[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5253817B2 - Coated welding electrode with reduced ductility crack resistance and welds made therefrom - Google Patents

Coated welding electrode with reduced ductility crack resistance and welds made therefrom Download PDF

Info

Publication number
JP5253817B2
JP5253817B2 JP2007553180A JP2007553180A JP5253817B2 JP 5253817 B2 JP5253817 B2 JP 5253817B2 JP 2007553180 A JP2007553180 A JP 2007553180A JP 2007553180 A JP2007553180 A JP 2007553180A JP 5253817 B2 JP5253817 B2 JP 5253817B2
Authority
JP
Japan
Prior art keywords
less
weld
alloy
cracking
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007553180A
Other languages
Japanese (ja)
Other versions
JP2008528806A (en
Inventor
サミュエル、ディー.キサー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntington Alloys Corp
Original Assignee
Huntington Alloys Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huntington Alloys Corp filed Critical Huntington Alloys Corp
Publication of JP2008528806A publication Critical patent/JP2008528806A/en
Application granted granted Critical
Publication of JP5253817B2 publication Critical patent/JP5253817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Description

関連出願の相互参照Cross-reference of related applications

本願は、ここにその全文が含められる、2005年1月25日に出願された「延性低下割れ耐性を有する被覆された溶接電極」と題される米国仮出願第60/647,179号の利点を主張するものである。   This application is an advantage of US Provisional Application No. 60 / 647,179, filed January 25, 2005, entitled “Coated Welding Electrode With Ductile Reduced Crack Resistance”, which is hereby incorporated in its entirety. Is an insistence.

発明の背景Background of the Invention

発明の分野
本発明は、一般的にはニッケル、クロム、鉄溶接合金、そこから製造された、溶接物の製造に使用する製品、および溶接物およびこれらの溶接物を製造するための方法に関する。本発明はさらに、溶接電極、溶接ワイヤおよびフラックス薬被覆組成物および特に延性低下割れに対して耐性がある、ならびに原子力発電環境における一次水応力腐食割れに対して耐性がある溶着物を得るための溶接方法に関する。
FIELD OF THE INVENTION The present invention relates generally to nickel, chromium, iron weld alloys, products made therefrom for use in the production of weldments, and weldments and methods for producing these weldments. The present invention further provides a weld electrode, welding wire and flux drug coating composition and particularly a weld that is resistant to ductile degradation cracks and is resistant to primary water stress corrosion cracking in a nuclear power environment. It relates to a welding method.

関連技術の説明
原子力発電を含む様々な用途で、様々な亀裂現象に対する耐性を与える溶接物が必要とされる。これには、応力腐食割れのみならず、高温割れ、低温割れ、およびルート割れも含まれる。
Description of Related Art In various applications, including nuclear power generation, weldments that provide resistance to various cracking phenomena are needed. This includes not only stress corrosion cracking, but also hot cracking, cold cracking, and root cracking.

商業的および軍用原子力発電は、20世紀後半から存在している。この間、工業界では、クロム14〜15%を含むNiCrFe合金の第一世代が、クロム含有量がより高い30%オーダーの合金で置き換えられている。この変化は、核純水中での応力腐食割れが、クロムをこの量で含むこの種の合金により回避できることが発見された時点で予言された。Cr含有量が30%のオーダーにあるNiCrFe合金は、今や約20〜25年にわたって使用されている。   Commercial and military nuclear power has existed since the late 20th century. During this time, the industry has replaced the first generation of NiCrFe alloys containing 14-15% chromium with alloys of the order of 30% with higher chromium content. This change was predicted when it was discovered that stress corrosion cracking in pure nuclear water could be avoided by this type of alloy containing this amount of chromium. NiCrFe alloys with Cr content on the order of 30% have now been used for about 20-25 years.

原子力発電所内で大量の溶接および溶接製品を必要とする原子力発電装置に特別な用途は、核蒸気発電機の製造である。この装置は、一次核反応器冷却剤と二次水から蒸気を発生する実質的に大型の管およびシェルの熱交換機である。この蒸気発生装置の重要な部品はチューブシートである。チューブシートは、直径が15〜20フィートで、厚さが優に1フィートを超える場合があり、高強度低合金鋼から鍛造され、加工性が良く、核純水中で応力腐食割れに対して耐性があるNiCrFe合金で肉盛溶接する必要がある。チューブシートの大きさのため、溶着物は、肉盛溶接の際、かなりの残留応力を受ける。さらに、溶接部の肉盛金属は、ドリル穴を開け、何千本もの小さな蒸気発生管を受け容れるための開口部を設けた後、再溶接できる必要がある。これらの管は、肉盛溶着物に密封溶接し、ヘリウムの漏れに対する密封溶接部を形成する必要がある。これらの溶接部は、極めて高い品質を有し、30〜50年の耐用寿命を十分に有していなければならない。さらに、肉盛溶着物および溶接された蒸気発生管の両方が、優れた亀裂耐性を備えていなければならない。この、「凝固割れ」とも呼ばれる高温割れおよび応力腐食割れに対する耐性に関する必要条件は、既存の30%クロム溶接物のほとんどが適合している。   A special application for nuclear power generation equipment that requires large amounts of welding and welding products within a nuclear power plant is the manufacture of nuclear steam generators. This device is a substantially large tube and shell heat exchanger that generates steam from the primary nuclear reactor coolant and secondary water. An important part of this steam generator is the tube sheet. Tube sheets are 15-20 feet in diameter and may be well over 1 foot in thickness, are forged from high-strength low-alloy steels, have good workability and are resistant to stress corrosion cracking in nuclear pure water It is necessary to overlay welding with a NiCrFe alloy having resistance. Due to the size of the tube sheet, the weld is subjected to considerable residual stress during overlay welding. Furthermore, the build-up metal in the welded portion needs to be reweldable after drilling holes and providing openings for receiving thousands of small steam generating tubes. These tubes need to be hermetically welded to the overlay deposit to form a hermetic weld against helium leakage. These welds must have very high quality and have a sufficient useful life of 30-50 years. Furthermore, both the build-up deposit and the welded steam generating tube must have excellent crack resistance. This requirement for resistance to hot cracking and stress corrosion cracking, also called “solidification cracking”, is met by most existing 30% chromium weldments.

高温割れ耐性および応力腐食割れ耐性に加えて、チューブとチューブシートの溶接部にはルート割れ耐性も必要である。チューブとチューブシートの溶接部は、チューブ末端と、チューブを取り囲む溶接部の肉盛材料(追加の溶加材金属を使用しても、しなくても)のリングとを一緒に融解させ、それによって、チューブ壁とチューブシート中の開口部との間の空間を密封することにより形成される。これらの溶接部は、溶接部の底部で、チューブとチューブシートの界面で、亀裂を生じる傾向がある。この種の亀裂は、溶接部のルートで起こるので、「ルート割れ」と呼ばれる。既存の30%クロム溶接物は、ルート割れに対する耐性がない。   In addition to hot cracking resistance and stress corrosion cracking resistance, the weld between the tube and tube sheet must also have root cracking resistance. The weld of the tube and tube sheet melts together the tube end and the ring of weld overlay material (with or without additional filler metal) surrounding the tube. Is formed by sealing the space between the tube wall and the opening in the tube sheet. These welds tend to crack at the bottom of the weld and at the interface between the tube and the tube sheet. This type of cracking is called “root cracking” because it occurs in the root of the weld. Existing 30% chromium weldments are not resistant to root cracking.

