9.11kgを撹拌下で徐々に添加した。
[Example 7 and Comparative Example 4]
Preparation of water-dispersed sol containing titanium-based composite oxide fine particles (2) to (7) having a rutile-type crystal structure and inorganic oxide fine particles as sol (1) core particles Conditions similar to the method shown in Example 6 Thus, 726 kg of a titanic acid aqueous solution containing 1% by weight of titanic acid peroxide in terms of TiO 2 was obtained.
Subsequently, 3.5 kg of cation exchange resin was mixed with 72.9 kg of the aqueous solution of titanic acid peroxide, and stannic acid containing 1% by weight of potassium stannate (manufactured by Showa Kako Co., Ltd.) on the basis of SnO 2 conversion. 9.11 kg of aqueous potassium solution was gradually added under stirring.

次に、前記過酸化チタン酸水溶液と前記スズ酸カリウム水溶液との混合液に、平均粒子径が7nmのシリカ微粒子を15重量%含むシリカゾル(触媒化成工業(株)製)1.20kgと純水(触媒化成工業(株)製)18.0kgを混合し、さらに水酸化カリウムを1重量%含む水酸化カリウム水溶液(関東化学(株)製)を1435g加えて、オートクレーブ(耐圧硝子工業(株)製、120L)中にて165℃の温度で18時間、加熱した。
さらに、表2に示す割合で、前記過酸化チタン酸水溶液に前記シリカゾルおよび前記水酸化カリウム水溶液を加えて、上記と同様な条件下で、オートクレーブ中にて加熱処理を行った。
Next, 1.20 kg of silica sol (catalyst chemical industry Co., Ltd.) 1.20 kg and pure water containing 15% by weight of silica fine particles having an average particle diameter of 7 nm in a mixed solution of the aqueous solution of titanic peroxide and the potassium stannate 18.0 kg (manufactured by Catalytic Chemical Industry Co., Ltd.) is mixed, and 1435 g of a potassium hydroxide aqueous solution (manufactured by Kanto Chemical Co., Ltd.) containing 1% by weight of potassium hydroxide is added. Manufactured, 120 L) at a temperature of 165 ° C. for 18 hours.
Further, the silica sol and the potassium hydroxide aqueous solution were added to the titanic acid aqueous solution at the ratio shown in Table 2, and heat treatment was performed in an autoclave under the same conditions as described above.

次に、得られたゾルを室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV−3010)で濃縮して、固形分含有量が10重量%の水分散ゾルを得た。
このようにして得られた、それぞれの水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、ルチル型結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子(以下、「無機酸化物微粒子2Bc〜7Bc」、という)であった。さらに、これらの無機酸化物微粒子2Bc〜7Bc中に含まれる金属成分の含有量を、実施例6の場合と同様に測定した。その結果を表2に示す。
Next, the obtained sol was cooled to room temperature, and then concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Corporation) to obtain an aqueous dispersion sol having a solid content of 10% by weight. .
The inorganic oxide fine particles contained in each water-dispersed sol thus obtained were measured by the above method. As a result, composite oxide fine particles containing a rutile crystal structure and containing titanium, tin, and silicon (hereinafter referred to as “fine oxide fine particles”) And “inorganic oxide fine particles 2Bc to 7Bc”. Furthermore, the content of the metal component contained in these inorganic oxide fine particles 2Bc to 7Bc was measured in the same manner as in Example 6. The results are shown in Table 2.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製
実施例6に示す方法と同様な条件下で、ジルコニウム成分をZrO2に換算基準で10重量%含むケーキ5.26kgを得た。
次に、このケーキ51gに純水459gを加え、さらに水酸化カリウム(関東化学(株)製)を10重量%含む水酸化カリウム水溶液を102g加えてアルカリ性にした後、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)102gを加え、さらに純水を306g加えて、45℃の温度に加熱してこのケーキを溶解した。これにより、過酸化ジルコン酸をZrO2換算基準で0.5重量%含む過酸化ジルコン酸水溶液1020gを得た。
さらに、表2に示す割合で、前記ケーキに前記水酸化カリウム水溶液および前記過酸化水素水を加えて、上記と同様な条件下で、過酸化ジルコン酸をZrO2換算基準で0.5重量%含む過酸化ジルコン酸水溶液を得た。
(2) Preparation of water-dispersed sol containing coated inorganic oxide fine particles Under the same conditions as in Example 6, 5.26 kg of a cake containing 10% by weight of zirconium component in terms of ZrO 2 on a conversion basis was obtained.
Next, 459 g of pure water was added to 51 g of this cake, and 102 g of an aqueous potassium hydroxide solution containing 10% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was added to make it alkaline, and then 35% by weight of hydrogen peroxide. 102 g of hydrogen peroxide solution (manufactured by Mitsubishi Gas Chemical Co., Inc.) was added, 306 g of pure water was further added, and the cake was dissolved by heating to a temperature of 45 ° C. As a result, 1020 g of an aqueous zirconate peroxide solution containing 0.5% by weight of zirconate peroxide in terms of ZrO 2 was obtained.
Further, the potassium hydroxide aqueous solution and the hydrogen peroxide solution were added to the cake at the ratio shown in Table 2, and under the same conditions as described above, zirconic peroxide was added at 0.5% by weight in terms of ZrO 2. An aqueous zirconate peroxide solution containing was obtained.

さらに、実施例6に示す方法と同様な条件下で、市販の水ガラス(AGCエスアイテック(株)製)を純水にて希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、ケイ素成分をSiO2換算基準で2重量%含む珪酸水溶液を得た。
次に、前記工程(1)で得られた無機酸化物微粒子2Bc〜7Bcを含む水分散ゾル3.0kgにそれぞれ純水12.0kgを加えて撹拌することにより、固形分含有量が2重量%の水分散ゾルを得た。
Furthermore, after diluting a commercially available water glass (manufactured by AGC S-Tech Co., Ltd.) with pure water under the same conditions as in the method shown in Example 6, a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was used. The resulting solution was dealkalized to obtain a silicic acid aqueous solution containing 2% by weight of a silicon component on a SiO 2 conversion basis.
Next, 12.0 kg of pure water is added to 3.0 kg of the water-dispersed sol containing the inorganic oxide fine particles 2Bc to 7Bc obtained in the step (1) and stirred, so that the solid content is 2% by weight. An aqueous dispersion sol was obtained.

次いで、前記無機酸化物微粒子2Bcの水分散ゾルを90℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液1020gと珪酸水溶液795gとを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
さらに、前記無機酸化物微粒子3Bc〜7Bcを含む水分散ゾルについても、表2に示す割合で、前記過酸化ジルコン酸水溶液および前記珪酸水溶液を添加して、上記と同様な条件下で熟成を行った。
次いで、これらの混合液をそれぞれオートクレーブに入れて、165℃の温度で18時間、加熱処理を行った。
次に、得られた混合液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、SIP−1013)で濃縮して、固形分含有量が20重量%の水分散ゾル2B〜7Bを得た。
Next, after heating the water-dispersed sol of the inorganic oxide fine particles 2Bc to a temperature of 90 ° C., 1020 g of the zirconate aqueous solution and 795 g of the silicic acid aqueous solution were gradually added thereto. The mixture was aged for 1 hour under stirring while maintaining the temperature.
Further, the aqueous dispersion sol containing the inorganic oxide fine particles 3Bc to 7Bc is also subjected to aging under the same conditions as above by adding the aqueous zirconate peroxide solution and the aqueous silicic acid solution at the ratio shown in Table 2. It was.
Next, each of these liquid mixtures was put in an autoclave and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
Next, after cooling the obtained liquid mixture to room temperature, it concentrates with an ultrafiltration membrane apparatus (Asahi Kasei Co., Ltd. make, SIP-1013), and water-dispersed sol 2B whose solid content is 20 weight%- 7B was obtained.

このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、ルチル型の結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子(核粒子)の表面を、ジルコニウムおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子(以下、「無機酸化物微粒子2Bw〜7Bw」という)であった。
また、これらの無機酸化物微粒子2Bw〜7Bw中に含まれる金属成分の含有量を、実施例6の場合と同様に測定した。さらに、実施例6の場合と同様に、該微粒子中に含まれる固体酸残量をNH3吸着量として測定した。その結果を表2に示す。
The inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above method. As a result, the composite oxide fine particles (nuclear particles) having a rutile crystal structure and containing titanium, tin and silicon. The surface was inorganic oxide fine particles (hereinafter referred to as “inorganic oxide fine particles 2Bw to 7Bw”) formed by coating a composite oxide containing zirconium and silicon.
Further, the content of the metal component contained in these inorganic oxide fine particles 2Bw to 7Bw was measured in the same manner as in Example 6. Further, in the same manner as in Example 6, the residual amount of solid acid contained in the fine particles was measured as the NH 3 adsorption amount. The results are shown in Table 2.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
前記工程(2)で得られた無機酸化物微粒子2Bw〜7Bwを含む、それぞれの水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次いで、実施例6に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子2Bw〜7Bwを含むメタノール分散ゾル2B〜7Bをそれぞれ調製した。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Tetraethoxysilane as a surface treatment agent for each water-dispersed sol containing inorganic oxide fine particles 2Bw to 7Bw obtained in the step (2). After adding to the methanol solution in which (Tama Chemical Co., Ltd. product) was dissolved, it heated at the temperature of 50 degreeC for 6 hours.
Subsequently, solvent substitution was performed under the same conditions as in the method shown in Example 6 to prepare methanol dispersion sols 2B to 7B containing inorganic oxide fine particles 2Bw to 7Bw having a solid content of 20% by weight.

Figure 0005255270
Figure 0005255270

[比較例5]
ルチル型結晶構造を有するチタン系複合酸化物微粒子(8)およびゾル
(1)核粒子としての無機酸化物微粒子に含まれるカリウム含有量の調整
実施例6の前記工程(1)で得られた無機酸化物微粒子1Bcを含む水分散ゾル3000gに、陽イオン交換樹脂(三菱化学(株)製)80gを加えて、室温にて1時間撹拌した。
これにより、前記無機酸化物微粒子中に含まれるカリウム化合物の含有量を低減させた無機酸化物微粒子8Bcを含む水分散ゾルを得た。
このようにして得られた無機酸化物微粒子8Bc(核粒子)中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO274.8重量%、SnO29.3重量%、SiO215.6重量%およびK2O0.3重量%であった。
[Comparative Example 5]
Adjustment of the potassium content contained in the titanium-based composite oxide fine particles (8) having a rutile-type crystal structure and the inorganic oxide fine particles as sol (1) core particles Inorganic obtained in the step (1) of Example 6 80 g of a cation exchange resin (Mitsubishi Chemical Corporation) was added to 3000 g of an aqueous dispersion sol containing oxide fine particles 1Bc, and the mixture was stirred at room temperature for 1 hour.
As a result, an aqueous dispersion sol containing inorganic oxide fine particles 8Bc in which the content of the potassium compound contained in the inorganic oxide fine particles was reduced was obtained.
When the metal components contained in the inorganic oxide fine particles 8Bc (nuclear particles) thus obtained were measured, 74.8% by weight of TiO 2 and SnO 2 9.3 based on oxide conversion standards of the respective metal components. Wt%, SiO 2 15.6 wt% and K 2 O 0.3 wt%.

