[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5251830B2 - Fiber sheet and vacuum insulation - Google Patents

Fiber sheet and vacuum insulation Download PDF

Info

Publication number
JP5251830B2
JP5251830B2 JP2009247642A JP2009247642A JP5251830B2 JP 5251830 B2 JP5251830 B2 JP 5251830B2 JP 2009247642 A JP2009247642 A JP 2009247642A JP 2009247642 A JP2009247642 A JP 2009247642A JP 5251830 B2 JP5251830 B2 JP 5251830B2
Authority
JP
Japan
Prior art keywords
fiber sheet
heat
fiber
fibers
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009247642A
Other languages
Japanese (ja)
Other versions
JP2011094669A (en
Inventor
哲也 八木
俊雄 篠木
秀一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009247642A priority Critical patent/JP5251830B2/en
Publication of JP2011094669A publication Critical patent/JP2011094669A/en
Application granted granted Critical
Publication of JP5251830B2 publication Critical patent/JP5251830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Description

この発明は、繊維シートを積層して構成された芯材を、ガスバリア性を有する外被材で覆い、内部を減圧して密閉した真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material in which a core material formed by laminating fiber sheets is covered with a jacket material having a gas barrier property and the inside is decompressed and sealed.

従来の真空断熱材においては、ポリエステル樹脂などの繊維からなる繊維シートを所定の厚みになるように積層して芯材を形成している。熱伝導率の低い素材を繊維シートとすることによって芯材の空隙率を高めるとともに、積層方向に対して直角方向に繊維を並行配置して繊維同士を点接触にすることによって伝熱抵抗を上げ、高い断熱性能を実現している。   In a conventional vacuum heat insulating material, a core material is formed by laminating fiber sheets made of fibers such as polyester resin so as to have a predetermined thickness. The fiber sheet is made of a material with low thermal conductivity to increase the porosity of the core material, and the heat transfer resistance is increased by placing the fibers in parallel in the direction perpendicular to the stacking direction and making the fibers contact each other. Realizes high thermal insulation performance.

このような繊維シートを積層した真空断熱材においては、繊維シート同士の接触面は、真空断熱材の厚さ方向(伝熱方向)に対して垂直方向になり、この接触面は厚さ方向に対する伝熱経路が少ないので、良好な断熱面となる。したがって、真空断熱材の厚みが一定であれば、積層する繊維シートの枚数が多いほうが断熱特性は向上する。   In the vacuum heat insulating material in which such fiber sheets are laminated, the contact surface between the fiber sheets is perpendicular to the thickness direction (heat transfer direction) of the vacuum heat insulating material, and this contact surface is in the thickness direction. Since there are few heat transfer paths, it becomes a favorable heat insulation surface. Therefore, if the thickness of the vacuum heat insulating material is constant, the heat insulating properties are improved as the number of fiber sheets to be laminated increases.

繊維シートは不織布と同じ製造方法などで作製されている。繊維シートにはある程度の引っ張り強度が必要であり、繊維シートの引っ張り強度が弱い場合、繊維シートをロール状に巻き取るときに繊維シートが切断されたり伸びたりして巻き取ることができない、あるいは巻き取る速度を速くできないという問題や、繊維シートの切断加工時に繊維シートが伸びて寸法精度が低下するという問題などが生じ、生産性を低下させる原因となる。   The fiber sheet is produced by the same manufacturing method as the nonwoven fabric. The fiber sheet needs a certain degree of tensile strength, and when the fiber sheet has a low tensile strength, when the fiber sheet is wound into a roll, the fiber sheet is cut or stretched, or cannot be wound. The problem that the taking speed cannot be increased and the problem that the fiber sheet is stretched and the dimensional accuracy is lowered during the cutting process of the fiber sheet are caused, and this causes a decrease in productivity.

そこで、繊維シートに引っ張り強度を持たせるために、ニードルパンチ方式によって、フックの付いた多数の針をシートの平面に対して垂直に突き刺したり引き上げたりすることを繰り返し、繊維シート中の繊維同士をお互いに絡ませている。これにより、繊維シートに引っ張り強度を与えて生産時における取扱い性を改善している(例えば、特許文献1参照)。   Therefore, in order to give the fiber sheet tensile strength, the needle punching method repeatedly stabs and pulls up many needles with hooks perpendicularly to the plane of the sheet, and the fibers in the fiber sheet are They are entangled with each other. Thereby, the tensile strength is given to the fiber sheet to improve the handleability during production (for example, see Patent Document 1).

特開2008−57793号公報(4頁)JP 2008-57793 A (page 4)

しかしながら、ニードルパンチ方式によって繊維シートに引っ張り強度を与えていた従来方法においては、芯材を構成する繊維シートの繊維の配向に対して垂直に繊維を絡ませるため、繊維径の細い繊維を用いて厚みの薄い繊維シートを作製する場合には繊維同士を絡めることが難しくなるという問題があった。そのため、生産性のために必要となる繊維シートの引っ張り強度を確保するためには、ある程度の厚みの繊維シートにするか、薄い繊維シートの場合は、ニードルパンチによって繊維同士を絡ませる箇所を多くする必要があった。   However, in the conventional method in which tensile strength is given to the fiber sheet by the needle punch method, the fibers are entangled perpendicularly to the fiber orientation of the fiber sheet constituting the core material. In the case of producing a thin fiber sheet, there is a problem that it is difficult to entangle the fibers. Therefore, in order to ensure the tensile strength of the fiber sheet required for productivity, in the case of a thin fiber sheet, or in the case of a thin fiber sheet, there are many places where the fibers are entangled with each other by a needle punch. There was a need to do.

繊維シートが厚い場合、所定の厚さの真空断熱材の芯材における繊維シートの積層枚数が減ることになるため、断熱性能には限界がある。また、薄い繊維シートを用いる場合、所定の厚さの真空断熱材の芯材における繊維シートの積層枚数は多くなるが、繊維シートのニードルパンチによって繊維同士を絡ませる箇所が多くなり、この絡まされた繊維の長手方向が伝熱方向と同じ方向であることから、絡まされた繊維が伝熱方向の伝熱経路となって、断熱性能を高くできないという問題がある。したがって、従来のニードルパンチ方式による繊維シートで構成された真空断熱材では、繊維シートの高引っ張り強度と高断熱性能との間にトレードオフの関係があり、生産性と良好な断熱特性との両立が困難であるという問題があった。   When the fiber sheet is thick, the number of laminated fiber sheets in the core material of the vacuum heat insulating material having a predetermined thickness is reduced, so that the heat insulating performance is limited. In addition, when thin fiber sheets are used, the number of fiber sheets stacked in the vacuum insulation core material of a predetermined thickness increases, but there are more places where the fibers are entangled with each other by the needle punch of the fiber sheet. Since the longitudinal direction of the fibers is the same direction as the heat transfer direction, the entangled fibers become a heat transfer path in the heat transfer direction, and there is a problem that heat insulation performance cannot be improved. Therefore, in vacuum insulation materials composed of fiber sheets using the conventional needle punch method, there is a trade-off relationship between high tensile strength and high heat insulation performance of the fiber sheets, and both productivity and good heat insulation properties are compatible. There was a problem that was difficult.

この発明は、上述のような課題を解決するためになされたもので、生産性が高くかつ断熱性能の高い繊維シートおよび真空断熱材を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a fiber sheet and a vacuum heat insulating material having high productivity and high heat insulating performance.

この発明に係わる繊維シートは、熱可塑性繊維でシート状に形成した繊維シートであって、離散的に配置され、貫通方向に熱可塑性繊維が熱融着された貫通熱融着部と、離散的に配置され、表面に平行な方向に表面の熱可塑性繊維が熱融着された表面熱融着部とを備えたものである。   The fiber sheet according to the present invention is a fiber sheet formed into a sheet shape with thermoplastic fibers, and is disposed discretely, and has through-heat fusion portions in which thermoplastic fibers are thermally fused in the penetration direction, and discrete And a surface heat-sealed portion in which the surface thermoplastic fibers are heat-sealed in a direction parallel to the surface.

また、この発明に係わる真空断熱材は、上記の貫通熱融着部と表面熱融着部とを備えた繊維シートを積層した芯材とこの芯材を減圧密閉する外被材とを備えたものである。   Further, a vacuum heat insulating material according to the present invention includes a core material obtained by laminating a fiber sheet including the above-described through heat fusion part and a surface heat fusion part, and an outer covering material that seals the core material under reduced pressure. Is.

この発明は、熱可塑性繊維でシート状に形成した繊維シートに、離散的に配置され、貫通方向に熱可塑性繊維が熱融着された貫通熱融着部と、離散的に配置され、表面に平行な方向に表面の熱可塑性繊維が熱融着された表面熱融着部とを備えることにより、生産性が高くかつ断熱性能の高い繊維シートおよび真空断熱材を得ることを目的としている。   This invention is discretely arranged on a fiber sheet formed into a sheet shape with thermoplastic fibers, and through-heat fusion parts in which thermoplastic fibers are thermally fused in the penetration direction, and discretely arranged on the surface. An object of the present invention is to obtain a fiber sheet and a vacuum heat insulating material having high productivity and high heat insulation performance by including a surface heat fusion portion in which thermoplastic fibers on the surface are heat fused in parallel directions.

この発明の実施の形態1による繊維シートの模式図である。It is a schematic diagram of the fiber sheet by Embodiment 1 of this invention. この発明の実施の形態1による真空断熱材の模式図である。It is a schematic diagram of the vacuum heat insulating material by Embodiment 1 of this invention. この発明の実施の形態2による繊維シートの特性図である。It is a characteristic view of the fiber sheet by Embodiment 2 of this invention. この発明の実施の形態2による真空断熱材の特性図である。It is a characteristic view of the vacuum heat insulating material by Embodiment 2 of this invention.

実施の形態1.
図1は、この発明を実施するための実施の形態1における繊維シートの斜視図である。図1において、繊維シート1は、例えば繊維径が約φ10μmの熱可塑性樹脂であるポリエステル製の繊維を重ね合わせてシート状にしたものである。この繊維シートの作製方法は、例えばスパンボンド法を用いることができる。このスパンボンド法では、ポリエステル樹脂であるポリエチレンテレフタレートを加熱溶融し、多数個のノズルを備えた紡糸金口より吐出して糸状にし、エジェクターで冷却しながら空気で延伸して、その下方で水平に移動するベルトコンベア面上で分散させながら繊維を重ね合わせて連続した不織布ウェブを形成する。その後、ベルトコンベア上の不織布ウェブを、加熱された突起形状を有するエンボスロールとこのエンボスロールに対して隙間を介して配置されたフラットロールとの間を通過させて、不織布ウェブの繊維を部分的に加熱融着によって結合させて繊維シート1を作製する。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a fiber sheet in Embodiment 1 for carrying out the present invention. In FIG. 1, a fiber sheet 1 is a sheet formed by superposing polyester fibers, which are thermoplastic resins having a fiber diameter of about 10 μm, for example. As a method for producing this fiber sheet, for example, a spunbond method can be used. In this spunbond method, polyethylene terephthalate, which is a polyester resin, is heated and melted, discharged from a spinneret equipped with a number of nozzles to form a thread, stretched with air while being cooled by an ejector, and horizontally below it. A continuous nonwoven web is formed by superimposing fibers while being dispersed on the moving belt conveyor surface. Thereafter, the nonwoven web on the belt conveyor is passed between an embossing roll having a heated protruding shape and a flat roll disposed through a gap with respect to the embossing roll, so that the fibers of the nonwoven web are partially The fiber sheet 1 is produced by bonding to each other by heat fusion.

繊維シート1を作製するためのエンボスロールは、交互に高さが異なる突起を備えている。高い突起は、不織布ウェブの上下面の繊維同士を熱融着させて、上下面の繊維を結合させた貫通熱融着部2を形成し、低い突起は、不織布ウェブの片側表面層のみの繊維同士を熱融着させて、表面層の繊維のみを結合させた表面熱融着部3を形成する。このようにして作製された繊維シート1には、図1に示すように、繊維シート1の上下面を貫通方向に結合させた貫通熱融着部2と片側の表面層のみを結合させた表面熱融着部3が形成される。この貫通熱融着部2は繊維シート1の他の部分より薄くなった窪み状であり、表面熱融着部3は繊維シート5とほぼ同じ厚みである。   The embossing roll for producing the fiber sheet 1 includes protrusions having different heights alternately. The high protrusions heat-bond the fibers on the upper and lower surfaces of the nonwoven web to form a through heat-bonding portion 2 in which the upper and lower fibers are bonded, and the lower protrusions are fibers only on one surface layer of the nonwoven web. The surface heat fusion part 3 which bonded only the fiber of the surface layer was formed by heat-seal | fusing together. As shown in FIG. 1, the fiber sheet 1 manufactured in this way has a surface in which only the surface heat layer 2 on one side and the surface heat-bonded part 2 on the upper and lower surfaces of the fiber sheet 1 are bonded in the penetrating direction The heat fusion part 3 is formed. This penetration heat fusion part 2 is a hollow shape thinner than the other part of the fiber sheet 1, and the surface heat fusion part 3 has substantially the same thickness as the fiber sheet 5.

図2は、本実施の形態における真空断熱材4の断面模式図である。芯材5は、繊維シート1を多数積層して構成されており、例えば、厚さ約0.1mmの繊維シート1を百枚程度積層して、厚さ約10mmの積層体で構成されている。この芯材5はガスバリア性を有する外被材6で密閉されている。外被材6の内部は減圧密封されており、内部にガス吸着剤7が配置されている。   FIG. 2 is a schematic cross-sectional view of the vacuum heat insulating material 4 in the present embodiment. The core material 5 is configured by laminating a large number of fiber sheets 1. For example, the core material 5 is configured by laminating about one hundred fiber sheets 1 having a thickness of about 0.1 mm to form a laminate having a thickness of about 10 mm. . The core material 5 is sealed with a jacket material 6 having gas barrier properties. The inside of the jacket material 6 is sealed under reduced pressure, and a gas adsorbent 7 is arranged inside.

外被材6は、例えばアルミ箔を挟んだ多層構造のラミネートフィルムを用いることができる。このようなラミネートフィルムとして例えば、最外層からポリアミド系樹脂フィルム(厚さ約6μm)、ポリエチレンテレフタレートフィルム(厚さ約10μm)、アルミ箔(厚さ約6μm)および高密度ポリエチレン(厚さ約50μm)の4層構造のものがある。2枚のラミネートフィルムを重ね合わせて、4辺をヒートシールすることによって密閉構造を形成している。   As the jacket material 6, for example, a laminated film having a multilayer structure with an aluminum foil sandwiched therebetween can be used. As such a laminate film, for example, from the outermost layer, a polyamide resin film (thickness of about 6 μm), a polyethylene terephthalate film (thickness of about 10 μm), an aluminum foil (thickness of about 6 μm), and high-density polyethylene (thickness of about 50 μm) There is a four-layer structure. Two laminated films are overlapped, and a sealed structure is formed by heat-sealing four sides.

ガス吸着剤7は、減圧密封後の時間経過とともに外部から進入してくる空気や水分の他に、芯材5から発生するアウトガスや芯材5から脱着される水分を吸着し、真空断熱材4の内部の真空を保つ役割をもつ。   The gas adsorbent 7 adsorbs outgas generated from the core material 5 and moisture desorbed from the core material 5 in addition to air and moisture entering from the outside with the passage of time after the vacuum sealing, and the vacuum heat insulating material 4 It has the role of keeping the vacuum inside.

このように構成された真空断熱材においては、シート上下面の繊維同士を結合する貫通熱融着部は、積層方向における繊維を結合することによって繊維の分離を抑制するとともに繊維シートに引っ張り強度を与える。また、貫通熱融着部は、積層方向における繊維を潰して結合するため伝熱経路を形成して断熱性能を低下するように作用するが、繊維シートを薄く作製することができるので、積層した繊維シート同士の接触面における互いの繊維同士の面接触あるいは線接触よりも繊維同士の点接触が増えて、断熱性能を高くできる。   In the vacuum heat insulating material configured as described above, the penetration heat fusion part for bonding the fibers on the upper and lower surfaces of the sheet suppresses the separation of the fibers by bonding the fibers in the stacking direction and gives the fiber sheet a tensile strength. give. Also, the through-heat fusion part acts to reduce heat insulation performance by forming a heat transfer path to crush and bond the fibers in the lamination direction, but the fiber sheets can be made thin, so they are laminated The point contact between the fibers increases more than the surface contact or the line contact between the fibers at the contact surface between the fiber sheets, and the heat insulation performance can be improved.

さらに、貫通熱融着部は、繊維シートの他の部分より薄くなった窪み状の形状であるため、積層されたときに上下の繊維シートには接触しない。このため、貫通熱融着部の面積を少なくして、かつ間隔を広げることにより、貫通熱融着部を伝わる熱は伝熱距離が長くなるため伝熱抵抗が増大する。その結果、繊維シートの厚み方向の熱伝導率を低くすることができる。   Furthermore, since the penetration heat fusion part is a hollow shape thinner than the other part of the fiber sheet, it does not contact the upper and lower fiber sheets when laminated. For this reason, by reducing the area of the through heat fusion part and widening the interval, the heat conducted through the through heat fusion part becomes longer and the heat transfer resistance increases. As a result, the thermal conductivity in the thickness direction of the fiber sheet can be lowered.

一方、表面層の繊維同士を結合させた表面熱融着部は、繊維シートの中で厚み方向には熱融着層はつながっていないため、積層した繊維シート間における伝熱経路にはならず、繊維シートの引っ張り強度を増すことのみに作用する。すなわち、熱融着部の一部を繊維シートの片側の表面層のみに設けたことによって、繊維シートが薄くても引っ張り強度を増すことができるため生産性を高くすることができるともに、断熱性能を高くすることができる。   On the other hand, the surface heat-sealed part where the fibers of the surface layer are bonded to each other does not serve as a heat transfer path between the laminated fiber sheets because the heat-sealed layer is not connected in the thickness direction in the fiber sheet. It only acts to increase the tensile strength of the fiber sheet. That is, by providing a part of the heat-sealed portion only on the surface layer on one side of the fiber sheet, the tensile strength can be increased even if the fiber sheet is thin, so that productivity can be increased and heat insulation performance can be increased. Can be high.

繊維シートに作用する荷重は、巻取り・切断時に作用する平面方向の引張りが主な荷重であり、繊維シートを厚み方向で分離させる引き裂き荷重は大きくない。したがって、繊維シートの上下面の繊維同士を結合させる貫通熱融着部の面積を減らし、表面層の繊維を結合する表面熱融着部の面積を増やすことによって、引張荷重を増すことができる。   The load acting on the fiber sheet is mainly a load in the planar direction acting at the time of winding and cutting, and the tearing load that separates the fiber sheet in the thickness direction is not large. Therefore, the tensile load can be increased by reducing the area of the through heat fusion part for bonding the fibers on the upper and lower surfaces of the fiber sheet and increasing the area of the surface heat fusion part for bonding the fibers of the surface layer.

さらに、表面層の繊維同士を結合させる表面熱融着部は真空断熱材の中で圧縮荷重を受けたときに繊維の動きを拘束するため、繊維シートが厚い場合には繊維シートの空隙率が高くなり、高い断熱性能を実現できる。   Furthermore, the surface heat-sealed part that bonds the fibers of the surface layer restrains the movement of the fibers when subjected to a compressive load in the vacuum heat insulating material. Higher heat insulation performance can be realized.

なお、本実施の形態においては、交互に高さが異なる突起を備えたエンボスロールとフラットロールとの間を通過させて、不織布ウェブに貫通熱融着部と表面熱融着部とを形成していたが、エンボスロールとフラットロールとの対を2対とし、一方のエンボスロールは高さの高い突起のみとし他方のエンボスロールは高さの低い突起のみとして、エンボス加工を2段階で行なってもよい。エンボスロールとフラットロールとの隙間のクリアランス、エンボスロールの突起の形状、配列、配置などは適宜設定することができる。   In the present embodiment, a through heat fusion portion and a surface heat fusion portion are formed in the nonwoven fabric web by passing between an embossing roll and a flat roll having protrusions with different heights alternately. However, embossing is performed in two stages, with two pairs of embossing rolls and flat rolls, one embossing roll having only high protrusions and the other embossing roll having only low protrusions. Also good. The clearance of the gap between the embossing roll and the flat roll, the shape, arrangement, and arrangement of the protrusions of the embossing roll can be set as appropriate.

また、本実施の形態においては、熱可塑性樹脂としてポリエステル樹脂であるポリエチレンテレフタレートを用いたが、他の熱可塑性樹脂、例えばポリプロピレン、ポリエチレンや、ポリアミド系樹脂などを用いることもできる。   In this embodiment, polyethylene terephthalate, which is a polyester resin, is used as the thermoplastic resin. However, other thermoplastic resins such as polypropylene, polyethylene, and polyamide resins can also be used.

実施の形態2.
実施の形態2は、ポリエチレンテレフタレート繊維を用いた繊維シートの目付け量と離散的に配置された最近接の貫通熱融着部の間隔とを変化させた場合の、繊維シートの引っ張り強度およびこの繊維シートを用いて作製された真空断熱材の断熱特性を評価したものである。なお、目付け量とは、繊維シート1平方メートルあたりの質量で定義されるものである。
Embodiment 2. FIG.
In the second embodiment, the tensile strength of the fiber sheet and the fiber when the basis weight of the fiber sheet using the polyethylene terephthalate fiber and the interval between the discrete heat-bonding portions arranged discretely are changed. The heat insulation characteristic of the vacuum heat insulating material produced using the sheet | seat is evaluated. The basis weight is defined as the mass per square meter of fiber sheet.

目付け量が18g/mで厚みが約0.1mmの不織布ウェブに実施の形態1と同様なエンボスロール加工を行い、貫通熱融着部および表面熱融着部を形成した。このとき、最近接の貫通熱融着部の間隔が、0.8mm、1.0mm、1.2mm、1.8mm、2.4mmおよび3.4mmとなる5種類の繊維シートを作製した。このとき、高さの高い突起は、高さが0.5mmでφ0.5mmの円筒形状であり、高さの低い方の突起は、高さが0.45mmでφ0.5mmの円筒形状である。エンボスロールとフラットロールとのギャップは、高さ0.5mmの突起がフラットロールと接触するように設定した。また、エンボスロールは約200℃に設定した。貫通熱融着部の全面積と表面熱融着部の全面積との割合は、50:50になるように設定した。 A non-woven web having a basis weight of 18 g / m 2 and a thickness of about 0.1 mm was subjected to embossing roll processing similar to that of Embodiment 1 to form a penetration heat fusion part and a surface heat fusion part. At this time, five types of fiber sheets were produced in which the distance between the closest through heat-sealed portions was 0.8 mm, 1.0 mm, 1.2 mm, 1.8 mm, 2.4 mm, and 3.4 mm. At this time, the high protrusion has a cylindrical shape with a height of 0.5 mm and φ0.5 mm, and the lower protrusion has a cylindrical shape with a height of 0.45 mm and φ0.5 mm. . The gap between the embossing roll and the flat roll was set so that the projection having a height of 0.5 mm was in contact with the flat roll. The embossing roll was set to about 200 ° C. The ratio of the total area of the through heat fusion part and the total area of the surface heat fusion part was set to 50:50.

このようにしてエンボスロール加工を行った場合、厚みが約0.1mmの不織布ウェブにおいて、高さの高い突起の接触した部分はほぼ完全に圧縮されて上下面の繊維同士が結合された貫通熱融着部となるが、高さの低い突起の接触した部分は約0.05mmの厚さを残して圧縮された表面熱融着部となる。この表面熱融着部は、エンボスロール加工後に厚さが回復し、繊維シートの圧縮されていない部分とほぼ同じ厚みとなる。   When embossing roll processing is performed in this way, in a non-woven web having a thickness of about 0.1 mm, the part where the high protrusions are in contact is almost completely compressed, and the penetration heat is bonded to the upper and lower fibers. Although it becomes a fusion | melting part, the part which the processus | protrusion with low height contacted becomes the surface heat fusion part compressed, leaving a thickness of about 0.05 mm. The surface heat-sealed portion recovers its thickness after embossing roll processing, and has almost the same thickness as the uncompressed portion of the fiber sheet.

さらに、目付け量が35g/mで厚みが約0.2mmの不織布ウェブ、目付け量が70g/mで厚みが約0.3mmの不織布ウェブを用いて、上述の目付け量が18g/mで厚みが約0.1mmの不織布ウェブと同様に、最近接の貫通熱融着部の間隔が、0.8mm、1.0mm、1.2mm、1.8mm、2.4mmおよび3.4mmとなる5種類の繊維シートをそれぞれ作製した。ここで、最近接の貫通熱融着部の間隔とは、実施の形態1の図1に両端矢印で示したように、最近接の貫通熱融着部の外周部同士の間隔(長さL)である。 Furthermore, using the nonwoven fabric web having a basis weight of 35 g / m 2 and a thickness of about 0.2 mm, and using the nonwoven fabric web having a basis weight of 70 g / m 2 and a thickness of about 0.3 mm, the above-mentioned basis weight is 18 g / m 2. As in the case of the non-woven web having a thickness of about 0.1 mm, the distance between the closest through heat fusion portions is 0.8 mm, 1.0 mm, 1.2 mm, 1.8 mm, 2.4 mm, and 3.4 mm. 5 types of fiber sheets were produced. Here, the distance between the nearest through heat fusion parts is the distance (length L) between the outer peripheral parts of the nearest through heat fusion parts as shown by the double-ended arrows in FIG. 1 of the first embodiment. ).

このようにして作製した各目付け量に対して最近接の貫通熱融着部の間隔が異なる計15種類の繊維シートについて、JIS L1096に規定されたストリップ法に基づいて引っ張り強度試験を行った。このとき、各繊維シートを幅25mm、長さ200mmに切断した試験片を用いた。   A total of 15 types of fiber sheets having different distances between the closest through heat-sealed portions with respect to the respective fabric weights thus produced were subjected to a tensile strength test based on the strip method defined in JIS L1096. At this time, a test piece obtained by cutting each fiber sheet into a width of 25 mm and a length of 200 mm was used.

図3は、本実施の形態における繊維シートの特性図である。図3の横軸は最近接の貫通熱融着部の間隔(mm)、縦軸は5%伸長時応力(N/25mm)である。ここで、5%伸長時応力(N/25mm)とは、上述の試験片の繊維シートを長さ方向に5%伸長させるときに必要な荷重である。図3から、繊維シートの目付け量が異なる繊維シートにおいて、上下面の繊維同士を結合する貫通熱融着部の間隔が長くなるにしたがって引っ張り強度が低下することがわかる。最近接の熱融着部の間隔が、3.5mmより大きくなると繊維シートの引っ張り強度が不足し、ロールによる巻取りが困難になり、生産性が大幅に低下する。   FIG. 3 is a characteristic diagram of the fiber sheet in the present embodiment. The horizontal axis in FIG. 3 is the distance between the nearest through-heat fusion parts (mm), and the vertical axis is the stress at 5% elongation (N / 25 mm). Here, the stress at 5% elongation (N / 25 mm) is a load necessary when the fiber sheet of the above-mentioned test piece is elongated by 5% in the length direction. From FIG. 3, it can be seen that, in the fiber sheets having different fiber sheet weights, the tensile strength decreases as the interval between the through-heat fusion portions that join the fibers on the upper and lower surfaces becomes longer. When the distance between the closest heat-sealed portions is larger than 3.5 mm, the tensile strength of the fiber sheet is insufficient, and winding with a roll becomes difficult, resulting in a significant reduction in productivity.

次に、これら15種類の繊維シートそれぞれを、A4サイズに裁断した。これら各種類別に、繊維シートを実施の形態1の図2に示したように約10mmの厚みになるように100枚程度積層し、ガス吸着剤と共にラミネートフィルムで袋状に加工された外被材の中に入れて、真空包装機内で真空引きを行い、約2Paで外被材の開口部をヒートシールして真空断熱材を作製した。   Next, each of these 15 types of fiber sheets was cut into A4 size. As shown in FIG. 2 of the first embodiment, about 100 kinds of fiber sheets are laminated so as to have a thickness of about 10 mm, and the jacket material is processed into a bag shape with a laminate film together with a gas adsorbent. And vacuum-evacuation was performed in a vacuum packaging machine, and the opening of the jacket material was heat-sealed at about 2 Pa to produce a vacuum heat insulating material.

このようにして作製した、繊維シートの目付け量と離散的に配置された最近接の貫通熱融着部の間隔とを変化させた真空断熱材の厚み方向の熱伝導率を測定した。熱伝導率は、熱伝導率測定装置(Auto HC−073:英弘精機(株)製)を用いて測定した。   The heat conductivity in the thickness direction of the vacuum heat insulating material, which was manufactured in this manner and varied in the basis weight of the fiber sheet and the interval between the nearest through heat-sealed portions arranged discretely, was measured. The thermal conductivity was measured using a thermal conductivity measuring device (Auto HC-073: manufactured by Eihiro Seiki Co., Ltd.).

図4は、本実施の形態における真空断熱材の特性図である。図4の横軸は最近接の貫通熱融着部の間隔(mm)、縦軸は熱伝導率(W/m・K)である。図3から、繊維シートの目付け量が異なる真空断熱材において、上下面の繊維同士を結合する貫通熱融着部の間隔が長くなるにしたがって熱伝導率は低下することがわかる。また、目付け量が増えるにしたがって熱伝導率は上昇することがわかる。   FIG. 4 is a characteristic diagram of the vacuum heat insulating material in the present embodiment. The horizontal axis in FIG. 4 is the distance (mm) between the nearest through heat-sealed portions, and the vertical axis is the thermal conductivity (W / m · K). From FIG. 3, it can be seen that, in the vacuum heat insulating materials having different fiber sheet weights, the thermal conductivity decreases as the interval between the through heat fusion portions that join the fibers on the upper and lower surfaces becomes longer. It can also be seen that the thermal conductivity increases as the basis weight increases.

例えば、最近接の貫通熱融着部の間隔が1.5mmの場合、目付け量18g/mの繊維シートを用いた真空断熱材に対して、目付量35g/mの繊維シートを用いた真空断熱材の熱伝導率は1.1倍、目付量70g/mの繊維シートを用いた真空断熱材の熱伝導率は1.4倍となる。一方、貫通熱融着部の間隔が1.5mmで目付け量18g/mの繊維シートを用いた真空断熱材の熱伝導率と同じ熱伝導率を実現するためには、目付け量35g/mの繊維シートを用いた真空断熱材では、最近接の貫通熱融着部の間隔を2.5mm、目付け量70g/mの繊維シートを用いた真空断熱材では、最近接の貫通熱融着部の間隔を3.5mmにする必要がある。 For example, when the distance between the nearest through heat-sealed portions is 1.5 mm, a fiber sheet having a weight per unit area of 35 g / m 2 is used for a vacuum heat insulating material using a fiber sheet having a basis weight of 18 g / m 2 . The heat conductivity of the vacuum heat insulating material is 1.1 times, and the heat conductivity of the vacuum heat insulating material using the fiber sheet having a basis weight of 70 g / m 2 is 1.4 times. On the other hand, in order to achieve the same thermal conductivity as that of the vacuum heat insulating material using the fiber sheet having a spacing of 1.5 mm and a weight of 18 g / m 2 , the weight per unit area is 35 g / m. In the vacuum heat insulating material using the fiber sheet of No. 2 , in the vacuum heat insulating material using the fiber sheet having a distance of 2.5 mm and the basis weight of 70 g / m 2 in the nearest through heat fusion part, It is necessary to set the gap between the landing portions to 3.5 mm.

本実施の形態から、繊維シートの引っ張り強度とこの繊維シートを用いて作製した真空断熱材の熱伝導率とから、繊維シートの最近接の貫通熱融着部の間隔は、3.5mm以下であることが好ましい。   From this embodiment, based on the tensile strength of the fiber sheet and the thermal conductivity of the vacuum heat insulating material produced using this fiber sheet, the distance between the closest through-heat fusion parts of the fiber sheet is 3.5 mm or less. Preferably there is.

1 繊維シート
2 貫通熱融着部
3 表面熱融着部
4 真空断熱材
5 芯材
6 外被材
7 ガス吸着剤
DESCRIPTION OF SYMBOLS 1 Fiber sheet 2 Through-heat-fusion part 3 Surface heat-fusion part 4 Vacuum heat insulating material 5 Core material 6 Cover material 7 Gas adsorbent

Claims (3)

熱可塑性繊維でシート状に形成された繊維シートにおいて、
離散的に配置され、貫通方向に前記熱可塑性繊維が熱融着された貫通熱融着部と、
離散的に配置され、表面に平行な方向に前記表面の前記熱可塑性繊維が熱融着された表面熱融着部と
を備えたことを特徴する繊維シート。
In the fiber sheet formed into a sheet shape with thermoplastic fibers,
Discretely arranged, through heat-sealed portions in which the thermoplastic fibers are heat-sealed in the penetration direction;
A fiber sheet comprising: a surface heat-sealed portion that is discretely arranged and heat-sealed with the thermoplastic fibers on the surface in a direction parallel to the surface.
離散的に配置された最近接の貫通熱融着部の間隔が3.5mm以下であることを特徴とする請求項1記載の繊維シート。 The fiber sheet according to claim 1, wherein the distance between the nearest through heat-sealed portions arranged discretely is 3.5 mm or less. 請求項1の繊維シートが積層された芯材と、
この芯材を減圧密閉する外被材と
を備えたことを特徴する真空断熱材。
A core material on which the fiber sheets of claim 1 are laminated;
A vacuum heat insulating material comprising an outer jacket material that seals the core material under reduced pressure.
JP2009247642A 2009-10-28 2009-10-28 Fiber sheet and vacuum insulation Expired - Fee Related JP5251830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247642A JP5251830B2 (en) 2009-10-28 2009-10-28 Fiber sheet and vacuum insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247642A JP5251830B2 (en) 2009-10-28 2009-10-28 Fiber sheet and vacuum insulation

Publications (2)

Publication Number Publication Date
JP2011094669A JP2011094669A (en) 2011-05-12
JP5251830B2 true JP5251830B2 (en) 2013-07-31

Family

ID=44111812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247642A Expired - Fee Related JP5251830B2 (en) 2009-10-28 2009-10-28 Fiber sheet and vacuum insulation

Country Status (1)

Country Link
JP (1) JP5251830B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377453B2 (en) * 2010-10-21 2013-12-25 三菱電機株式会社 Vacuum insulation material and manufacturing method thereof
KR101774078B1 (en) * 2013-04-08 2017-09-01 (주)엘지하우시스 Core material for vacuum insulation having organic synthetic fibers and vacuum insulation including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369896A (en) * 1989-08-07 1991-03-26 Sumio Ishihara Plate-state body
JP2000297895A (en) * 1999-02-10 2000-10-24 Kitazawa Yakuhin Kk Heat insulating method
JP4974861B2 (en) * 2007-11-28 2012-07-11 三菱電機株式会社 Vacuum insulation

Also Published As

Publication number Publication date
JP2011094669A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
KR101286342B1 (en) Core material for vacuum insulation panel, method for fabricating the same and vacuum insulation panel using the same
EP1819509B1 (en) Multi-layer thermal insulation system
JP3942189B2 (en) Manufacturing method of vacuum insulation
JP6073005B1 (en) Vacuum heat insulating material and method for manufacturing vacuum heat insulating material
JP6288819B2 (en) Easy-open pillow packaging bag
JP4974861B2 (en) Vacuum insulation
JP2015068484A (en) Laminate sheet for vacuum heat insulation material and vacuum heat insulation material
JP2010247447A (en) Structure and molding
JP5251830B2 (en) Fiber sheet and vacuum insulation
JP2014529515A5 (en)
RU2018111285A (en) METHOD FOR PRODUCING ELASTIC LAYERED MATERIAL AND LAMINATED ELASTIC PRODUCT
JP6873798B2 (en) Manufacturing method of film exterior battery and film exterior battery
JP6498097B2 (en) Vacuum heat insulating material, method for manufacturing vacuum heat insulating material, and heat insulation container
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP4931904B2 (en) Insulating sheet manufacturing apparatus and insulating sheet manufacturing method
JP2007278388A (en) Vacuum heat insulating material and method of manufacturing vacuum heat insulating material
JP2010084813A (en) Vacuum insulating material and method of manufacturing the same
JP2005047234A (en) Packaging material containing reinforcing layer and packaging bag using this packaging material
JP6651187B1 (en) Method for producing nonwoven material and nonwoven bag
JP2012026512A (en) Bag body and vacuum heat insulating material
RU2013106402A (en) MULTILAYER FILM, METHODS FOR MANUFACTURING MULTILAYER FILM AND MULTILAYER FILM PRODUCT CONSISTING OF AT LEAST A SINGLE MULTILAYER FILM, AND ALSO A DEVICE FOR MANUFACTURING MULTILAYER FILM
JP5221165B2 (en) Packaging materials
JP2009184277A (en) Package bag production process and package bag produced thereby
JP4969555B2 (en) Vacuum insulation and insulation box
JP5377453B2 (en) Vacuum insulation material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees