[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5127826B2 - Starch-containing composition and method for producing the same - Google Patents

Starch-containing composition and method for producing the same Download PDF

Info

Publication number
JP5127826B2
JP5127826B2 JP2009515196A JP2009515196A JP5127826B2 JP 5127826 B2 JP5127826 B2 JP 5127826B2 JP 2009515196 A JP2009515196 A JP 2009515196A JP 2009515196 A JP2009515196 A JP 2009515196A JP 5127826 B2 JP5127826 B2 JP 5127826B2
Authority
JP
Japan
Prior art keywords
starch
water
soluble hemicellulose
viscosity
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009515196A
Other languages
Japanese (ja)
Other versions
JPWO2008143144A1 (en
Inventor
徹 中島
誠 中馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Ei Gen FFI Inc
Original Assignee
San Ei Gen FFI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Ei Gen FFI Inc filed Critical San Ei Gen FFI Inc
Priority to JP2009515196A priority Critical patent/JP5127826B2/en
Publication of JPWO2008143144A1 publication Critical patent/JPWO2008143144A1/en
Application granted granted Critical
Publication of JP5127826B2 publication Critical patent/JP5127826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Grain Derivatives (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、澱粉粒の崩壊を抑制する方法に関する。また本発明は、澱粉粒の崩壊が抑制されてなる澱粉を、澱粉含有組成物(澱粉製剤)として簡便かつ効率よく製造する方法に関する。   The present invention relates to a method for suppressing the collapse of starch granules. Moreover, this invention relates to the method of manufacturing easily and efficiently the starch by which decay | disintegration of a starch grain is suppressed as a starch containing composition (starch formulation).

食品製造において、小麦粉等の澱粉類を主成分としたフラワーペースト等のフィリング材が、パンや菓子類に利用されている。通常、澱粉を多量の水の存在下で加熱すると、ある一定の温度域で周囲の水を吸収して膨潤し、急激に粘度が増加する。この様な現象を、「澱粉の糊化」という。澱粉粒は適切な膨潤の度合いで糊化すると高い粘性を有するため、増粘剤や保型剤として幅広く利用されている。しかしながら、天然(未改質)の澱粉の糊液は、糊化時やその後の攪拌によるせん断力、高温条件、または低pH条件などにより、澱粉粒が過剰に膨潤するため、崩壊し易くなる。澱粉粒が崩壊した糊液は、粘度が低下したり、また望ましくない食感が発現する等といった現象を起こしやすい。   In food production, a filling material such as flour paste mainly composed of starch such as wheat flour is used for bread and confectionery. Normally, when starch is heated in the presence of a large amount of water, the surrounding water is absorbed and swollen in a certain temperature range, and the viscosity rapidly increases. Such a phenomenon is called “starch gelatinization”. Since starch granules have high viscosity when gelatinized with an appropriate degree of swelling, they are widely used as thickeners and shape-retaining agents. However, the starch solution of natural (unmodified) starch tends to disintegrate because starch granules swell excessively due to shearing force, high temperature conditions, or low pH conditions during gelatinization and subsequent stirring. The paste solution in which the starch granules are disintegrated is liable to cause a phenomenon such as a decrease in viscosity and an undesirable texture.

この様な澱粉粒の過剰な膨潤または/および崩壊を防ぎ、粘度を維持することを目的として、澱粉分子中のグルコース鎖を化学反応によって架橋した、アジピン酸架橋澱粉やリン酸架橋澱粉が市販されている。或いは、上記架橋澱粉と同様の効果をもつ澱粉を調製するために、増粘多糖類を併用して澱粉を改質する試みも行われており、例えば、特許文献1ではキサンタンガムなどの増粘多糖類と澱粉を粉末混合した後、水を添加し15〜50%になるように水分含量を調整し、これを100〜200℃の条件で乾式加熱を行う方法が提案されている。
特開2005−54028号公報
In order to prevent such excessive swelling or / and disintegration of starch granules and to maintain viscosity, adipic acid-crosslinked starch and phosphate-crosslinked starch in which glucose chains in starch molecules are crosslinked by chemical reaction are commercially available. ing. Alternatively, in order to prepare starch having the same effect as the above-mentioned crosslinked starch, attempts have been made to modify starch using a thickening polysaccharide in combination. For example, Patent Document 1 discloses a thickening agent such as xanthan gum. A method has been proposed in which after sugar and starch are powder mixed, water is added to adjust the water content to 15 to 50%, and this is dry-heated at 100 to 200 ° C.
JP 2005-54028 A

しかし、特許文献1の技術では、澱粉の水分含量を15〜50%という特定の範囲に調整することが必要で、製造工程が煩雑であるとともに、100〜200℃の高温での作業が必要で危険を伴うという問題がある。また、従来の架橋澱粉を製造する場合には、化学薬品や未反応の薬品を洗浄するための大量の水が必要であり、製造コストや排水による環境汚染の問題がある。   However, in the technique of Patent Document 1, it is necessary to adjust the water content of starch to a specific range of 15 to 50%, the manufacturing process is complicated, and work at a high temperature of 100 to 200 ° C. is required. There is a problem with danger. In addition, when producing a conventional crosslinked starch, a large amount of water for washing chemicals and unreacted chemicals is required, and there is a problem of environmental pollution due to production costs and waste water.

そこで、本発明は、より簡便にしかも安価な製造コストで排水などの問題なく、澱粉粒の崩壊を抑制して粘度の急激な低下を防止するための方法を提供することを目的とする。また、本発明は、澱粉粒の崩壊による粘度の急激な低下が抑制されてなる澱粉含有組成物を製造するための方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for preventing the rapid decrease in the viscosity by suppressing the collapse of the starch granules without problems such as drainage at a simpler and cheaper manufacturing cost. Moreover, an object of this invention is to provide the method for manufacturing the starch containing composition in which the rapid fall of the viscosity by disintegration of a starch grain is suppressed.

本発明者らは、前記課題を解決すべく検討を重ねた結果、澱粉と水溶性ヘミセルロースの粉末混合物を50℃以上100℃未満で相対湿度50%以上の条件で湿熱処理することにより、化学的な処理を行なった架橋澱粉と同様に、澱粉粒の崩壊が抑制されてなる澱粉含有組成物が調製できることを見出し、本発明を完成するに至った。   As a result of repeated studies to solve the above-mentioned problems, the present inventors have conducted chemical treatment by subjecting a powder mixture of starch and water-soluble hemicellulose to a heat treatment under conditions of 50 ° C. or more and less than 100 ° C. and a relative humidity of 50% or more. As in the case of crosslinked starch subjected to various treatments, it was found that a starch-containing composition in which the collapse of starch granules was suppressed can be prepared, and the present invention has been completed.

即ち本発明は、下記の実施態様を包含する。
(I)澱粉粒の崩壊が抑制されてなる澱粉含有組成物の製造方法
That is, the present invention includes the following embodiments.
(I) A method for producing a starch-containing composition in which disintegration of starch granules is suppressed

(I-1)澱粉と水溶性ヘミセルロースの粉末混合物を50℃以上100℃未満で相対湿度50%以上の条件で湿熱処理する工程を有する、澱粉含有組成物の製造方法。 (I-1) A method for producing a starch-containing composition comprising a step of subjecting a powder mixture of starch and water-soluble hemicellulose to a heat treatment under conditions of 50 ° C. or higher and lower than 100 ° C. and a relative humidity of 50% or higher.

(I-2)澱粉と水溶性ヘミセルロースの粉末混合物中の澱粉と水溶性ヘミセルロースの配合比が、澱粉:水溶性ヘミセルロース=99:1〜70:30(重量比)であることを特徴とする(I-1)に記載する製造方法。   (I-2) The ratio of starch and water-soluble hemicellulose in the powder mixture of starch and water-soluble hemicellulose is starch: water-soluble hemicellulose = 99: 1 to 70:30 (weight ratio). The production method described in I-1).

(I-3)澱粉が、コーンスターチ、ワキシーコーンスターチ、タピオカ澱粉、米澱粉、もち米澱粉、馬鈴薯澱粉、もち馬鈴薯澱粉、小麦澱粉、甘藷澱粉、およびサゴ澱粉からなる群から選択される少なくとも1種である、(I-1)または(I-2)に記載する製造方法。   (I-3) The starch is at least one selected from the group consisting of corn starch, waxy corn starch, tapioca starch, rice starch, glutinous rice starch, potato starch, glutinous potato starch, wheat starch, sweet potato starch, and sago starch A production method according to (I-1) or (I-2).

(I-4)澱粉が、ワキシーコーンスターチ、タピオカ澱粉、馬鈴薯澱粉、およびもち馬鈴薯澱粉からなる群から選択される少なくとも1種である、(I-1)または(I-2)に記載する製造方法。   (I-4) The production method according to (I-1) or (I-2), wherein the starch is at least one selected from the group consisting of waxy corn starch, tapioca starch, potato starch, and potato starch .

(I-5)水溶性ヘミセルロースが、大豆由来の水溶性ヘミセルロースである、(I-1)乃至(I-4)のいずれかに記載する製造方法。   (I-5) The production method according to any one of (I-1) to (I-4), wherein the water-soluble hemicellulose is a water-soluble hemicellulose derived from soybeans.

(I-6)澱粉粒の崩壊が抑制されている澱粉含有組成物の製造方法であることを特徴とする、(I-1)乃至(I-5)のいずれかに記載する製造方法。   (I-6) The method according to any one of (I-1) to (I-5), which is a method for producing a starch-containing composition in which the collapse of starch granules is suppressed.

(II)澱粉粒の崩壊が抑制されてなる澱粉含有組成物(II) A starch-containing composition in which disintegration of starch granules is suppressed

(II-1)(I-1)乃至(I-5)のいずれかの記載の方法によって製造された澱粉含有組成物。 (II-1) A starch-containing composition produced by the method according to any one of (I-1) to (I-5).

(II-2)澱粉粒の崩壊が抑制されてなる(II-1)記載の澱粉含有組成物。   (II-2) The starch-containing composition according to (II-1), wherein the collapse of starch granules is suppressed.

(II-3)(II-1)または(II-2)に記載する澱粉含有組成物を用いて製造された食品。   (II-3) A food produced using the starch-containing composition described in (II-1) or (II-2).

(III)澱粉粒の崩壊抑制方法(III) Method for inhibiting starch particle disintegration

(III-1)(a)澱粉を水溶性ヘミセルロースと粉末混合する工程、および(b)得られた粉末混合物を50℃以上100℃未満で相対湿度50%以上の条件で湿熱処理する工程を有する、澱粉粒の崩壊抑制方法。 (III-1) (a) A step of powder mixing starch with water-soluble hemicellulose, and (b) a step of subjecting the obtained powder mixture to a heat-moisture treatment at a temperature of 50 ° C. or higher and lower than 100 ° C. and a relative humidity of 50% or higher. , A method for inhibiting the collapse of starch granules.

(III-2)澱粉と水溶性ヘミセルロースの粉末混合物中の澱粉と水溶性ヘミセルロースの配合比が、澱粉:水溶性ヘミセルロース=99:1〜70:30(重量比)であることを特徴とする(III-1)に記載する方法。   (III-2) The ratio of starch and water-soluble hemicellulose in the powder mixture of starch and water-soluble hemicellulose is starch: water-soluble hemicellulose = 99: 1 to 70:30 (weight ratio) ( The method described in III-1).

(III-3)澱粉が、コーンスターチ、ワキシーコーンスターチ、タピオカ澱粉、米澱粉、もち米澱粉、馬鈴薯澱粉、もち馬鈴薯澱粉、小麦澱粉、甘藷澱粉、およびサゴ澱粉からなる群から選択される少なくとも1種である、(III-1)または(III-2)に記載する方法。   (III-3) The starch is at least one selected from the group consisting of corn starch, waxy corn starch, tapioca starch, rice starch, glutinous rice starch, potato starch, glutinous potato starch, wheat starch, sweet potato starch, and sago starch A method described in (III-1) or (III-2).

(III-4)澱粉が、ワキシーコーンスターチ、タピオカ澱粉、馬鈴薯澱粉、およびもち馬鈴薯澱粉からなる群から選択される少なくとも1種である、(III-1)または(III-2)に記載する方法。   (III-4) The method according to (III-1) or (III-2), wherein the starch is at least one selected from the group consisting of waxy corn starch, tapioca starch, potato starch, and glutinous potato starch.

(III-5)水溶性ヘミセルロースが、大豆由来の水溶性ヘミセルロースである、(III-1)乃至(III-4)のいずれかに記載する方法。   (III-5) The method according to any one of (III-1) to (III-4), wherein the water-soluble hemicellulose is a water-soluble hemicellulose derived from soybeans.

本発明による方法によれば、澱粉と水溶性ヘミセルロースの粉末混合物、好ましくは澱粉と水溶性ヘミセルロースを、澱粉:水溶性ヘミセルロース=99:1〜70:30(重量比)の割合で含む粉末混合物を50℃以上100℃未満で相対湿度50%以上の条件で湿熱処理することによって、澱粉粒の崩壊が抑制されてなる澱粉を、澱粉含有組成物として簡便にかつ安全に取得することができる。また本発明の方法によれば、澱粉と水溶性ヘミセルロースの粉末混合物を湿熱処理する温度、相対湿度および処理時間を上記の範囲で適宜設定することによって、澱粉粒の崩壊の抑制を、簡便かつ安全に、希望する程度に調節することができる。斯くして得られる澱粉含有組成物は、澱粉製剤として、架橋澱粉と同様に、バッター、フラワーペースト、たれ、ソース、ドレッシング、およびヨーグルト(デイリープロダクト)などの食感改良に好適に使用することができる。   According to the method of the present invention, a powder mixture of starch and water-soluble hemicellulose, preferably a starch mixture containing starch and water-soluble hemicellulose in a ratio of starch: water-soluble hemicellulose = 99: 1 to 70:30 (weight ratio). By performing the heat-moisture treatment under conditions of 50 ° C. or more and less than 100 ° C. and a relative humidity of 50% or more, starch in which the collapse of starch granules is suppressed can be easily and safely obtained as a starch-containing composition. In addition, according to the method of the present invention, by appropriately setting the temperature, relative humidity, and treatment time for the wet heat treatment of the starch and water-soluble hemicellulose powder mixture within the above ranges, it is possible to easily and safely suppress the collapse of the starch granules. It can be adjusted to the desired level. The starch-containing composition thus obtained can be suitably used as a starch preparation for improving the texture of batters, flour pastes, sauces, sauces, dressings, yogurts (daily products), etc., as with cross-linked starch. it can.

(I)澱粉粒の崩壊が抑制されてなる澱粉含有組成物の製造方法
本発明の製造方法は、澱粉と水溶性ヘミセルロースの粉末混合物を、50℃以上100℃未満で相対湿度50%以上の条件下で湿熱処理することによって実施することができ、斯くして、湿熱処理前の澱粉(または湿熱処理前の澱粉と水溶性ヘミセルロースの粉末混合物)と比べて、澱粉粒の崩壊が抑制されてなる性質を有する澱粉含有組成物を取得することができる。
(I) Method for Producing Starch-Containing Composition in Which Disintegration of Starch Granules is Suppressed The production method of the present invention is a condition in which a powder mixture of starch and water-soluble hemicellulose is 50 ° C. or higher and lower than 100 ° C. and a relative humidity of 50% or higher. It can be carried out by performing a hydrothermal treatment below, and thus, the starch granules are prevented from collapsing compared to starch before the hydrothermal treatment (or a powder mixture of starch and water-soluble hemicellulose before the hydrothermal treatment). A starch-containing composition having properties can be obtained.

本発明で使用する澱粉は、加熱等により変性が生じていない、未加熱かつ未変性の澱粉であり、この限りにおいて、一般に流通しているものを利用することができる。例えば、植物に由来する澱粉であり、具体的には、コーンスターチ(うるち種トウモロコシに由来する澱粉)、ワキシーコーンスターチ(もち種トウモロコシに由来する澱粉)、タピオカ澱粉、米澱粉(うるち米に由来する澱粉)、もち米澱粉(もち米に由来する澱粉)、馬鈴薯澱粉(うるち種の馬鈴薯に由来する澱粉)、もち馬鈴薯澱粉(もち種の馬鈴薯に由来する澱粉)、小麦澱粉、甘藷澱粉、およびサゴ澱粉などを挙げることができる。好ましくは馬鈴薯澱粉、もち馬鈴薯澱粉、ワキシーコーンスターチ、およびタピオカ澱粉であり、より好ましくは馬鈴薯澱粉、もち馬鈴薯澱粉、およびタピオカ澱粉であり、特に好ましくはもち馬鈴薯澱粉である。   The starch used in the present invention is unheated and unmodified starch that has not been modified by heating or the like, and as long as it is used, those that are generally available can be used. For example, starch derived from plants, specifically, corn starch (starch derived from glutinous corn), waxy corn starch (starch derived from glutinous corn), tapioca starch, rice starch (starch derived from glutinous rice) ), Glutinous rice starch (starch derived from glutinous rice), potato starch (starch derived from potato of glutinous type), glutinous potato starch (starch derived from potato of glutinous type), wheat starch, sweet potato starch, and sago A starch etc. can be mentioned. Preferred are potato starch, glutinous potato starch, waxy corn starch, and tapioca starch, more preferred are potato starch, glutinous potato starch, and tapioca starch, and particularly preferred is glutinous potato starch.

本発明で利用できるもち馬鈴薯澱粉は、通常の馬鈴薯澱粉(うるち種の馬鈴薯の澱粉)がアミロースを20〜22%含有しているのに対して、アミロースを1%未満しか含有しないもち種の馬鈴薯の澱粉である。かかる澱粉は、例えばAVEBE社製のELIAN100(商品名)など、一般的に商業的に入手可能である。   The glutinous potato starch that can be used in the present invention is a potato starch that contains less than 1% amylose, compared to 20-22% amylose in ordinary potato starch (urchin potato starch). It is potato starch. Such starch is generally commercially available, for example, ELIAN100 (trade name) manufactured by AVEBE.

水溶性ヘミセルロースは、植物の繊維質を構成する多糖類のうち、セルロース以外のものであり、セルロースと比べて水溶性が高い。具体的には、ラムノース、ガラクトース、アラビノース、キシロース、グルコース、ガラクツロン酸、グルクロン酸の1種若しくは2種以上を構成糖として含む水溶性の多糖類である。   Water-soluble hemicellulose is a polysaccharide other than cellulose among the polysaccharides constituting plant fibers, and has higher water solubility than cellulose. Specifically, it is a water-soluble polysaccharide containing one or more of rhamnose, galactose, arabinose, xylose, glucose, galacturonic acid, and glucuronic acid as constituent sugars.

本発明で使用する水溶性ヘミセルロースは、豆類由来、特に大豆、なかでも子葉由来のものが好ましい。本発明において、水溶性ヘミセルロースは、その分子量がいかなる範囲のものであっても使用可能であるが、好ましくは高分子量であり、平均分子量が数千〜数百万、具体的には5000〜100万であるものが好ましい。尚、この水溶性ヘミセルロースの平均分子量は、標準プルラン(昭和電工株式会社)を標準物質として0.1MのNaNO3溶液中の粘度を特定する極限粘度法で求めた値である。The water-soluble hemicellulose used in the present invention is preferably derived from beans, particularly soybeans, especially those derived from cotyledons. In the present invention, the water-soluble hemicellulose can be used in any molecular weight range, but preferably has a high molecular weight and an average molecular weight of several thousand to several million, specifically 5000 to 100. Those that are ten thousand are preferred. The average molecular weight of the water-soluble hemicellulose is a value determined by an intrinsic viscosity method that specifies the viscosity in a 0.1M NaNO 3 solution using standard pullulan (Showa Denko KK) as a standard substance.

水溶性ヘミセルロースは、ヘミセルロースを含む原料から水抽出するか、場合によっては酸、アルカリ条件下で加熱溶出させるか、または酵素により分解溶出させることができる。ここで原料としては、豆類、例えば大豆から通常油脂や蛋白質を除いた残渣を用いることができる。あるいは、豆腐、豆乳または分離大豆蛋白を製造するときに副生するオカラを利用することもできる。具体的には、まず、これらの原料を酸性乃至アルカリ性の高温水中で、好ましくは80℃以上130℃以下、より好ましくは100℃以上130℃以下にて加熱抽出し、水溶性画分を分画する。次いで、得られた水溶性画分をそのまま乾燥するか、または、例えば活性炭処理或いは樹脂吸着処理して低分子物質を除去した後に、アルコール沈殿処理をし、それを乾燥することによって、水溶性ヘミセルロースを得ることができる。   The water-soluble hemicellulose can be extracted with water from a raw material containing hemicellulose, or can be heated and eluted under acid or alkaline conditions, or can be decomposed and eluted with an enzyme. Here, as a raw material, a residue obtained by removing oils and fats and proteins from beans, for example, soybeans can be used. Alternatively, Okara that is produced as a by-product when producing tofu, soymilk, or isolated soy protein can be used. Specifically, first, these raw materials are heated and extracted in acidic or alkaline high-temperature water, preferably at 80 ° C. or higher and 130 ° C. or lower, more preferably 100 ° C. or higher and 130 ° C. or lower, to fractionate the water-soluble fraction. To do. Subsequently, the obtained water-soluble fraction is dried as it is, or, for example, activated carbon treatment or resin adsorption treatment is performed to remove low molecular weight substances, followed by alcohol precipitation treatment, and then drying the water-soluble hemicellulose. Can be obtained.

このような水溶性ヘミセルロースは、例えば大豆由来の水溶性ヘミセルロースとして、三栄源エフ・エフ・アイ株式会社製のSM−1200(商品名)およびSM−900(商品名)、不二製油株式会社製のソヤファイブS−HR100(商品名)を挙げることができる。   Such water-soluble hemicelluloses are, for example, soybean-derived water-soluble hemicelluloses, SM-1200 (trade name) and SM-900 (trade name) manufactured by San-Ei Gen FFI Co., Ltd., manufactured by Fuji Oil Co., Ltd. Soya Five S-HR100 (trade name).

本発明の方法において、澱粉と水溶性ヘミセルロースは、湿熱処理する前に、いずれも粉末の状態で混合されていればよい。その配合割合は、特に制限されないものの、通常、重量比として、澱粉:水溶性ヘミセルロース=99:1〜70:30、好ましくは95:5〜80:20、より好ましくは90:10〜80:20の範囲が例示できる。水溶性ヘミセルロースの配合割合が少なすぎると十分な崩壊抑制効果を得ることができず、また、多すぎると澱粉の配合割合が低下して、単位組成物あたりの澱粉としての粘度発現または/および食感改良効果が低下する。   In the method of the present invention, the starch and the water-soluble hemicellulose may be mixed in a powder state before the wet heat treatment. The mixing ratio is not particularly limited, but usually, as a weight ratio, starch: water-soluble hemicellulose = 99: 1 to 70:30, preferably 95: 5 to 80:20, more preferably 90:10 to 80:20. The range of can be illustrated. If the blending ratio of the water-soluble hemicellulose is too small, a sufficient disintegration-inhibiting effect cannot be obtained, and if it is too large, the blending ratio of the starch decreases, and the viscosity expression as a starch per unit composition and / or food The feeling improvement effect decreases.