(2)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
前記工程(1)で得られた無機酸化物微粒子8Bc(核粒子)を含む水分散ゾルを用いて、実施例6の前記工程(2)と同様な条件下で、該核粒子の表面にジルコニウムおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子8Bwを含む水分散ゾルを調製した。
次いで、得られた無機酸化物微粒子8Bwを含む水分散ゾル3000gに、陽イオン交換樹脂(三菱化学(株)製)200gを加えて、室温にて1時間撹拌した。
(2) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Using the water-dispersed sol containing inorganic oxide fine particles 8Bc (nuclear particles) obtained in the step (1), the above-mentioned step (Example 6) Under the same conditions as in 2), an aqueous dispersion sol containing inorganic oxide fine particles 8Bw formed by coating the surface of the core particles with a composite oxide containing zirconium and silicon was prepared.
Next, 200 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was added to 3000 g of the aqueous dispersion sol containing the obtained inorganic oxide fine particles 8Bw, and the mixture was stirred at room temperature for 1 hour.

これにより、前記無機酸化物微粒子中に含まれるカリウム化合物の含有量を低減させた無機酸化物微粒子8Bwを含む水分散ゾル8Bを得た。
このようにして得られた無機酸化物微粒子8Bw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO270.6重量%、SnO28.9重量%、SiO218.3重量%、ZrO21.6重量%およびK2O0.6重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子8Bc(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO21.6重量%、SiO23.6重量%およびK2O0.3重量%であった。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.08mmol/gであった。
As a result, an aqueous dispersion sol 8B containing inorganic oxide fine particles 8Bw in which the content of the potassium compound contained in the inorganic oxide fine particles was reduced was obtained.
When the metal component contained in the thus obtained inorganic oxide fine particles 8Bw was measured, it was 70.6% by weight of TiO 2 , 8.9% by weight of SnO 2 , SiO 2 based on the oxide conversion standard of each metal component. 2 18.3% by weight, 1.6% by weight of ZrO 2 and 0.6% by weight of K 2 O. The measurement result of the entire particle, the more measurements of the inorganic oxide fine particles 8Bc (core particles) was calculated the content ratio of the metal component contained in the coating layer, ZrO 2 1.6 to the particle total amount Wt%, SiO 2 3.6 wt% and K 2 O 0.3 wt%.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.08 mmol / g.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
上記で得られた無機酸化物微粒子8Bwを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で3時間、加熱した。
次いで、実施例6に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子8Bwを含むメタノール分散ゾル8Bをそれぞれ調製した。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd.) as a surface treating agent was used for the water-dispersed sol containing inorganic oxide fine particles 8Bw obtained above. After being added to a methanol solution in which was dissolved, the mixture was heated at a temperature of 50 ° C. for 3 hours.
Next, solvent replacement was performed under the same conditions as in the method shown in Example 6 to prepare methanol-dispersed sol 8B containing inorganic oxide fine particles 8Bw having a solid content of 20% by weight.

[実施例8]
ルチル型結晶構造を有するチタン系複合酸化物微粒子(9)およびゾル
(1)被覆した無機酸化物微粒子中に含まれるカリウム含有量の調整
比較例4の前記工程(2)で得られた無機酸化物微粒子6Bwを含む水分散ゾル6B3000gに、陽イオン交換樹脂(三菱化学(株)製)150gを加えて、室温にて1時間撹拌した。
これにより、前記無機酸化物微粒子中に含まれるカリウム化合物の含有量を低減させた無機酸化物微粒子9Bwを含む水分散ゾル9Bを得た。
このようにして得られた無機酸化物微粒子9Bw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO244.1重量%、SnO25.5重量%、SiO231.1重量%、ZrO213.8重量%およびK2O5.5重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子6Bc(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO213.8重量%、SiO223.9重量%およびK2O2.9重量%であった。ただし、この被覆層中に含まれるカリウム化合物の算定にあたっては、前記陽イオン交換樹脂による処理中に、前記前記無機酸化物微粒子6Bcの核粒子中からはカリウムイオンなどが溶出しないとみなした。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.29mmol/gであった。
[Example 8]
Adjustment of the potassium content contained in the titanium-based composite oxide fine particles (9) having a rutile-type crystal structure and the sol (1) coated inorganic oxide fine particles Inorganic oxidation obtained in the step (2) of Comparative Example 4 150 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was added to 3000 g of water-dispersed sol 6B containing fine particles 6Bw, and the mixture was stirred at room temperature for 1 hour.
As a result, an aqueous dispersion sol 9B containing inorganic oxide fine particles 9Bw in which the content of the potassium compound contained in the inorganic oxide fine particles was reduced was obtained.
When the metal components contained in the inorganic oxide fine particles 9Bw thus obtained were measured, TiO 2 44.1% by weight, SnO 2 5.5% by weight, SiO 2 on the basis of oxide conversion of each metal component. 2 31.1 wt%, ZrO 2 13.8 wt% and K 2 O 5.5 wt%. When the content ratio of the metal component contained in the coating layer was calculated from the measurement result of the whole particle and the measurement result of the inorganic oxide fine particle 6Bc (nuclear particle), ZrO 2 13.8 was calculated based on the total amount of the particle. % By weight, 23.9% by weight of SiO 2 and 2.9% by weight of K 2 O. However, in calculating the potassium compound contained in the coating layer, it was considered that potassium ions or the like were not eluted from the core particles of the inorganic oxide fine particles 6Bc during the treatment with the cation exchange resin.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.29 mmol / g.

(2)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
上記で得られた無機酸化物微粒子9Bwを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
次いで、実施例6に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子9Bwを含むメタノール分散ゾル9Bをそれぞれ調製した。
(2) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd.) as a surface treatment agent was used for the water-dispersed sol containing inorganic oxide fine particles 9Bw obtained above. After being added to a methanol solution in which was dissolved, the mixture was heated at a temperature of 50 ° C. for 6 hours.
Next, solvent replacement was performed under the same conditions as in the method shown in Example 6 to prepare methanol-dispersed sols 9B containing inorganic oxide fine particles 9Bw having a solid content of 20% by weight.

[実施例9]
ルチル型結晶構造を有するチタン系複合酸化物微粒子(10)およびゾル
(1)核粒子としての無機酸化物微粒子を含む水分散ゾルの調製
実施例6の工程(1)と同様な条件下で、ルチル型結晶構造を有する複合酸化物微粒子からなる無機酸化物微粒子10Bc(核粒子)を含む水分散ゾルを調製した。なお、この無機酸化物微粒子10Bc中に含まれる金属成分の含有量は、実施例6の場合と同様に、各金属成分の酸化物換算基準で、TiO273.7重量%、SnO29.3重量%およびSiO215.7重量%およびK2O1.3重量%であった。
[Example 9]
Preparation of water-dispersed sol containing titanium-based composite oxide fine particles (10) having a rutile-type crystal structure and inorganic oxide fine particles as sol (1) core particles Under the same conditions as in step (1) of Example 6, An aqueous dispersion sol containing inorganic oxide fine particles 10Bc (nuclear particles) made of composite oxide fine particles having a rutile crystal structure was prepared. In addition, the content of the metal component contained in the inorganic oxide fine particle 10Bc is 73.7% by weight of TiO 2 and SnO 2 9. 3 wt% and SiO 2 15.7 wt% and K 2 O 1.3 wt%.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製
実施例6に示す方法と同様な条件下で、ジルコニウム成分をZrO2換算基準で10重量%含むケーキ5.26kgを得た。
次に、このケーキ200gに純水1.80kgを加え、さらに水酸化カリウム(関東化学(株)製)を1重量%含む水酸化カリウム水溶液1.20kgを加えてアルカリ性にした後、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)400gを加えて、45℃の温度で加熱した。これにより、過酸化ジルコン酸をZrO2換算基準で0.5重量%含む過酸化ジルコン酸水溶液4.0kgを得た。
(2) Preparation of water-dispersed sol containing coated inorganic oxide fine particles Under the same conditions as in Example 6, 5.26 kg of a cake containing 10% by weight of the zirconium component on a ZrO 2 conversion basis was obtained.
Next, 1.80 kg of pure water was added to 200 g of this cake, and 1.20 kg of a potassium hydroxide aqueous solution containing 1% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was added to make it alkaline. 400 g of hydrogen peroxide containing 35% by weight (Mitsubishi Gas Chemical Co., Ltd.) was added and heated at a temperature of 45 ° C. As a result, 4.0 kg of a zirconium peroxide solution containing 0.5% by weight of zirconium peroxide in terms of ZrO 2 was obtained.

さらに、水酸化カリウム(関東化学(株)製)を2.6重量%含む水酸化カリウム水溶液9.29kgに、三酸化アンチモン(日本精鉱(株)製)555gを撹拌下で加えて、三酸化アンチモンの懸濁液を得た。次いで、この懸濁液を98℃の温度に加熱した後、これに過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)1110gを14時間かけて撹拌下で添加した。これにより、過酸化アンチモン酸をSb25換算基準で5.6重量%含む過酸化アンチモン酸水溶液を得た。これを純水にて希釈して、過酸化アンチモン酸をSb25換算基準で1重量%含む過酸化アンチモン酸水溶液を得た。
次に、実施例6に示す方法と同様な条件下で、市販の水ガラス(AGCエスアイテック(株)製)を純水にて希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、ケイ素成分をSiO2換算基準で2重量%含む珪酸水溶液を得た。
Furthermore, 555 g of antimony trioxide (manufactured by Nippon Seiko Co., Ltd.) was added to 9.29 kg of an aqueous potassium hydroxide solution containing 2.6% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd.) with stirring. A suspension of antimony oxide was obtained. Next, the suspension was heated to a temperature of 98 ° C., and 1110 g of hydrogen peroxide containing 35% by weight of hydrogen peroxide (Mitsubishi Gas Chemical Co., Ltd.) was added to the suspension over 14 hours with stirring. . As a result, an antimony peroxide aqueous solution containing 5.6% by weight of antimony peroxide per Sb 2 O 5 was obtained. This was diluted with pure water to obtain an aqueous antimonic acid solution containing 1% by weight of antimony peroxide on the basis of Sb 2 O 5 conversion.
Next, after diluting a commercially available water glass (manufactured by AGC S-Tech Co., Ltd.) with pure water under the same conditions as in the method shown in Example 6, a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) Was used to obtain a silicic acid aqueous solution containing 2% by weight of a silicon component on a SiO 2 conversion basis.

次に、前記工程(1)で得られた無機酸化物微粒子10Bcを含む水分散ゾル3.0kgにそれぞれ純水27.0kgを加えて撹拌することにより、固形分含有量が1重量%の水分散ゾルを得た。次いで、この水分散ゾルを90℃の温度に加熱した後、これに前記過酸化ジルコン酸水溶液3.66kg、前記過酸化アンチモン酸水溶液1.83kgおよび前記珪酸水溶液2.84kgを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
次いで、この混合液をオートクレーブに入れて、165℃の温度で18時間、加熱処理を行った。
次に、得られた混合液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、SIP−1013)で濃縮して、固形分含有量が20重量%の水分散ゾル10Bを得た。
Next, 27.0 kg of pure water is added to 3.0 kg of the water-dispersed sol containing the inorganic oxide fine particles 10Bc obtained in the step (1) and stirred, whereby water having a solid content of 1 wt% is added. A dispersed sol was obtained. Next, after heating the aqueous dispersion sol to a temperature of 90 ° C., 3.66 kg of the aqueous zirconate peroxide solution, 1.83 kg of the antimonic peroxide aqueous solution and 2.84 kg of the silicic acid aqueous solution were gradually added thereto, Further, after completion of the addition, the mixture was aged with stirring for 1 hour while maintaining the temperature at 90 ° C.
Subsequently, this liquid mixture was put into the autoclave and heat-processed at the temperature of 165 degreeC for 18 hours.
Next, after cooling the obtained mixed liquid to room temperature, it is concentrated with an ultrafiltration membrane device (Asahi Kasei Co., Ltd., SIP-1013) to obtain an aqueous dispersion sol 10B having a solid content of 20% by weight. Obtained.