生じる可能性がある第三の型の亀裂は、「延性低下割れ」または「DDC」とも呼ばれる低温割れである。この亀裂は、溶接部の凝固が完了した後の、固化した状態でのみ起こる。凝固が起きた後、低温で溶接合金の体積が低下する結果、収縮応力が増大し始める。同時に、凝固が完了した後、延性回復が数百度にわたって急速に起こり、続いて延性の一時的な損失が急激に起こり、続いて常温に達するまで、再度、延性がよりゆるやかに連続的に回復する。合金がこの急激な延性低下を示す時に、冷却の残留応力が十分に大きい場合、固体状態亀裂(DDC)が起こることがある。これは、微小構造の、支配している温度における応力に抵抗する十分な強度または延性を持たない部分により引き起こされる。現在市販されている30%クロム溶接合金は、DDCに対して十分な耐性を有していない。   A third type of crack that may occur is cold cracking, also referred to as “ductile degradation cracking” or “DDC”. This crack only occurs in a solidified state after the solidification of the weld is complete. After solidification occurs, the shrinkage stress begins to increase as a result of the volume of the weld alloy decreasing at low temperatures. At the same time, after solidification is complete, ductile recovery occurs rapidly over several hundred degrees, followed by a sudden loss of ductility, followed by a more gradual and continuous recovery again until room temperature is reached. . When the alloy exhibits this rapid ductility drop, solid state cracking (DDC) may occur if the residual stress of cooling is sufficiently high. This is caused by a portion of the microstructure that does not have sufficient strength or ductility to resist stress at the controlling temperature. Currently marketed 30% chromium weld alloys do not have sufficient resistance to DDC.

延性低下割れ(DDC)/低温割れは、原子力産業で使用されている、完全にオーステナイト系のニッケル−クロム−鉄合金で、過去10年以上にわたって重要な問題になっている。科学界では、Cr約30%を含むNiCrFe合金が、核環境中で一次水応力腐食割れ(PWSCC)に対する耐性を示すことが分かっている。しかし、Crレベルが高く、Nbが少ない場合、長い直線的なデンドライト境界と共にエピタキシー凝固する溶着物を生じる傾向がある。これらの境界は、高ひずみおよび高温にさらされると、DDCに特に敏感になる。この現象は、Cr30%を含むニッケル合金、例えばInconel合金690およびAWSクラスNiCrFe−7の溶接製品で、より多く起こると思われる。DDC割れの傾向に対しては、Inconel Filler Metal 52MおよびWeld Strip 52M(AWSクラスNiCrFe-7A-UNS3N06054)の発明がなされている。これらの製品は、ここにその内容全体を参考として含める、本発明者らの米国特許第6,242,113号に含まれる。フラックス被覆された電極におけるDDC/低温割れに対する解決策を特に本願で扱う。   Ductile cracking (DDC) / cold cracking is a fully austenitic nickel-chromium-iron alloy used in the nuclear industry and has been an important problem over the past decade. The scientific community has found that NiCrFe alloys containing about 30% Cr exhibit resistance to primary water stress corrosion cracking (PWSCC) in the nuclear environment. However, when the Cr level is high and Nb is low, there is a tendency to produce a deposit that epitaxy solidifies with long linear dendrite boundaries. These boundaries are particularly sensitive to DDC when exposed to high strains and high temperatures. This phenomenon is more likely to occur with welded products of nickel alloys containing 30% Cr, such as Inconel alloy 690 and AWS class NiCrFe-7. The invention of Inconel Filler Metal 52M and Weld Strip 52M (AWS class NiCrFe-7A-UNS3N06054) has been made for the tendency of DDC cracking. These products are included in our US Pat. No. 6,242,113, which is hereby incorporated by reference in its entirety. A solution to DDC / cold cracking in flux coated electrodes is specifically addressed herein.

背景情報として、米国溶接協会(「AWS」)および米国規格協会(「ANSI」)の様々な規格、すなわちANSI/AWS規格A5.11/M:2005「被覆アーク溶接用のニッケルおよびニッケル−合金溶接電極に関する規格」およびANSI/AWS規格A5.14/A5.14M:2005「ニッケルおよびニッケル−合金裸溶接電極およびロッドに関する規格」、も重要である。これらの規格の両方をここにその全文を参考として含める。   As background information, various standards of the American Welding Association (“AWS”) and the American National Standards Institute (“ANSI”), ie ANSI / AWS standard A5.11 / M: 2005 “nickel and nickel-alloy welding for coated arc welding. "Standards for electrodes" and ANSI / AWS standard A5.14 / A5.14M: 2005 "Standards for nickel and nickel-alloy bare weld electrodes and rods" are also important. Both of these standards are included here by reference in their entirety.

発明の概要Summary of the Invention

本発明の目的は、ニッケル、クロム、鉄溶接合金、そこから製造された溶接部、および所望の強度および耐食性に加えて、高温割れ、DDC/低温割れ、ルート割れ、ならびに応力腐食割れに対する耐性を与える溶接方法を提供することである。   The object of the present invention is to provide resistance to hot cracks, DDC / cold cracks, root cracks, and stress corrosion cracks in addition to nickel, chromium, iron weld alloys, welds made therefrom, and desired strength and corrosion resistance. It is to provide a welding method to give.

本発明の別の目的は、原子力発電に使用する装置の製造に特に適した、ニッケル、クロム、鉄型の、フラックス被覆した溶接合金を提供することである。   Another object of the present invention is to provide a nickel, chromium, iron-type, flux-coated weld alloy that is particularly suitable for the manufacture of equipment for use in nuclear power generation.

本発明により、溶着物の製造に使用するニッケル、クロム、鉄合金を提供する。この合金は、量%で、クロム約27〜31%、鉄約6〜11%、炭素約0.01〜0.04%、マンガン約1.5〜4%、ニオブ+タンタル約1〜3%、ケイ素0.75%未満、チタン約0.01〜0.50%、アルミニウム最大0.50%、銅0.50未満、タングステン1.0%未満、モリブデン1.0%未満、コバルト0.12%未満、ジルコニウム0.0003〜0.02%、硫黄約0.015%未満、ホウ素0.0005〜0.004%、リン約0.02%未満、マグネシウム約0.02以下、および残部ニッケル(好ましくはNi最小48%)、および不可避不純物からなる。 According to the present invention, there are provided nickel, chromium and iron alloys for use in the production of welds. This alloy, in mass%, chromium about 27 to 31%, iron about 6-11% carbon about 0.01 to .04% manganese about 1.5 to 4% niobium + tantalum about 1-3 %, Silicon less than 0.75%, titanium about 0.01 to 0.50%, aluminum up to 0.50%, copper less than 0.50, tungsten less than 1.0%, molybdenum less than 1.0%, cobalt. Less than 12%, zirconium 0.0003-0.02%, sulfur less than 0.015%, boron 0.0005-0.004%, phosphorus less than 0.02%, magnesium less than 0.02, and the balance nickel (Preferably Ni minimum 48%) and inevitable impurities.

この合金は、クロム含有量のために十分な応力腐食割れ耐性を示す。この合金は、溶着物、フラックス被覆された溶接電極、フラックス被覆を有するワイヤの形態にある溶接電極、フラックスコアを有するシースの形態にある溶接電極、肉盛溶着物または合金基材を含んでなる溶接物、例えば本発明の合金で肉盛した鋼の形態でよい。この合金は、溶着物の製造に使用するフラックス被覆された電極の形態にある、溶着物または溶接物を製造する方法に使用できる。溶着物の製造方法は、ニッケル、クロムワイヤ、またはニッケル、クロム、鉄ワイヤのフラックス被覆された電極を製造すること、および「短アーク」を使用して該電極を融解させ、フラックス被覆と溶着物との間の相互作用の結果、所望のレベルのホウ素、ジルコニウムおよびマグネシウムを維持しながら、溶着物を製造することを包含する。短アークは、電極先端から溶着物までの距離として定義され、0.125インチ未満、好ましくは約0.020〜0.040インチである。溶着物中のNb:Siの比は、溶着物に良好な割れ耐性を得るには約5:1〜7:1が好ましい。溶接電極用のフラックス被覆の製造は、それ自体、この分野で良く知られており、ここで詳細に説明する必要はない。本発明のフラックス被覆は、フッ化物、酸化物、炭酸塩およびここに記載する選択された金属間化合物の混合物を含む。   This alloy exhibits sufficient stress corrosion cracking resistance due to chromium content. The alloy comprises a weld, a flux-coated weld electrode, a weld electrode in the form of a wire having a flux coat, a weld electrode in the form of a sheath having a flux core, a build-up deposit or an alloy substrate. It may be in the form of a weld, for example, steel that is built up with the alloy of the invention. This alloy can be used in a method for producing a weld or weld in the form of a flux-coated electrode used to produce a weld. A method for producing a welded material includes producing a flux-coated electrode of nickel, chrome wire, or nickel, chrome, iron wire, and melting the electrode using “short arc” to provide flux coating and welded material. Manufacturing the weld deposit while maintaining the desired levels of boron, zirconium and magnesium as a result of the interaction between the two. A short arc is defined as the distance from the electrode tip to the deposit and is less than 0.125 inches, preferably about 0.020 to 0.040 inches. The ratio of Nb: Si in the welded material is preferably about 5: 1 to 7: 1 in order to obtain good crack resistance in the welded material. The manufacture of flux coatings for welding electrodes is itself well known in the art and need not be described in detail here. The flux coating of the present invention comprises a mixture of fluorides, oxides, carbonates and selected intermetallic compounds described herein.