本発明の方法は、上記範囲の配合割合で粉体混合された澱粉と水溶性ヘミセルロースの混合物を、湿熱処理することによって行なわれる。湿熱処理は、澱粉と水溶性ヘミセルロースの粉末混合物を、相対湿度50%以上100%以下の湿度条件で、50℃以上100℃未満の温度で加熱処理することによって実施される。好ましい湿度条件は、相対湿度80%以上であり、より好ましくは相対湿度90〜95%である。また好ましい温度条件は、80℃以上100℃未満であり、より好ましくは85〜90℃である。   The method of the present invention is performed by wet-heat-treating a mixture of starch and water-soluble hemicellulose which are powder-mixed at a blending ratio in the above range. The wet heat treatment is performed by heat-treating a powder mixture of starch and water-soluble hemicellulose at a temperature of 50 ° C. or more and less than 100 ° C. under a humidity condition of 50% to 100% relative humidity. A preferable humidity condition is a relative humidity of 80% or more, more preferably a relative humidity of 90 to 95%. Moreover, preferable temperature conditions are 80 degreeC or more and less than 100 degreeC, More preferably, it is 85-90 degreeC.

かかる湿熱処理は、簡便には恒温恒湿槽を用いて行うことができる。湿熱処理時間は、処理を行う澱粉と水溶性ヘミセルロースの混合比率にもよるが、通常3〜24時間を例示することができる。かかる処理時間は、処理温度や湿度に応じて増減可能である。例えば、処理温度が80℃で相対湿度が80%の場合は処理時間を5時間程度とし、処理温度が85℃で相対湿度が95%の場合は処理時間を3時間程度にする等、適宜調節することができる。   Such wet heat treatment can be conveniently performed using a constant temperature and humidity chamber. Although the wet heat treatment time depends on the mixing ratio of the starch to be treated and the water-soluble hemicellulose, it can usually be 3 to 24 hours. Such processing time can be increased or decreased according to the processing temperature and humidity. For example, when the processing temperature is 80 ° C. and the relative humidity is 80%, the processing time is about 5 hours, and when the processing temperature is 85 ° C. and the relative humidity is 95%, the processing time is about 3 hours. can do.

斯くして製造された澱粉含有組成物は、未処理の澱粉または未処理の澱粉と水溶性ヘミセルロールの粉末混合物と比較して、澱粉粒の崩壊が抑制されているという性質を備えている。   The starch-containing composition produced in this way has the property that the collapse of starch granules is suppressed as compared with untreated starch or a powder mixture of untreated starch and water-soluble hemicellulose.

かかる澱粉含有組成物の性質は、後述する実施例に記載する評価方法を用いて、当該澱粉含有組成物を水に分散させて温度を変化させた場合の粘度挙動と、未処理の澱粉または未処理の澱粉と水溶性ヘミセルロールの粉末混合物のそれとを対比することによって、評価することができる。   The properties of such a starch-containing composition include the viscosity behavior when the starch-containing composition is dispersed in water and the temperature is changed using an evaluation method described in the examples described later, untreated starch or untreated starch. It can be evaluated by comparing the treated starch with that of a powder mixture of water-soluble hemicellulose.

また、本発明にかかる澱粉含有組成物には、本発明の効果を妨げない範囲において、必要に応じて他の添加物を添加することができる。具体的には、調味料、香料、酸味料、色素、保存料、糊料、pH調整剤、糖類、甘味料が例示できる。斯くして調製される澱粉含有組成物は、食品の品質改良剤または食感改良剤として各種の食品の製造に使用することができる。   Moreover, in the starch containing composition concerning this invention, in the range which does not prevent the effect of this invention, another additive can be added as needed. Specifically, a seasoning, a fragrance | flavor, a sour agent, a pigment | dye, a preservative, a paste agent, a pH adjuster, saccharides, and a sweetener can be illustrated. The starch-containing composition thus prepared can be used in the production of various foods as a food quality improver or texture improver.

本発明の澱粉含有組成物を用いて製造できる食品としては、例えば、バッター;ソース、たれ類;スープ;ドレッシング;ヨーグルト、サワークリームなどデイリープロダクト;うどん、そば、スパゲティ、マカロニ、中華麺などの生麺、半生麺、冷凍麺、乾燥麺(フライ麺、ノンフライ麺)などの麺類;パン類;ケーキやクッキーなどの焼き菓子類;フラワーペーストなどのペースト類;団子、練りあん、ようかんなどの和菓子類;餃子の皮、春巻きの皮、中華饅の皮などの生地素材;ハム、ソーセージ、焼き豚などの魚畜肉製品;フライものの衣用バッターなどを例示することができる。   Examples of foods that can be produced using the starch-containing composition of the present invention include batters; sauces, sauces; soups; dressings; daily products such as yogurt and sour cream; raw noodles such as udon, soba, spaghetti, macaroni, and Chinese noodles. Noodles such as semi-raw noodles, frozen noodles, and dry noodles (fried noodles, non-fried noodles); breads; baked confectionery such as cakes and cookies; pastes such as flower paste; Examples include dough materials such as dumpling skin, spring roll skin, and Chinese rice bran skin; fish and meat products such as ham, sausage and grilled pork; batters for fried foods.

(II)澱粉の崩壊の抑制方法
本発明の抑制方法は、(a)澱粉を水溶性ヘミセルロースと粉末混合する工程、および(b)得られた粉末混合物を50℃以上100℃未満で相対湿度50%以上の条件で湿熱処理する工程を有することを特徴とする。
(II) Method for suppressing starch decay The method for inhibiting starch of the present invention comprises (a) a step of powder-mixing starch with water-soluble hemicellulose, and (b) the obtained powder mixture at 50 ° C. or higher and lower than 100 ° C. and a relative humidity of 50 % Wet heat treatment under the condition of% or more.

(a)の工程で使用する澱粉および水溶性ヘミセルロースは、前述の通りであり、互いに粉末状態のものを混合して使用される。ちなみに、もち馬鈴薯澱粉であるAVEBE社製のELIAN100(商品名)、大豆由来の水溶性ヘミセルロースである三栄源エフ・エフ・アイ(株)製のSM−1200(商品名)およびSM−900(商品名)、不二製油(株)製のソヤファイブS−HR100(商品名)はいずれも粉末である。   The starch and water-soluble hemicellulose used in the step (a) are as described above, and are used by mixing powdered ones. Incidentally, ELIAN100 (trade name) manufactured by AVEBE, which is a potato starch, SM-1200 (trade name) and SM-900 (product) manufactured by San-Ei Gen FFI Co., Ltd., which are water-soluble hemicelluloses derived from soybeans. Name) and Soya Five S-HR100 (trade name) manufactured by Fuji Oil Co., Ltd. are both powders.

粉末状の澱粉および水溶性ヘミセルロースの混合は、通常の方法で行うことができ、例えば、ダブルコーンミキサーなど転倒式ミキサーやナウタミキサーなど回転式スクリューミキサーを使用し、均一になるまで混合する方法を挙げることができる。   Mixing of powdered starch and water-soluble hemicellulose can be carried out by a usual method, for example, using a rotary screw mixer such as a tumbling mixer such as a double corn mixer or a nauta mixer, and mixing until uniform. Can be mentioned.

斯くして調製された粉末混合物は、(b)の50℃以上100℃未満で相対湿度50%以上100%以下の条件で湿熱処理する工程に供せられる。当該(b)工程は、(I)で説明する方法に従って実施することができる。   The powder mixture thus prepared is subjected to the wet heat treatment step (b) under the conditions of 50 to 100 ° C. and a relative humidity of 50 to 100%. The said (b) process can be implemented in accordance with the method demonstrated by (I).

斯くして澱粉は、未処理の澱粉または未処理の澱粉と水溶性ヘミセルロールの粉末混合物と比較して、澱粉粒の崩壊が抑制されている性質を備えるように改質される。かかる方法によって改質された澱粉は、澱粉含有組成物の状態で、食品の品質改良剤または食感改良剤として各種の食品に製造に使用することができる。   Thus, the starch is modified so as to have the property that the collapse of the starch granules is suppressed as compared with the untreated starch or the powder mixture of the untreated starch and the water-soluble hemicellulose. The starch modified by such a method can be used in the production of various foods as a food quality improver or texture improver in the form of a starch-containing composition.

以下に、本発明を、実施例を用いて説明するが、本発明はこれらに何ら限定されるものではない。   The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実験例
各種の条件で澱粉含有組成物を調製し(実施例1〜19、比較例1〜13、参考例1)、調製した各種澱粉含有組成物について、水での膨潤、糊化、老化、粘度の変化から、澱粉粒の膨潤抑制性と崩壊抑制性を評価した。なお、各表に示す配合比率はすべて重量比を意味する。
Experimental Examples Starch-containing compositions were prepared under various conditions (Examples 1-19, Comparative Examples 1-13, Reference Example 1), and various starch-containing compositions prepared were swollen with water, gelatinized, aged, From the change in viscosity, the swelling inhibition and disintegration inhibition of starch granules were evaluated. In addition, all the compounding ratios shown in each table mean weight ratios.

(1)澱粉含有組成物の調製
澱粉と水溶性ヘミセルロースを、表1記載の配合割合で粉体混合した後、恒温恒湿槽を用いて、表1に記載するそれぞれの条件下で湿熱処理を行った(実施例1〜19)。また比較例として、澱粉と水溶性ヘミセルロースを、表1記載の配合割合で粉体混合した後、湿熱処理をしないか、または50℃未満または50%未満の相対湿度条件で湿熱処理を行った(比較例1〜10)。さらに比較例として、澱粉に水溶性ヘミセルロースを配合しないか(比較例11および12)、または澱粉と水溶性ヘミセルロースをそれぞれ別個に湿熱処理した後に混合して澱粉含有組成物を調製した(比較例13)。また、参考例として、ワキシーコーンスターチをアジピン酸で架橋し、さらにアセチル化した、市販の加工澱粉である、Colflo67(商品名)を用いた(参考例1)。
(1) Preparation of starch-containing composition After starch and water-soluble hemicellulose are powder-mixed at a blending ratio shown in Table 1, using a thermo-hygrostat, wet heat treatment is performed under each condition described in Table 1. Performed (Examples 1-19). In addition, as a comparative example, starch and water-soluble hemicellulose were powder-mixed at a blending ratio shown in Table 1, and were not subjected to wet heat treatment, or were subjected to wet heat treatment under a relative humidity condition of less than 50 ° C. or less than 50% ( Comparative Examples 1-10). Further, as a comparative example, water-soluble hemicellulose was not added to starch (Comparative Examples 11 and 12), or starch and water-soluble hemicellulose were separately wet-heat treated and mixed to prepare a starch-containing composition (Comparative Example 13). ). Further, as a reference example, Colflo 67 (trade name), which is a commercially available processed starch obtained by crosslinking waxy corn starch with adipic acid and further acetylating, was used (Reference Example 1).

尚、各処方で用いた原材料は、下記の通りである。また、湿熱処理にはEspec社製の恒温恒湿槽(型番:SH−641)を用いた。   In addition, the raw material used by each prescription is as follows. In addition, a constant temperature and humidity chamber (model number: SH-641) manufactured by Espec was used for the wet heat treatment.