このようにして得られた水分散ゾル中に含まれる無機酸化物微粒子を上記の方法で測定したところ、ルチル型の結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子(核粒子)の表面を、ジルコニウム、アンチモンおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子(以下、「無機酸化物微粒子10Bw」という)であった。
また、これらの無機酸化物微粒子10Bw中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO256.8重量%、SiO222.9重量%、SnO27.1重量%、ZrO24.7重量%、Sb254.7重量%およびK2O3.8重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子10Bc(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO24.7重量%、SiO210.8重量%、Sb254.7重量%およびK2O2.8重量%であった。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.18mmol/gであった。
The inorganic oxide fine particles contained in the water-dispersed sol thus obtained were measured by the above method. As a result, the composite oxide fine particles (nuclear particles) having a rutile crystal structure and containing titanium, tin and silicon. These were inorganic oxide fine particles (hereinafter referred to as “inorganic oxide fine particles 10Bw”) formed by coating the surface with a composite oxide containing zirconium, antimony and silicon.
Moreover, when the content of the metal component contained in these inorganic oxide fine particles 10Bw was measured, it was 56.8% by weight of TiO 2 , 22.9% by weight of SiO 2 , SnO, based on the oxide conversion standard of each metal component. 2 7.1 wt%, ZrO 2 4.7 wt%, Sb 2 O 5 4.7 wt% and K 2 O 3.8 wt%. From the measurement result of the whole particle and the measurement result of the inorganic oxide fine particle 10Bc (core particle), the content ratio of the metal component contained in the coating layer was calculated, and ZrO 2 4.7 with respect to the total amount of the particle. Wt%, SiO 2 10.8 wt%, Sb 2 O 5 4.7 wt% and K 2 O 2.8 wt%.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.18 mmol / g.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
前記工程(2)で得られた無機酸化物微粒子10Bwを含む、それぞれの水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で3時間、加熱した。
次いで、実施例6に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子10Bwを含むメタノール分散ゾル10Bをそれぞれ調製した。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Each water-dispersed sol containing inorganic oxide fine particles 10Bw obtained in the step (2) was treated with tetraethoxysilane (Tama After being added to a methanol solution in which Chemical Industry Co., Ltd. was dissolved under stirring, it was heated at a temperature of 50 ° C. for 3 hours.
Subsequently, solvent substitution was performed under the same conditions as the method shown in Example 6 to prepare methanol-dispersed sols 10B containing inorganic oxide fine particles 10Bw having a solid content of 20% by weight.

[実施例10]
ルチル型結晶構造を有するチタン系複合酸化物微粒子(11)およびゾル
(1)核粒子中に含まれるカリウム含有量の調整
実施例6の前記工程(1)で得られた無機酸化物微粒子1Bcを含む水分散ゾル1B3000gに、水酸化カリウム(関東化学(株)製)を1重量%含む水酸化カリウム水溶液290gを加えて、室温にて1時間撹拌した。
これにより、前記無機酸化物微粒子(核粒子)中に含まれるカリウム化合物の含有量を増加させた無機酸化物微粒子11Bcを含む水分散ゾル11Bを得た。なお、このように外部から添加したカリウム化合物も、前記無機酸化物微粒子の表面に付着して、該微粒子中に取り込まれていることが分かった。これは、該微粒子の表面に存在するO・H基とカリウムイオンとが反応したことによるものと考えられる。
このようにして得られた無機酸化物微粒子11Bc中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO273.0重量%、SnO29.2重量%、SiO215.5重量%およびK2O2.3重量%であった。
[Example 10]
Adjustment of content of potassium contained in titanium-based composite oxide fine particles (11) having a rutile-type crystal structure and sol (1) core particles Inorganic oxide fine particles 1Bc obtained in the step (1) of Example 6 were used. 290 g of a potassium hydroxide aqueous solution containing 1% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Inc.) was added to 3000 g of the aqueous dispersion sol containing 1B, followed by stirring at room temperature for 1 hour.
As a result, an aqueous dispersion sol 11B containing the inorganic oxide fine particles 11Bc in which the content of the potassium compound contained in the inorganic oxide fine particles (nuclear particles) was increased was obtained. In addition, it was found that the potassium compound added from the outside in this way also adheres to the surface of the inorganic oxide fine particles and is taken into the fine particles. This is considered to be due to the reaction between the O · H groups present on the surface of the fine particles and potassium ions.
When the metal component contained in the thus obtained inorganic oxide fine particles 11Bc was measured, it was 73.0% by weight of TiO 2 , 9.2% by weight of SnO 2 , SiO 2 based on the oxide conversion standard of each metal component. It was 2 15.5 wt% and K 2 O2.3% by weight.

(2)被覆した無機酸化物微粒子を含む水分散ゾルの調製
実施例6に示す方法と同様な条件下で、前記工程(1)で得られた無機酸化物微粒子11Bcの表面を、ジルコニウム、スズおよびケイ素を含む複合酸化物で被覆してなる無機酸化物微粒子(以下、「無機酸化物微粒子11Bw」という)を含む水分散ゾル11Bを得た。
このようにして得られた無機酸化物微粒子11Bw中に含まれる金属成分を測定したところ、各金属成分の酸化物換算基準で、TiO268.6重量%、SnO28.6重量%、SiO217.6重量%、ZrO21.4重量%およびK2O3.8重量%であった。この粒子全体の測定結果と、前記無機酸化物微粒子11Bc(核粒子)の測定結果より、前記被覆層中に含まれる金属成分の含有比率を算出したところ、粒子全量に対してZrO21.4重量%、SiO23.0重量%およびK2O1.6重量%であった。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.04mmol/gであった。
(2) Preparation of water-dispersed sol containing coated inorganic oxide fine particles Under the same conditions as in Example 6, the surface of the inorganic oxide fine particles 11Bc obtained in the step (1) was coated with zirconium, tin. Then, an aqueous dispersion sol 11B containing inorganic oxide fine particles (hereinafter referred to as “inorganic oxide fine particles 11Bw”) coated with a composite oxide containing silicon and silicon was obtained.
When the metal component contained in the thus obtained inorganic oxide fine particles 11Bw was measured, it was 68.6% by weight of TiO 2 , 8.6% by weight of SnO 2 , SiO 2 based on the oxide conversion standard of each metal component. 2 17.6 wt%, was ZrO 2 1.4 wt% and K 2 O3.8% by weight. From the measurement result of the whole particle and the measurement result of the inorganic oxide fine particle 11Bc (core particle), the content ratio of the metal component contained in the coating layer was calculated, and ZrO 2 1.4 was calculated based on the total amount of the particle. % By weight, 3.0% by weight of SiO 2 and 1.6% by weight of K 2 O.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.04 mmol / g.

(3)被覆した無機酸化物微粒子を含むメタノール分散ゾルの調製
上記で得られた無機酸化物微粒子11Bwを含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で3時間、加熱した。
次いで、実施例6に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子11Bwを含むメタノール分散ゾル11Bを調製した。
(3) Preparation of methanol-dispersed sol containing coated inorganic oxide fine particles Tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd.) as a surface treating agent was used for the water-dispersed sol containing inorganic oxide fine particles 11Bw obtained above. After being added to a methanol solution in which was dissolved, the mixture was heated at a temperature of 50 ° C. for 3 hours.
Next, solvent replacement was performed under the same conditions as in the method shown in Example 6 to prepare methanol-dispersed sol 11B containing inorganic oxide fine particles 11Bw having a solid content of 20% by weight.

[比較例6]
ルチル型結晶構造を有するチタン系複合酸化物微粒子(12)およびゾル
実施例6の工程(1)に示す方法(すなわち、核粒子1Bcの調製)と同様な条件下で、ルチル型結晶構造を有する、チタンおよびケイ素を含む複合酸化物微粒子(以下、「無機酸化物微粒子12Bc」という)を含む水分散ゾルを調製した。
なお、該微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO273.7重量%、SnO29.3重量%、SiO215.7重量%およびK2O1.3重量%であった。
さらに、前記無機酸化物微粒子中に含まれる固体酸残量をNH3吸着量として測定したところ、0.03mmol/gであった。
次いで、実施例6の工程(2)に示す手段(すなわち、該微粒子の被覆)を施すことなく、実施例6の工程(3)に示す方法と同様な条件下で、該微粒子を含む水分散ゾルを、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)を溶解させたメタノール溶液に撹拌下で添加した後、50℃の温度で6時間、加熱した。
さらに、実施例6に示す方法と同様な条件下で、溶媒置換を行い、固形分含有量が20重量%の無機酸化物微粒子12Bwを含むメタノール分散ゾル12Bを調製した。
[Comparative Example 6]
Titanium-based composite oxide fine particles (12) having a rutile-type crystal structure and sol The rutile type under the same conditions as in the method (ie, preparation of core particle 1Bc) shown in step (1) of Example 6 An aqueous dispersion sol having composite oxide fine particles containing titanium and silicon (hereinafter referred to as “inorganic oxide fine particles 12Bc”) having a crystal structure was prepared.
In addition, when the content of the metal component contained in the fine particles was measured, TiO 2 was 73.7% by weight, SnO 2 was 9.3% by weight, and SiO 2 was 15.7% by weight in terms of oxide of each metal component. % And K 2 O 1.3% by weight.
Furthermore, when the amount of solid acid contained in the inorganic oxide fine particles was measured as the NH 3 adsorption amount, it was 0.03 mmol / g.
Next, water dispersion containing the fine particles is performed under the same conditions as in the step (3) of Example 6 without applying the means shown in Step (2) of Example 6 (that is, coating of the fine particles). The sol was added to a methanol solution in which tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd.) as a surface treatment agent was dissolved, and then heated at a temperature of 50 ° C. for 6 hours.
Furthermore, solvent substitution was performed under the same conditions as the method shown in Example 6 to prepare a methanol-dispersed sol 12B containing inorganic oxide fine particles 12Bw having a solid content of 20% by weight.

[実施例11]
光学基材用塗布液(ハードコート層形成用塗布液)の調製(1)
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z−6040)80g、γ―グリシドキシプロピルメチルジエトキシシラン(東レ・ダウコーニング(株)製Z−6042)20gおよびメタノール50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、実施例1〜5で得られたメタノール分散ゾル1A〜5A、10A、11Aをそれぞれ350g、純水50g、トリス(2,4−ペンタンジオナト)アルミニウムIII(東京化成工業(株)製)2g、グリセロールポリギリシジルエーテル(ナガセ化成工業(株)製、デナコールEX−314、エポキシ当量145)5gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加え、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのハードコート層形成用の塗料組成物(以下、「ハードコート用塗料1A(1)〜5A(1)、10A(1)、11A(1)」という)を調製した。
[Example 11]
Preparation of optical substrate coating solution (hard coating layer forming coating solution) (1)
80 g of γ-glycidoxypropyltrimethoxysilane (Z-6040 manufactured by Toray Dow Corning Co., Ltd.), 20 g of γ-glycidoxypropylmethyldiethoxysilane (Z-6042 manufactured by Toray Dow Corning Co., Ltd.) and methanol A plurality of containers containing 50 g of the mixed solution were prepared, and 25 g of 0.01N hydrochloric acid aqueous solution was dropped into these mixed solutions while stirring. Furthermore, this liquid mixture was stirred at room temperature all day and night to hydrolyze the silane compound.
Next, 350 g of methanol dispersion sols 1A to 5A, 10A and 11A obtained in Examples 1 to 5, 50 g of pure water and Tris (2,4-pentanedionato, respectively) were placed in a container containing these hydrolysis solutions. ) Aluminum III (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 g, glycerol polyglycidyl ether (manufactured by Nagase Kasei Kogyo Co., Ltd., Denacol EX-314, epoxy equivalent 145) 5 g and a silicone surfactant (Toray 0.5 g of Dow Corning Co., Ltd., L-7001) was added, and the mixture was stirred overnight at room temperature to form a coating composition for forming a hard coat layer (hereinafter referred to as “Hard” Coating paints 1A (1) to 5A (1), 10A (1), 11A (1) ”) were prepared.