まとめると、本発明は、量%で、Cr:27〜31、Fe:6〜11、C:0.01〜0.04、Mn:1.5〜4、Nb:1〜3、Ta:3以下、(Nb+Ta):1〜3、Ti:0.10〜0.50、Zr:0.0003〜0.02、B:0.0005〜0.004、Si:0.50未満、Al:最大0.20、Cu:0.20未満、W:1.0未満、Mo:1.0未満、Co:0.12未満、S:0.015未満、P:0.015未満、Mg:最大0.01、残部Niならびに不可避混入物および不純物からなるNi−Cr−Fe合金に関する。この合金は、好ましくは最小48%のNiを含む。より好ましくは、この合金は、Cr:29〜31、Fe:6.5〜9、B:0.0007〜0.004、Mn:2.5〜3.5、Zr:0.003〜0.01およびNi:最小50を含む。 In summary, the present invention is a mass%, Cr: 27~31, Fe: 6~11, C: 0.01~0.04, Mn: 1.5~4, Nb: 1~3, Ta: 3 or less, (Nb + Ta): 1 to 3, Ti: 0.10 to 0.50, Zr: 0.0003 to 0.02, B: 0.0005 to 0.004, Si: less than 0.50, Al: Max 0.20, Cu: less than 0.20, W: less than 1.0, Mo: less than 1.0, Co: less than 0.12, S: less than 0.015, P: less than 0.015, Mg: max The present invention relates to a Ni—Cr—Fe alloy composed of 0.01, the remaining Ni and inevitable contaminants and impurities. This alloy preferably contains a minimum of 48% Ni. More preferably, the alloy has Cr: 29-31, Fe: 6.5-9, B: 0.0007-0.004, Mn: 2.5-3.5, Zr: 0.003-0. 01 and Ni: Contains a minimum of 50.

本発明は、量%で、Cr:27〜31、Fe:6〜11、C:0.01〜0.04、Mn:1.5〜4、Nb:1〜3、Ta:3以下、(Nb+Ta):1〜3、Ti:0.10〜0.50、Zr:0.0003〜0.02、B:0.0005〜0.004、Si:0.50未満、Al:最大0.20、Cu:0.20未満、W:1.0未満、Mo:1.0未満、Co:0.12未満、S:0.015未満、P:0.015未満、Mg:0.004〜0.01、残部Niならびに不可避混入物および不純物からなる希釈されていないNi−Cr−Fe合金溶着物も包含する。この溶着物は、好ましくは最小50のNiを含む。この溶着物は、B:0.0007〜0.003およびZr:0.001〜0.01およびNi:最小50を含むのも好ましい。さらに好ましくは、この溶着物は、B:0.0005〜0.002、Zr:0.001〜0.01およびNi最小50を含む。 The present invention, in mass%, Cr: 27~31, Fe: 6~11, C: 0.01~0.04, Mn: 1.5~4, Nb: 1~3, Ta: 3 or less, (Nb + Ta): 1 to 3, Ti: 0.10 to 0.50, Zr: 0.0003 to 0.02, B: 0.0005 to 0.004, Si: less than 0.50, Al: max. 20, Cu: less than 0.20, W: less than 1.0, Mo: less than 1.0, Co: less than 0.12, S: less than 0.015, P: less than 0.015, Mg: 0.004 ~ 0.01, the remaining Ni, and undiluted Ni—Cr—Fe alloy welds consisting of inevitable contaminants and impurities are also included. This weld preferably contains a minimum of 50 Ni. It is also preferred that this weld contains B: 0.0007-0.003 and Zr: 0.001-0.01 and Ni: minimum 50. More preferably, the weld contains B: 0.0005-0.002, Zr: 0.001-0.01 and Ni minimum 50.

本発明の溶着物を製造するための、現在好ましい方法は、Ni−Cr−Feのフラックス被覆された電極またはフラックスが結合しているNi−Cr−Feワイヤを用意し、短アーク技術を用いた溶接工程において、電極またはワイヤの先端と溶着物の距離を0.125インチ(3.175mm)未満にして、該電極またはワイヤを融解させ、量%で、Cr:27〜31、Fe:6〜11、C:0.01〜0.04、Mn:1.5〜4、Nb:1〜3、Ta:3以下、(Nb+Ta):1〜3、Ti:0.01〜0.50、Zr:0.0003〜0.02、B:0.0005〜0.004、Si:0.50未満、Al:最大0.50、Cu:0.50未満、W:1.0未満、Mo:1.0未満、Co:0.12未満、S:0.015未満、P:0.015未満、Mg:0.004〜0.01、残部Niならびに不可避混入物および不純物からなる溶着物を生成する工程を含んでなる。電極またはワイヤの先端と溶着物との間の距離は、好ましくは0.02〜0.04インチ(0.508〜1.016mm)である。本発明の溶接工程は、好ましくは被覆アーク溶接法を使用して行う。この方法では、フラックスが好ましくはNi、Mg、およびSiの一種以上の混合物を含んでなり、Nb:Siの重量比が5:1〜7:1の溶着物を製造する。 The presently preferred method for producing the deposits of the present invention is to prepare Ni—Cr—Fe flux-coated electrodes or Ni—Cr—Fe wire bonded flux and use short arc technology. in the welding process, the distance of the electrode or wire tip and weld deposit was less than 0.125 inches (3.175 mm), to melt the said electrode or wire, in mass%, Cr: 27~31, Fe: 6 To 11, C: 0.01 to 0.04, Mn: 1.5 to 4, Nb: 1 to 3, Ta: 3 or less, (Nb + Ta): 1 to 3, Ti: 0.01 to 0.50, Zr: 0.0003 to 0.02, B: 0.0005 to 0.004, Si: less than 0.50, Al: maximum 0.50, Cu: less than 0.50, W: less than 1.0, Mo: Less than 1.0, Co: less than 0.12, S: less than 0.015, : Less than 0.015, Mg: 0.004 to 0.01, comprising the step of generating the balance Ni and weld deposit consisting unavoidable contaminants and impurities. The distance between the electrode or wire tip and the weld is preferably 0.02 to 0.04 inches (0.508 to 1.016 mm). The welding process of the present invention is preferably performed using a coated arc welding process. In this method, the flux preferably comprises a mixture of one or more of Ni, Mg, and Si, producing a weld with a Nb: Si weight ratio of 5: 1 to 7: 1.

発明の具体的説明Detailed description of the invention

本発明のNiCrFe溶接合金は、十分なニッケルとクロムを含むと共に二次化学的構成成分ならびに痕跡量の元素を著しく厳密に調整し、好適な耐食性に加えて優れた応力腐食割れ耐性を与える。さらに、この合金は、凝固割れ、ルート割れ、および再熱条件下での低温割れに対しても耐性を有する必要がある。   The NiCrFe weld alloy of the present invention contains sufficient nickel and chromium and adjusts the secondary chemical constituents and trace amounts of elements remarkably strictly to provide excellent stress corrosion cracking resistance in addition to suitable corrosion resistance. In addition, the alloy must be resistant to solidification cracking, root cracking, and cold cracking under reheat conditions.

凝固割れに対する耐性を与えるために、この合金は、その合金化元素に対する十分な溶解性および狭い液相線から固相線の温度範囲を有するべきである。また、この合金は、硫黄、リン、および他の低融解元素のレベルを低くすべきであり、合金中に低融点相を形成する元素のレベルも最少に抑えるべきである。   In order to provide resistance to solidification cracking, the alloy should have sufficient solubility for the alloying elements and a narrow liquidus to solidus temperature range. The alloy should also have low levels of sulfur, phosphorus, and other low melting elements, and should minimize the level of elements that form low melting phases in the alloy.

低温割れに対する耐性は、粒界における高温強度および延性を増加することにより、制御される。これは、ニオブ、ジルコニウムおよびホウ素を、本発明の限界に従って、慎重に組み合わせることにより、達成される。ニオブは、固体状態における粒界強度に貢献しながら、二次相の形成を避けるために、制限する必要がある。ニオブは、応力腐食割れに対する耐性にも必要である。ホウ素は、粒界強度に貢献し、高温延性を改良するが、本発明より高いレベルでは、高温割れ耐性に有害である。ジルコニウムは、粒界における固体状態強度および延性を改良し、粒界における酸化耐性を改良する。本発明より高いレベルでは、ジルコニウムは高温割れを助長する。本発明より低いホウ素およびジルコニウムレベルでは、低温割れに対する耐性が比較的低い。ホウ素を単独で加えると、低温割れ耐性の改良は非常に僅かであると思われるが、ホウ素をジルコニウムと本発明のレベルで併用すると、低温割れは実質的に排除される。   Resistance to cold cracking is controlled by increasing the high temperature strength and ductility at the grain boundaries. This is achieved by carefully combining niobium, zirconium and boron in accordance with the limitations of the present invention. Niobium needs to be limited to avoid the formation of secondary phases while contributing to the grain boundary strength in the solid state. Niobium is also required for resistance to stress corrosion cracking. Boron contributes to grain boundary strength and improves hot ductility, but at higher levels than the present invention is detrimental to hot crack resistance. Zirconium improves solid state strength and ductility at grain boundaries and improves oxidation resistance at grain boundaries. At higher levels than the present invention, zirconium promotes hot cracking. At lower boron and zirconium levels than the present invention, the resistance to cold cracking is relatively low. Adding boron alone appears to have very little improvement in cold crack resistance, but when boron is used in combination with zirconium at the level of the present invention, cold cracking is substantially eliminated.

ニッケル合金溶接の技術における当業者には明らかなように、原子力用途向けの溶接部の品質には、高温割れ、低温割れ、曲げ割れ、ルート割れおよびクレータ割れに対する耐性が要求される。NiCrFe−7区分の既存の製品は、現在、これらの種類に属する割れの大部分に対して様々なレベルの耐性を有しているが、依然としてDDCを受け易い。本発明は、DDCに対する改善策を与え、クレータ割れに対する耐性を改良し、被覆アーク溶接法(SMAW)で溶接する能力を与えるように設計されている。延性低下割れは、完全オーステナイト系NiCrFe合金および溶接部の固相線より十分に低い温度における固体状態で起こる粒界割れを特徴とする現象である。この亀裂は、高温クリープ現象に関連すると考えられ、そのため、少量のホウ素およびジルコニウムを添加して粒界強度および延性を改良する。上記の種類の割れを評価するために行った試験は、
(1)高温割れおよびクレータ割れを評価するための肉盛溶着物の浸透探傷試験、
(2)肉盛溶接部中に一連のドリル穴を開けてチューブ対チューブのシート溶接を模擬し、修繕部分の断面を切り、エッチングし、60xで検査してDDCおよびさらなる高温割れの兆候を評価、
(3)ルート割れを評価するために、Inconel Alloy 690の固体プレートを、肉盛溶接部の片側に沿って直立縁部溶接部(standing edge weld)で溶接し、チューブ対チューブのシート溶接を模擬すること、
(4)肉盛溶接部から標準3/8インチ厚の横方向側方曲げ部を切り取り、2Tマンドレルの周りで180°曲げる。曲げ部の、約20%伸長された外側表面を曲げ割れまたは「裂け目」を検査し、裂け目の数および大きさを曲げ毎に記録することである。
As will be apparent to those skilled in the art of nickel alloy welding, the quality of welds for nuclear applications requires resistance to hot cracks, cold cracks, bend cracks, root cracks and crater cracks. Existing products in the NiCrFe-7 segment currently have varying levels of resistance to the majority of cracks belonging to these types, but are still susceptible to DDC. The present invention is designed to provide an improvement to DDC, improve resistance to crater cracking, and provide the ability to weld with a coated arc welding process (SMAW). Ductile drop cracking is a phenomenon characterized by grain boundary cracking that occurs in a solid state at a temperature sufficiently lower than the solidus line of a fully austenitic NiCrFe alloy and weld. This crack is believed to be related to the high temperature creep phenomenon, so a small amount of boron and zirconium is added to improve grain boundary strength and ductility. Tests conducted to evaluate the above types of cracks
(1) Penetration flaw detection test for overlay welds to evaluate hot cracking and crater cracking,
(2) Drill a series of drill holes in the weld overlay to simulate tube-to-tube sheet welding, cut the repaired section, etch, and inspect at 60x to evaluate signs of DDC and further hot cracks ,
(3) In order to evaluate root cracking, a solid plate of Inconel Alloy 690 is welded with a standing edge weld along one side of the overlay weld to simulate tube-to-tube sheet welding To do,
(4) Cut a standard 3/8 inch thick lateral side bend from the overlay weld and bend it 180 ° around the 2T mandrel. The outer surface of the bend, stretched about 20%, is inspected for bend cracks or “cracks” and the number and size of the fissures are recorded for each bend.

一連の溶着物化学組成を下記の表1に示す。それぞれの溶着物化学組成は、Cr:約30%、Ni:58%、Fe:8%、様々な量のNb、Mnおよび他の少量元素を含んでなる。上記試験の略号を表中の各組成のすぐ下に記載する。この表および結果は、ある程度自明であるが、ホウ素およびジルコニウム対DDCまたは低温割れの試験は、どちらかが存在しない場合、または両者が存在しない場合、低温割れは決まって起こるのに対し、ホウ素含有量が約0.0005%〜0.004%およびジルコニウム約0.0003%〜0.02%では、低温割れが回避されることを示している。また、十分なレベルのNbおよびMnを含み、多の少量元素を適切に調整すると、高温割れが回避されることも分かる。
NbおよびMnレベルを改良しながらホウ素およびジルコニウムを添加することのもう一つの利点は、Alレベルを下げることができ、それによって、クレータ割れ耐性が改良されることである。表1のロット番号83F8ショートアークおよび76F9HTGの試験は、溶着物の、最高品質溶着物を与えるための最適化学組成を示す。本発明のSMAW方法により堆積させた希釈されていない化学組成は、好ましくはNi:最小48%、Cr:27%〜31%、Fe:6%〜11%、Nb:1%〜3%、Mn:1.5%〜4%、C:0.01〜0.04%、Mg:0.005〜0.01、S:0.015%未満、P:0.015%未満、B:0.005〜0.004%、Zr:0.0003%〜0.02%、Ti:0.01%〜0.50%、およびAl:最大0.50%である。NbおよびTaの両方が、特に一次(溶融物から)炭化物を形成し、これが、凝固および冷却の際に、粒界中により大きな曲がりくねりを形成するように、粒子径およびピン粒界を制御する。曲がりくねった粒界は、溶接の際にDDC(延性低下割れ)の傾向を小さくするのに有利である。ここに記載するAWS規格は、Nb+Taと記載する欄を含む。歴史的に、これらの元素は、地殻中で天然に一緒に産するので、一緒に挙げられており、急激なエレクトロニクス用途の波が来る前には、TaをNbからすべて抽出するための努力はあまりなされていなかった。これらの元素は、一緒に産し、類似の挙動を示したので、一緒に挙げられているのである。両方とも非常に高い融解温度を有するが、ニオブの密度はタンタルの約半分である。両方とも体心立方結晶構造を有し、両方とも同等の格子パラメータ(原子の最接近)を有する。従って、これらの観察の実用的な結論として、タンタルのコストが極めて高いために、タンタルをニオブと一緒に添加することはあまりない。ニオブの密度はタンタルの約半分である。そのため、Taは、炭化物形成剤としての効果がニオブの約半分である。Taがより激しい炭化物形成剤になることはできるが、同じ原子数を与えるには、ニオブの2倍の量%を必要とすることになろう。
A series of weld deposit chemical compositions are shown in Table 1 below. Each weld deposit chemical composition comprises Cr: about 30%, Ni: 58%, Fe: 8%, various amounts of Nb, Mn and other minor elements. Abbreviations for the above tests are listed immediately below each composition in the table. Although this table and results are somewhat self-explanatory, boron and zirconium vs. DDC or cold cracking tests show that if either or both are absent, cold cracking occurs routinely, whereas boron content An amount of about 0.0005% to 0.004% and about 0.0003% to 0.02% zirconium indicates that cold cracking is avoided. It can also be seen that hot cracking can be avoided if a sufficient amount of Nb and Mn is included and many minor elements are appropriately adjusted.
Another advantage of adding boron and zirconium while improving Nb and Mn levels is that Al levels can be lowered, thereby improving crater crack resistance. The lot number 83F8 short arc and 76F9 HTG tests in Table 1 show the optimum chemical composition of the weld to give the highest quality weld. The undiluted chemical composition deposited by the SMAW method of the present invention is preferably Ni: minimum 48%, Cr: 27% -31%, Fe: 6% -11%, Nb: 1% -3%, Mn : 1.5% to 4%, C: 0.01 to 0.04%, Mg: 0.005 to 0.01, S: less than 0.015%, P: less than 0.015%, B: 0.0. 005 to 0.004%, Zr: 0.0003% to 0.02%, Ti: 0.01% to 0.50%, and Al: 0.50% at maximum. Both Nb and Ta control the particle size and pin grain boundaries, especially when they form primary (from melt) carbides, which form larger bends and turns in the grain boundaries during solidification and cooling. Winding grain boundaries are advantageous in reducing the tendency of DDC (ductility cracking) during welding. The AWS standard described here includes a column described as Nb + Ta. Historically, these elements have been listed together as they naturally occur together in the crust, and efforts to extract all of Ta from Nb before the rapid wave of electronics applications came Not much was done. These elements are listed together because they were produced together and showed similar behavior. Both have very high melting temperatures, but the density of niobium is about half that of tantalum. Both have a body-centered cubic crystal structure and both have equivalent lattice parameters (atomic closest). Therefore, a practical conclusion of these observations is that tantalum is rarely added with niobium because of the very high cost of tantalum. The density of niobium is about half that of tantalum. Therefore, Ta is about half as effective as niobium as a carbide forming agent. Ta can be made more intense carbide formers, but give the same atomic number, would require a mass% of 2 times the niobium.

本発明の、番号「152M」の溶着物材料で達成される典型的な機械的特性

152M−機械的特性
硬度 TS 0.2%YS 伸長% Red.Area%
90R 96ksi 60ksi 35% 45%
Typical mechanical properties achieved with the weld material number “152M” of the present invention

152M-Mechanical properties
Hardness TS 0.2% YS Elongation% Red.Area%
90R s 96ksi 60ksi 35% 45%

表1

Figure 0005253817
Table 1
Figure 0005253817

表1−続き

Figure 0005253817
Table 1-continued
Figure 0005253817

まとめると、本発明を使用することにより、DDCの害を受けることなく、ニッケル+Cr30%の応力腐食割れ耐性の有益性を得ることができる。この合金組成物は、あらゆる種類の多孔度および亀裂を最少に抑えるように釣り合いがとれており、フラックス被覆組成物は、直径3/32および1/8インチ電極の、作業員に最も好まれる優れた能力を与えるように設計されている。   In summary, by using the present invention, it is possible to obtain the benefit of stress corrosion cracking resistance of nickel + Cr 30% without being harmed by DDC. This alloy composition is balanced to minimize all kinds of porosity and cracking, and the flux coating composition is the most preferred of workers with 3/32 and 1/8 inch diameter electrodes. Designed to give you the ability.

この電極の開発は、電極被覆にフラックス薬およびケイ酸塩結合剤を使用しているために、本発明者らの以前の米国特許第6,242,113号(INCONEL WE 52M)のそれとは異なっている。ケイ酸ナトリウムおよび場合によりカリウム結合剤を使用することにより、典型的には、亀裂傾向を増加させる溶着物中のケイ素量が増加する。ケイ素に対処する手段は、ニオブの添加である。ニッケル−クロム型合金には、約5:1〜7:1比のNb:Siを使用し、良好な割れ耐性を得るのが好ましい。表1に記載するデータの下から2行目は、各種合金候補の計算されたNb:Si比を示す。次の下から6行は、様々な品質試験結果を示し、SB=側方曲げであり、SB1およびSB2は、実際の曲げ試料の後に裂け目の数および場合により裂け目の個別長さを示す。SBTOTALは、インチで表し、両方の側方曲げにおける裂け目長さの合計をインチで示す。TS=チューブシートである。これらは、下記のように行った模擬チューブシート溶接部である。先ず、供試材料の肉盛溶接金属を堆積させ、模擬チューブシート穴(ただし、チューブは含まない)をドリル加工し、次いで穴の最上部の周りにGTAW溶接を行い、チューブとチューブシートの溶接部を模擬する。次に、このプレートを穴の中心線を通して断面に切り、模擬溶接部の断面を露出する。試料を研磨し、エッチングし、60xで検査して亀裂を探す。TS割れは、DDC/低温割れ(延性低下割れ)と解釈する。全ての亀裂がDDCの古典的な指針を示すわけではないが、それらのほとんどがそれを示し、DDCを引き起こす最も低いひずみにおけるDDCであると考えられる。RC1およびRC2は、チューブとチューブシートの溶接部におけるルート割れの傾向を示す尺度である。   The development of this electrode differs from that of our previous US Pat. No. 6,242,113 (INCONEL WE 52M) due to the use of fluxing agents and silicate binders in the electrode coating. ing. The use of sodium silicate and optionally a potassium binder typically increases the amount of silicon in the deposit that increases the tendency to crack. The means to deal with silicon is the addition of niobium. The nickel-chromium type alloy preferably uses Nb: Si in a ratio of about 5: 1 to 7: 1 to obtain good crack resistance. The second line from the bottom of the data listed in Table 1 shows the calculated Nb: Si ratio for various alloy candidates. The next six lines from the bottom show various quality test results, SB = side bending, and SB1 and SB2 indicate the number of tears and possibly the individual lengths of the tears after the actual bending sample. SBTOTAL is expressed in inches and indicates the total tear length in inches for both lateral bends. TS = tube sheet. These are simulated tube sheet welds performed as follows. First, build-up weld metal of the test material is deposited, a simulated tube sheet hole (but not including a tube) is drilled, then GTAW welding is performed around the top of the hole, and the tube and tube sheet are welded. Simulate the club. Next, this plate is cut into a cross section through the center line of the hole to expose the cross section of the simulated weld. The sample is polished, etched and inspected at 60x for cracks. TS cracks are interpreted as DDC / cold cracks (ductility reduced cracks). Not all cracks show the classic guidance of DDC, but most of them show it and are considered to be DDC at the lowest strain that causes DDC. RC1 and RC2 are scales indicating the tendency of root cracking in the welded portion between the tube and the tube sheet.