・もち馬鈴薯澱粉:ELIAN100(AVEBE製)
・馬鈴薯澱粉:精製乾燥殺菌馬澱(松谷化学工業製)
・ワキシーコーンスターチ:ワキシースターチW(三和澱粉工業製)
・タピオカ澱粉:タイ国産
・水溶性ヘミセルロース:ソヤファイブS−HR100(不二製油製)
・ワキシーコーンスターチ加工澱粉:Colflo67(日本NSC製)
・ Mochi potato starch: ELIAN100 (made by AVEBE)
・ Potato starch: Refined and dried pasteurized horse starch (Matsuya Chemical Co., Ltd.)
-Waxy corn starch: Waxy starch W (manufactured by Sanwa Starch Industry)
Tapioca starch: domestically produced in Thailand Water-soluble hemicellulose: Soya Five S-HR100 (Fuji Oil)
-Waxy corn starch processed starch: Colflo 67 (NSC Japan)

Figure 0005127826
Figure 0005127826

(2)澱粉粒膨潤性と崩壊抑制性の評価
<評価方法>
表1記載の処方により得られた各種試料(実施例、比較例及び参考例)に、最終濃度が固形物換算で6重量%となるように水に添加した(全量25g)。なお、以後、澱粉、澱粉含有組成物および水溶性ヘミセルロースの濃度については、特に記載のない場合は、固形物換算の重量%とする。これを160rpmで撹拌しながら(最初の10秒のみ960rpm)、表2に記載する条件で連続的に加熱および冷却し、粘度変化を測定した。なお、粘度の測定は、New Port Scientific社製RVA(Rapid Visco Analyzer)を用いて行った。当該RVAは、プログラムされた温度と攪拌子の回転数における粘度を連続して測定できる装置である。粘度はRVA unit(以後、RVUと表記する)という単位で示され、SI単位系の粘度の単位であるパスカル・秒(Pa.s)の値を0.012で除した値とほぼ等しいとされる。なお、以後、特に記載のない限り「RVA測定」とは、表2に記載した温度プログラムで測定したものとする。
(2) Evaluation of starch granule swelling property and disintegration inhibiting property <evaluation method>
To various samples (Examples, Comparative Examples and Reference Examples) obtained according to the formulations shown in Table 1, water was added so that the final concentration was 6% by weight in terms of solids (total amount 25 g). Hereinafter, the concentrations of starch, starch-containing composition, and water-soluble hemicellulose shall be weight% in terms of solid matter, unless otherwise specified. While stirring this at 160 rpm (960 rpm only for the first 10 seconds), it was continuously heated and cooled under the conditions described in Table 2, and the viscosity change was measured. The viscosity was measured using RVA (Rapid Visco Analyzer) manufactured by New Port Scientific. The RVA is an apparatus that can continuously measure the viscosity at a programmed temperature and the number of revolutions of a stirrer. Viscosity is expressed in units of RVA unit (hereinafter referred to as RVU) and is approximately equal to the value obtained by dividing the value of Pascal second (Pa.s), which is the unit of viscosity of the SI unit system, by 0.012. The Hereinafter, unless otherwise specified, “RVA measurement” is assumed to be measured by the temperature program described in Table 2.

Figure 0005127826
Figure 0005127826

一般に天然の澱粉(未処理澱粉)は多量の水の存在下で加熱すると、ある一定の温度域で、水を吸収して膨潤し始める。かかる様子は、RVAにおいて粘度カーブの立ち上がりとして現われる。その後、加熱することによって澱粉粒が膨潤し、粘度はさらに上昇していき、次いで澱粉粒が十分に膨潤すると粘度カーブはピークに達する。その後、糊化した澱粉粒は崩壊を開始し、粘度カーブは下降を示す。当該図1は、天然澱粉として4.8重量%の天然のもち馬鈴薯澱粉(未処理澱粉;比較例11)をRVA測定した粘度挙動(粘度カーブ)であり、天然澱粉の澱粉粒の膨潤および崩壊の様子を表わしている。澱粉粒の膨潤により粘度カーブが急に立ち上がり、やがて十分に膨潤してピークを示すものの、ただちに澱粉粒は崩壊を開始し、粘度カーブは下降を示すことがわかる。また、図2には、RVA測定前(左図)と測定後(右図)における当該もち馬鈴薯澱粉(未処理澱粉;比較例11)の顕微鏡写真の画像を示す。RVA測定前には、はっきりと確認できる澱粉粒が、RVA測定による加熱と攪拌工程によって崩壊していることがわかる。   In general, when natural starch (untreated starch) is heated in the presence of a large amount of water, it begins to swell by absorbing water in a certain temperature range. Such a situation appears as the rise of the viscosity curve in RVA. Thereafter, by heating, the starch granules swell and the viscosity further increases, and when the starch granules are sufficiently swollen, the viscosity curve reaches a peak. Thereafter, the gelatinized starch granules start to disintegrate and the viscosity curve shows a decrease. FIG. 1 is a viscosity behavior (viscosity curve) measured by RVA of 4.8% by weight of natural potato starch (untreated starch; Comparative Example 11) as natural starch, and swelling and disintegration of starch granules of natural starch. It represents the state of. It can be seen that the viscosity curve suddenly rises due to swelling of the starch granules, and eventually swells sufficiently to show a peak, but the starch granules immediately start to disintegrate and the viscosity curve shows a decrease. Moreover, in FIG. 2, the image of the microscope picture of the said potato starch (unprocessed starch; Comparative Example 11) before a RVA measurement (left figure) and after a measurement (right figure) is shown. Before the RVA measurement, it can be seen that the starch granules that can be clearly confirmed are broken down by the heating and stirring steps by the RVA measurement.

一方、天然の澱粉(未処理澱粉)を化学的に処理した架橋澱粉は、その架橋の程度が強くなるに従い、澱粉粒の膨潤や崩壊が抑制される為に、粘度カーブの立ち上がりが遅くなったり、粘度カーブがピークを示さなくなって右肩上がりになったり、全体的に粘度が低下するなどの様子を呈することが知られている。架橋澱粉の一例として、ワキシーコーン澱粉をアジピン酸で架橋し、アセチル化したColflo67(日本NSC製;参考例1)を4.8重量%でRVA測定した結果を図3に示す。   On the other hand, the cross-linked starch obtained by chemically treating natural starch (untreated starch), as the degree of cross-linking increases, the swelling and disintegration of starch granules are suppressed, so the viscosity curve rises slowly. It is known that the viscosity curve no longer shows a peak and rises to the right, or that the viscosity decreases as a whole. As an example of the cross-linked starch, waxy corn starch is cross-linked with adipic acid and acetylated Colflo 67 (manufactured by NSC of Japan; Reference Example 1) is subjected to RVA measurement at 4.8% by weight.

本発明では、天然の澱粉および架橋澱粉に関するこの様なRVA測定時の粘度カーブの変化に基づいて、上記で調製した各種試料の粘度カーブから、これらの試料が澱粉粒の膨潤や崩壊が抑制されているかどうかについて評価を行った。   In the present invention, based on the change in the viscosity curve at the time of RVA measurement regarding natural starch and crosslinked starch, the swelling and disintegration of starch granules are suppressed from the viscosity curves of the various samples prepared above. It was evaluated whether or not.

<評価1>
図4に、もち馬鈴薯澱粉と水溶性ヘミセルロースを80:20の比率で混合した後、80℃−相対湿度(RH)80%で湿熱処理した試料(実施例1:実線、および実施例7:点線)の粘度カーブを示す。また、図5および6に、それぞれ上記実施例1および7のRVA測定前(左図)とRVA測定後(右図)の顕微鏡写真の画像を示した。未処理(比較例1:太実線)の試料と比較して、湿熱処理5時間(実施例7:点線)及び湿熱処理24時間(実施例1:実線)の試料では、粘度の立ち上がりが遅くなっており、このことから澱粉粒の膨潤が抑制されていることがわかる。また、湿熱処理5時間の試料(実施例7:点線)では粘度カーブのピークによって表わされる粘度低下が、未処理試料(比較例1:太実線)よりも小さく、また湿熱処理24時間の試料(実施例1:実線)では粘度カーブが低下しないことから、澱粉粒の崩壊が抑制されていることが予想される。
<Evaluation 1>
FIG. 4 shows a sample in which mochi potato starch and water-soluble hemicellulose are mixed at a ratio of 80:20, and then heat-treated at 80 ° C. and 80% relative humidity (RH) (Example 1: solid line and Example 7: dotted line). ) Viscosity curve. FIGS. 5 and 6 show micrograph images before and after RVA measurement in Examples 1 and 7 (left figure) and after RVA measurement (right figure), respectively. Compared with the untreated (Comparative Example 1: thick solid line) sample, the rise of viscosity is slower in the wet heat treatment 5 hour (Example 7: dotted line) and wet heat treatment 24 hour (Example 1: solid line) samples. This shows that the swelling of the starch granules is suppressed. In addition, in the sample of wet heat treatment for 5 hours (Example 7: dotted line), the viscosity decrease represented by the peak of the viscosity curve is smaller than that of the untreated sample (Comparative Example 1: thick solid line), and the sample for wet heat treatment of 24 hours ( In Example 1 (solid line), since the viscosity curve does not decrease, it is expected that the collapse of starch granules is suppressed.

未処理試料(比較例1)のRVA測定前(左図)とRVA測定後(右図)の顕微鏡写真の画像を図7に示す。かかる画像から、未処理試料(比較例1)では、RVA測定前には、はっきりと確認できていた澱粉粒が、RVA測定による加熱と攪拌工程によって崩壊しているが、湿熱処理5時間(実施例7:図6)及び湿熱処理24時間(実施例1:図5)の試料では、RVA測定後においても澱粉粒が残っており、澱粉粒の崩壊が抑制されていることが確認された。これらの粘度挙動から澱粉粒の膨潤抑制性と崩壊抑制性を評価した結果を表3に示す。   FIG. 7 shows micrograph images of an untreated sample (Comparative Example 1) before RVA measurement (left figure) and after RVA measurement (right figure). From this image, in the untreated sample (Comparative Example 1), the starch granules that had been clearly confirmed before the RVA measurement were disintegrated by the heating and stirring process by the RVA measurement, but the wet heat treatment was performed for 5 hours (implementation). In the sample of Example 7: FIG. 6) and the wet heat treatment for 24 hours (Example 1: FIG. 5), starch granules remained even after the RVA measurement, and it was confirmed that the collapse of the starch granules was suppressed. Table 3 shows the results of evaluating the swelling inhibition and disintegration inhibition of starch granules from these viscosity behaviors.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制性及び崩壊抑制性に関する評価は、比較例1を基準として下記の基準に従って行った。
◎:膨潤抑制または崩壊抑制に非常に効果有り
○:膨潤抑制または崩壊抑制に効果有り
△:膨潤抑制または崩壊抑制に僅かに効果有り
×:膨潤抑制または崩壊抑制に効果なし。
In addition, the evaluation regarding swelling suppression property and disintegration suppression property was performed according to the following reference | standard on the basis of the comparative example 1. FIG.
A: Very effective in suppressing swelling or disintegrating B: Effective in suppressing swelling or disintegrating Δ: Slightly effective in suppressing swelling or disintegrating ×: Ineffective in suppressing swelling or disintegrating

<評価2>
図8に、馬鈴薯澱粉と水溶性ヘミセルロースを80:20の比率で混合した後、80℃−RH80%で湿熱処理した試料の粘度カーブを示す。未処理(比較例8:太実線)試料の粘度カーブに比べて、湿熱処理5時間(実施例14:点線)及び湿熱処理24時間(実施例15:実線)の試料の粘度カーブは全体的に低下しており、このことから、湿熱処理によって得られた試料は、澱粉粒の膨潤が抑制されていることがわかる。評価を表4に示す。
<Evaluation 2>
FIG. 8 shows a viscosity curve of a sample in which potato starch and water-soluble hemicellulose were mixed at a ratio of 80:20 and then wet-heat treated at 80 ° C.-RH 80%. Compared to the viscosity curve of the untreated (Comparative Example 8: thick solid line) sample, the viscosity curve of the sample after 5 hours of wet heat treatment (Example 14: dotted line) and 24 hours of wet heat treatment (Example 15: solid line) From this, it can be seen that in the sample obtained by the wet heat treatment, the swelling of the starch granules is suppressed. The evaluation is shown in Table 4.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制に関する評価は、比較例8を基準として前述する方法に従って行った。   In addition, evaluation regarding swelling suppression was performed according to the method mentioned above on the basis of the comparative example 8. FIG.