[比較例7]
光学基材用塗布液(ハードコート層形成用塗布液)の調製(2)
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、Z−6040)80g、γ―グリシドキシプロピルメチルジエトキシシラン(東レ・ダウコーニング(株)製、Z−6042)20gおよびメタノール50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、比較例1〜3で得られたメタノール分散ゾル6A〜9A、12Aをそれぞれ350g、純水50g、トリス(2,4−ペンタンジオナト)アルミニウムIII(東京化成工業(株)製)2g、グリセロールポリギリシジルエーテル(ナガセ化成工業(株)製、デナコールEX−314、エポキシ当量145)5gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加え、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのハードコート層形成用の塗料組成物(以下、「ハードコート用塗料6A(1)〜9A(1)、12A(1)」という)を調製した。
[Comparative Example 7]
Preparation of optical substrate coating solution (hard coating layer forming coating solution) (2)
γ-glycidoxypropyltrimethoxysilane (Toray Dow Corning Co., Ltd., Z-6040) 80 g, γ-glycidoxypropylmethyldiethoxysilane (Toray Dow Corning Co., Ltd., Z-6042) 20 g A plurality of containers containing a mixture of methanol and 50 g of methanol were prepared, and 25 g of 0.01N hydrochloric acid aqueous solution was dropped into the mixture while stirring. Furthermore, this liquid mixture was stirred at room temperature all day and night to hydrolyze the silane compound.
Next, 350 g of methanol-dispersed sols 6A to 9A and 12A obtained in Comparative Examples 1 to 3, respectively, 50 g of pure water, and tris (2,4-pentanedionato) aluminum were placed in a container containing these hydrolyzed solutions. III (manufactured by Tokyo Chemical Industry Co., Ltd.), 5 g of glycerol polyglycidyl ether (manufactured by Nagase Kasei Kogyo Co., Ltd., Denacol EX-314, epoxy equivalent 145) and a silicone surfactant (Toray Dow Corning as leveling agent) Co., Ltd., L-7001) 0.5 g was added and stirred at room temperature for a whole day and night to form a coating composition for forming a hard coat layer (hereinafter referred to as “for hard coat” as a coating solution for an optical substrate). Paints 6A (1) to 9A (1), 12A (1) ”) were prepared.

[実施例12]
光学基材用塗布液(ハードコート層形成用塗布液)の調製(3)
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、Z−6040)100gおよびメタノール50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、これらの混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、実施例1〜5で得られたメタノール分散ゾル1A〜5A、10A、11Aをそれぞれ350g、トリス(2,4−ペンタンジオナト)鉄III(東京化成工業(株)製)3gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加えて、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのハードコート層形成用の塗料組成物(以下、「ハードコート用塗料1A(2)〜5A(2)、10A(2)、11A(2)」という)を調製した。
[Example 12]
Preparation of optical substrate coating solution (hard coating layer forming coating solution) (3)
A plurality of containers containing a mixed solution of 100 g of γ-glycidoxypropyltrimethoxysilane (Z-6040, manufactured by Toray Dow Corning Co., Ltd.) and 50 g of methanol were prepared, and the mixture was stirred in the mixed solution to give a solution of 0. 25 g of a 01N hydrochloric acid aqueous solution was added dropwise. Furthermore, these mixed liquids were stirred at room temperature for a whole day and night to hydrolyze the silane compound.
Subsequently, 350 g of the methanol dispersion sols 1A to 5A, 10A, and 11A obtained in Examples 1 to 5, respectively, tris (2,4-pentanedionato) iron III ( 3 g of Tokyo Chemical Industry Co., Ltd.) and 0.5 g of a silicone surfactant (L-7001 made by Toray Dow Corning Co., Ltd.) as a leveling agent are added and stirred overnight at room temperature. A coating composition for forming a hard coat layer (hereinafter referred to as “hard coat coating 1A (2) to 5A (2), 10A (2), 11A (2)”) as a coating liquid for an optical substrate was prepared. .

[比較例8]
光学基材用塗布液(ハードコート層形成用塗布液)の調製(4)
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、Z−6040)100gおよびメタノール50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、これらの混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、比較例1〜3で得られたメタノール分散ゾル6A〜9A、12Aをそれぞれ350g、トリス(2,4−ペンタンジオナト)鉄III(東京化成工業(株)製)3gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加えて、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのハードコート層形成用の塗料組成物(以下、「ハードコート用塗料6A(2)〜9A(2)、12A(2)」という)を調製した。
[Comparative Example 8]
Preparation of optical substrate coating solution (hard coating layer forming coating solution) (4)
A plurality of containers containing a mixed solution of 100 g of γ-glycidoxypropyltrimethoxysilane (Z-6040, manufactured by Toray Dow Corning Co., Ltd.) and 50 g of methanol were prepared, and the mixture was stirred in the mixed solution to give a solution of 0. 25 g of a 01N hydrochloric acid aqueous solution was added dropwise. Furthermore, these mixed liquids were stirred at room temperature for a whole day and night to hydrolyze the silane compound.
Next, 350 g of each of the methanol-dispersed sols 6A to 9A and 12A obtained in Comparative Examples 1 to 3 were placed in a container containing these hydrolyzed liquids, tris (2,4-pentanedionato) iron III (Tokyo Kasei). 3 g of Kogyo Co., Ltd.) and 0.5 g of a silicone surfactant (manufactured by Toray Dow Corning Co., Ltd., L-7001) as a leveling agent were added and stirred overnight at room temperature. A coating composition for forming a hard coat layer (hereinafter referred to as “hard coat coatings 6A (2) to 9A (2), 12A (2)”) as a coating liquid for materials was prepared.

[実施例13]
光学基材用塗布液(ハードコート層形成用塗布液)の調製(5)
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、Z−6040)80g、γ―グリシドキシプロピルメチルジエトキシシラン(東レ・ダウコーニング(株)製、Z−6042)20gおよびメタノール50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、実施例6〜10で得られたメタノール分散ゾル1B〜4B、9B〜11Bをそれぞれ350g、純水50g、トリス(2,4−ペンタンジオナト)アルミニウムIII(東京化成工業(株)製)2g、グリセロールポリギリシジルエーテル(ナガセ化成工業(株)製、デナコールEX−314、エポキシ当量145)5gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加え、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのハードコート層形成用の塗料組成物(以下、「ハードコート用塗料1B(3)〜4B(3)、9B(3)〜11B(3)」という)を調製した。
[Example 13]
Preparation of optical substrate coating solution (hard coating layer forming coating solution) (5)
γ-glycidoxypropyltrimethoxysilane (Toray Dow Corning Co., Ltd., Z-6040) 80 g, γ-glycidoxypropylmethyldiethoxysilane (Toray Dow Corning Co., Ltd., Z-6042) 20 g A plurality of containers containing a mixture of methanol and 50 g of methanol were prepared, and 25 g of 0.01N hydrochloric acid aqueous solution was dropped into the mixture while stirring. Furthermore, this liquid mixture was stirred at room temperature all day and night to hydrolyze the silane compound.
Next, 350 g of methanol dispersion sols 1B to 4B and 9B to 11B obtained in Examples 6 to 10, 350 g of pure water, and tris (2,4-pentanedionato, respectively) were put in a container containing these hydrolysis solutions. ) Aluminum III (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 g, glycerol polyglycidyl ether (manufactured by Nagase Kasei Kogyo Co., Ltd., Denacol EX-314, epoxy equivalent 145) 5 g and a silicone surfactant (Toray 0.5 g of Dow Corning Co., Ltd., L-7001) was added, and the mixture was stirred overnight at room temperature to form a coating composition for forming a hard coat layer (hereinafter referred to as “Hard” Coating paints 1B (3) to 4B (3), 9B (3) to 11B (3) ”were prepared.

[比較例9]
光学基材用塗布液(ハードコート層形成用塗布液)の調製(6)
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、Z−6040)80g、γ―グリシドキシプロピルメチルジエトキシシラン(東レ・ダウコーニング(株)製、Z−6042)20gおよびメタノール50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、比較例4〜6で得られたメタノール分散ゾル5B〜8B、12Bをそれぞれ350g、純水50g、トリス(2,4−ペンタンジオナト)アルミニウムIII(東京化成工業(株)製)2g、グリセロールポリギリシジルエーテル(ナガセ化成工業(株)製、デナコールEX−314、エポキシ当量145)5gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加え、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのハードコート層形成用の塗料組成物(以下、「ハードコート用塗料5B(3)〜8B(3)、12B(3)」という)を調製した。
[Comparative Example 9]
Preparation of optical substrate coating solution (hard coating layer forming coating solution) (6)
γ-glycidoxypropyltrimethoxysilane (Toray Dow Corning Co., Ltd., Z-6040) 80 g, γ-glycidoxypropylmethyldiethoxysilane (Toray Dow Corning Co., Ltd., Z-6042) 20 g A plurality of containers containing a mixture of methanol and 50 g of methanol were prepared, and 25 g of 0.01N hydrochloric acid aqueous solution was dropped into the mixture while stirring. Furthermore, this liquid mixture was stirred at room temperature all day and night to hydrolyze the silane compound.
Subsequently, 350 g of methanol-dispersed sols 5B to 8B and 12B obtained in Comparative Examples 4 to 6, 350 g of pure water, and tris (2,4-pentanedionato) aluminum were obtained in containers containing these hydrolyzed liquids. III (manufactured by Tokyo Chemical Industry Co., Ltd.), 5 g of glycerol polyglycidyl ether (manufactured by Nagase Kasei Kogyo Co., Ltd., Denacol EX-314, epoxy equivalent 145) and a silicone surfactant (Toray Dow Corning as leveling agent) Co., Ltd., L-7001) 0.5 g was added and stirred at room temperature for a whole day and night to form a coating composition for forming a hard coat layer (hereinafter referred to as “for hard coat” as a coating solution for an optical substrate). Paints 5B (3) to 8B (3), 12B (3) ”were prepared.

[実施例14]
光学基材用塗布液(ハードコート層形成用塗布液)の調製(7)
γ―グリシドキシプロピルトリメトキシシラン100g(東レ・ダウコーニング(株)製、Z−6040)およびメタノール50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、これらの混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、実施例6〜10で得られたメタノール分散ゾル1B〜4B、9B〜11Bをそれぞれ350g、トリス(2,4−ペンタンジオナト)鉄III(東京化成工業(株)製)3gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加えて、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのハードコート層形成用の塗料組成物(以下、「ハードコート用塗料1B(4)〜4B(4)、9B(4)〜11B(4)」という)を調製した。
[Example 14]
Preparation of optical substrate coating solution (hard coating layer forming coating solution) (7)
Prepare a plurality of containers containing a mixture of 100 g of γ-glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., Z-6040) and 50 g of methanol. 25 g of a 01N hydrochloric acid aqueous solution was added dropwise. Furthermore, these mixed liquids were stirred at room temperature for a whole day and night to hydrolyze the silane compound.
Next, 350 g of the methanol dispersion sols 1B to 4B and 9B to 11B obtained in Examples 6 to 10, and Tris (2,4-pentandionato) iron III ( 3 g of Tokyo Chemical Industry Co., Ltd.) and 0.5 g of a silicone surfactant (L-7001 made by Toray Dow Corning Co., Ltd.) as a leveling agent are added and stirred overnight at room temperature. A coating composition for forming a hard coat layer (hereinafter referred to as “hard coat coatings 1B (4) to 4B (4), 9B (4) to 11B (4)”) as a coating liquid for an optical substrate was prepared. .