表1の次の16行は、様々な被覆された電極溶着物例の化学分析値である。この研究は、被覆された電極(SMAW)溶接で高いケイ素含有量を通常経験するので、上記のNb:Si比を達成する目的で始めた。この研究の初期では、溶着物中にBおよびZrを導入する様々な方法を試験したが、フラックス被覆添加を使用することにより、効果を与えるのに必要な少量を制御することは事実上不可能であることが確認された。従って、コアワイヤ中にB(0.004%)およびZr(0.006%)を含む裸コアワイヤ(表1でY9570で示す)を使用して本研究を開始した。基本的な研究は、フラックス被覆された電極を製造し、次いで亀裂の傾向を評価することにより始めた。1005、1006、1011、および1018で示す例は、溶着物中にB、Zr、またはMgを含まない被覆された電極の初期の例である。経験から、溶接工程中の単純な酸化により、コアワイヤ中に添加したBおよびZrが溶着物から除去されると考えられる。例1018では、フラックス被覆にニッケルマグネシウムを添加し、例1022、1023,および1024では、ニッケルジルコニウム添加を評価した。例1023で、マグネシウムが存在しないにも関わらず、TS割れが無かったのは偶然である。マグネシウムおよびジルコニウムは、両方とも非常に強力な脱酸素剤であることが公知であるので、例1018〜1024では、ニッケルマグネシウムおよびニッケルジルコニウムがフラックス被覆中に存在していた。これらはニッケルの合金として添加し、展開する際の脱酸素ポテンシャルを保持する。例1018にNiMgを添加したにも関わらず、溶着物の分析ではMgが見られなかった。これは、「短アーク」長技術を使用しなかったためであろう(これは後で分かった)。例1022、1023、および1024では、Zr溶着物が約.009〜.01%までの僅かな増加が認められたが、TS(DDC)区分の割れは続いた。ニッケルマグネシウムフラックス含有量は、例1036では5%に、例1040では7.5%に増加し、溶着物中では0.003%が保持されていた。これらの例で、B=0.0015%およびZr=0.01%の例1023およびB=0.0014%およびZr=0.013%の例1038だけがTSに対して良好な結果(それぞれ0および3)を与えることが分かった。これらの
結果に基づき、何種類かの直径を有する「パイロット」製品を製造することを決定した。最初に、フラックス中にNiMg7.5%を使用して76F9を製造したが、溶着物中にMg=0.006%、Zr=0.003%およびB=0.001%を保持しながら、TS割れは無く、これは好ましい結果であった。次いで、追加のロット番号83F5、83F6、83F7、および83F8を、全てNiMg7.5%を含む同じ湿式混合物で製造した。フラックス被覆された電極を押し出し、焼き付けた後、試験を行い、非常に驚くべきことに、83F7では9個のTS割れが、83F8では23個のTS割れが見られた。化学分析の結果、溶着物中にB、Zr、またはMgが保持されていなかったことはさらに予期せぬことであった。試験結果を再評価し、溶接の際に短アーク長を維持することの重要性が分かった。この短アーク技術により、製品中の脱酸素剤が保護され、溶着物中にMg、B、およびZrが保持されることが結論付けられた。短アークの83F8と長アークの83F8を観察すると、TS割れは、超アークによる23個に対して短アークでは1個である。同様に、長と短アークによる83F7を比較すると、TS割れは、長アークでは9個であるのに対し、短アークでは2個である。また、溶着物中に保持されるB、ZrおよびMgは、所望の範囲内であることにも注意すべきである。
The next 16 rows in Table 1 are chemical analysis values for various coated electrode deposit examples. This study was started with the aim of achieving the Nb: Si ratio described above, as high silicon content is typically experienced in coated electrode (SMAW) welding. Early in this study, various methods of introducing B and Zr into the weld were tested, but it was virtually impossible to control the small amount needed to give effect by using flux coating additions. It was confirmed that. Therefore, the study was initiated using a bare core wire (indicated as Y9570 in Table 1) containing B (0.004%) and Zr (0.006%) in the core wire. Basic research began by producing flux-coated electrodes and then evaluating the tendency to crack. The examples shown at 1005, 1006, 1011, and 1018 are early examples of coated electrodes that do not contain B, Zr, or Mg in the deposit. From experience, it is believed that B and Zr added to the core wire are removed from the deposit by simple oxidation during the welding process. In Example 1018, nickel magnesium was added to the flux coating, and in Examples 1022, 1023, and 1024, nickel zirconium addition was evaluated. In Example 1023, it is a coincidence that there was no TS cracking despite the absence of magnesium. Since magnesium and zirconium are both known to be very powerful oxygen scavengers, in Examples 1018-1024, nickel magnesium and nickel zirconium were present in the flux coating. These are added as nickel alloys to maintain the deoxygenation potential during development. Although NiMg was added to Example 1018, no Mg was found in the analysis of the deposit. This may be because the “short arc” long technique was not used (this was found later). In Examples 1022, 1023, and 1024, the Zr weld was about. 009-. A slight increase to 01% was observed, but cracking of the TS (DDC) section continued. The nickel magnesium flux content increased to 5% in Example 1036 and 7.5% in Example 1040, and was maintained at 0.003% in the weld. In these examples, only Example 1023 with B = 0.015% and Zr = 0.01% and Example 1038 with B = 0.014% and Zr = 0.013% are good results for TS (respectively 0 And 3). Based on these results, it was decided to produce “pilot” products with several diameters. Initially, 76F9 was produced using NiMg 7.5% in the flux, while maintaining TS = 0.006%, Zr = 0.003% and B = 0.001% in the weld. There were no cracks, which was a favorable result. Additional lot numbers 83F5, 83F6, 83F7, and 83F8 were then made with the same wet mixture, all containing 7.5% NiMg. After extruding and baking the flux-coated electrode, the test was conducted and very surprisingly 9 TS cracks were observed with 83F7 and 23 TS cracks were observed with 83F8. As a result of chemical analysis, it was further unexpected that B, Zr, or Mg was not retained in the welded material. The test results were reevaluated and the importance of maintaining a short arc length during welding was found. It was concluded that this short arc technique protected the oxygen scavenger in the product and retained Mg, B, and Zr in the deposit. When observing the short arc 83F8 and the long arc 83F8, the TS crack is one in the short arc compared to 23 in the super arc. Similarly, when comparing 83F7 with long and short arcs, TS cracks are 9 for long arcs and 2 for short arcs. It should also be noted that B, Zr and Mg retained in the weld are within the desired range.

「短アーク」は、電極先端と溶着物との間の距離が0.125インチ(3.175mm)未満、好ましくは約0.020〜0.040インチ(0.508〜1.016mm)であると定義される。「長アーク」は、0.125インチ(3.175mm)を超える。   "Short arc" is a distance between the electrode tip and the deposit of less than 0.125 inches (3.175 mm), preferably about 0.020 to 0.040 inches (0.508 to 1.016 mm). Is defined. The “long arc” is greater than 0.125 inches (3.175 mm).

従って、溶着物中で約5:1〜7:1の好ましいNb:Si比を制御し、短アーク溶接技術を使用することにより、溶着物中の所望のB、Zr、およびMg分析値が達成される。   Thus, by controlling a preferred Nb: Si ratio of about 5: 1 to 7: 1 in the weld and using short arc welding techniques, the desired B, Zr, and Mg analysis values in the weld are achieved. Is done.

本発明の具体的な実施態様を詳細に説明したが、無論、当業者には明らかなように、これらの詳細に対する様々な修正および変形を、全体的な開示の範囲内で展開することができる。ここに説明した現在好ましい実施態様は、単なる説明であり、請求項およびその等価物に規定する本発明の範囲を制限するものではない。   Although specific embodiments of the present invention have been described in detail, it will be apparent to those skilled in the art that various modifications and variations to these details can be made within the scope of the overall disclosure. . The presently preferred embodiments described herein are merely illustrative and are not intended to limit the scope of the invention as defined in the claims and their equivalents.

Claims (11)

質量%で、Cr:27〜31、Fe:6〜11、C:0.01〜0.04、Mn:1.5〜4、Nb:1〜3、Ta:3以下、(Nb+Ta):1〜3、Ti:0.01〜0.50、Zr:0.0003〜0.02、B:0.0005〜0.004、Si:0.50未満、Al:最大0.50、Cu:0.50未満、W:1.0未満、Mo:1.0未満、Co:0.12未満、S:0.015未満、P:0.015未満、Mg:最大0.01、残部Niならびに不可避不純物からなる、Ni−Cr−Fe合金。 In mass%, Cr: 27 to 31, Fe: 6 to 11, C: 0.01 to 0.04, Mn: 1.5 to 4, Nb: 1 to 3, Ta: 3 or less, (Nb + Ta): 1 -3, Ti: 0.01-0.50, Zr: 0.0003-0.02, B: 0.0005-0.004, Si: less than 0.50, Al: maximum 0.50, Cu: 0 Less than .50, W: less than 1.0, Mo: less than 1.0, Co: less than 0.12, S: less than 0.015, P: less than 0.015, Mg: maximum 0.01, balance Ni and impossibility 避不 of pure product, Ni-Cr-Fe alloy. 最小48%のNiが存在する、請求項1に記載の合金。   The alloy of claim 1 wherein there is a minimum of 48% Ni. Cr:29〜31、Fe:6.5〜9、B:0.0005〜0.004、Mn:2.5〜3.5、Zr:0.0005〜0.01、およびNi:最小50を含む、請求項1に記載の合金。   Cr: 29-31, Fe: 6.5-9, B: 0.0005-0.004, Mn: 2.5-3.5, Zr: 0.0005-0.01, and Ni: minimum 50 The alloy of claim 1 comprising. 質量%で、Cr:27〜31、Fe:6〜11、C:0.01〜0.04、Mn:1.5〜4、Nb:1〜3、Ta:3以下、(Nb+Ta):1〜3、Ti:0.01〜0.50、Zr:0.0003〜0.02、B:0.0005〜0.004、Si:0.50未満、Al:最大0.50、Cu:0.50未満、W:1.0未満、Mo:1.0未満、Co:0.12未満、S:0.015未満、P:0.015未満、Mg:0.004〜0.01、残部Niならびに不可避不純物からなる、希釈されていないNi−Cr−Fe合金溶着物。 In mass%, Cr: 27 to 31, Fe: 6 to 11, C: 0.01 to 0.04, Mn: 1.5 to 4, Nb: 1 to 3, Ta: 3 or less, (Nb + Ta): 1 -3, Ti: 0.01-0.50, Zr: 0.0003-0.02, B: 0.0005-0.004, Si: less than 0.50, Al: maximum 0.50, Cu: 0 Less than 50, W: less than 1.0, Mo: less than 1.0, Co: less than 0.12, S: less than 0.015, P: less than 0.015, Mg: 0.004 to 0.01, balance of Ni and no 避不 pure product, Ni-Cr-Fe alloy weld deposit undiluted. 最小50のNiが存在する、請求項4に記載の溶着物。   5. A weld according to claim 4 wherein there is a minimum of 50 Ni. B:0.0007〜0.003およびZr:0.001〜0.01を含む、請求項5に記載の溶着物。   The welding thing of Claim 5 containing B: 0.0007-0.003 and Zr: 0.001-0.01. B:0.0005〜0.002、Zr:0.001〜0.01およびNi:最小50を含む、請求項に記載の溶着物。 The welded material according to claim 4 , comprising B: 0.0005 to 0.002, Zr: 0.001 to 0.01, and Ni: 50 at the minimum. Ni−Cr−Feのフラックス被覆された電極またはフラックスが結合しているNi−Cr−Feワイヤを用意し、短アーク技術を用いた溶接工程において、電極またはワイヤの先端と溶着物の距離を0.125インチ未満にして、前記電極またはワイヤを融解させ、質量%で、Cr:27〜31、Fe:6〜11、C:0.01〜0.04、Mn:1.5〜4、Nb:1〜3、Ta:3以下、(Nb+Ta):1〜3、Ti:0.01〜0.50、Zr:0.0003〜0.02、B:0.0005〜0.004、Si:0.50未満、Al:最大0.50、Cu:0.50未満、W:1.0未満、Mo:1.0未満、Co:0.12未満、S:0.015未満、P:0.015未満、Mg:0.004〜0.01、残部Niならびに不可避不純物からなる溶着物を生成する工程を含んでなる、溶着物の製造方法。 A Ni—Cr—Fe flux-coated electrode or a Ni—Cr—Fe wire bonded with a flux is prepared, and the distance between the tip of the electrode or wire and the weld is 0 in the welding process using the short arc technique. Less than 125 inches, the electrode or wire is melted, and in mass%, Cr: 27 to 31, Fe: 6 to 11, C: 0.01 to 0.04, Mn: 1.5 to 4, Nb : 1-3, Ta: 3 or less, (Nb + Ta): 1-3, Ti: 0.01-0.50, Zr: 0.0003-0.02, B: 0.0005-0.004, Si: Less than 0.50, Al: max 0.50, Cu: less than 0.50, W: less than 1.0, Mo: less than 1.0, Co: less than 0.12, S: less than 0.015, P: 0 less than .015, Mg: 0.004~0.01, balance Ni and No Comprising the step of generating a weld deposit consisting not pure compounds, method for producing a weld deposit. 前記電極またはワイヤの先端と溶着物との間の距離が0.02〜0.04インチ(0.508〜1.016mm)である、請求項8に記載の方法。   9. The method of claim 8, wherein the distance between the electrode or wire tip and the weld is 0.02-0.04 inches (0.508-1.016 mm). 前記溶接工程が、被覆アーク溶接法を使用して行われる、請求項8に記載の方法。   The method of claim 8, wherein the welding step is performed using a coated arc welding process. 前記フラックスが、Ni、Mg、およびSiの混合物を含んでなり、Nb:Siの重量比が5:1〜7:1の溶着物を生成する、請求項8に記載の方法。   9. The method of claim 8, wherein the flux comprises a mixture of Ni, Mg, and Si, producing a weld with a Nb: Si weight ratio of 5: 1 to 7: 1.
JP2007553180A 2005-01-25 2006-01-25 Coated welding electrode with reduced ductility crack resistance and welds made therefrom Active JP5253817B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US64717905P 2005-01-25 2005-01-25
US60/647,179 2005-01-25
PCT/US2006/002522 WO2006081258A2 (en) 2005-01-25 2006-01-25 Coated welding electrode having resistance to ductility dip cracking, and weld deposit produced therefrom

Publications (2)

Publication Number Publication Date
JP2008528806A JP2008528806A (en) 2008-07-31
JP5253817B2 true JP5253817B2 (en) 2013-07-31

Family

ID=36741008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007553180A Active JP5253817B2 (en) 2005-01-25 2006-01-25 Coated welding electrode with reduced ductility crack resistance and welds made therefrom

Country Status (7)

Country Link
US (1) US8603389B2 (en)
EP (1) EP1841893B1 (en)
JP (1) JP5253817B2 (en)
KR (1) KR101252478B1 (en)
CN (2) CN101979210B (en)
ES (1) ES2386890T3 (en)
WO (1) WO2006081258A2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333580B2 (en) * 2004-04-29 2016-05-10 Lincoln Global, Inc. Gas-less process and system for girth welding in high strength applications
EP2059620B1 (en) * 2006-08-08 2013-01-16 Huntington Alloys Corporation Welding alloy and articles for use in welding, weldments and method for producing weldments
US10041153B2 (en) * 2008-04-10 2018-08-07 Huntington Alloys Corporation Ultra supercritical boiler header alloy and method of preparation
US20090321405A1 (en) * 2008-06-26 2009-12-31 Huntington Alloys Corporation Ni-Co-Cr High Strength and Corrosion Resistant Welding Product and Method of Preparation
US20110240715A1 (en) * 2010-03-31 2011-10-06 Ge-Hitachi Nuclear Energy Americas Llc Welding process and corrosion-resistant filler alloy and consumables therefor
JP5441870B2 (en) 2010-11-12 2014-03-12 株式会社神戸製鋼所 Ni-base alloy solid wire for welding
JP5389000B2 (en) 2010-12-02 2014-01-15 株式会社神戸製鋼所 Ni-base alloy weld metal, Ni-base alloy-coated arc welding rod
JP5270043B2 (en) * 2011-02-01 2013-08-21 三菱重工業株式会社 Ni-based high Cr alloy welding wire, coated arc welding rod, and coated arc weld metal
US20120223057A1 (en) * 2011-03-02 2012-09-06 Lucian Iordache Gas tungsten arc welding using flux coated electrodes
US9029733B2 (en) * 2012-04-13 2015-05-12 Hobart Brothers Company Systems and methods for tubular welding wire
JP5977998B2 (en) * 2012-05-15 2016-08-24 株式会社神戸製鋼所 Ni-base alloy weld metal, strip electrode, and welding method
CN103433642B (en) * 2013-08-12 2015-06-24 西安理工大学 Low-hydrogen basic electrode for 1Ni9 low-temperature steel welding and preparation method of low-hydrogen basic electrode
CN103567660B (en) * 2013-10-30 2016-06-22 西安理工大学 For welding the welding method of titanium-pipe line steel composite plate transition zone
CN104745886A (en) * 2013-12-27 2015-07-01 新奥科技发展有限公司 Nickel-based alloy and application thereof
US9815147B2 (en) * 2014-04-04 2017-11-14 Special Metals Corporation High strength Ni—Cr—Mo—W—Nb—Ti welding product and method of welding and weld deposit using the same
CN105312793B (en) * 2014-07-29 2017-05-03 中国科学院金属研究所 Fe-Ni based high-temperature alloy welding wire for high-temperature component for 700 DEG C ultra-supercritical thermal power and application of Fe-Ni based high-temperature alloy welding wire
US11130201B2 (en) 2014-09-05 2021-09-28 Ametek, Inc. Nickel-chromium alloy and method of making the same
US10550451B2 (en) * 2015-06-26 2020-02-04 Nippon Steel Corporation Ni-based alloy pipe or tube for nuclear power
CN107322184A (en) * 2017-08-19 2017-11-07 芜湖鼎恒材料技术有限公司 A kind of valve, valve built-up welding continuous casting casting rod and its welding procedure
CN107574400A (en) * 2017-08-26 2018-01-12 芜湖鼎瀚再制造技术有限公司 Glass mold is remanufactured with ni-based self-fluxing alloy powder and its welding procedure
CN110193681A (en) * 2018-02-27 2019-09-03 上海电气电站设备有限公司 A kind of steam turbine valve is interior to seal overlay cladding and its structure
KR102233335B1 (en) * 2019-02-26 2021-03-29 고려용접봉 주식회사 Smaw welded metal having excellent strength
CN110560961A (en) * 2019-10-12 2019-12-13 哈尔滨威尔焊接有限责任公司 Ta and Nb composite nickel-based welding wire for nuclear power equipment and welding method
CN112095036B (en) * 2020-11-19 2021-02-09 中国航发上海商用航空发动机制造有限责任公司 Molded article having low anisotropy in stretching, molding method, and molded powder thereof
CN113319467B (en) * 2021-06-16 2024-02-06 中国机械总院集团哈尔滨焊接研究所有限公司 Nickel-based alloy welding strip for nuclear power
JP2024008291A (en) * 2022-07-07 2024-01-19 日立Geニュークリア・エナジー株式会社 Nickel-based alloy

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2720473A (en) * 1953-06-09 1955-10-11 Foote Mineral Co Potassium-supplying welding flux ingredient
US3565611A (en) * 1968-04-12 1971-02-23 Int Nickel Co Alloys resistant to corrosion in caustic alkalies
US4010309A (en) * 1974-06-10 1977-03-01 The International Nickel Company, Inc. Welding electrode
US4400209A (en) * 1981-06-10 1983-08-23 Sumitomo Metal Industries, Ltd. Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS57207149A (en) * 1981-06-17 1982-12-18 Sumitomo Metal Ind Ltd Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance
JPH0689426B2 (en) * 1985-07-06 1994-11-09 バブコツク日立株式会社 Nickel base alloy
US4765956A (en) * 1986-08-18 1988-08-23 Inco Alloys International, Inc. Nickel-chromium alloy of improved fatigue strength
JPH01132731A (en) * 1988-05-20 1989-05-25 Nippon Yakin Kogyo Co Ltd Ni-base alloy excellent in mechanical strength as well as in intergranular corrosion resistance and stress corrosion cracking resistance in high heat-affected zone in weld zone
JPH07216511A (en) * 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in strength at high temperature
JPH07331390A (en) * 1994-06-08 1995-12-19 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy
US5897801A (en) * 1997-01-22 1999-04-27 General Electric Company Welding of nickel-base superalloys having a nil-ductility range
JPH10277777A (en) 1997-04-10 1998-10-20 Nippon Steel Weld Prod & Eng Co Ltd Ni base coated electrode
JPH11347790A (en) * 1998-06-08 1999-12-21 Mitsubishi Heavy Ind Ltd Coated electrode for ni group high cr alloy
US6242113B1 (en) * 1999-06-10 2001-06-05 Inco Alloys International, Inc. Welding alloy and articles for use in welding, weldments and methods for producing weldments
JP2001107196A (en) 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material
CN1141199C (en) * 2001-04-02 2004-03-10 陈�峰 Tungsten polar helium arc welding method for butt joint of profile aluminium alloy material
JP2003311473A (en) * 2002-04-18 2003-11-05 Mitsubishi Heavy Ind Ltd FILLER METAL FOR Ni BASED HIGH Cr ALLOY
FR2845098B1 (en) * 2002-09-26 2004-12-24 Framatome Anp NICKEL-BASED ALLOY FOR ELECTRIC WELDING OF NICKEL ALLOYS AND WELDED STEEL STEELS AND USE THEREOF
JP3976003B2 (en) * 2002-12-25 2007-09-12 住友金属工業株式会社 Nickel-based alloy and method for producing the same
CN1241711C (en) * 2003-01-22 2006-02-15 哈尔滨工业大学 Electrode for high manganese steel and its welding process

Also Published As

Publication number Publication date
EP1841893A2 (en) 2007-10-10
JP2008528806A (en) 2008-07-31
KR101252478B1 (en) 2013-04-10
EP1841893B1 (en) 2012-05-16
CN101979210B (en) 2012-11-21
US8603389B2 (en) 2013-12-10
WO2006081258A2 (en) 2006-08-03
ES2386890T3 (en) 2012-09-04
CN101979210A (en) 2011-02-23
KR20070099649A (en) 2007-10-09
CN101248197B (en) 2010-12-08
US20080121629A1 (en) 2008-05-29
CN101248197A (en) 2008-08-20
WO2006081258A3 (en) 2007-12-13
EP1841893A4 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5253817B2 (en) Coated welding electrode with reduced ductility crack resistance and welds made therefrom
US4415530A (en) Nickel-base welding alloy
CA2660107C (en) Welding alloy and articles for use in welding, weldments and method for producing weldments
US6242113B1 (en) Welding alloy and articles for use in welding, weldments and methods for producing weldments
KR101544260B1 (en) Ni-BASE ALLOY WELD METAL, STRIP ELECTRODE, AND WELDING METHOD
JP5212533B2 (en) Seamless austenitic heat-resistant alloy tube
JP5389000B2 (en) Ni-base alloy weld metal, Ni-base alloy-coated arc welding rod
EP1338663A1 (en) Ni-base heat-resistant alloy and weld joint using the same
US6447716B1 (en) Welding electrode made of a nickel-based alloy and the corresponding alloy
CN106541222A (en) The nuclear power nickel-based welding wire of high-temp and high-strength flawless defect and its preparation and use
CN106457481A (en) High strength ni-cr-mo-w-nb-ti welding product and method of welding and weld deposit using the same
JP4519520B2 (en) High Ni-base alloy welding wire
JP2010264510A (en) Welding alloy and articles for use in welding, welded product and method for producing welded product
JPH11285890A (en) High c/high cr-ni based welding rod
US20160144461A1 (en) Ni-Cr-Mo-Ta-Nb Welding Filler Metals, Welding Filler Metal Consumables, Weld Deposits, Methods of Making Weld Deposits, and Weldments Thereof
JPH01299791A (en) Wire for welding ni-base alloy having excellent high-temperature cracking resistance
JPS61115693A (en) Filler material for welding of nickel base heat resistant alloy
JPS609585B2 (en) Cr-Mo based low alloy heat resistant steel with excellent creep embrittlement resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Ref document number: 5253817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250