<評価3>
図9にワキシーコーンスターチと水溶性ヘミセルロースを80:20の比率で混合した後、80℃−RH80%で湿熱処理した試料の粘度カーブを示す。未処理試料(比較例9:太実線)と比較して、湿熱処理5時間の試料(実施例16:点線)及び湿熱処理24時間の試料(実施例17:実線)は、ピークによって表わされる粘度低下が小さくなっており、このことから澱粉粒の崩壊が抑制されていることがわかる。評価を表5に示す。
<Evaluation 3>
FIG. 9 shows a viscosity curve of a sample obtained by mixing waxy corn starch and water-soluble hemicellulose at a ratio of 80:20 and then wet-heat treating at 80 ° C.-RH 80%. Compared to the untreated sample (Comparative Example 9: thick solid line), the 5 hour wet heat treatment sample (Example 16: dotted line) and the 24 hour wet heat treatment sample (Example 17: solid line) have a viscosity represented by the peak. The decrease is small, and it can be seen from this that the collapse of the starch granules is suppressed. The evaluation is shown in Table 5.

Figure 0005127826
Figure 0005127826

尚、崩壊抑制に関する評価は、比較例9を基準として前述する方法に従って行った。   In addition, the evaluation regarding collapse suppression was performed according to the method mentioned above on the basis of the comparative example 9. FIG.

<評価4>
図10にタピオカ澱粉と水溶性ヘミセルロースを80:20の比率で混合した後、80℃−RH80%で湿熱処理した試料の粘度カーブを示す。未処理試料(比較例10:太実線)の粘度カーブと比較して、湿熱処理5時間の試料(実施例18:点線)及び湿熱処理24時間の試料(実施例19:実線)では、ピークの粘度が低くなっている。また、粘度カーブのピークによって表わされる粘度低下が小さくなっており、澱粉粒の崩壊が抑制されていることがわかった。評価を表6に示す。
<Evaluation 4>
FIG. 10 shows a viscosity curve of a sample obtained by mixing tapioca starch and water-soluble hemicellulose at a ratio of 80:20 and then wet-heat treated at 80 ° C.-RH 80%. Compared to the viscosity curve of the untreated sample (Comparative Example 10: thick solid line), the peak of the 5 hour wet heat treatment sample (Example 18: dotted line) and the 24 hour wet heat treatment sample (Example 19: solid line) The viscosity is low. In addition, it was found that the decrease in viscosity represented by the peak of the viscosity curve was small, and the starch granules were inhibited from collapsing. The evaluation is shown in Table 6.

Figure 0005127826
Figure 0005127826

尚、崩壊抑制の評価は、比較例10を基準として前述する方法に従って行った。   In addition, evaluation of collapse suppression was performed according to the method described above with reference to Comparative Example 10.

<評価5>
図11にもち馬鈴薯澱粉と水溶性ヘミセルロースを80:20の比率で混合した後、80℃−RH80%、80℃−RH50%、および80℃−RH30%の条件でそれぞれ24時間湿熱処理した試料の粘度カーブを示した(実施例1および8,比較例6)。未処理試料(比較例1:太実線)と比較して、80℃−RH50%湿熱処理の試料(実施例8:点線)、および80℃−RH80%湿熱処理の試料(実施例1:実線)は、湿熱処理時の湿度が上がるにつれて、粘度カーブの立ち上がりが遅くなっており、澱粉粒の膨潤が抑制されていることがわかる。一方、80℃−RH30%湿熱処理の試料(比較例6:一点破線(−・−・−))の粘度カーブは、未処理試料(比較例1:太実線)とほぼ同様の立ち上がりを示し、澱粉粒の膨潤が抑制されている様子は見られなかった。
<Evaluation 5>
FIG. 11 shows a mixture of potato starch and water-soluble hemicellulose mixed at a ratio of 80:20, and then wet-heat treated for 24 hours under conditions of 80 ° C.-RH 80%, 80 ° C.-RH 50%, and 80 ° C.-RH 30%. Viscosity curves were shown (Examples 1 and 8, Comparative Example 6). Compared to untreated sample (Comparative Example 1: thick solid line), 80 ° C.-RH 50% wet heat treated sample (Example 8: dotted line) and 80 ° C.-RH 80% wet heat treated sample (Example 1: solid line) It can be seen that as the humidity during the wet heat treatment increases, the rise of the viscosity curve becomes slower, and the swelling of the starch granules is suppressed. On the other hand, the viscosity curve of the 80 ° C.-RH 30% wet heat-treated sample (Comparative Example 6: one-dot broken line (-----)) shows almost the same rise as the untreated sample (Comparative Example 1: thick solid line). It was not observed that the swelling of starch granules was suppressed.

また、未処理試料(比較例1:太実線)と比較して、80℃−RH50%湿熱処理の試料(実施例8:点線)の粘度カーブは、ピークによって表わされる粘度低下度が小さく、また80℃−RH80%湿熱処理の試料(実施例1:実線)は粘度低下を示さないことから、澱粉粒の崩壊が抑制されていることがわかる。一方、80℃−RH30%湿熱処理の試料(比較例6:一点破線)の粘度カーブは、ピークによって表わされる粘度低下が、未処理試料よりも大きく、澱粉粒の崩壊がむしろ促進されていることがわかった。評価を表7に示す。   In addition, the viscosity curve of the 80 ° C.-RH 50% wet heat-treated sample (Example 8: dotted line) is smaller in viscosity reduction represented by the peak than the untreated sample (Comparative Example 1: thick solid line). The 80 ° C.-RH 80% wet heat treatment sample (Example 1: solid line) does not show a decrease in viscosity, which indicates that the starch granules are inhibited from collapsing. On the other hand, the viscosity curve of the 80 ° C.-RH 30% wet heat treatment sample (Comparative Example 6: one-dot broken line) shows that the decrease in viscosity represented by the peak is larger than that of the untreated sample, and the starch particle disintegration is rather accelerated. I understood. The evaluation is shown in Table 7.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制および崩壊抑制の評価は、比較例1を基準として前述する方法に従って行った。   In addition, evaluation of swelling suppression and decay | disintegration suppression was performed in accordance with the method mentioned above on the basis of the comparative example 1. FIG.

<評価6>
図12にもち馬鈴薯澱粉と水溶性ヘミセルロースを80:20の比率で混合後、RH80%で80℃、60℃、40℃において、24時間湿熱処理した試料の経時的な粘度カーブを示した(実施例1および9、比較例7)。
<Evaluation 6>
FIG. 12 shows a time-dependent viscosity curve of a sample obtained by mixing potato starch and water-soluble hemicellulose at a ratio of 80:20 and then wet-heated at 80 ° C., 80 ° C., 60 ° C., and 40 ° C. for 24 hours. Examples 1 and 9, comparative example 7).

未処理試料(比較例1:太実線)の粘度カーブと比較して、RH80%での湿熱処理温度が60℃(実施例9:点線)および80℃(実施例1:実線)と上がるにつれて、粘度の立ち上がりが遅くなっており、これから澱粉粒の膨潤が抑制されていることがわかる。一方、RH80%−40℃湿熱処理試料(比較例7:一点破線)の粘度カーブは、未処理試料(比較例1:太実線)とほぼ同様の立ち上がりを示し、これから澱粉粒の膨潤は抑制されていないと判断された。また、未処理試料(比較例1:太実線)の粘度カーブと比較して、RH80%−60℃湿熱処理の試料(実施例9:点線)はピークによって表わされる粘度低下が小さく、RH80%−80℃湿熱処理の試料(実施例1:実線)は粘度低下を示さないことから、澱粉粒の崩壊が抑制されていることがわかった。一方、RH80%−40℃湿熱処理の試料(比較例7:一点破線)は、ピークによって表わされる粘度低下度が未処理試料(比較例1)とほぼ同等であり、これから澱粉粒の崩壊は抑制されていないと判断された。評価を表8に示す。   As compared with the viscosity curve of the untreated sample (Comparative Example 1: thick solid line), the wet heat treatment temperature at 80% RH increased to 60 ° C. (Example 9: dotted line) and 80 ° C. (Example 1: solid line). It can be seen that the rise of the viscosity is slow, and from this the swelling of the starch granules is suppressed. On the other hand, the viscosity curve of the RH 80% -40 ° C. wet-heat treated sample (Comparative Example 7: one-dot broken line) shows almost the same rise as that of the untreated sample (Comparative Example 1: thick solid line), from which the swelling of starch granules is suppressed. It was judged that it was not. In addition, compared with the viscosity curve of the untreated sample (Comparative Example 1: thick solid line), the RH 80% -60 ° C. wet heat treated sample (Example 9: dotted line) has a small decrease in viscosity represented by the peak, and RH 80% — Since the sample of heat-moisture treatment at 80 ° C. (Example 1: solid line) did not show a decrease in viscosity, it was found that the collapse of starch granules was suppressed. On the other hand, the sample of RH 80% -40 ° C. wet heat treatment (Comparative Example 7: one-dot broken line) has almost the same degree of decrease in viscosity represented by the peak as the untreated sample (Comparative Example 1). It was determined that it was not. The evaluation is shown in Table 8.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制および崩壊抑制の評価は、比較例1を基準として前述する方法に従って行った。   In addition, evaluation of swelling suppression and decay | disintegration suppression was performed in accordance with the method mentioned above on the basis of the comparative example 1. FIG.

<評価7>
図13に、表9に示した処理で調製した試料(実施例1、比較例1および11〜13)の粘度カーブを示した。
<Evaluation 7>
FIG. 13 shows viscosity curves of samples (Example 1, Comparative Examples 1 and 11 to 13) prepared by the treatment shown in Table 9.

Figure 0005127826
Figure 0005127826

なお、粘度測定は、実施例1(実線)および比較例1(一点破線)および13(二点破線(−・・−・・−))については、濃度が6重量%(澱粉4.8重量%、水溶性ヘミセルロース1.2重量%)となるように、比較例11(太実線)および12(点線)については濃度が4.8重量%となるように、水に添加して、その他の条件は前述のRVAの測定方法に準じて評価を行った。   In addition, the viscosity was measured for Example 1 (solid line) and Comparative Example 1 (one-dot broken line) and 13 (two-dot broken line (-...)) with a concentration of 6% by weight (starch 4.8% by weight, Water-soluble hemicellulose (1.2% by weight) was added to water so that the concentration of Comparative Example 11 (thick solid line) and 12 (dotted line) was 4.8% by weight. Evaluation was performed according to the RVA measurement method.

図13に示すように、澱粉と水溶性ヘミセルロースを粉体混合後、湿熱処理した試料(実施例1:実線)は、他の試料と比較して、粘度カーブの立ち上がりが最も遅く、澱粉粒の膨潤が他の組み合わせより最も抑制されていることがわかった。また実施例1以外の試料はピークを示し、その後経時的に粘度低下を示すのに対して、実施例1の試料はピークを示さず、粘度低下も示さなかった。これから、実施例1の試料は、澱粉粒の崩壊も最も抑制されていることがわかった。比較例11を基準として評価した結果を表10に示す。   As shown in FIG. 13, the sample (Example 1: solid line) subjected to wet heat treatment after powder mixing of starch and water-soluble hemicellulose has the slowest rise in the viscosity curve as compared with other samples, It was found that swelling was suppressed most than other combinations. In addition, samples other than Example 1 showed a peak, and thereafter showed a decrease in viscosity over time, whereas the sample of Example 1 showed no peak and showed no decrease in viscosity. From this, it was found that the sample of Example 1 was most inhibited from the collapse of starch granules. Table 10 shows the results of evaluation based on Comparative Example 11.

Figure 0005127826
Figure 0005127826

<評価8>
表11に示す条件で処理した実施例1〜6、および比較例1の試料の最終粘度(RVU)を調べ、これを表11に示した。この結果、12時間までは処理時間が長くなるに従って最終粘度は低下したが、実施例4〜6に示すように、処理時間が12時間以上になると、粘度は殆ど変化しなかった。
<Evaluation 8>
The final viscosities (RVU) of the samples of Examples 1 to 6 and Comparative Example 1 treated under the conditions shown in Table 11 were examined and are shown in Table 11. As a result, the final viscosity decreased as the treatment time increased up to 12 hours. However, as shown in Examples 4 to 6, when the treatment time was 12 hours or more, the viscosity hardly changed.