[比較例10]
光学基材用塗布液(ハードコート層形成用塗布液)の調製(8)
γ―グリシドキシプロピルトリメトキシシラン100g(東レ・ダウコーニング(株)製、Z−6040)およびメタノール50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、これらの混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、比較例4〜6で得られたメタノール分散ゾル5B〜8B、12Bをそれぞれ350g、トリス(2,4−ペンタンジオナト)鉄III(東京化成工業(株)製)3gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加えて、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのハードコート層形成用の塗料組成物(以下、「ハードコート用塗料5B(4)〜8B(4)、12B(4)」という)を調製した。
[Comparative Example 10]
Preparation of optical substrate coating solution (hard coating layer forming coating solution) (8)
Prepare a plurality of containers containing a mixture of 100 g of γ-glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., Z-6040) and 50 g of methanol. 25 g of a 01N hydrochloric acid aqueous solution was added dropwise. Furthermore, these mixed liquids were stirred at room temperature for a whole day and night to hydrolyze the silane compound.
Next, 350 g of each of the methanol dispersion sols 5B to 8B and 12B obtained in Comparative Examples 4 to 6, and Tris (2,4-pentanedionato) iron III (Tokyo Kasei) were placed in a container containing these hydrolyzed solutions. 3 g of Kogyo Co., Ltd.) and 0.5 g of a silicone surfactant (manufactured by Toray Dow Corning Co., Ltd., L-7001) as a leveling agent were added and stirred overnight at room temperature. A coating composition for forming a hard coat layer (hereinafter referred to as “hard coat coatings 5B (4) to 8B (4), 12B (4)”) as a coating solution for the material was prepared.

[実施例15]
光学基材用塗布液(プライマー層形成用塗布液)の調製(9)
市販のポリウレタンエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)122gを入れた容器を複数用意し、これらに、実施例1〜5で得られたメタノール分散ゾル1A〜5A、10A、11Aをそれぞれ240gおよびメタノール480gを加え、1時間攪拌した。
次いで、これらの混合液に、レベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7604)0.5gを加えて、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのプライマー層形成用の塗料組成物(以下、「プライマー用塗料1A(5)〜5A(5)、10A(5)、11A(5)」という)を調製した。
[Example 15]
Preparation of optical substrate coating solution (primer layer forming coating solution) (9)
A plurality of containers containing 122 g of commercially available polyurethane emulsion “Superflex 150” (Daiichi Kogyo Seiyaku Co., Ltd., water-dispersed urethane elastomer solid content: 30%) were prepared, and these were obtained in Examples 1 to 5. 240 g of methanol dispersion sols 1A to 5A, 10A, and 11A and 480 g of methanol were added and stirred for 1 hour.
Next, 0.5 g of a silicone surfactant (manufactured by Toray Dow Corning Co., Ltd., L-7604) is added to these mixed solutions as a leveling agent, and the mixture is stirred at room temperature for a whole day and night. A coating composition for forming a primer layer (hereinafter referred to as “primer coating 1A (5) to 5A (5), 10A (5), 11A (5)”) was prepared as a coating solution for the material.

[比較例11]
光学基材用塗布液(プライマー層形成用塗布液)の調製(10)
市販のポリウレタンエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)122gを入れた容器を複数用意し、これらに、比較例1〜3で得られたメタノール分散ゾル6A〜9A、12Aをそれぞれ240gおよびメタノール480gを加え、1時間攪拌した。
次いで、これらの混合液に、レベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7604)0.5gを加えて、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのプライマー層形成用の塗料組成物(以下、「プライマー用塗料6A(5)〜9A(5)、12A(5)」という)を調製した。
[Comparative Example 11]
Preparation of optical substrate coating solution (primer layer forming coating solution) (10)
A plurality of containers containing 122 g of a commercially available polyurethane emulsion “Superflex 150” (Daiichi Kogyo Seiyaku Co., Ltd., water-dispersed urethane elastomer solid content: 30%) were prepared, and these were obtained in Comparative Examples 1 to 3. 240 g of methanol dispersion sols 6A to 9A and 12A and 480 g of methanol were added and stirred for 1 hour.
Next, 0.5 g of a silicone surfactant (manufactured by Toray Dow Corning Co., Ltd., L-7604) is added to these mixed solutions as a leveling agent, and the mixture is stirred at room temperature for a whole day and night. A coating composition for forming a primer layer (hereinafter referred to as “primer coatings 6A (5) to 9A (5), 12A (5)”) as a coating solution for the material was prepared.

[実施例16]
光学基材用塗布液(プライマー層形成用塗布液)の調製(11)
市販のメラミン系化合物水溶液(昭和高分子(株)製、ミルベンSM−850)17.5g、プロピレングリコールモノメチルエーテル(ダウ・ケミカル日本(株)製)682g、市販のポリオール化合物(日本ポリウレタン(株)製 ニッポラン131)44.9gおよび硬化触媒としてp−トルエンスルホン酸(キシダ化学(株)製)0.5gを入れた容器を複数用意し、これらに、実施例6〜10で得られたメタノール分散ゾル1B〜4B、9B〜11Bをそれぞれ315g加え、1時間攪拌した。
次いで、これらの混合液に、レベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加えて、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのプライマー層形成用の塗料組成物(以下、「プライマー用塗料1B(6)〜4B(6)、9B(6)〜11B(6)」という)を調製した。
[Example 16]
Preparation of optical substrate coating solution (primer layer forming coating solution) (11)
17.5 g of a commercially available melamine compound aqueous solution (Milben SM-850 manufactured by Showa Polymer Co., Ltd.), 682 g of propylene glycol monomethyl ether (manufactured by Dow Chemical Japan Co., Ltd.), a commercially available polyol compound (Nippon Polyurethane Co., Ltd.) A plurality of containers containing 44.9 g of Nipponporan 131) and 0.5 g of p-toluenesulfonic acid (manufactured by Kishida Chemical Co., Ltd.) as a curing catalyst were prepared, and the methanol dispersion obtained in Examples 6 to 10 315 g of sols 1B to 4B and 9B to 11B were added and stirred for 1 hour.
Next, 0.5 g of a silicone surfactant (manufactured by Toray Dow Corning Co., Ltd., L-7001) as a leveling agent is added to these mixed solutions, and the mixture is stirred overnight at room temperature. A coating composition for forming a primer layer (hereinafter referred to as “primer coatings 1B (6) to 4B (6), 9B (6) to 11B (6)”) was prepared as a coating liquid for materials.

[比較例12]
光学基材用塗布液(プライマー層形成用塗布液)の調製(12)
市販のメラミン系化合物水溶液(昭和高分子(株)製、ミルベンSM−850)17.5g、プロピレングリコールモノメチルエーテル(ダウ・ケミカル日本(株)製)682g、市販のポリオール化合物(日本ポリウレタン(株)製 ニッポラン131)44.9gおよび硬化触媒としてp−トルエンスルホン酸(キシダ化学(株)製)0.5gを入れた容器を複数用意し、これらに、比較例4〜6で得られたメタノール分散ゾル5B〜8B、12Bをそれぞれ240g加え、1時間攪拌した。
次いで、これらの混合液に、レベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加えて、室温で一昼夜攪拌して、本発明でいう光学基材用塗布液としてのプライマー層形成用の塗料組成物(以下、「プライマー用塗料5B(6)〜8B(6)、12B(6)」という)を調製した。
[Comparative Example 12]
Preparation of optical substrate coating solution (primer layer forming coating solution) (12)
17.5 g of a commercially available melamine compound aqueous solution (Milben SM-850 manufactured by Showa Polymer Co., Ltd.), 682 g of propylene glycol monomethyl ether (manufactured by Dow Chemical Japan Co., Ltd.), a commercially available polyol compound (Nippon Polyurethane Co., Ltd.) A plurality of containers containing 44.9 g of Nipponporan 131) and 0.5 g of p-toluenesulfonic acid (manufactured by Kishida Chemical Co., Ltd.) as a curing catalyst were prepared. 240 g of sols 5B to 8B and 12B were added and stirred for 1 hour.
Next, 0.5 g of a silicone surfactant (manufactured by Toray Dow Corning Co., Ltd., L-7001) as a leveling agent is added to these mixed solutions, and the mixture is stirred overnight at room temperature. A coating composition for forming a primer layer (hereinafter referred to as “primer coatings 5B (6) to 8B (6), 12B (6)”) as a coating solution for the material was prepared.

[調製例1]
<試験用プラスチックレンズ基板の作成(1)>
(1)プラスチックレンズ基材の前処理
以下に示す市販のプラスチックレンズ基材を、以下の試験および評価に必要な枚数準備した。
(a) 三井化学(株)製の「モノマー名:MR−8」(屈折率1.60のプラスチックレンズ基材)
(b) 三井化学(株)製の「モノマー名:MR−7」(屈折率1.67のプラスチックレンズ基材)
(c) 三井化学(株)製の「モノマー名:MR−174」(屈折率1.74のプラスチックレンズ基材)
次いで、これらのプラスチックレンズ基材を、40℃に保った10重量%濃度のKOH水溶液に2分間浸漬してエッチング処理を行った。更に、これらを取り出して水洗した後、十分に乾燥させた。
[Preparation Example 1]
<Creation of plastic lens substrate for test (1)>
(1) Pretreatment of plastic lens substrate The following number of commercially available plastic lens substrates required for the following tests and evaluations were prepared.
(a) “Monomer name: MR-8” (plastic lens base material having a refractive index of 1.60) manufactured by Mitsui Chemicals, Inc.
(b) "Monomer name: MR-7" (plastic lens base material with a refractive index of 1.67) manufactured by Mitsui Chemicals, Inc.
(c) “Monomer name: MR-174” (plastic lens base material having a refractive index of 1.74) manufactured by Mitsui Chemicals, Inc.
Subsequently, these plastic lens base materials were immersed in a 10 wt% KOH aqueous solution kept at 40 ° C. for 2 minutes for etching treatment. Further, these were taken out, washed with water, and then sufficiently dried.

(2)ハードコート層の形成
前記プラスチックレンズ基材の表面に、上記で得られたハードコート層形成用の塗料組成物(ハードコート用塗料)をそれぞれ塗布して塗膜を形成した。なお、この塗料組成物の塗布は、ディッピング法(引き上げ速度250mm/分)を用いて行った。
次に、前記塗膜を90℃で10分間、乾燥させた後、110℃で2時間、加熱処理して、塗膜(ハードコート層)の硬化を行った。
なお、このようにして形成された前記ハードコート層の硬化後の膜厚は、概ね2.0〜2.6μmであった。
(2) Formation of hard coat layer The coating composition for forming a hard coat layer (hard coat paint) obtained above was applied to the surface of the plastic lens substrate to form a coating film. In addition, application | coating of this coating composition was performed using the dipping method (drawing speed 250mm / min).
Next, after drying the said coating film for 10 minutes at 90 degreeC, it heat-processed for 2 hours at 110 degreeC, and hardened | cured the coating film (hard-coat layer).
In addition, the film thickness after hardening of the said hard-coat layer formed in this way was 2.0-2.6 micrometers in general.

(3)反射防止膜層の形成
前記ハードコート層の表面に、以下に示す構成の無機酸化物成分を真空蒸着法によって蒸着させた。ここでは、ハードコート層側から大気側に向かって、SiO2:0.06λ、ZrO2:0.15λ、SiO2:0.04λ、ZrO2:0.25λ、SiO2:0.25λの順序で積層された反射防止膜の層をそれぞれ形成した。また、設計波長λは、520nmとした。
なお、本発明の実施例および比較例においては、従来公知の蒸着法を用いて、前記ハードコート層の表面に反射防止膜層を形成したが、国際出願公報WO2006/095469などに記載された湿式法(すなわち、従来公知のビヒクル成分と低屈折率の中空シリカ微粒子とを含む塗料組成物などをハードコート層の表面に塗布する方法)を用いて、該反射防止膜層を形成してもよいことは勿論である。
(3) Formation of antireflection film layer An inorganic oxide component having the following constitution was deposited on the surface of the hard coat layer by a vacuum deposition method. Here, the order of SiO 2 : 0.06λ, ZrO 2 : 0.15λ, SiO 2 : 0.04λ, ZrO 2 : 0.25λ, and SiO 2 : 0.25λ from the hard coat layer side toward the atmosphere side. The layers of the antireflection film laminated with each other were formed. The design wavelength λ was 520 nm.
In Examples and Comparative Examples of the present invention, an antireflection film layer was formed on the surface of the hard coat layer using a conventionally known vapor deposition method, but a wet process described in International Application Publication WO 2006/095469 and the like. The antireflection film layer may be formed using a method (that is, a method of applying a coating composition containing a conventionally known vehicle component and low refractive index hollow silica fine particles to the surface of the hard coat layer). Of course.

[調製例2]
<試験用プラスチックレンズ基板の作成(2)>
(1)プラスチックレンズ基材の前処理
調製例1と同様な条件下で、プラスチック基材の前処理を行なった。
(2)プライマー層の形成
前記プラスチックレンズ基材の表面に、上記で得られたプライマー層形成用の塗料組成物(プライマー用塗料)をそれぞれ塗布して塗膜を形成した。なお、この塗料組成物の塗布は、ディッピング法を用い、実施例15および比較例11で調製したプライマー塗料は、引き上げ速度120mm/分にて、実施例16および比較例12で調製したプライマー塗料は、200mm/分にてプラスチックレンズ基材上に塗布を行った。
次に、前記塗膜を100℃で10分間、加熱処理して、塗膜(プライマー層)の予備硬化を行った。
なお、このようにして形成された前記プライマー層の予備硬化後の膜厚は、120mm/分にて引き上げたものは、概ね0.5〜0.7μm、200mm/分で引き上げたものは、概ね0.8〜1.0μmであった。
[Preparation Example 2]
<Creation of plastic lens substrate for test (2)>
(1) Pretreatment of plastic lens substrate Pretreatment of a plastic substrate was performed under the same conditions as in Preparation Example 1.
(2) Formation of primer layer The primer layer-forming coating composition (primer coating) obtained above was applied to the surface of the plastic lens substrate to form a coating film. In addition, application | coating of this coating composition uses a dipping method, the primer coating material prepared in Example 15 and Comparative Example 11 is the primer coating material prepared in Example 16 and Comparative Example 12 at a pulling-up speed of 120 mm / min. Application was performed on a plastic lens substrate at 200 mm / min.
Next, the said coating film was heat-processed at 100 degreeC for 10 minute (s), and the coating film (primer layer) was pre-hardened.
In addition, the film thickness after preliminary curing of the primer layer formed in this manner is approximately 0.5 to 0.7 μm when pulled up at 120 mm / min, and approximately about 30 mm when pulled up at 200 mm / min. It was 0.8 to 1.0 μm.

(3)ハードコート層の形成
調製例1と同様な条件下で、前記プライマー層を形成してなるプラスチックレンズ基材の表面に、上記で得られたハードコート層形成用の塗料組成物(ハードコート用塗料)をそれぞれ塗布して塗膜を形成し、その硬化を行なった。この際、前記プライマー層の本硬化も同時に行った。
なお、このようにして形成された前記ハードコート層の膜厚は、概ね2.0〜2.6μmであった。
(4)反射防止膜層の形成
調製例1と同様な条件下で、前記ハードコート層の表面に、反射防止膜の層をそれぞれ形成した。
(3) Formation of hard coat layer Under the same conditions as in Preparation Example 1, on the surface of the plastic lens substrate formed with the primer layer, the coating composition for forming the hard coat layer obtained above (hard A coating film was applied to form a coating film, and the coating was cured. At this time, the main curing of the primer layer was also performed at the same time.
In addition, the film thickness of the hard coat layer thus formed was approximately 2.0 to 2.6 μm.
(4) Formation of antireflection film layer Under the same conditions as in Preparation Example 1, an antireflection film layer was formed on the surface of the hard coat layer.

[実施例17]
実施例11で得られたハードコート用塗料1A(1)〜5A(1)、10A(1)および11A(1)を用いて、調製例1に示す方法でプラスチックレンズ基材上にハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた実施例基板1A(1)〜5A(1)、10A(1)および11A(1)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表3に示す。
[Example 17]
A hard coat layer was formed on a plastic lens substrate by the method shown in Preparation Example 1 using the hard coat paints 1A (1) to 5A (1), 10A (1) and 11A (1) obtained in Example 11. And an antireflection film layer were formed.
For the example substrates 1A (1) to 5A (1), 10A (1), and 11A (1) obtained in this way, the appearance (interference fringes) and the appearance (cloudy) were evaluated using the evaluation test method described above. Scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 3.

Figure 0005255270
Figure 0005255270

[比較例13]
比較例7で得られたハードコート用塗料6A(1)〜9A(1)および12A(1)を用いて、調製例1に示す方法でプラスチックレンズ基材上にハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた比較例基板6A(1)〜9A(1)および12A(1)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表4に示す。
[Comparative Example 13]
Using the hard coat paints 6A (1) to 9A (1) and 12A (1) obtained in Comparative Example 7, the hard coat layer and the antireflection film layer were formed on the plastic lens substrate by the method shown in Preparation Example 1. Formed respectively.
For the comparative substrates 6A (1) to 9A (1) and 12A (1) thus obtained, using the above evaluation test method, the appearance (interference fringes), appearance (cloudiness), scratch resistance, The adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 4.

Figure 0005255270
Figure 0005255270

[実施例18]
実施例12で得られたハードコート用塗料1A(2)〜5A(2)、10A(2)および11A(2)を用いて、調製例1に示す方法でプラスチックレンズ基材上にハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた実施例基板1A(2)〜5A(2)、10A(2)および11A(2)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表5に示す。
[Example 18]
A hard coat layer was formed on a plastic lens substrate by the method shown in Preparation Example 1 using the hard coat paints 1A (2) to 5A (2), 10A (2) and 11A (2) obtained in Example 12. And an antireflection film layer were formed.
For the example substrates 1A (2) to 5A (2), 10A (2), and 11A (2) obtained in this way, the appearance (interference fringes) and the appearance (cloudy) were evaluated using the evaluation test method described above. Scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 5.

Figure 0005255270
Figure 0005255270

[比較例14]
比較例8で得られたハードコート用塗料6A(2)〜9A(2)および12A(2)を用いて、調製例1に示す方法でプラスチックレンズ基材上にハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた比較例基板6A(2)〜9A(2)および12A(2)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表6に示す。
[Comparative Example 14]
Using the hard coat paints 6A (2) to 9A (2) and 12A (2) obtained in Comparative Example 8, the hard coat layer and the antireflection film layer were formed on the plastic lens substrate by the method shown in Preparation Example 1. Formed respectively.
With respect to the comparative substrates 6A (2) to 9A (2) and 12A (2) thus obtained, the above-described evaluation test method was used to determine the appearance (interference fringes), appearance (cloudiness), scratch resistance, The adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 6.

Figure 0005255270
Figure 0005255270

[実施例19]
実施例13で得られたハードコート用塗料1B(3)〜4B(3)、9B(3)〜11B(3)を用いて、調製例1に示す方法でプラスチックレンズ基材上にハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた実施例基板1B(3)〜4B(3)および9B(3)〜11B(3)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表7に示す。
[Example 19]
Using the hard coat paints 1B (3) to 4B (3) and 9B (3) to 11B (3) obtained in Example 13, the hard coat layer was formed on the plastic lens substrate by the method shown in Preparation Example 1. And an antireflection film layer were formed.
For the example substrates 1B (3) to 4B (3) and 9B (3) to 11B (3) thus obtained, the appearance (interference fringes) and the appearance (cloudy) were evaluated using the evaluation test method described above. Scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 7.

Figure 0005255270
Figure 0005255270

[比較例15]
比較例9で得られたハードコート用塗料5B(3)〜8B(3)および12B(3)を用いて、調製例1に示す方法でプラスチックレンズ基材上にハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた比較例基板5B(3)〜8B(3)および12B(3)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表8に示す。
[Comparative Example 15]
Using the hard coat paints 5B (3) to 8B (3) and 12B (3) obtained in Comparative Example 9, the hard coat layer and the antireflection film layer were formed on the plastic lens substrate by the method shown in Preparation Example 1. Formed respectively.
With respect to the comparative substrates 5B (3) to 8B (3) and 12B (3) thus obtained, the above-described evaluation test method was used to determine the appearance (interference fringes), appearance (cloudiness), scratch resistance, The adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 8.

Figure 0005255270
Figure 0005255270

[実施例20]
実施例14で得られたハードコート用塗料1B(4)〜4B(4)、9B(4)〜11B(4)を用いて、調製例1に示す方法でプラスチックレンズ基材上にハードコート層をそれぞれ形成した。
このようにして得られた実施例基板1B(4)〜4B(4)、9B(4)〜11B(4)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性および耐候性を試験して評価した。その結果を表9に示す。なお、ここでは、反射防止膜層をハードコート層上に設けなかったので、耐光性試験は行わなかった。
[Example 20]
Using the coating materials 1B (4) to 4B (4) and 9B (4) to 11B (4) for hard coat obtained in Example 14, the hard coat layer was formed on the plastic lens substrate by the method shown in Preparation Example 1. Formed respectively.
With respect to the example substrates 1B (4) to 4B (4) and 9B (4) to 11B (4) thus obtained, the appearance (interference fringes) and the appearance (cloudy) were evaluated using the above evaluation test method. The scratch resistance, adhesion and weather resistance were tested and evaluated. The results are shown in Table 9. Here, since the antireflection film layer was not provided on the hard coat layer, the light resistance test was not performed.

Figure 0005255270
Figure 0005255270

[比較例16]
比較例10で得られたハードコート用塗料5B(4)〜8B(4)および12B(4)を用いて、調製例1に示す方法でプラスチックレンズ基材上にハードコート層をそれぞれ形成した。
このようにして得られた比較例基板5B(4)〜8B(4)および12B(4)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性および耐候性を試験して評価した。その結果を表10に示す。なお、ここでは、反射防止膜層をハードコート層上に設けなかったので、耐光性試験は行わなかった。
[Comparative Example 16]
Using the hard coat paints 5B (4) to 8B (4) and 12B (4) obtained in Comparative Example 10, a hard coat layer was formed on the plastic lens substrate by the method shown in Preparation Example 1, respectively.
For the comparative substrates 5B (4) to 8B (4) and 12B (4) thus obtained, using the above evaluation test method, the appearance (interference fringes), the appearance (cloudiness), the scratch resistance, Adhesion and weather resistance were tested and evaluated. The results are shown in Table 10. Here, since the antireflection film layer was not provided on the hard coat layer, the light resistance test was not performed.

Figure 0005255270
Figure 0005255270

[実施例21]
実施例15で得られたプライマー用塗料1A(5)〜5A(5)、10A(5)、11A(5)、および実施例11で得られた表11に示すハードコート用塗料を用いて、調製例2に示す方法でプラスチックレンズ基材上にプライマー層、ハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた実施例基板1A(5)〜5A(5)、10A(5)および11A(5)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表11に示す。
[Example 21]
Using the primer coating materials 1A (5) to 5A (5), 10A (5), 11A (5) obtained in Example 15 and the hard coat coating material shown in Table 11 obtained in Example 11, A primer layer, a hard coat layer, and an antireflection film layer were formed on the plastic lens substrate by the method shown in Preparation Example 2, respectively.
For the example substrates 1A (5) to 5A (5), 10A (5), and 11A (5) obtained in this way, the above-described evaluation test method was used for appearance (interference fringes) and appearance (cloudy). Scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 11.

Figure 0005255270
Figure 0005255270

[比較例17]
比較例11で得られたプライマー用塗料6A(5)〜9A(5)、12A(5)、および比較例7で得られた表12に示すハードコート用塗料を用いて、調製例2に示す方法でプラスチックレンズ基材上にプライマー層、ハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた比較例基板6A(5)〜9A(5)および12A(5)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表12に示す。
[Comparative Example 17]
Using the primer coating materials 6A (5) to 9A (5) and 12A (5) obtained in Comparative Example 11 and the hard coat coating materials shown in Table 12 obtained in Comparative Example 7, it is shown in Preparation Example 2. By the method, a primer layer, a hard coat layer and an antireflection film layer were formed on the plastic lens substrate.
For the comparative substrates 6A (5) to 9A (5) and 12A (5) thus obtained, the above-described evaluation test method was used to determine the appearance (interference fringes), appearance (cloudiness), scratch resistance, The adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 12.

Figure 0005255270
Figure 0005255270

[実施例22]
実施例16で得られたプライマー用塗料1B(6)〜4B(6)、9B(6)〜11B(6)、および実施例13で得られた表13に示すハードコート用塗料を用いて、調製例2に示す方法でプラスチックレンズ基材上にプライマー層、ハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた実施例基板1B(6)〜4B(6)、9B(6)〜11B(6)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表13に示す。
[Example 22]
Using the primer coating materials 1B (6) to 4B (6) and 9B (6) to 11B (6) obtained in Example 16 and the hard coating materials shown in Table 13 obtained in Example 13, A primer layer, a hard coat layer, and an antireflection film layer were formed on the plastic lens substrate by the method shown in Preparation Example 2, respectively.
With respect to the example substrates 1B (6) to 4B (6) and 9B (6) to 11B (6) thus obtained, the appearance (interference fringes) and the appearance (cloudiness) were evaluated using the above evaluation test method. Scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 13.

Figure 0005255270
Figure 0005255270

[比較例18]
比較例12で得られたプライマー用塗料5B(6)〜8B(6)、12B(6)、および比較例9で得られた表14に示すハードコート用塗料を用いて、調製例2に示す方法でプラスチックレンズ基材上にプライマー層、ハードコート層および反射防止膜層をそれぞれ形成した。
このようにして得られた比較例基板5B(6)〜8B(6)および12B(6)について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表14に示す。
[Comparative Example 18]
Using the primer coating materials 5B (6) to 8B (6) and 12B (6) obtained in Comparative Example 12 and the hard coat coating materials shown in Table 14 obtained in Comparative Example 9, the results are shown in Preparation Example 2. By the method, a primer layer, a hard coat layer and an antireflection film layer were formed on the plastic lens substrate.
For the comparative substrates 5B (6) to 8B (6) and 12B (6) thus obtained, using the above evaluation test method, the appearance (interference fringes), the appearance (cloudiness), the scratch resistance, The adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 14.

Figure 0005255270
Figure 0005255270

Claims (21)

チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、
ケイ素元素が必須成分として含まれ、他にジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物が含まれるもので被覆した無機酸化物微粒子であって、
該微粒子中にカリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたことを特徴とするコアシェル構造を有する無機酸化物微粒子。
The surface of a core particle composed of titanium oxide fine particles and / or composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon,
Inorganic oxide fine particles coated with an element containing silicon element as an essential component, and other oxides and / or composite oxides of one or more metal elements selected from zirconium, aluminum and antimony There,
An inorganic oxide fine particle having a core-shell structure, wherein the fine particle contains a potassium compound (excluding K 2 O as an oxide) in an amount of 1.0 to 8.0% by weight in terms of K 2 O.
前記無機酸化物微粒子中に、前記金属元素の酸化物からなる固体酸を含むことを特徴とする請求項1に記載のコアシェル構造を有する無機酸化物微粒子。   The inorganic oxide fine particle having a core-shell structure according to claim 1, wherein the inorganic oxide fine particle contains a solid acid composed of an oxide of the metal element. 前記無機酸化物微粒子中に含まれるカリウム化合物の少なくとも一部が、前記固体酸と化合した形態で存在することを特徴とする請求項2に記載のコアシェル構造を有する無機酸化物微粒子。   The inorganic oxide fine particle having a core-shell structure according to claim 2, wherein at least a part of the potassium compound contained in the inorganic oxide fine particle is present in a form combined with the solid acid. 前記カリウム化合物を、前記核粒子中にK2O換算基準で0.0〜5.0重量%含み、前記被覆層中にK2O換算基準で1.0〜7.0重量%含むことを特徴とする請求項1〜3のいずれかに記載のコアシェル構造を有する無機酸化物微粒子。 The potassium compound, said comprising 0.0 to 5.0 wt% in the nucleus particles in K 2 O equivalent value, that it contains 1.0 to 7.0% by weight K 2 O equivalent value in the coating layer The inorganic oxide fine particles having a core-shell structure according to any one of claims 1 to 3. 前記核粒子が、アナターゼ型の結晶構造を有するチタン系複合酸化物微粒子であることを特徴とする請求項1〜4のいずれかに記載のコアシェル構造を有する無機酸化物微粒子。   The inorganic oxide fine particle having a core-shell structure according to any one of claims 1 to 4, wherein the core particle is a titanium-based composite oxide fine particle having an anatase type crystal structure. 前記核粒子が、ルチル型の結晶構造を有するチタン系複合酸化物微粒子であることを特徴とする請求項1〜4のいずれかに記載のコアシェル構造を有する無機酸化物微粒子。   The inorganic oxide fine particles having a core-shell structure according to any one of claims 1 to 4, wherein the core particles are titanium-based composite oxide fine particles having a rutile-type crystal structure. 前記核粒子上への被覆を、前記核粒子の重量をCで表し、前記被覆層の重量をSで表したとき、その重量比(S/C)が、酸化物基準で7/100〜150/100の範囲となるように行うことを特徴とする請求項1〜6のいずれかに記載のコアシェル構造を有する無機酸化物微粒子。   When the weight of the core particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 7/100 to 150 on the oxide basis. The inorganic oxide fine particles having a core-shell structure according to any one of claims 1 to 6, wherein the inorganic oxide fine particles have a core / shell structure. 前記無機酸化物微粒子の平均粒子径が、動的光散乱法で測定したとき、4〜40nmの範囲にあることを特徴とする請求項1〜7のいずれかに記載のコアシェル構造を有する無機酸化物微粒子。   The inorganic oxide having a core-shell structure according to any one of claims 1 to 7, wherein an average particle size of the inorganic oxide fine particles is in a range of 4 to 40 nm when measured by a dynamic light scattering method. Fine particles. 前記無機酸化物微粒子の比表面積が、70〜450m2/gの範囲にあることを特徴とする請求項1〜8のいずれかに記載のコアシェル構造を有する無機酸化物微粒子。 The inorganic oxide fine particles having a core-shell structure according to any one of claims 1 to 8, wherein a specific surface area of the inorganic oxide fine particles is in a range of 70 to 450 m 2 / g. 請求項1〜9のいずれかに記載のコアシェル構造を有する無機酸化物微粒子を水中に分散させてなる水分散ゾル。   A water-dispersed sol obtained by dispersing inorganic oxide fine particles having a core-shell structure according to any one of claims 1 to 9 in water. 請求項1〜9のいずれかに記載のコアシェル構造を有する無機酸化物微粒子を水に可溶な有機溶媒中に分散させてなる有機溶媒分散ゾル。   An organic solvent-dispersed sol obtained by dispersing the inorganic oxide fine particles having the core-shell structure according to any one of claims 1 to 9 in an organic solvent soluble in water. (1)チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、ケイ素元素が必須成分として含まれ、他にジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物が含まれるもので被覆した無機酸化物微粒子中に、カリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたコアシェル構造を有する無機酸化物微粒子、および
(2)下記一般式(I)で表される有機ケイ素化合物および/またはその加水分解物;
1 a2 bSi(OR34-(a+b) (I)
(式中、R1は炭素数1〜6のアルキル基、ビニル基を含有する炭素数8以下の有機基、エポキシ基を含有する炭素数8以下の有機基、メタクリロキシ基を含有する炭素数8以下の有機基、メルカプト基を含有する炭素数1〜5の有機基またはアミノ基を含有する炭素数1〜5の有機基であり、R2は炭素数1〜3のアルキル基、アルキレン基、シクロアルキル基もしくはハロゲン化アルキル基またはアリル基であり、R3は炭素数1〜3のアルキル基、アルキレン基またはシクロアルキル基である。また、aは0または1の整数、bは0、1または2の整数である。)
を含むことを特徴とする光学基材用塗布液。
(1) Titanium oxide fine particles and / or core particles composed of composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon Inorganic oxidation in which the surface is covered with an element containing silicon element as an essential component and other oxides and / or composite oxides of one or more metal elements selected from zirconium, aluminum and antimony Inorganic oxide fine particles having a core-shell structure in which a potassium compound (excluding K 2 O as an oxide) is contained in an amount of 1.0 to 8.0% by weight in terms of K 2 O, and (2) An organosilicon compound represented by the following general formula (I) and / or a hydrolyzate thereof;
R 1 a R 2 b Si (OR 3 ) 4- (a + b) (I)
(In the formula, R 1 is an alkyl group having 1 to 6 carbon atoms, an organic group having 8 or less carbon atoms containing a vinyl group, an organic group having 8 or less carbon atoms containing an epoxy group, and 8 carbon atoms containing a methacryloxy group. The following organic group, an organic group having 1 to 5 carbon atoms containing a mercapto group or an organic group having 1 to 5 carbon atoms containing an amino group, R 2 is an alkyl group having 1 to 3 carbon atoms, an alkylene group, A cycloalkyl group, a halogenated alkyl group or an allyl group, R 3 is an alkyl group having 1 to 3 carbon atoms, an alkylene group or a cycloalkyl group, a is an integer of 0 or 1, b is 0, 1 Or an integer of 2.)
The coating liquid for optical base materials characterized by including.
前記無機酸化物微粒子が、有機ケイ素化合物またはアミン系化合物で表面処理されたものであることを特徴とする請求項12に記載の光学基材用塗布液。   The coating liquid for an optical substrate according to claim 12, wherein the inorganic oxide fine particles are surface-treated with an organosilicon compound or an amine compound. 前記光学基材用塗布液中に、さらに未架橋エポキシ化合物を含むことを特徴とする請求項12〜13のいずれかに記載の光学基材用塗布液。   The coating liquid for optical substrates according to any one of claims 12 to 13, further comprising an uncrosslinked epoxy compound in the coating liquid for optical substrates. 前記光学基材用塗布液が、ハードコート層形成用塗布液であることを特徴とする請求項12〜14のいずれかに記載の光学基材用塗布液。   The optical substrate coating solution according to any one of claims 12 to 14, wherein the optical substrate coating solution is a hard coat layer forming coating solution. (1)チタニウムの酸化物微粒子、および/またはチタニウムと、ジルコニウム、スズ、タングステン、ニオブ、セリウムおよびケイ素から選ばれた1種または2種以上の金属元素を含む複合酸化物微粒子からなる核粒子の表面を、ケイ素元素が必須成分として含まれ、他にジルコニウム、アルミニウムおよびアンチモンから選ばれた1種または2種以上の金属元素の酸化物および/または複合酸化物が含まれるもので被覆した無機酸化物微粒子中に、カリウム化合物(酸化物としてのK2Oを除く)をK2O換算基準で1.0〜8.0重量%含ませたコアシェル構造を有する無機酸化物微粒子、および
(2)熱硬化性樹脂または熱可塑性樹脂を含むことを特徴とする光学基材用塗布液。
(1) Titanium oxide fine particles and / or core particles composed of composite oxide fine particles containing titanium and one or more metal elements selected from zirconium, tin, tungsten, niobium, cerium and silicon Inorganic oxidation in which the surface is covered with an element containing silicon element as an essential component and other oxides and / or composite oxides of one or more metal elements selected from zirconium, aluminum and antimony Inorganic oxide fine particles having a core-shell structure in which a potassium compound (excluding K 2 O as an oxide) is contained in an amount of 1.0 to 8.0% by weight in terms of K 2 O, and (2) A coating liquid for an optical substrate comprising a thermosetting resin or a thermoplastic resin.
前記無機酸化物微粒子が、有機ケイ素化合物またはアミン系化合物で表面処理されたものであることを特徴とする請求項16に記載の光学基材用塗布液。   The coating liquid for an optical substrate according to claim 16, wherein the inorganic oxide fine particles have been surface-treated with an organosilicon compound or an amine compound. 前記熱硬化性樹脂が、ウレタン系樹脂、エポキシ系樹脂、メラミン系樹脂およびシリコーン系樹脂から選ばれた1種または2種以上の熱硬化性樹脂であることを特徴とする請求項16〜17のいずれかに記載の光学基材用塗布液。   18. The thermosetting resin according to claim 16, wherein the thermosetting resin is one or more thermosetting resins selected from urethane resins, epoxy resins, melamine resins, and silicone resins. The coating liquid for optical base materials in any one. 前記熱可塑性樹脂が、アクリル系樹脂、ウレタン系樹脂およびエステル系樹脂から選ばれた1種または2種以上の熱可塑性樹脂であることを特徴とする請求項16〜17のいずれかに記載の光学基材用塗布液。   The optical material according to any one of claims 16 to 17, wherein the thermoplastic resin is one or more thermoplastic resins selected from acrylic resins, urethane resins and ester resins. Substrate coating solution. 前記光学基材用塗布液が、プライマー層形成用塗布液であることを特徴とする請求項16〜19のいずれかに記載の光学基材用塗布液。   The optical substrate coating solution according to any one of claims 16 to 19, wherein the optical substrate coating solution is a primer layer forming coating solution. 前記光学基材が、プラスチックレンズであることを特徴とする請求項12〜20のいずれかに記載の光学基材用塗布液。   The optical substrate coating liquid according to any one of claims 12 to 20, wherein the optical substrate is a plastic lens.
JP2007335796A 2007-12-27 2007-12-27 Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate Active JP5255270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335796A JP5255270B2 (en) 2007-12-27 2007-12-27 Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335796A JP5255270B2 (en) 2007-12-27 2007-12-27 Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate

Publications (2)

Publication Number Publication Date
JP2009155496A JP2009155496A (en) 2009-07-16
JP5255270B2 true JP5255270B2 (en) 2013-08-07

Family

ID=40959850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335796A Active JP5255270B2 (en) 2007-12-27 2007-12-27 Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate

Country Status (1)

Country Link
JP (1) JP5255270B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952480A1 (en) 2014-05-23 2015-12-09 Shin-Etsu Chemical Co., Ltd. Titanium oxide solid solution dispersion and coating composition

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514487B2 (en) * 2008-12-27 2014-06-04 日揮触媒化成株式会社 Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles
JP5754943B2 (en) * 2008-12-27 2015-07-29 日揮触媒化成株式会社 COATING COMPOSITION CONTAINING HIGH REFRACTIVE OPTICAL METAL OXIDE PARTICLES AND CURABLE COATING OBTAINED BY COATING THE COATING COMPOSITION ON A SUBSTRATE
JP5854584B2 (en) * 2009-11-30 2016-02-09 日揮触媒化成株式会社 Method for preparing water-dispersed sol containing fine metal oxide fine particles, water-dispersed sol obtained from the method, organic solvent-dispersed sol containing the fine particles, and coating composition
JP5713668B2 (en) * 2010-12-28 2015-05-07 日揮触媒化成株式会社 Hard coat layer film forming coating composition
JP4754035B1 (en) * 2011-01-12 2011-08-24 ハニー化成株式会社 Polyorganosiloxane coating composition with good plating adhesion and coating film thereof
JP6080583B2 (en) * 2013-02-07 2017-02-15 日揮触媒化成株式会社 Surface-modified inorganic composite oxide fine particles, production method thereof, dispersion containing the fine particles, coating solution for optical substrate, coating film for optical substrate, and coated substrate
CN108299644A (en) 2013-12-09 2018-07-20 3M创新有限公司 Curable silsesquioxane polymer, composition, product and method
JP6253484B2 (en) * 2014-03-31 2017-12-27 日揮触媒化成株式会社 Coating composition, hard coat layer, optical substrate with hard coat layer, and production method thereof
JP2017519081A (en) 2014-06-20 2017-07-13 スリーエム イノベイティブ プロパティズ カンパニー Curable polymer and method comprising a silsesquioxane polymer core and a silsesquioxane polymer outer layer
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
EP3197966A1 (en) 2014-09-22 2017-08-02 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
JP6001041B2 (en) * 2014-10-03 2016-10-05 富士フイルム株式会社 Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
JP6013422B2 (en) * 2014-10-03 2016-10-25 富士フイルム株式会社 Siloxane resin composition, transparent cured product, transparent pixel, microlens, and solid-state imaging device using the same
WO2016121263A1 (en) * 2015-01-29 2016-08-04 富士フイルム株式会社 Siloxane resin composition, transparent cured product using same, transparent pixel, microlens and solid-state imaging element
US20180148601A1 (en) * 2016-11-30 2018-05-31 Momentive Performance Materials Inc. Abrasion resistant coating composition with inorganic metal oxides
CN106752694B (en) * 2016-12-07 2020-04-21 中国京冶工程技术有限公司 Protective agent for steel structure base layer of industrial heritage and preparation method and application thereof
EP3604226A4 (en) 2017-03-31 2021-01-13 JGC Catalysts and Chemicals Ltd. Method for producing dispersion of iron-containing rutile-type titanium oxide microparticles, iron-containing rutile-type titanium oxide microparticles and use thereof
EP4129919A4 (en) * 2020-03-31 2024-04-03 JGC Catalysts and Chemicals Ltd. Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
WO2022239788A1 (en) 2021-05-11 2022-11-17 日揮触媒化成株式会社 Rutile titanium oxide particles, dispersion, coating solution for film formation, and substrate with coating film
CN113410468B (en) * 2021-08-19 2021-11-23 江苏卓高新材料科技有限公司 Negative electrode binder and preparation method thereof, preparation method of negative electrode sheet and lithium ion battery
CN114479618B (en) * 2022-01-20 2023-02-17 深圳市鸿合创新信息技术有限责任公司 Organic-inorganic hybrid material, preparation method thereof, paint and electronic display device
WO2024071312A1 (en) * 2022-09-29 2024-04-04 日揮触媒化成株式会社 Crystalline titanium oxide core-shell particles and dispersion containing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU560227B2 (en) * 1982-01-21 1987-04-02 E.I. Du Pont De Nemours And Company Alumina coated ti02
JP3203142B2 (en) * 1994-04-21 2001-08-27 セイコーエプソン株式会社 Coating solution for forming film and lens made of synthetic resin
GB9514388D0 (en) * 1995-07-13 1995-09-13 Tioxide Group Services Ltd Titanium dioxide pigments
FR2749019B1 (en) * 1996-05-21 1998-07-24 Centre Nat Etd Spatiales WHITE PIGMENTS COATED WITH AN OXIDIZING AGENT TO INCREASE THEIR STABILITY TO UV RADIATION, THEIR PREPARATION AND PAINTS CONTAINING THEM
FR2755443B1 (en) * 1996-11-05 1999-01-15 Centre Nat Etd Spatiales PIGMENTS COATED WITH AN ULTRAVIOLET RADIATION ABSORBING AGENT, PROCESS FOR THEIR PREPARATION AND PAINTS CONTAINING THEM
JP3982933B2 (en) * 1999-01-14 2007-09-26 触媒化成工業株式会社 Coating liquid for coating formation and lens made of synthetic resin
JP3866028B2 (en) * 2000-10-25 2007-01-10 東邦チタニウム株式会社 Titanium dioxide for coating, coating liquid for forming titanium dioxide coating layer, and coated tablets and granules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952480A1 (en) 2014-05-23 2015-12-09 Shin-Etsu Chemical Co., Ltd. Titanium oxide solid solution dispersion and coating composition

Also Published As

Publication number Publication date
JP2009155496A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5255270B2 (en) Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate
JP5754943B2 (en) COATING COMPOSITION CONTAINING HIGH REFRACTIVE OPTICAL METAL OXIDE PARTICLES AND CURABLE COATING OBTAINED BY COATING THE COATING COMPOSITION ON A SUBSTRATE
JP5557662B2 (en) Dispersion of core-shell type inorganic oxide fine particles, process for producing the same, and coating composition containing the dispersion
JP5455501B2 (en) Dispersion of core-shell composite oxide fine particles, method for producing the dispersion, coating composition containing the core-shell composite oxide fine particles, curable coating, and substrate with curable coating
EP1947155B1 (en) Composition for use in the formation of hardcoat layer and optical lens
JP5182533B2 (en) Metal oxide composite sol, coating composition and optical member
JP5854584B2 (en) Method for preparing water-dispersed sol containing fine metal oxide fine particles, water-dispersed sol obtained from the method, organic solvent-dispersed sol containing the fine particles, and coating composition
JP6049368B2 (en) Al-modified inorganic oxide fine particles, production method thereof, dispersion, and coating composition
KR20140042830A (en) Metal oxide particles containing titanium oxide coated with silicon dioxide-tin(iv) oxide complex oxide
EP2138462A1 (en) Sol of surface-coated titanium oxide, process for producing the same, and coating composition containing the same
JP5514487B2 (en) Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles
JP5713668B2 (en) Hard coat layer film forming coating composition
JP5511368B2 (en) Method for preparing organic solvent-dispersed sol containing high refractive index metal oxide fine particles, organic solvent-dispersed sol, and coating composition obtained using the organic solvent-dispersed sol
JP6080583B2 (en) Surface-modified inorganic composite oxide fine particles, production method thereof, dispersion containing the fine particles, coating solution for optical substrate, coating film for optical substrate, and coated substrate
JP5116285B2 (en) Base material with transparent coating
JP6253484B2 (en) Coating composition, hard coat layer, optical substrate with hard coat layer, and production method thereof
JP6278902B2 (en) Water and / or organic solvent dispersion containing linked crystalline inorganic oxide fine particle group, method for producing the same, and coating solution for optical substrate containing linked crystalline inorganic oxide fine particle group
JP6232310B2 (en) Coating composition, coating film and optical article with coating film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R150 Certificate of patent or registration of utility model

Ref document number: 5255270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250