Figure 0005127826
Figure 0005127826

また、図14にこれらの各試料の粘度カーブを示す(実施例1:点線、実施例2:太実線、実施例3:一点破線、実施例4:二点破線、比較例1:実線)。   Moreover, the viscosity curve of each of these samples is shown in FIG. 14 (Example 1: dotted line, Example 2: thick solid line, Example 3: one-dot broken line, Example 4: two-dot broken line, Comparative Example 1: solid line).

図14に示すように、未処理(比較例1:実線)の試料は、粘度の立ち上がりが早く、ピークを示して、その後粘度が低下するのに対して、実施例1〜4及び参考例では粘度の立ち上がりが遅く、ピークを示さず、このことから澱粉粒の膨潤および崩壊がいずれも抑制されていることがわかった。また、この結果から、湿熱処理する温度、相対湿度、処理時間をコントロールすることにより澱粉粒の膨潤および崩壊をコントロールすることが可能であることがわかる。これらの評価を表12に示す。   As shown in FIG. 14, the untreated (Comparative Example 1: solid line) sample showed a rapid rise in viscosity and showed a peak, and then the viscosity decreased, whereas in Examples 1 to 4 and Reference Example, The rise of the viscosity was slow and no peak was shown, indicating that the swelling and disintegration of the starch granules were both suppressed. In addition, it can be seen from this result that the swelling and disintegration of the starch granules can be controlled by controlling the temperature for heat-moisture treatment, the relative humidity, and the treatment time. These evaluations are shown in Table 12.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制および崩壊抑制の評価は、比較例1を基準として前述する方法に従って行った。   In addition, evaluation of swelling suppression and decay | disintegration suppression was performed in accordance with the method mentioned above on the basis of the comparative example 1. FIG.

<評価9>
図15にもち馬鈴薯澱粉と水溶性ヘミセルロースを99:1の比率で混合した後、85℃、相対湿度95%で24時間湿熱処理した試料(実施例10:実線)の粘度カーブを示し、水溶性ヘミセルロースを混合していない未処理のもち馬鈴薯(澱粉単体;比較例11:点線)および、もち馬鈴薯澱粉と水溶性ヘミセルロースを99:1の比率で混合した未処理のもち馬鈴薯澱粉(比較例2:太実線)の粘度カーブと比較した。RVAでの粘度測定は澱粉濃度が4.8重量%になるように調整し、その他の条件は前述のRVAの測定方法に準じて評価を行った。
<Evaluation 9>
FIG. 15 shows a viscosity curve of a sample (Example 10: solid line) obtained by mixing potato starch and water-soluble hemicellulose at a ratio of 99: 1 and then heat-moisture treated at 85 ° C. and a relative humidity of 95% for 24 hours. Untreated glutinous potato not mixed with hemicellulose (starch alone; Comparative Example 11: dotted line) and untreated glutinous potato starch mixed with glutinous potato starch and water-soluble hemicellulose in a ratio of 99: 1 (Comparative Example 2: It was compared with the viscosity curve of the thick solid line). Viscosity measurement with RVA was adjusted so that the starch concentration would be 4.8% by weight, and other conditions were evaluated according to the RVA measurement method described above.

その結果、澱粉単体(比較例11:点線)と比較して、24時間湿熱処理した試料(実施例10:実線)は粘度の立ち上がりが遅く、更には、ピークを示さず、澱粉粒の膨潤および崩壊のいずれもが抑制されていることが判明した。なお、水溶性ヘミセルロースを混合した未処理試料(比較例2:太実線)と澱粉単体(比較例11:点線)は、ほぼ同様の粘度カーブを示した。評価を表13に示す。   As a result, compared to starch alone (Comparative Example 11: dotted line), the sample that was wet-heated for 24 hours (Example 10: solid line) had a slow rise in viscosity, and further showed no peak, swelling of starch granules and All of the collapses were found to be suppressed. The untreated sample mixed with water-soluble hemicellulose (Comparative Example 2: thick solid line) and starch alone (Comparative Example 11: dotted line) showed substantially the same viscosity curves. The evaluation is shown in Table 13.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制および崩壊抑制の評価は、比較例11を基準として前述する方法に従って行った。   In addition, evaluation of swelling suppression and decay | disintegration suppression was performed in accordance with the method mentioned above on the basis of the comparative example 11. FIG.

<評価10>
図16にもち馬鈴薯澱粉と水溶性ヘミセルロースを95:5の比率で混合した後、85℃、相対湿度95%で24時間湿熱処理した試料(実施例11:実線)の粘度カーブを示し、水溶性ヘミセルロースを混合していない未処理のもち馬鈴薯(澱粉単体;比較例11:点線)および、もち馬鈴薯澱粉と水溶性ヘミセルロースを95:5の比率で混合した未処理のもち馬鈴薯澱粉(比較例3:太実線)の粘度カーブと比較した。RVAでの粘度測定は澱粉濃度が4.8重量%になるように調整し、その他の条件は前述のRVAの測定方法に準じて評価を行った。
<Evaluation 10>
FIG. 16 shows the viscosity curve of a sample (Example 11: solid line) in which potato starch and water-soluble hemicellulose were mixed at a ratio of 95: 5 and then heat-treated at 85 ° C. and a relative humidity of 95% for 24 hours. Untreated glutinous potato not mixed with hemicellulose (starch alone; Comparative Example 11: dotted line) and untreated glutinous potato starch mixed with glutinous potato starch and water-soluble hemicellulose in a ratio of 95: 5 (Comparative Example 3: It was compared with the viscosity curve of the thick solid line). Viscosity measurement with RVA was adjusted so that the starch concentration would be 4.8% by weight, and other conditions were evaluated according to the RVA measurement method described above.

その結果、澱粉単体(比較例11:点線)と比較して、24時間湿熱処理した試料(実施例11:実線)は粘度の立ち上がりが遅く、更には、ピークを示さず、澱粉粒の膨潤および崩壊のいずれもが抑制されていることが判明した。なお、水溶性ヘミセルロースを混合した未処理試料(比較例3:太実線)は、澱粉単体(比較例11:点線)と比較して、粘度立ち上がりが遅くピークによって表わされる粘度低下が小さく、澱粉に水溶性ヘミセルロースを混合することで若干、澱粉の膨潤および崩壊が抑制されていた。しかし、実施例11と比較すると抑制の度合いは不十分であった。評価を表14に示す。   As a result, compared to starch alone (Comparative Example 11: dotted line), the sample that was wet-heated for 24 hours (Example 11: solid line) had a slow rise in viscosity, and further showed no peak, swelling of starch granules and All of the collapses were found to be suppressed. In addition, the untreated sample mixed with water-soluble hemicellulose (Comparative Example 3: thick solid line) has a slower viscosity rise and a lower viscosity drop represented by a peak than starch alone (Comparative Example 11: dotted line). By mixing water-soluble hemicellulose, the swelling and disintegration of starch were slightly suppressed. However, the degree of suppression was insufficient as compared with Example 11. The evaluation is shown in Table 14.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制および崩壊抑制の評価は、比較例11を基準として前述する方法に従って行った。   In addition, evaluation of swelling suppression and decay | disintegration suppression was performed in accordance with the method mentioned above on the basis of the comparative example 11. FIG.

<評価11>
図17にもち馬鈴薯澱粉と水溶性ヘミセルロースを90:10の比率で混合し、85℃、相対湿度95%で24時間湿熱処理した試料(実施例12:実線)の粘度カーブを示し、水溶性ヘミセルロースを混合していない未処理のもち馬鈴薯(澱粉単体;比較例11:点線)および、もち馬鈴薯澱粉と水溶性ヘミセルロースを90:10の比率で混合した未処理のもち馬鈴薯澱粉(比較例4:太実線)の粘度カーブと比較した。RVAでの粘度測定は澱粉濃度が4.8重量%になるように調整し、その他の条件は前述のRVAの測定方法に準じて評価を行った。
<Evaluation 11>
FIG. 17 shows a viscosity curve of a sample (Example 12: solid line) obtained by mixing potato starch and water-soluble hemicellulose at a ratio of 90:10 and heat-treating at 85 ° C. and a relative humidity of 95% for 24 hours. Untreated glutinous potato (starch alone; comparative example 11: dotted line) and untreated glutinous potato starch mixed with glutinous potato starch and water-soluble hemicellulose in a ratio of 90:10 (comparative example 4: thick) It was compared with the viscosity curve of the solid line. Viscosity measurement with RVA was adjusted so that the starch concentration would be 4.8% by weight, and other conditions were evaluated according to the RVA measurement method described above.

その結果、澱粉単体(比較例11:点線)と比較して、24時間湿熱処理した試料(実施例12:実線)は粘度の立ち上がりが遅く、更には、ピークを示さず、澱粉粒の膨潤および崩壊のいずれもが抑制されていることが判明した。なお、水溶性ヘミセルロースを混合した未処理試料(比較例4:太実線)は、澱粉単体(比較例11:点線)と比較して、粘度立ち上がりが遅くピークによって表わされる粘度の低下が小さく、澱粉に水溶性ヘミセルロースを併用することで若干、澱粉の膨潤および崩壊が抑制されていた。しかし、実施例11と比較すると抑制の度合いは不十分であった。評価を表15に示す。   As a result, compared to starch alone (Comparative Example 11: dotted line), the sample that was wet-heated for 24 hours (Example 12: solid line) had a slow rise in viscosity, and further showed no peak, swelling of starch granules and All of the collapses were found to be suppressed. In addition, the untreated sample mixed with water-soluble hemicellulose (Comparative Example 4: thick solid line) has a slower viscosity rise and a smaller decrease in viscosity represented by a peak than starch alone (Comparative Example 11: dotted line). By using water-soluble hemicellulose in combination, the swelling and disintegration of starch were slightly suppressed. However, the degree of suppression was insufficient as compared with Example 11. The evaluation is shown in Table 15.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制および崩壊抑制の評価は、比較例11を基準として前述する方法に従って行った。   In addition, evaluation of swelling suppression and decay | disintegration suppression was performed in accordance with the method mentioned above on the basis of the comparative example 11. FIG.

<評価12>
図18にもち馬鈴薯澱粉と水溶性ヘミセルロースを70:30の比率で混合した後、85℃、相対湿度95%で24時間湿熱処理した試料(実施例13:実線)の粘度カーブを示し、水溶性ヘミセルロースを混合していない未処理のもち馬鈴薯(澱粉単体;比較例11:点線)および、もち馬鈴薯澱粉と水溶性ヘミセルロースを70:30の比率で混合した未処理のもち馬鈴薯澱粉(比較例5:太実線)の粘度カーブと比較した。RVAでの粘度測定は澱粉濃度が4.8重量%になるように調整し、その他の条件は前述のRVAの測定方法に準じて評価を行った。
<Evaluation 12>
FIG. 18 shows the viscosity curve of a sample (Example 13: solid line) obtained by mixing potato starch and water-soluble hemicellulose at a ratio of 70:30 and then heat-moisture treated at 85 ° C. and a relative humidity of 95% for 24 hours. Untreated glutinous potato not mixed with hemicellulose (starch alone; Comparative Example 11: dotted line) and untreated glutinous potato starch mixed with glutinous potato starch and water-soluble hemicellulose in a ratio of 70:30 (Comparative Example 5: It was compared with the viscosity curve of the thick solid line). Viscosity measurement with RVA was adjusted so that the starch concentration would be 4.8% by weight, and other conditions were evaluated according to the RVA measurement method described above.

その結果、澱粉単体(比較例11:点線)と比較して、24時間湿熱処理した試料(実施例13:実線)は、粘度の立ち上がりが遅く、更には、ピークを示さず、澱粉粒の膨潤および崩壊のいずれもが抑制されていることが判明した。なお、水溶性ヘミセルロースを混合した未処理試料(比較例5:太実線)は、澱粉単体(比較例11:点線)と比較して、粘度立ち上がりが遅くピークによって表わされる粘度低下が小さく、澱粉に水溶性ヘミセルロースを併用することで若干、澱粉の膨潤および崩壊が抑制されていた。しかし、実施例11と比較すると抑制の度合いは不十分であった。評価を表16に示す。   As a result, compared to starch alone (Comparative Example 11: dotted line), the sample that was wet-heated for 24 hours (Example 13: solid line) had a slow rise in viscosity, and further showed no peak and swelling of the starch granules. It was found that both the saponification and the decay were suppressed. In addition, the untreated sample mixed with water-soluble hemicellulose (Comparative Example 5: thick solid line) has a slower viscosity rise and a lower viscosity decrease represented by a peak than starch alone (Comparative Example 11: dotted line). By using water-soluble hemicellulose in combination, the swelling and disintegration of starch were slightly suppressed. However, the degree of suppression was insufficient as compared with Example 11. The evaluation is shown in Table 16.

Figure 0005127826
Figure 0005127826

尚、膨潤抑制および崩壊抑制の評価は、比較例11を基準として前述する方法に従って行った。   In addition, evaluation of swelling suppression and decay | disintegration suppression was performed in accordance with the method mentioned above on the basis of the comparative example 11. FIG.

以上のような各評価(評価1〜12)により、澱粉を水溶性ヘミセルロースと粉体混合して、これを50℃以上100℃未満、好ましくは80℃以上100℃未満の温度条件で、50%以上、好ましくは80%以上の相対湿度条件で湿熱処理することによって、澱粉単品(未処理または湿熱処理)または澱粉と水溶性ヘミセルロースの粉末混合物(未処理)に比して、澱粉の膨潤または/および崩壊が抑制されることが判明した。澱粉の中でも、特にもち馬鈴薯澱粉(評価1:実施例1と比較例1)は、他の澱粉〔馬鈴薯澱粉(評価2:実施例15と比較例8)、ワキシーコーンスターチ(評価3:実施例17と比較例9)、タピオカ澱粉(評価4:実施例18と比較例10)〕と比較して、未処理と湿熱処理後のRVAでの粘度カーブの変化が著しく、良好に澱粉粒の膨潤抑制効果および崩壊抑制効果が得られることがわかった。   According to each of the above evaluations (Evaluations 1 to 12), starch is mixed with water-soluble hemicellulose, and this is 50% or more and less than 100 ° C, preferably 80 ° C or more and less than 100 ° C, and 50% As described above, it is preferable that the starch swells or / is compared with a single starch product (untreated or wet heat treated) or a powder mixture of starch and water-soluble hemicellulose (untreated) by hydrothermal treatment under a relative humidity condition of 80% or more. And the decay was found to be suppressed. Among the starches, in particular, potato starch (Evaluation 1: Example 1 and Comparative Example 1) is another starch (potato starch (Evaluation 2: Example 15 and Comparative Example 8), waxy corn starch (Evaluation 3: Example 17). And Comparative Example 9) and Tapioca starch (Evaluation 4: Example 18 and Comparative Example 10)], the change in the viscosity curve in the RVA after the untreated and wet heat treatment was remarkable, and the swelling suppression of the starch granules was satisfactorily It turned out that an effect and a collapse inhibitory effect are acquired.

また、実施例10〜13の結果から、澱粉と水溶性ヘミセルロースの粉末混合物は、その配合割合が99:1〜70:30(重量比)の範囲で本発明の効果が十分に得られることが確認された。一方、比較例2〜5に示すように、かかる配合割合であっても、湿熱処理を行わなければ、本発明の効果が得られないことが確認された。   Moreover, from the results of Examples 10 to 13, the powder mixture of starch and water-soluble hemicellulose can sufficiently obtain the effects of the present invention when the blending ratio is in the range of 99: 1 to 70:30 (weight ratio). confirmed. On the other hand, as shown in Comparative Examples 2 to 5, it was confirmed that the effects of the present invention could not be obtained unless wet heat treatment was performed even at such a blending ratio.

以下、本発明で得られた澱粉含有組成物を食品に添加し、その効果を示す。処方中の「※」は、三栄源エフ・エフ・アイ株式会社の登録商標であることを示し、同じく「*」は三栄源エフ・エフ・アイ株式会社の製品であることを示す。
<試作例>
実施例1及び比較例1、比較例11、比較例12の試料を用い、表17の試作例1〜4に示す配合のフルーツソースを調製した。
Hereinafter, the starch containing composition obtained by this invention is added to a foodstuff, and the effect is shown. “*” In the prescription indicates a registered trademark of Saneigen FFI Co., Ltd., and “*” indicates a product of Saneigen FFI Co., Ltd.
<Example of prototype>
Using the samples of Example 1, Comparative Example 1, Comparative Example 11, and Comparative Example 12, fruit sauces having the formulations shown in Prototype Examples 1 to 4 in Table 17 were prepared.

Figure 0005127826
Figure 0005127826

<調製方法>
・水に砂糖、澱粉含有組成物を添加し、攪拌しながら加熱する。
・90℃で10分間加熱後、りんご果汁を添加する。
・20℃に冷却し、50%クエン酸溶液を用いてpHを3.6に調整する。
・パウチに充填した後、85℃で20分殺菌する。
<Preparation method>
・ Add sugar and starch-containing composition to water and heat with stirring.
・ After heating at 90 ° C for 10 minutes, add apple juice.
Cool to 20 ° C. and adjust pH to 3.6 using 50% citric acid solution.
-After filling the pouch, sterilize at 85 ° C for 20 minutes.

<評価>
室温で保存し、翌日フルーツソースの粘度および食感を評価をしたところ、表18のようになった。なお、粘度はBL型B型粘度計(TOKIMEC製)を使用し、20℃で回転数30rpm、1分後の値とした。
<Evaluation>
When stored at room temperature and evaluated the fruit sauce viscosity and texture the next day, it was as shown in Table 18. Viscosity was measured using a BL type B viscometer (manufactured by TOKIMEC) at 20 ° C. and a rotation speed of 30 rpm for 1 minute.

Figure 0005127826
Figure 0005127826

この結果からわかるように、澱粉含有組成物として実施例1の試料を使用してフルーツソースを調製することによって、湿熱処理を行なっていない比較例1や水溶性ヘミセルロースを添加していない比較例11、比較例12の試料と比較して、粘度低下が小さく、ボディー感の有るフルーツソースを調製することが出来た。   As can be seen from this result, by preparing the fruit sauce using the sample of Example 1 as the starch-containing composition, Comparative Example 1 in which wet heat treatment was not performed and Comparative Example 11 in which no water-soluble hemicellulose was added. Compared with the sample of Comparative Example 12, a fruit sauce having a small body and a body feeling could be prepared.

<処方例1>
表19にカレーパン用フィリングの処方を示す。澱粉含有組成物としては実施例1よりも澱粉粒の膨潤抑制効果の高い実施例2の澱粉含有組成物を使用した。
<Prescription Example 1>
Table 19 shows the recipe for curry bread filling. As the starch-containing composition, the starch-containing composition of Example 2 having a higher starch grain swelling inhibiting effect than that of Example 1 was used.

Figure 0005127826
Figure 0005127826

<調製方法>
・水に上記材料を添加し、90℃で10分間加熱攪拌する。
・水で全量を補正する。
・容器に充填する。
<Preparation method>
Add the above materials to water and stir at 90 ° C. for 10 minutes.
・ Adjust the total amount with water.
-Fill the container.

<処方例2>
表20にフラワーペーストの処方を示す。フラワーペーストにおいては膨潤抑制効果と崩壊抑制効果の強い澱粉製剤が好まれる傾向があるため、実施例2よりも更に膨潤抑制効果と崩壊抑制効果の高い実施例4の澱粉含有組成物を使用した。
<Prescription Example 2>
Table 20 shows the formula of the flower paste. In the flour paste, a starch preparation having a strong swelling inhibiting effect and a collapse inhibiting effect tends to be preferred. Therefore, the starch-containing composition of Example 4 having a higher swelling inhibiting effect and a decay inhibiting effect than that of Example 2 was used.

Figure 0005127826
Figure 0005127826

<調製方法>
・香料以外の材料を40℃のお湯に溶解する。
・ホモジナイザーで1分間乳化する。
・沸騰状態で3分間加熱攪拌する。
・フレーバーを添加し、水で全量を補正する。
・容器に充填し、冷水中で冷却する。
<Preparation method>
-Dissolve materials other than fragrance in hot water at 40 ° C.
・ Emulsify for 1 minute with a homogenizer.
-Heat and stir for 3 minutes while boiling.
・ Add flavor and correct the whole amount with water.
-Fill the container and cool in cold water.

<処方例3>
表21にサツマイモの天ぷらに使用するバッターの処方例を示す。天ぷらの食感改良(サクサク感)のために、澱粉粒の膨潤が崩壊しにくい実施例4の澱粉製剤を使用した。
<Prescription Example 3>
Table 21 shows an example of batter formulation used for sweet potato tempura. In order to improve the texture of the tempura (crispy feeling), the starch preparation of Example 4 in which the swelling of the starch granules is difficult to disintegrate was used.

Figure 0005127826
Figure 0005127826

<調製方法>
・サツマイモを1cmの厚さに切る。
・氷水に上記材料を添加し、バッターを調製する。
・サツマイモをバッターに浸けてバッターでコーティングした後、175℃で3分間油調する。
<Preparation method>
-Cut the sweet potato into 1 cm thick.
・ Add the above ingredients to ice water to prepare batter.
-Immerse the sweet potato in a batter and coat it with the batter, then oil it at 175 ° C for 3 minutes.

本発明は、各種の食品の力学特性または/および食感を改良するために用いられる澱粉含有組成物について、澱粉粒の崩壊を抑制して、未処理の澱粉に比して安定した粘度を示す改質澱粉を取得するために有用な方法を提供するものである。   The present invention is a starch-containing composition used to improve the mechanical properties and / or texture of various foods, and shows a stable viscosity as compared with untreated starch by suppressing the collapse of starch granules. It provides a useful method for obtaining modified starch.

天然のもち馬鈴薯澱粉(比較例11)のRVA測定における粘度挙動(縦軸左)を示す図である。RVA測定時の温度変化(縦軸右)を破線(−−−)で示す(以下、図3〜4、図8〜18において同じ)。It is a figure which shows the viscosity behavior (vertical axis left) in the RVA measurement of natural rice cake potato starch (comparative example 11). A temperature change (right side of the vertical axis) at the time of RVA measurement is indicated by a broken line (---) (hereinafter the same in FIGS. 3 to 4 and FIGS. 8 to 18). 天然のもち馬鈴薯澱粉(比較例11)について、RVA測定前(左図)と測定後(右図)の澱粉粒の形状を示す顕微鏡写真の画像を示す。対物レンズ×10(以下、図5〜7において同じ)。About natural rice cake potato starch (comparative example 11), the image of the microscope picture which shows the shape of the starch grain before a RVA measurement (left figure) and after a measurement (right figure) is shown. Objective lens × 10 (hereinafter the same in FIGS. 5 to 7). ワキシーコーンスターチ加工澱粉(参考例1)のRVA測定における粘度挙動を示す図である。It is a figure which shows the viscosity behavior in the RVA measurement of a waxy corn starch processed starch (reference example 1). 実施例1(実線)、実施例7(点線(・・・・)、および比較例1(太実線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 1 (solid line), Example 7 (dotted line (...)) and Comparative Example 1 (thick solid line) is shown. 実施例1の試料について、RVA測定前(左図)と測定後(右図)の澱粉粒の形状を示す顕微鏡写真の画像を示す。About the sample of Example 1, the image of the microscope picture which shows the shape of the starch grain before a RVA measurement (left figure) and after a measurement (right figure) is shown. 実施例7の試料について、RVA測定前(左図)と測定後(右図)の澱粉粒の顕微鏡写真を示す。About the sample of Example 7, the microscope picture of the starch granule before a RVA measurement (left figure) and after a measurement (right figure) is shown. 比較例1の試料について、RVA測定前(左図)と測定後(右図)の澱粉粒の顕微鏡写真を示す。About the sample of the comparative example 1, the microscope picture of the starch granule before a RVA measurement (left figure) and after a measurement (right figure) is shown. 実施例15(実線)、実施例14(点線)、および比較例8(太実線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 15 (solid line), Example 14 (dotted line), and Comparative Example 8 (thick solid line) is shown. 実施例17(実線)、実施例16(点線)、および比較例9(太実線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 17 (solid line), Example 16 (dotted line), and Comparative Example 9 (thick solid line) is shown. 実施例19(実線)、実施例18(点線)、および比較例10(太実線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 19 (solid line), Example 18 (dotted line), and Comparative Example 10 (thick solid line) is shown. 実施例1(実線)、実施例8(点線)、比較例1(太実線)、比較例6(一点破線(−・−))で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 1 (solid line), Example 8 (dotted line), Comparative Example 1 (thick solid line), and Comparative Example 6 (one-dot broken line (---)) is shown. 実施例1(実線)、実施例9(点線)、比較例1(太実線)、および比較例7(一点破線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 1 (solid line), Example 9 (dotted line), Comparative Example 1 (thick solid line), and Comparative Example 7 (one-dot broken line) is shown. 実施例1(実線)、比較例1(一点破線)、比較例11(太実線)および比較例12(点線)、および比較例13(二点破線(−・・−))で得られた試料のRVA測定における粘度挙動を示す。Samples obtained in Example 1 (solid line), Comparative Example 1 (one-dot broken line), Comparative Example 11 (thick solid line) and Comparative Example 12 (dotted line), and Comparative Example 13 (two-dot broken line (-...)) The viscosity behavior in RVA measurement of is shown. 実施例1(点線)、2(太実線)、3(一点破線)および4(二点破線)、ならびに比較例1(実線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 1 (dotted line), 2 (thick solid line), 3 (one-dot broken line) and 4 (two-dot broken line), and Comparative Example 1 (solid line) is shown. 実施例10(実線)、比較例2(太実線)、および比較例11(点線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 10 (solid line), Comparative Example 2 (thick solid line), and Comparative Example 11 (dotted line) is shown. 実施例11(実線)、比較例3(太実線)、および比較例11(点線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 11 (solid line), Comparative Example 3 (thick solid line), and Comparative Example 11 (dotted line) is shown. 実施例12(実線)、比較例4(太実線)、および比較例11(点線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 12 (solid line), Comparative Example 4 (thick solid line), and Comparative Example 11 (dotted line) is shown. 実施例13(実線)、比較例5(太実線)、および比較例11(点線)で得られた試料のRVA測定における粘度挙動を示す。The viscosity behavior in the RVA measurement of the sample obtained in Example 13 (solid line), Comparative Example 5 (thick solid line), and Comparative Example 11 (dotted line) is shown.

Claims (11)

澱粉と水溶性ヘミセルロースの粉末混合物を50℃以上100℃未満で相対湿度50%以上の条件で湿熱処理する工程を有する、澱粉含有組成物の製造方法。  A method for producing a starch-containing composition comprising a step of subjecting a powder mixture of starch and water-soluble hemicellulose to a wet heat treatment at 50 ° C or higher and lower than 100 ° C and a relative humidity of 50% or higher. 澱粉と水溶性ヘミセルロースの粉末混合物中の澱粉と水溶性ヘミセルロースの配合比が、澱粉:水溶性ヘミセルロース=99:1〜70:30(重量比)であることを特徴とする請求項1に記載する製造方法。  The ratio of starch and water-soluble hemicellulose in the powder mixture of starch and water-soluble hemicellulose is starch: water-soluble hemicellulose = 99: 1 to 70:30 (weight ratio). Production method. 澱粉が、コーンスターチ、ワキシーコーンスターチ、タピオカ澱粉、米澱粉、もち米澱粉、馬鈴薯澱粉、もち馬鈴薯澱粉、小麦澱粉、甘藷澱粉、およびサゴ澱粉からなる群から選択される少なくとも1種である、請求項1に記載する製造方法。  The starch is at least one selected from the group consisting of corn starch, waxy corn starch, tapioca starch, rice starch, glutinous rice starch, potato starch, potato starch, wheat starch, sweet potato starch, and sago starch. The production method described in 1. 水溶性ヘミセルロースが、大豆由来の水溶性ヘミセルロースである、請求項1に記載する製造方法。  The manufacturing method according to claim 1, wherein the water-soluble hemicellulose is soybean-derived water-soluble hemicellulose. 澱粉粒の崩壊が抑制されている澱粉含有組成物の製造方法であることを特徴とする、請求項1に記載する製造方法。  The manufacturing method according to claim 1, which is a method for manufacturing a starch-containing composition in which disintegration of starch granules is suppressed. 請求項1乃至5のいずれかに記載する方法によって製造された澱粉含有組成物。  A starch-containing composition produced by the method according to claim 1. 請求項6に記載する澱粉含有組成物を用いて製造された食品。  A food produced using the starch-containing composition according to claim 6. (a)澱粉を水溶性ヘミセルロースと粉末混合する工程、および(b)得られた粉末混合物を50℃以上100℃未満で相対湿度50%以上の条件で湿熱処理する工程を有する、澱粉粒の崩壊抑制方法。  (A) A step of powder mixing starch with water-soluble hemicellulose, and (b) a step of subjecting the obtained powder mixture to a heat-moisture treatment under conditions of 50 ° C. or higher and lower than 100 ° C. and a relative humidity of 50% or higher. Suppression method. 澱粉と水溶性ヘミセルロースの粉末混合物中の澱粉と水溶性ヘミセルロースの配合比が、澱粉:水溶性ヘミセルロース=99:1〜70:30(重量比)であることを特徴とする請求項8に記載する方法。  9. The blending ratio of starch and water-soluble hemicellulose in the powder mixture of starch and water-soluble hemicellulose is starch: water-soluble hemicellulose = 99: 1 to 70:30 (weight ratio). Method. 澱粉が、コーンスターチ、ワキシーコーンスターチ、タピオカ澱粉、米澱粉、もち米澱粉、馬鈴薯澱粉、もち馬鈴薯澱粉、小麦澱粉、甘藷澱粉、およびサゴ澱粉からなる群から選択される少なくとも1種である、請求項8に記載する方法。  The starch is at least one selected from the group consisting of corn starch, waxy corn starch, tapioca starch, rice starch, glutinous rice starch, potato starch, potato starch, wheat starch, sweet potato starch, and sago starch. The method described in. 水溶性ヘミセルロースが、大豆由来の水溶性ヘミセルロースである、請求項8に記載する方法。  The method according to claim 8, wherein the water-soluble hemicellulose is soybean-derived water-soluble hemicellulose.
JP2009515196A 2007-05-18 2008-05-15 Starch-containing composition and method for producing the same Expired - Fee Related JP5127826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009515196A JP5127826B2 (en) 2007-05-18 2008-05-15 Starch-containing composition and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007132954 2007-05-18
JP2007132954 2007-05-18
JP2009515196A JP5127826B2 (en) 2007-05-18 2008-05-15 Starch-containing composition and method for producing the same
PCT/JP2008/058973 WO2008143144A1 (en) 2007-05-18 2008-05-15 Starch-containing composition and process for producing the same

Publications (2)

Publication Number Publication Date
JPWO2008143144A1 JPWO2008143144A1 (en) 2010-08-05
JP5127826B2 true JP5127826B2 (en) 2013-01-23

Family

ID=40031850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009515196A Expired - Fee Related JP5127826B2 (en) 2007-05-18 2008-05-15 Starch-containing composition and method for producing the same

Country Status (2)

Country Link
JP (1) JP5127826B2 (en)
WO (1) WO2008143144A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409597B2 (en) * 2008-03-07 2014-02-05 三栄源エフ・エフ・アイ株式会社 Method for modifying starch and method for producing starch-containing preparation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046355B2 (en) * 2012-02-29 2016-12-14 日清製粉プレミックス株式会社 Bakery food mix
JP6371497B2 (en) * 2012-06-22 2018-08-08 ハウス食品グループ本社株式会社 Heat-sterilized food filled and sealed in containers
JP6957118B2 (en) * 2018-08-15 2021-11-02 日本食品化工株式会社 Modified starch, its use, and method for producing modified starch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678572A (en) * 1979-11-30 1981-06-27 Sanwa Shoji Kk Preparation of processed starch
JPH04130102A (en) * 1990-09-21 1992-05-01 Sanwa Kosan Kk Efficient production of moist heat-treated starch
JP2005054028A (en) * 2003-08-01 2005-03-03 J-Oil Mills Inc Polysaccharide coating starch and method for producing the same
JP2005171112A (en) * 2003-12-12 2005-06-30 Nippon Starch Chemical Co Ltd Modified starch and its manufacturing method
JP2006131772A (en) * 2004-11-05 2006-05-25 Nippon Starch Chemical Co Ltd Method for producing denatured starch with controlled thermal swelling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678572A (en) * 1979-11-30 1981-06-27 Sanwa Shoji Kk Preparation of processed starch
JPH04130102A (en) * 1990-09-21 1992-05-01 Sanwa Kosan Kk Efficient production of moist heat-treated starch
JP2005054028A (en) * 2003-08-01 2005-03-03 J-Oil Mills Inc Polysaccharide coating starch and method for producing the same
JP2005171112A (en) * 2003-12-12 2005-06-30 Nippon Starch Chemical Co Ltd Modified starch and its manufacturing method
JP2006131772A (en) * 2004-11-05 2006-05-25 Nippon Starch Chemical Co Ltd Method for producing denatured starch with controlled thermal swelling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409597B2 (en) * 2008-03-07 2014-02-05 三栄源エフ・エフ・アイ株式会社 Method for modifying starch and method for producing starch-containing preparation

Also Published As

Publication number Publication date
WO2008143144A1 (en) 2008-11-27
JPWO2008143144A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5409597B2 (en) Method for modifying starch and method for producing starch-containing preparation
JP6450130B2 (en) Texture improving composition
WO2018216748A1 (en) Starch modifying method
JP5127826B2 (en) Starch-containing composition and method for producing the same
JP2000316507A (en) Dietary fiber-reinforced noodle
JP4626767B2 (en) Modified starch and noodles made from the same
WO2023074577A1 (en) Coagulated egg-like food, processed food, method for manufacturing coagulated egg-like food, and method for manufacturing processed food
WO2020203554A1 (en) Fish or livestock meat product-improving agent and fish or livestock meat product
JP4061000B2 (en) Noodle quality improver and method for producing noodles
JPH03143361A (en) Preparation of noodle
JP3803796B2 (en) Molded snack manufacturing method
JP2008289397A (en) Method for producing processed starch, food items, and feed
JP4584696B2 (en) Cold noodles that do not require cooking and a method for producing the same
JPH0923835A (en) Powder for fry batter
JP2021113312A (en) Pregelatinized modified starch
JP2007267640A (en) Instant noodle and method for producing the same
WO2022039038A1 (en) Rice-quality-improving agent
JP4755636B2 (en) Method for producing dried starch noodle-like food
JP2020080701A (en) Food/drink, and method for producing food/drink
JP2005054028A (en) Polysaccharide coating starch and method for producing the same
RU2785127C2 (en) Pregelatinized starches with high technological stability and methods for their production and use
TWI786268B (en) Stringiness reducing composition for food products and method for producing the same, method for producing a dressed food, method for producing a food product, and method for reducing stringiness of a dressed food
JP7382676B1 (en) Agent for preventing punctures during baking or elongation after baking in starch dough derived from grains or potatoes
JP6995610B2 (en) Method of manufacturing fried noodles and method of reducing oil absorption of fried noodles
JP4744465B2 (en) Liquid seasoning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Ref document number: 5127826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees