[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5120949B2 - Method for producing white phosphor - Google Patents

Method for producing white phosphor Download PDF

Info

Publication number
JP5120949B2
JP5120949B2 JP2008193161A JP2008193161A JP5120949B2 JP 5120949 B2 JP5120949 B2 JP 5120949B2 JP 2008193161 A JP2008193161 A JP 2008193161A JP 2008193161 A JP2008193161 A JP 2008193161A JP 5120949 B2 JP5120949 B2 JP 5120949B2
Authority
JP
Japan
Prior art keywords
phosphor
white
thin film
oxide
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008193161A
Other languages
Japanese (ja)
Other versions
JP2010031103A (en
Inventor
智彦 中島
哲男 土屋
俊弥 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008193161A priority Critical patent/JP5120949B2/en
Publication of JP2010031103A publication Critical patent/JP2010031103A/en
Application granted granted Critical
Publication of JP5120949B2 publication Critical patent/JP5120949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new laminate type white fluorescent material which shows a white fluorescence excellent in the color rendering property resulting from that a fluorescent light spectrum is spread broadly to the range of 390-800 nm with the excitation by the ultraviolet light, the near ultraviolet light or the like and besides in which, for example, a warm-colored white or a cold-colored white can be freely adjusted, and to provide an industrially advantageous manufacturing method thereof. <P>SOLUTION: The laminate type white fluorescent material is a material in which a substrate is provided thereon sequentially with an oxide white fluorescent material crystal thin layer, an amorphous alumina thin layer and an oxide red fluorescent material crystal thin layer or an oxide blue fluorescent material crystal thin layer. The above laminate type white fluorescent material is such that the oxide white fluorescent material is a vanadium oxide-based compound. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、白色LED、室内照明器具、白色光を面発光させるような照明装置等として有用な新規な積層型白色蛍光体およびその効率的な製造方法に関する。   The present invention relates to a novel laminated white phosphor useful as a white LED, an indoor lighting fixture, a lighting device that emits white light, and an efficient manufacturing method thereof.

近年、PDP、FED等のフラットパネルディスプレイだけでなく、白色LEDや室内照明用の蛍光ランプなど照明装置にも多くの蛍光体材料が用いられており、その用途も拡大する一方である。特に照明用の白色LEDや蛍光ランプは紫外〜青色光を励起光とし、種々の波長に発光強度を持つ蛍光体を組み合わせて白色光を生み出している。具体的には励起光源が青色の場合には黄色や、緑色、赤色蛍光体を発光させて白色光を得ており、励起光源が紫外線の場合には青(緑)、黄、赤色の蛍光体を混合して白色光を得ている。(特許文献1)   In recent years, many phosphor materials are used not only for flat panel displays such as PDP and FED, but also for lighting devices such as white LEDs and fluorescent lamps for indoor lighting, and their uses are expanding. In particular, white LEDs and fluorescent lamps for illumination use ultraviolet to blue light as excitation light, and produce white light by combining phosphors having emission intensities at various wavelengths. Specifically, when the excitation light source is blue, yellow, green and red phosphors emit light to obtain white light, and when the excitation light source is ultraviolet light, blue (green), yellow and red phosphors are obtained. To obtain white light. (Patent Document 1)

しかしながら、複数の蛍光体を組み合わせて得る白色光には色抜けや特定波長のみに強い発光を示すなどの問題点もあり、室内照明として使用するには演色性を向上させるための努力が必要となる。そのため、照明用白色LEDに用いる蛍光体は発光波長が幅広い波長に広がることが必要であり、応用上、出来るだけ少ない蛍光体で理想的な白色光を再現して演色性を向上させることが望ましい。
しかしながら、通常、一物質で出来るだけ演色性の良い白色蛍光を示すことは難しい。
本発明者等は、このような問題点を解決するために、先に、バナジウム酸化物(AVO;AはK、Rb、Csからなる群より選ばれる1種以上)が、単一物質でブロードな発光スペクトルを示し、250〜390nmの紫外・近紫外光励起により蛍光スペクトルが515〜540nm付近に極大を持ち390〜800nmの範囲にブロードに広がる白色蛍光を発する蛍光体であることを報告した(特許文献2)。
However, white light obtained by combining a plurality of phosphors also has problems such as color loss and strong light emission only at specific wavelengths, and efforts to improve color rendering are necessary for use as indoor lighting. Become. Therefore, the phosphor used in the white LED for illumination needs to have a wide emission wavelength, and it is desirable to improve the color rendering by reproducing ideal white light with as few phosphors as possible. .
However, it is usually difficult for a single substance to exhibit white fluorescence with as good a color rendering property as possible.
In order to solve such a problem, the present inventors first made a vanadium oxide (AVO 3 ; A is one or more selected from the group consisting of K, Rb, and Cs) as a single substance. It has been reported that it has a broad emission spectrum and emits white fluorescence having a fluorescence spectrum having a maximum in the vicinity of 515 to 540 nm and broadening in the range of 390 to 800 nm by excitation with ultraviolet and near ultraviolet light at 250 to 390 nm ( Patent Document 2).

このバナジウム酸化物蛍光体から発せられる蛍光スペクトルは、現在民生で使われている照明器具、通常の蛍光灯のスペクトルに近い発光スペクトルであることから、そのまま白色LED用の蛍光体として使用することができる。また、発光スペクトルのピークは515〜540nmの範囲にあるため色温度は高いが、長波長側に強い発光を持つ蛍光体と組み合わせることも可能であり、より暖色系の白色が得ることもできる上、水銀や鉛などを含まないため、環境・人体への悪影響も少ないなどの数多くの利点を有するものである。   Since the fluorescence spectrum emitted from this vanadium oxide phosphor is an emission spectrum close to the spectrum of lighting fixtures currently used in consumer and ordinary fluorescent lamps, it can be used as it is as a phosphor for white LEDs. it can. In addition, since the peak of the emission spectrum is in the range of 515 to 540 nm, the color temperature is high, but it can also be combined with a phosphor having strong emission on the long wavelength side, and a warmer white color can be obtained. Since it does not contain mercury or lead, it has many advantages such as less adverse effects on the environment and human body.

ところで、一般に、無機固体の応用において、小型デバイスや平面形状をした部材に適用する場合には、粉末体やバルク体よりもこれを薄膜化することが望まれる。また、基板との関係においては、その製膜温度をできるだけ低下することが好ましいとされており、近年その需要が富に増大している、無機蛍光体の分野においてもその低温下での薄膜化手法が強く要請されるに至っている。
たとえば、ガラス基板に製膜する場合でも600℃以下の低温で行うことが必要で製膜プロセス温度の低減が必要となっている。ここで製膜温度の低減は基板の選択肢を多くすることから、応用範囲も拡大することが期待される。例えば200℃以下程度に製膜温度下げることが可能になればプラスチックなどの有機基板上に製膜が可能となり、フレキシブルな発光材料の開発も期待できる。
By the way, generally, in the application of inorganic solids, when applied to a small device or a member having a planar shape, it is desired to make the film thinner than a powder body or a bulk body. Also, in relation to the substrate, it is considered preferable to lower the film forming temperature as much as possible, and in recent years, the demand for it has been increasing abundantly. There is a strong demand for methods.
For example, even when forming a film on a glass substrate, it is necessary to carry out at a low temperature of 600 ° C. or lower, and it is necessary to reduce the film forming process temperature. Here, the reduction of the film formation temperature increases the choices of the substrate, so that the application range is expected to be expanded. For example, if it becomes possible to lower the film forming temperature to about 200 ° C. or less, it becomes possible to form a film on an organic substrate such as plastic, and development of a flexible light-emitting material can also be expected.

そこで、本発明者は先の特許文献2で提案した酸化バナジウム蛍光体(AVO)の製造方法として、基板温度が室温付近であっても製膜(結晶化)が可能な方法を開発した(特許文献3)。
この手法はAとVの金属比を実質1:1の割合で混合した有機金属溶液を有機基板上に塗布し、真空紫外線を照射して結晶化を行うもので、有機基板にダメージを与えることなく、基板上で直接結晶化させることができるといった多くの利点を有するものである。
Therefore, the present inventor has developed a method capable of forming a film (crystallization) even when the substrate temperature is near room temperature, as a method for manufacturing the vanadium oxide phosphor (AVO 3 ) proposed in Patent Document 2 above ( Patent Document 3).
In this method, an organic metal solution in which the metal ratio of A and V is mixed at a ratio of substantially 1: 1 is applied onto an organic substrate, and crystallization is performed by irradiating with vacuum ultraviolet rays. This damages the organic substrate. And has many advantages such that it can be crystallized directly on the substrate.

しかしながら、この特許文献1および特許文献2に記載の酸化バナジウム蛍光体(AVO)は、演色性が演色指数70程度であり、また、様々な室内照明用装置などのように用途に応じた微妙な蛍光白色を調整することが極めて困難なものであった。 However, the vanadium oxide phosphors (AVO 3 ) described in Patent Document 1 and Patent Document 2 have a color rendering index of about 70, and are subtle depending on the application, such as various indoor lighting devices. It was extremely difficult to adjust the fluorescent white color.

特開平11−31845号公報JP-A-11-31845 特願2007−224846Japanese Patent Application No. 2007-224846 特願2007−259862Japanese Patent Application No. 2007-259862

本発明は、紫外・近紫外光等より励起され、蛍光スペクトルが390〜800nmの範囲に拡がり、演色性に優れた白色蛍光を呈し、しかもたとえば暖色系あるいは寒色系の白色も自在に調整することができる新規な白色積層型蛍光体およびこのものの工業的に有利な製造方法を提供することを目的とする。   The present invention is excited by ultraviolet / near-ultraviolet light, etc., has a fluorescence spectrum extending in the range of 390 to 800 nm, exhibits white fluorescence with excellent color rendering properties, and can freely adjust, for example, warm-colored or cold-colored white It is an object of the present invention to provide a novel white laminated phosphor that can be manufactured and an industrially advantageous method for producing the same.

この出願によれば、以下の発明が提供される。
〈1〉基板上に、酸化物白色蛍光体結晶薄膜、アモルファスアルミナ薄膜および最上部に酸化物蛍光体結晶薄膜が順次設けられた積層型白色蛍光体。
〈2〉基板が有機基板であることを特徴とする〈1〉に記載の積層型白色蛍光体。
〈3〉酸化物白色蛍光体が、酸化バナジウム系化合物であることを特徴とする〈1〉に記載の積層型白色蛍光体。
〈4〉最上部に作製される酸化物蛍光体が、赤色蛍光体または青色蛍光体であることを特徴とする〈1〉に記載の積層型白色蛍光体。
〈5〉紫外・近紫外光または紫外・近紫外線励起発光素子により、蛍光スペクトルが390〜800nmの範囲にブロード広がる白色蛍光を発することを特徴とする〈1〉に記載の積層型白色蛍光体。
〈6〉第一の酸化物蛍光体結晶薄膜を設けた基板を、室温〜150℃の温度に保持した後、アルミニウムを含む有機化合物溶液を表面に塗布し、波長400nm以下の紫外線を照射して、アモルファスアルミナ薄膜を形成し、その上に酸化物蛍光体結晶薄膜を形成することを特徴とする〈1〉〜〈5〉のいずれかに記載の積層型白色蛍光体の製造方法。
〈7〉紫外線の光源が紫外線レーザまた紫外線ランプであることを特徴とする〈6〉に記載の積層型白色蛍光体の製造方法。
〈8〉紫外ランプを照射した後、紫外線レーザを照射することを特徴とする〈7〉に記載の積層型白色蛍光体の製造方法。
〈9〉アモルファスアルミナ薄膜の上に、酸化物蛍光体の金属組成を有する塗膜を設け、該塗膜に波長400nm以下の紫外線ランプを、ついで紫外線レーザを照射することにより、酸化物蛍光体結晶薄膜を形成することを特徴とする〈6〉〜〈8〉のいずれかに記載の積層型白色蛍光体の製造方法。
〈10〉アモルファスアルミナ薄膜の上に、酸化物蛍光体の金属組成を有する膜を物理蒸着し、該蒸着膜に波長400nm以下の紫外線ランプを、ついで紫外線レーザを照射することにより、酸化物蛍光体結晶薄膜を形成することを特徴とする〈6〉〜〈8〉のいずれかに記載の積層型白色蛍光体の製造方法。
〈11〉〈1〉〜〈5〉のいずれかに記載の積層型白色蛍光体を用いた白色LED。
〈12〉〈1〉〜〈5〉のいずれかに記載の積層型白色蛍光体を用いた表示器具。
〈13〉〈1〉〜〈5〉のいずれかに記載の積層型白色蛍光体を用いた照明器具。
〈14〉〈1〉〜〈5〉のいずれかに記載の積層型白色蛍光体を用いた表示器具。
According to this application, the following invention is provided.
<1> A laminated white phosphor in which an oxide white phosphor crystal thin film, an amorphous alumina thin film, and an oxide phosphor crystal thin film are sequentially provided on a substrate.
<2> The laminated white phosphor according to <1>, wherein the substrate is an organic substrate.
<3> The laminated white phosphor according to <1>, wherein the oxide white phosphor is a vanadium oxide compound.
<4> The laminated white phosphor according to <1>, wherein the oxide phosphor produced on the top is a red phosphor or a blue phosphor.
<5> The laminated white phosphor according to <1>, wherein the white fluorescent material having a fluorescence spectrum broadening in a range of 390 to 800 nm is emitted by ultraviolet / near ultraviolet light or an ultraviolet / near ultraviolet excitation light emitting element.
<6> After the substrate provided with the first oxide phosphor crystal thin film is kept at a temperature of room temperature to 150 ° C., an organic compound solution containing aluminum is applied to the surface and irradiated with ultraviolet rays having a wavelength of 400 nm or less. The method for producing a laminated white phosphor according to any one of <1> to <5>, wherein an amorphous alumina thin film is formed, and an oxide phosphor crystal thin film is formed thereon.
<7> The method for producing a laminated white phosphor according to <6>, wherein the ultraviolet light source is an ultraviolet laser or an ultraviolet lamp.
<8> The method for producing a laminated white phosphor according to <7>, wherein the ultraviolet laser is irradiated after irradiation with an ultraviolet lamp.
<9> An oxide phosphor crystal is formed by providing a coating film having a metal composition of an oxide phosphor on an amorphous alumina thin film, and irradiating the coating film with an ultraviolet lamp having a wavelength of 400 nm or less and then with an ultraviolet laser. A method for producing a laminated white phosphor according to any one of <6> to <8>, wherein a thin film is formed.
<10> On the amorphous alumina thin film, a film having a metal composition of an oxide phosphor is physically vapor-deposited, and the oxide phosphor is irradiated with an ultraviolet lamp having a wavelength of 400 nm or less and then an ultraviolet laser. A method for producing a laminated white phosphor according to any one of <6> to <8>, wherein a crystalline thin film is formed.
<11> A white LED using the laminated white phosphor according to any one of <1> to <5>.
<12> A display device using the laminated white phosphor according to any one of <1> to <5>.
<13> A lighting fixture using the laminated white phosphor according to any one of <1> to <5>.
<14> A display device using the laminated white phosphor according to any one of <1> to <5>.

本発明の積層型白色蛍光体は、紫外・近紫外光等より励起され、蛍光スペクトルが390〜800nmの範囲にブロードに拡がり、演色性に優れた白色蛍光を呈する。また、長波長側に強い発光を持つ赤色蛍光体との組み合わせによって暖色系の白色が得ることもできる。さらには短波長側に強い発光を持つ青色蛍光体との組み合わせによって寒色系の白色が得ることもできる。
本発明の製造方法によれば、基板温度が室温であっても目的とする積層型白色蛍光体の結晶化薄膜を製造することができる。また、光照射による製膜時には200℃以下の低温製膜が可能なためガラス基板等の無機固体基板だけでなく、プラスチック等の有機基板上にも直接製膜できる。そのため、材料コストを抑えられるだけでなく、自在に曲がるディスプレイや照明器具などフレキシブルな発光材料にも応用可能である。
また、本発明の実施例中の一つに記載した第二の酸化物蛍光体である、CaTiO:Pr3+薄膜は通常製造に高温(800〜1300℃)を要する材料であり、本物質が形成可能であることは他の多くの物質についても本手法が適用可能であることを示している。その結果、保護層を挟んで上下の蛍光体の組み合わせ、膜厚によって蛍光色を制御することも可能である。すなわち有機基板を利用した、コストの安い、自在に曲がるディスプレイや照明器具などフレキシブルな発光材料にも応用可能である。
The laminated white phosphor of the present invention is excited by ultraviolet / near ultraviolet light or the like, broadens the fluorescence spectrum in the range of 390 to 800 nm, and exhibits white fluorescence excellent in color rendering. Further, a warm white color can be obtained by combining with a red phosphor having a strong light emission on the long wavelength side. Furthermore, a cold white color can be obtained by combination with a blue phosphor having strong light emission on the short wavelength side.
According to the manufacturing method of the present invention, a target laminated white phosphor crystallized thin film can be manufactured even when the substrate temperature is room temperature. In addition, since film formation by light irradiation can be performed at a low temperature of 200 ° C. or lower, it can be directly formed on an organic substrate such as plastic as well as an inorganic solid substrate such as a glass substrate. Therefore, not only can the material cost be reduced, but it can also be applied to flexible light-emitting materials such as displays and lighting fixtures that can be bent freely.
In addition, the CaTiO 3 : Pr 3+ thin film, which is the second oxide phosphor described in one of the examples of the present invention, is a material that normally requires high temperature (800 to 1300 ° C.). The ability to form indicates that the method can be applied to many other substances. As a result, the fluorescent color can be controlled by the combination of the upper and lower phosphors and the film thickness with the protective layer interposed therebetween. In other words, the present invention can be applied to flexible light-emitting materials using organic substrates, such as inexpensive displays that can be bent and lighting fixtures.

本発明の積層型白色蛍光体は、基板上に、第一の蛍光体結晶薄膜である、酸化物白色蛍光体結晶薄膜を、その上に保護層である、アモルファスアルミナ薄膜を、該保護層の上に、第二の蛍光体結晶薄膜、たとえば酸化物赤色蛍光体結晶薄膜や酸化物青色蛍光体結晶薄膜が順次設けられていることを特徴とする。
以下、この積層型白色蛍光体について説明する。
The laminated white phosphor of the present invention comprises an oxide white phosphor crystal thin film which is a first phosphor crystal thin film on a substrate, and an amorphous alumina thin film which is a protective layer thereon. A second phosphor crystal thin film, for example, an oxide red phosphor crystal thin film or an oxide blue phosphor crystal thin film is sequentially provided thereon.
Hereinafter, the laminated white phosphor will be described.

基板としては、ガラスやアルミナのような無機基板、PETやポリイミドのような有機基板のいずれも使用できる。無機基板の場合には室温で融解したり、空気中の湿度によって溶けたりすることのないものであれば何れの基板にも製膜可能である。また、有機基板においては光照射によって結晶化するが、実際は光照射した場合、光によって基板温度が10分程度の照射時間で60〜70℃程度に加熱される。そのため、この温度付近で溶けないような材料を用いることが望ましい。また、プラスチック等の有機基板は強い青色発光するものも多いため、白色光を現すには青色発光が小さい基板を選ぶことが望ましい。   As the substrate, either an inorganic substrate such as glass or alumina, or an organic substrate such as PET or polyimide can be used. In the case of an inorganic substrate, a film can be formed on any substrate as long as it is not melted at room temperature or melted by humidity in the air. In addition, although the organic substrate is crystallized by light irradiation, in actuality, when light irradiation is performed, the substrate temperature is heated to about 60 to 70 ° C. for an irradiation time of about 10 minutes. Therefore, it is desirable to use a material that does not melt near this temperature. In addition, since many organic substrates such as plastic emit strong blue light, it is desirable to select a substrate that emits less blue light to exhibit white light.

この基板上に設けられる第一の蛍光体結晶薄膜としては、酸化物白色蛍光体の結晶薄膜が用いられる。
酸化物白色蛍光体としては、紫外・近紫外光または紫外・近紫外線励起発光素子により、蛍光スペクトルが390〜800nmの範囲にブロード広がる白色蛍光を発するものであればいずれのものも使用できる。
As the first phosphor crystal thin film provided on this substrate, a crystal thin film of oxide white phosphor is used.
Any oxide white phosphor may be used as long as it emits white fluorescence that broadens in the range of 390 to 800 nm by an ultraviolet / near ultraviolet light or ultraviolet / near ultraviolet excitation light emitting element.

本発明で好ましく使用される酸化物白色蛍光体は、AVO(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)で示されるバナジウム酸化物蛍光体である。
このバナジウム酸化物蛍光体薄膜は白色LEDの励起光源である紫外・近紫外LEDによって励起出来る250〜390nmの範囲に励起スペクトルを持つ。この励起光によって発せられる蛍光スペクトルは390〜800nmに広がり、白色に発光する。そのため白色LED用の蛍光体として好適である。発光スペクトルのピークは520〜540nmの範囲にあるため比較的色温度は高いが、長波長側に強い発光を持つ蛍光体との組み合わせによって暖色系の白色が得ることもできる。
The oxide white phosphor preferably used in the present invention is a vanadium oxide phosphor represented by AVO 3 (A is one or more atoms selected from K, Rb and Cs).
This vanadium oxide phosphor thin film has an excitation spectrum in the range of 250 to 390 nm that can be excited by an ultraviolet / near ultraviolet LED that is an excitation light source of a white LED. The fluorescence spectrum emitted by this excitation light spreads from 390 to 800 nm and emits white light. Therefore, it is suitable as a phosphor for white LED. Since the peak of the emission spectrum is in the range of 520 to 540 nm, the color temperature is relatively high, but a warm white color can be obtained by combining with a phosphor having strong emission on the long wavelength side.

本発明においては、この第一の蛍光体結晶薄膜の上に特定な保護層、すなわち、アモルファスアルミナ薄膜からなる保護層を用いる。
保護層がないと、紫外レーザ照射時にアブレーションが起こってしまい上部酸化物蛍光体薄膜形成が出来ないため本発明の目的を達成することができない。また他の保護層たとえば、蛍光体薄膜材料の表面保護層としてよく用いられるアモルファスSiO膜やMgO膜の場合には、本発明のような優れた膜質を与えることができない。
In the present invention, a specific protective layer, that is, a protective layer made of an amorphous alumina thin film is used on the first phosphor crystal thin film.
Without the protective layer, ablation occurs at the time of ultraviolet laser irradiation, and the upper oxide phosphor thin film cannot be formed, so that the object of the present invention cannot be achieved. In the case of an amorphous SiO 2 film or MgO film often used as another protective layer, for example, a surface protective layer of a phosphor thin film material, the excellent film quality as in the present invention cannot be provided.

本発明においては、上記保護層であるアモルファスアルミナ薄膜の上に第二の酸化物蛍光体薄膜を設ける。第二の酸化物蛍光体結晶薄膜を設けた理由は、種々があるが、演色性のよい白色蛍光を発現させること、長波長側に強い発光を持つ赤色蛍光体との組み合わせによって暖色系の白色を、逆に短波長側に強い発光を持つ青色蛍光体との組み合わせにより寒色系の白色が得ることができるようした点が挙げられる。
酸化物赤色蛍光体および酸化物青色蛍光体としては、従来公知のものがいずれも使用できる。酸化物赤色蛍光体としては、CaTiO:Pr3+やY:Eu3+、SrTiO:Pr3+,Al3+、(Ca,Sr)TiO:Pr3+、YVO:Eu3+等が例示される。また、酸化物青色蛍光体としては、ZnO、BaMgAl1017:Eu2+等が例示される。
In the present invention, a second oxide phosphor thin film is provided on the amorphous alumina thin film as the protective layer. There are various reasons for the provision of the second oxide phosphor crystal thin film, but a warm white color is produced by combining white phosphor with good color rendering properties and a red phosphor that emits strong light on the long wavelength side. On the contrary, it is possible to obtain a cold-colored white color by combining with a blue phosphor having a strong light emission on the short wavelength side.
Conventionally known oxide red phosphors and oxide blue phosphors can be used. Examples of the red oxide phosphor include CaTiO 3 : Pr 3+ , Y 2 O 3 : Eu 3+ , SrTiO 3 : Pr 3+ , Al 3+ , (Ca, Sr) TiO 3 : Pr 3+ , YVO 4 : Eu 3+ and the like. Is done. Examples of the oxide blue phosphor include ZnO and BaMgAl 10 O 17 : Eu 2+ .

本発明に係る上記積層型白色蛍光体は、紫外・近紫外光または紫外・近紫外線励起発光素子により、蛍光スペクトルが390〜800nmの範囲にブロード広がる白色蛍光を発する。白色LEDの励起光源である紫外・近紫外LEDによって励起出来る250〜390nmの範囲に励起スペクトルを持つ。この励起光によって発せられる蛍光スペクトルは390〜800nmに広がり、白色に発光する。そのため白色LED用の蛍光体として好適である。発光スペクトルのピークは520〜540nmの範囲にあり、色温度は5000〜6500Kであるが、長波長側に強い発光を持つ蛍光体との組み合わせによって暖色系の白色が得ることもできる。また水銀や鉛などを含まないため、環境・人体への悪影響も少ない。
したがって、バナジウム酸化物蛍光体薄膜は白色LEDとしてきわめて有用なものであり、たとえば白色光を必要とする日常灯等の照明器具や各種表示機器に用いられるバックライト等の表示器具等として利用することができる。CIE色度座標値は、たとえばRbVOでx=0.316、y=0.424、CsVOでx=0.306、y=0.418である。両者とも内部量子効率は80〜90%程度の高い効率を持つ。
The laminated white phosphor according to the present invention emits white fluorescence that broadens in a fluorescence spectrum of 390 to 800 nm by ultraviolet / near ultraviolet light or ultraviolet / near ultraviolet excitation light emitting element. It has an excitation spectrum in a range of 250 to 390 nm that can be excited by an ultraviolet / near ultraviolet LED that is an excitation light source of a white LED. The fluorescence spectrum emitted by this excitation light spreads from 390 to 800 nm and emits white light. Therefore, it is suitable as a phosphor for white LED. The peak of the emission spectrum is in the range of 520 to 540 nm and the color temperature is 5000 to 6500 K. A warm white color can also be obtained by combination with a phosphor having strong emission on the long wavelength side. In addition, since it does not contain mercury or lead, there are few negative effects on the environment and human body.
Therefore, the vanadium oxide phosphor thin film is extremely useful as a white LED, and can be used, for example, as a lighting device such as a daily light that requires white light or a display device such as a backlight used in various display devices. Can do. CIE chromaticity coordinates, for example RbVO 3 at x = 0.316, y = 0.424, CsVO 3 at x = 0.306, a y = 0.418. Both have high internal quantum efficiencies of about 80 to 90%.

つぎに、本発明の上記積層型白色蛍光体の製造方法について説明する。
本発明の上記積層型白色蛍光体の製造方法は、第一の酸化物蛍光体結晶薄膜を設けた基板を、室温〜150℃の温度に保持した後、アルミニウムを含む有機化合物溶液を表面に塗布し、波長400nm以下の紫外線を照射して、アモルファスアルミナ薄膜を形成し、その上に第二の酸化物蛍光体結晶薄膜を形成することを特徴とする。
Next, a method for producing the laminated white phosphor of the present invention will be described.
In the method for producing the laminated white phosphor according to the present invention, the substrate provided with the first oxide phosphor crystal thin film is kept at a temperature of room temperature to 150 ° C., and then an organic compound solution containing aluminum is applied to the surface. Then, an amorphous alumina thin film is formed by irradiating with an ultraviolet ray having a wavelength of 400 nm or less, and a second oxide phosphor crystal thin film is formed thereon.

基板上に、組成式AVOで示される、第一の酸化物白色蛍光体結晶薄膜を設けるには、たとえば、基板上に形成されたA(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)とV(バナジウム)を実質的に1:1の原子比で含む薄膜を、25℃〜450℃の温度に保持した後、波長400nm以下の紫外線レーザ又は紫外線ランプを照射し、バナジウム酸化物を結晶化させればよい。
ここで、基板上に形成されたA(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)とVを含む薄膜とは、A(イオン)を含む化合物とVを含む化合物との混合物を種々の方法により基板上に製膜させた薄膜を意味する。
A(イオン)を含む化合物としては、K、RbおよびCsから選ばれる1種又は2種以上の原子を含む無機化合物または有機化合物が挙げられる。
無機化合物の例としては、結晶化に至っていないアモルファスなKVO、RbVO、CsVO等の前躯体が挙げられる。
有機化合物の例としては、一般的に、これらの元素を含む、β−ジケトナト、炭素数6以上の長鎖のアルコキシド、ハロゲンを含んでもよい有機酸塩などが挙げられる。
具体的には、これらの金属のナフテン酸塩、2エチルヘキサン酸塩、アセチルアセトナト塩などが挙げられる。
なお、A(イオン)を含む化合物には、Li、Na、NHから選ばれる1種又は2種以上を含んでいても構わない。
In order to provide the first oxide white phosphor crystal thin film represented by the composition formula AVO 3 on the substrate, for example, A formed on the substrate (A is one selected from K, Rb and Cs or 2 or more atoms) and a thin film containing V (vanadium) in a substantially 1: 1 atomic ratio is maintained at a temperature of 25 ° C. to 450 ° C., and then an ultraviolet laser or an ultraviolet lamp having a wavelength of 400 nm or less is used. Irradiation may be performed to crystallize the vanadium oxide.
Here, A (A is one or more atoms selected from K, Rb and Cs) and a thin film containing V formed on the substrate are a compound containing A (ion) and V. It means a thin film obtained by forming a mixture with a compound containing a compound on a substrate by various methods.
Examples of the compound containing A (ion) include inorganic compounds or organic compounds containing one or more atoms selected from K, Rb, and Cs.
Examples of the inorganic compound include precursors such as amorphous KVO 3 , RbVO 3 , and CsVO 3 that have not been crystallized.
Examples of organic compounds generally include β-diketonates, long-chain alkoxides having 6 or more carbon atoms, and organic acid salts that may contain halogen.
Specific examples include naphthenate, 2-ethylhexanoate, acetylacetonate and the like of these metals.
In addition, the compound containing A (ion) may contain one or more selected from Li, Na, and NH 4 .

Vを含む化合物としては、これを含む無機化合物または有機化合物が挙げられる。
無機化合物の例としては、結晶化に至っていないアモルファスなKVO、RbVO、CsVO等の前躯体が挙げられる。
有機化合物の例としては、一般的に、バナジウムを含む、β−ジケトナト、炭素数6以上の長鎖のアルコキシド、ハロゲンを含んでもよい有機酸塩などが挙げられる。
具体的には、バナジウムの2エチルヘキサン酸塩、アセチルアセトナト塩などが挙げられる。
As a compound containing V, the inorganic compound or organic compound containing this is mentioned.
Examples of the inorganic compound include precursors such as amorphous KVO 3 , RbVO 3 , and CsVO 3 that have not been crystallized.
Examples of organic compounds generally include vanadium-containing β-diketonates, long-chain alkoxides having 6 or more carbon atoms, and organic acid salts that may contain halogen.
Specific examples include vanadium diethylhexanoate and acetylacetonate.

上記A及びVを含む化合物は、AとVの原子が実質的に1:1となるように混合して、薄膜形成用の溶液とする。この場合、必要によりトルエン・キシレンなどの溶媒を使用してもよい。
ついでこの溶液は、適宜方法により基板上に有機金属薄膜として製膜される。この場合、酸化物への反応が起こり易く、質の良い膜を製造するために、溶液の作製後(A及びVを含む有機金属溶液の混合後)、速やかに製膜を行うことが望ましい
製膜方法は制約されず、スパッタリング、MBE、真空蒸着、CVD、化学溶液法(塗布熱分解法、スプレー法)などが適宜用いられる。
The compound containing A and V is mixed so that the atoms of A and V are substantially 1: 1 to obtain a solution for forming a thin film. In this case, a solvent such as toluene / xylene may be used if necessary.
Subsequently, this solution is formed into an organic metal thin film on a substrate by an appropriate method. In this case, in order to produce a high-quality film that easily reacts with an oxide, it is desirable to form a film immediately after preparing the solution (after mixing the organometallic solution containing A and V). The film method is not limited, and sputtering, MBE, vacuum deposition, CVD, chemical solution method (coating pyrolysis method, spray method) and the like are appropriately used.

つぎに、製膜された薄膜は、25℃〜450℃の温度に保持された後、波長400nm以下の紫外線レーザ又は紫外線ランプが照射される。なお、基板温度は基板の熱耐性温度に依る。
紫外線レーザの場合、具体的には、製膜後、たとえば、100℃で乾燥し、その後、基板温度は室温にし、低エネルギーで紫外レーザ照射を行う。この場合、アブレーションによる膜厚の減少を抑制し、酸化バナジウムの結晶化を促進するために、10〜20mJ/cmの範囲でレーザ照射をすることが望ましい。
また紫外線ランプの場合には、製膜後、基板温度は室温にし、低エネルギーで紫外ランプ照射を行う。この場合、酸化バナジウムの結晶化を促進するために、15〜50mW/cmの条件で紫外線ランプ照射をすることが望ましい。
また、本発明においては、製膜時間の短縮を目的とする場合には、薄膜に紫外ランプを短時間照射した後、紫外線レーザを照射して結晶化させることが好ましい。
Next, after the formed thin film is kept at a temperature of 25 ° C. to 450 ° C., it is irradiated with an ultraviolet laser or an ultraviolet lamp having a wavelength of 400 nm or less. The substrate temperature depends on the heat resistance temperature of the substrate.
In the case of an ultraviolet laser, specifically, after film formation, for example, drying is performed at 100 ° C., and then the substrate temperature is set to room temperature, and ultraviolet laser irradiation is performed with low energy. In this case, it is desirable to perform laser irradiation in a range of 10 to 20 mJ / cm 2 in order to suppress a decrease in film thickness due to ablation and promote crystallization of vanadium oxide.
In the case of an ultraviolet lamp, after film formation, the substrate temperature is set to room temperature, and ultraviolet lamp irradiation is performed with low energy. In this case, in order to promote crystallization of vanadium oxide, it is desirable to irradiate with an ultraviolet lamp under a condition of 15 to 50 mW / cm 2 .
In the present invention, when aiming at shortening the film formation time, it is preferable to crystallize the thin film by irradiating it with an ultraviolet lamp for a short time and then irradiating it with an ultraviolet laser.

つぎに、本発明の製造方法においては、この第一の蛍光体結晶薄膜の上にアモルファスアルミナ薄膜からなる保護層を設ける。
アモルファスアルミナ薄膜からなる保護層を形成する手法として、Al(イオン)を含む有機化合物を溶液状にし、上記第一の酸化物蛍光体結晶薄膜上に塗布し、製膜後アモルファス化させればよい。
アルミニウムを含む有機化合物の例としては、一般的に、これらの元素を含む、β−ジケトナト、炭素数6以上の長鎖の有機酸塩(ハロゲンを含んでもよい)などが挙げられる。具体的には、ナフテン酸塩、2−エチルヘキサン酸塩、アセチルアセトナト塩などが挙げられる。
上記Alを含む化合物を薄膜形成用の溶液とする場合、必要によりトルエン・キシレンなどの溶媒を使用してもよい。ついでこの溶液は、適宜方法により上記第一の酸化物蛍光体結晶薄膜上に製膜される。製膜方法は制約されず、スパッタリング、MBE、真空蒸着、CVD、化学溶液法(塗布熱分解法、スプレー法)などが適宜用いられる。
つぎに、製膜された薄膜は、25℃〜150℃の温度に保持された後、波長400nm以下の紫外線ランプ又は紫外線レーザが照射される。
紫外線ランプの場合には、製膜後、基板温度は室温にし、低エネルギーで紫外ランプ照射を行う。この場合、有機物の分解を促進するために、30〜50mW/cmの条件で紫外線ランプ照射をすることが望ましい。
また紫外線レーザの場合、具体的には、製膜後、たとえば、100℃で乾燥し、その後、基板温度は室温にし、低エネルギーで紫外レーザ照射を行う。この場合、アブレーションによる膜厚の減少を抑制するために、5〜20mJ/cmの範囲でレーザ照射をすることが望ましい。また、本発明においては、製膜時間の短縮を目的とする場合には、薄膜に紫外ランプを短時間照射した後、紫外線レーザを照射してアモルファス化させることが好ましい。
Next, in the manufacturing method of the present invention, a protective layer made of an amorphous alumina thin film is provided on the first phosphor crystal thin film.
As a method for forming a protective layer made of an amorphous alumina thin film, an organic compound containing Al (ions) may be made into a solution, applied onto the first oxide phosphor crystal thin film, and then made amorphous after film formation. .
Examples of the organic compound containing aluminum generally include β-diketonato, a long-chain organic acid salt having 6 or more carbon atoms (which may contain a halogen), and the like containing these elements. Specific examples include naphthenate, 2-ethylhexanoate, acetylacetonato salt, and the like.
When the Al-containing compound is used as a solution for forming a thin film, a solvent such as toluene / xylene may be used if necessary. Then, this solution is formed on the first oxide phosphor crystal thin film by an appropriate method. The film forming method is not limited, and sputtering, MBE, vacuum deposition, CVD, chemical solution method (coating pyrolysis method, spray method) and the like are appropriately used.
Next, after the formed thin film is maintained at a temperature of 25 ° C. to 150 ° C., it is irradiated with an ultraviolet lamp or an ultraviolet laser having a wavelength of 400 nm or less.
In the case of an ultraviolet lamp, the substrate temperature is set to room temperature after film formation, and ultraviolet lamp irradiation is performed with low energy. In this case, it is desirable to irradiate with an ultraviolet lamp under a condition of 30 to 50 mW / cm 2 in order to promote the decomposition of the organic matter.
In the case of an ultraviolet laser, specifically, after film formation, for example, drying is performed at 100 ° C., and then the substrate temperature is set to room temperature, and ultraviolet laser irradiation is performed with low energy. In this case, it is desirable to perform laser irradiation in the range of 5 to 20 mJ / cm 2 in order to suppress a decrease in film thickness due to ablation. Further, in the present invention, when aiming at shortening the film forming time, it is preferable to irradiate the thin film with an ultraviolet lamp for a short time and then irradiate with an ultraviolet laser to make it amorphous.

つぎに、本発明の製造方法においては、上記保護層であるアモルファス酸化アルミニウムに上に第二の酸化物蛍光体薄膜を設ける。   Next, in the manufacturing method of the present invention, a second oxide phosphor thin film is provided on the amorphous aluminum oxide serving as the protective layer.

この第二の酸化物蛍光体結晶薄膜を上記アモルファスアルミナ薄膜上に設けるには、たとえば、該アモルファスアルミナ薄膜上に酸化物蛍光体の金属組成を有する塗膜を設け、該塗膜に波長400nm以下の紫外線ランプを、ついで紫外線レーザを照射するか、あるいは該アモルファスアルミナ薄膜の上に、酸化物蛍光体の金属組成を有する膜を物理蒸着し、該蒸着膜に波長400nm以下の紫外線ランプを、ついで紫外線レーザを照射すればよい。   In order to provide the second oxide phosphor crystal thin film on the amorphous alumina thin film, for example, a coating film having a metal composition of the oxide phosphor is provided on the amorphous alumina thin film, and the coating film has a wavelength of 400 nm or less. Then, a film having a metal composition of an oxide phosphor is physically vapor-deposited on the amorphous alumina thin film, and then an ultraviolet lamp having a wavelength of 400 nm or less is applied to the vapor-deposited film. Irradiation with an ultraviolet laser is sufficient.

以下、第二の酸化物蛍光体として、CaTiO:Pr3+赤色蛍光体を用いた場合の例にとり、アモルファス酸化アルミニウム層の上にCaTiO:Pr3+蛍光体薄膜を形成する手法を説明する。
まずCa、Ti、Pr(イオン)を含む有機化合物を溶液状にし、アモルファス酸化アルミニウム上に塗布する。有機化合物の例としては、一般的に、これらの元素を含む、β−ジケトナト、炭素数6以上の長鎖の有機酸塩(ハロゲンを含んでもよい)などが挙げられる。具体的には、ナフテン酸塩、2エチルヘキサン酸塩、アセチルアセトナト塩などが挙げられる。上記Ca、Ti、Prを含む化合物を薄膜形成用の溶液とする。この場合、必要によりトルエン・キシレンなどの溶媒を使用してもよい。ついでこの溶液は、適宜方法により基板上に有機金属薄膜として製膜される。この場合、酸化物への反応が起こり易く、質の良い膜を製造するために、溶液の作製後(Ca、Ti、Prを含む有機金属溶液の混合後)、速やかに製膜を行うことが望ましい製膜方法は制約されず、スパッタリング、MBE、真空蒸着、CVD、化学溶液法(塗布熱分解法、スプレー法)などが適宜用いられる。
つぎに、製膜された薄膜は、25℃〜150℃の温度に保持された後、波長400nm以下の紫外線レーザ又は紫外線ランプが照射される。
紫外線レーザの場合、具体的には、製膜後、たとえば、100℃で乾燥し、その後、基板温度は室温にし、まず始めに低エネルギーで紫外レーザ照射を行う。この場合、アブレーションによる膜厚の減少を抑制し、アモルファス状態になることを促進するために、5〜20mJ/cmの範囲でレーザ照射をしなければならない。続いて、結晶化させるために120〜180mJ/cmの範囲でレーザ照射を行う。下層へのレーザ加熱による瞬間加熱によるダメージを防ぐためにショット数は20〜50パルス程度に留めておくのが良い。また、本発明においては、レーザ照射前に、薄膜に紫外ランプを短時間照射する処理をしておくことが好ましい。
Hereinafter, a method of forming a CaTiO 3 : Pr 3+ phosphor thin film on an amorphous aluminum oxide layer will be described as an example in which a CaTiO 3 : Pr 3 + red phosphor is used as the second oxide phosphor.
First, an organic compound containing Ca, Ti, and Pr (ions) is made into a solution and applied onto amorphous aluminum oxide. Examples of organic compounds generally include β-diketonato, long-chain organic acid salts having 6 or more carbon atoms (which may contain halogen), and the like containing these elements. Specific examples include naphthenate, 2-ethylhexanoate, and acetylacetonate. The compound containing Ca, Ti, and Pr is used as a solution for forming a thin film. In this case, a solvent such as toluene / xylene may be used if necessary. Subsequently, this solution is formed into an organic metal thin film on a substrate by an appropriate method. In this case, in order to produce a high-quality film that easily reacts with an oxide, it is necessary to quickly form a film after preparing the solution (after mixing an organometallic solution containing Ca, Ti, and Pr). A desirable film forming method is not limited, and sputtering, MBE, vacuum deposition, CVD, chemical solution method (coating pyrolysis method, spray method) and the like are appropriately used.
Next, the formed thin film is kept at a temperature of 25 ° C. to 150 ° C., and then irradiated with an ultraviolet laser or an ultraviolet lamp having a wavelength of 400 nm or less.
In the case of an ultraviolet laser, specifically, after film formation, the substrate is dried at, for example, 100 ° C., and then the substrate temperature is set to room temperature. In this case, laser irradiation must be performed in the range of 5 to 20 mJ / cm 2 in order to suppress a decrease in film thickness due to ablation and promote the formation of an amorphous state. Subsequently, laser irradiation is performed in the range of 120 to 180 mJ / cm 2 for crystallization. In order to prevent damage due to instantaneous heating due to laser heating to the lower layer, the number of shots should be limited to about 20 to 50 pulses. Moreover, in this invention, it is preferable to perform the process which irradiates an ultraviolet lamp to a thin film for a short time before laser irradiation.

以下、実施例により本願発明を更に詳細に説明するが、実施例が本特許内容を制限するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, an Example does not restrict | limit this patent content.

実施例1
PET基板上に作製したRbVO薄膜上に2エチルヘキサン酸アルミニウムトルエン溶液(C1溶液)を3000rpm、10秒間でスピンコートし、大気中で222nmの紫外線ランプを照射エネルギー25mW/cmで、10分照射したのち、同じく大気中で172nmの紫外線ランプを照射エネルギー38mW/cmで、10分照射した結果、有機成分が分解し、アモルファスアルミナ薄膜が形成され、PET/RbVO薄膜/アモルファスアルミナ薄膜からなる積層体が得られた。
Example 1
An RbVO 3 thin film prepared on a PET substrate was spin-coated with an aluminum 2-ethylhexanoate toluene solution (C1 solution) at 3000 rpm for 10 seconds, and an ultraviolet lamp of 222 nm was applied in the atmosphere at an irradiation energy of 25 mW / cm 2 for 10 minutes. After irradiation, the same 172 nm UV lamp was irradiated in the atmosphere at an irradiation energy of 38 mW / cm 2 for 10 minutes. As a result, the organic component was decomposed to form an amorphous alumina thin film. From the PET / RbVO 3 thin film / amorphous alumina thin film A laminate was obtained.

実施例2
実施例1において、172nm紫外線ランプの照射エネルギーを50mW/cmで照射したところ照射部は、有機成分が分解しアモルファスアルミナ薄膜が形成され、実施例1と同様な積層体が得られた。
Example 2
In Example 1, when the irradiation energy of the 172 nm ultraviolet lamp was irradiated at 50 mW / cm 2 , the irradiated layer was decomposed with organic components to form an amorphous alumina thin film, and a laminate similar to Example 1 was obtained.

実施例3
実施例1において、紫外線ランプ照射後に紫外線レーザを10mJ/cmで照射したところレーザアブレーションを起こさずアモルファスアルミナ薄膜が形成され、実施例1と同様な積層体が得られた。
Example 3
In Example 1, when an ultraviolet laser was irradiated at 10 mJ / cm 2 after irradiation with the ultraviolet lamp, an amorphous alumina thin film was formed without causing laser ablation, and a laminate similar to Example 1 was obtained.

実施例4
実施例1において作製された積層体のアモルファスアルミナ薄膜上に、2−エチルヘキサン酸Ca、2−エチルヘキサン酸Ti、2−エチルヘキサン酸Prの金属組成比を0.997:1:0.002の割合で混合しトルエンで希釈した溶液(C2溶液)を3000rpm、10秒間でスピンコートし、大気中で222nmの紫外線ランプを照射エネルギー25mW/cmで、10分照射したのち、同じく大気中で248nmの紫外線レーザを照射エネルギー20mJ/cmで照射した後、照射エネルギーを170mJ/cmに上昇させたところ、アモルファスアルミナ薄膜上に赤色蛍光体膜Ca0.997Pr0.002TiOが結晶化し、紫外励起による蛍光を示した。蛍光色はRbVOだけのものよりも赤色の混ざった色温度の低い白色となった。
Example 4
On the amorphous alumina thin film of the laminate produced in Example 1, the metal composition ratio of 2-ethylhexanoic acid Ca, 2-ethylhexanoic acid Ti, and 2-ethylhexanoic acid Pr was 0.997: 1: 0.002. A solution diluted with toluene (C2 solution) was spin-coated at 3000 rpm for 10 seconds and irradiated with an ultraviolet lamp of 222 nm in the atmosphere at an irradiation energy of 25 mW / cm 2 for 10 minutes. after irradiation with ultraviolet laser of 248nm in irradiation energy 20 mJ / cm 2, was increased irradiation energy 170 mJ / cm 2, on an amorphous alumina thin film red phosphor film Ca 0.997 Pr 0.002 TiO 3 crystal And showed fluorescence by ultraviolet excitation. The fluorescent color was white with a lower color temperature mixed with red than that of RbVO 3 alone.

実施例5
実施例1において作製されたアモルファスアルミナ薄膜上に、2エチルヘキサン酸Ca、2エチルヘキサン酸Sr、2エチルヘキサン酸Ti、2エチルヘキサン酸Prの金属組成比を0.648:0.349:1:0.002の割合で混合しトルエンで希釈した溶液(C3溶液)を3000rpm、10秒間でスピンコートし、大気中で222nmの紫外線ランプを照射エネルギー25mW/cmで、10分照射したのち、同じく大気中で248nmの紫外線レーザを照射エネルギー20mJ/cmで照射した後、照射エネルギーを170mJ/cmに上昇させたところ、アモルファスアルミナ薄膜上に赤色蛍光体膜(Ca0.65Sr0.350.997Pr0.002TiOが結晶化した積層型蛍光体を得た。このものは紫外励起による蛍光を示した。蛍光色はRbVOだけのものよりも赤色の混ざった色温度の低い白色となった。実施例5で得た(Ca0.65Sr0.350.997Pr0.002TiO/アモルファスAl/RbVO/PET薄膜の製造工程フローを図1に示す。また、この積層型蛍光体のPLスペクトルを図2に示す。525nm付近に位置する最も大きな発光ピークはRbVOに由来するものであり、375nm付近の小さなピークは基板のPETの発光である。610nm付近の発光ピークは(Ca0.65Sr0.350.997Pr0.002TiOによる赤色発光でドープしたPr3+に起因する。図中にも示したCIE色度座標値はx=0.313、y=0.381であり、上部蛍光体層の形成をしないRbVO/PET(x=0.305、y=0.401)(図3)より純白(x=0.33、y=0.33)に近づいている。
Example 5
On the amorphous alumina thin film prepared in Example 1, the metal composition ratio of 2 ethyl hexanoic acid Ca, 2 ethyl hexanoic acid Sr, 2 ethyl hexanoic acid Ti, 2 ethyl hexanoic acid Pr was 0.648: 0.349: 1. : A solution (C3 solution) mixed at a ratio of 0.002 and diluted with toluene was spin-coated at 3000 rpm for 10 seconds, and irradiated with an ultraviolet lamp of 222 nm in the atmosphere at an irradiation energy of 25 mW / cm 2 for 10 minutes. Similarly, after irradiating an ultraviolet laser of 248 nm in the atmosphere with an irradiation energy of 20 mJ / cm 2 , the irradiation energy was increased to 170 mJ / cm 2. As a result, a red phosphor film (Ca 0.65 Sr 0. 35 ) A laminated phosphor obtained by crystallizing 0.997 Pr 0.002 TiO 3 was obtained. This showed fluorescence by ultraviolet excitation. The fluorescent color was white with a lower color temperature mixed with red than that of RbVO 3 alone. The manufacturing process flow of the (Ca 0.65 Sr 0.35 ) 0.997 Pr 0.002 TiO 3 / amorphous Al 2 O 3 / RbVO 3 / PET thin film obtained in Example 5 is shown in FIG. In addition, FIG. 2 shows a PL spectrum of this multilayer phosphor. The largest emission peak located near 525 nm is derived from RbVO 3 , and the small peak around 375 nm is the emission of PET on the substrate. The emission peak in the vicinity of 610 nm is attributed to 1 D 23 H 4 of Pr 3+ doped with red emission by (Ca 0.65 Sr 0.35 ) 0.997 Pr 0.002 TiO 3 . The CIE chromaticity coordinate values also shown in the figure are x = 0.313 and y = 0.382, and RbVO 3 / PET (x = 0.305, y = 0.401) without forming the upper phosphor layer. ) (FIG. 3) is closer to pure white (x = 0.33, y = 0.33).

比較例1
実施例1に示すアモルファスアルミナ薄膜の形成をせずにRbVO膜上に直接実施例4に示す赤色蛍光体の形成を試みたところ紫外線レーザの照射エネルギーが20mJ/cmでは全く結晶化せず、照射エネルギーを80mJ/cmではRbVOとともにアブレーションが起こり、PET基板も焦げてしまい、積層型蛍光体を得ることはできなかった。
Comparative Example 1
An attempt was made to form the red phosphor shown in Example 4 directly on the RbVO 3 film without forming the amorphous alumina thin film shown in Example 1, and when the irradiation energy of the ultraviolet laser was 20 mJ / cm 2 , no crystallization occurred. When the irradiation energy was 80 mJ / cm 2 , ablation occurred together with RbVO 3 , and the PET substrate was burnt, so that a laminated phosphor could not be obtained.

比較例2
実施例5において、アモルファスアルミナ薄膜と赤色蛍光体膜(Ca0.65Sr0.350.997Pr0.002TiOを設けずに、PET/RbVO薄膜からなる蛍光体を得た。
このものは紫外励起による蛍光を示した。蛍光色はRbVOだけを設けたものより赤色の混ざらない色温度の高い白色となった。この単層型蛍光体のそのPLスペクトルを図2に示す。
Comparative Example 2
In Example 5, a phosphor composed of a PET / RbVO 3 thin film was obtained without providing an amorphous alumina thin film and a red phosphor film (Ca 0.65 Sr 0.35 ) 0.997 Pr 0.002 TiO 3 .
This showed fluorescence by ultraviolet excitation. The fluorescent color was white with a higher color temperature that did not mix red compared to the case where only RbVO 3 was provided. The PL spectrum of this single-layer phosphor is shown in FIG.

実施例5の製造工程フローManufacturing process flow of Example 5 実施例5の、(Ca0.65Sr0.350.997Pr0.002TiO/アモルファスAl/RbVO/PET薄膜のPLスペクトルPL spectrum of (Ca 0.65 Sr 0.35 ) 0.997 Pr 0.002 TiO 3 / Amorphous Al 2 O 3 / RbVO 3 / PET thin film of Example 5 比較例2の単層型蛍光体(RbVO/PET)のPLスペクトルPL spectrum of single-layer phosphor (RbVO 3 / PET) of Comparative Example 2

Claims (14)

基板上に、酸化物白色蛍光体結晶薄膜、アモルファスアルミナ薄膜および最上部に酸化物蛍光体結晶薄膜が順次設けられた積層型白色蛍光体。   A laminated white phosphor in which an oxide white phosphor crystal thin film, an amorphous alumina thin film, and an oxide phosphor crystal thin film are sequentially provided on a substrate. 基板が有機基板であることを特徴とする請求項1に記載の積層型白色蛍光体。   The laminated white phosphor according to claim 1, wherein the substrate is an organic substrate. 酸化物白色蛍光体が、酸化バナジウム系化合物であることを特徴とする請求項1に記載の積層型白色蛍光体。   The multilayer white phosphor according to claim 1, wherein the oxide white phosphor is a vanadium oxide compound. 最上部に作製される酸化物蛍光体が、赤色蛍光体または青色蛍光体であることを特徴とする請求項1に記載の積層型白色蛍光体。   The stacked white phosphor according to claim 1, wherein the oxide phosphor produced on the top is a red phosphor or a blue phosphor. 紫外・近紫外光または紫外・近紫外線励起発光素子により、蛍光スペクトルが390〜800nmの範囲にブロード広がる白色蛍光を発することを特徴とする請求項1に記載の積層型白色蛍光体。   2. The multilayer white phosphor according to claim 1, which emits white fluorescence having a fluorescence spectrum broadening in a range of 390 to 800 nm by ultraviolet / near ultraviolet light or ultraviolet / near ultraviolet excitation light emitting element. 第一の酸化物蛍光体結晶薄膜を設けた基板を、室温〜150℃の温度に保持した後、アルミニウムを含む有機化合物溶液を表面に塗布し、波長400nm以下の紫外線を照射して、アモルファスアルミナ薄膜を形成し、その上に酸化物蛍光体結晶薄膜を形成することを特徴とする請求項1〜5のいずれかに記載の積層型白色蛍光体の製造方法。   After the substrate provided with the first oxide phosphor crystal thin film is kept at a temperature of room temperature to 150 ° C., an organic compound solution containing aluminum is applied to the surface, irradiated with ultraviolet light having a wavelength of 400 nm or less, and amorphous alumina The method for producing a laminated white phosphor according to any one of claims 1 to 5, wherein a thin film is formed and an oxide phosphor crystal thin film is formed thereon. 紫外線の光源が紫外線レーザまた紫外線ランプであることを特徴とする請求項6に記載の積層型白色蛍光体の製造方法。   7. The method for producing a laminated white phosphor according to claim 6, wherein the ultraviolet light source is an ultraviolet laser or an ultraviolet lamp. 紫外ランプを照射した後、紫外線レーザを照射することを特徴とする請求項7に記載の積層型白色蛍光体の製造方法。   8. The method for producing a laminated white phosphor according to claim 7, wherein an ultraviolet laser is irradiated after irradiating with an ultraviolet lamp. アモルファスアルミナ薄膜の上に、酸化物蛍光体の金属組成を有する塗膜を設け、該塗膜に波長400nm以下の紫外線ランプを、ついで紫外線レーザを照射することにより、酸化物蛍光体結晶薄膜を形成することを特徴とする請求項6〜8のいずれかに記載の積層型白色蛍光体の製造方法。   An oxide phosphor crystal thin film is formed by providing a coating film having a metal composition of an oxide phosphor on an amorphous alumina thin film, and irradiating the coating film with an ultraviolet lamp having a wavelength of 400 nm or less and then irradiating an ultraviolet laser. A method for producing a laminated white phosphor according to any one of claims 6 to 8. アモルファスアルミナ薄膜の上に、酸化物蛍光体の金属組成を有する膜を物理蒸着し、該蒸着膜に波長400nm以下の紫外線ランプを、ついで紫外線レーザを照射することにより、酸化物蛍光体結晶薄膜を形成することを特徴とする請求項6〜8のいずれかに記載の積層型白色蛍光体の製造方法。   A film having a metal composition of an oxide phosphor is physically vapor-deposited on the amorphous alumina thin film, and the oxide phosphor crystal thin film is formed by irradiating the vapor deposited film with an ultraviolet lamp having a wavelength of 400 nm or less and then with an ultraviolet laser. It forms, The manufacturing method of the lamination type white fluorescent substance in any one of Claims 6-8 characterized by the above-mentioned. 請求項1〜5のいずれかに記載の積層型白色蛍光体を用いた白色LED。   A white LED using the laminated white phosphor according to claim 1. 請求項1〜5のいずれかに記載の積層型白色蛍光体を用いた表示器具。   A display device using the laminated white phosphor according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の積層型白色蛍光体を用いた照明器具。   A lighting fixture using the laminated white phosphor according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の積層型白色蛍光体を用いた表示器具。   A display device using the laminated white phosphor according to any one of claims 1 to 5.
JP2008193161A 2008-07-28 2008-07-28 Method for producing white phosphor Active JP5120949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008193161A JP5120949B2 (en) 2008-07-28 2008-07-28 Method for producing white phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008193161A JP5120949B2 (en) 2008-07-28 2008-07-28 Method for producing white phosphor

Publications (2)

Publication Number Publication Date
JP2010031103A JP2010031103A (en) 2010-02-12
JP5120949B2 true JP5120949B2 (en) 2013-01-16

Family

ID=41735975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008193161A Active JP5120949B2 (en) 2008-07-28 2008-07-28 Method for producing white phosphor

Country Status (1)

Country Link
JP (1) JP5120949B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051933A (en) * 2017-08-28 2020-04-21 松下知识产权经营株式会社 Wavelength conversion member, light source, lighting device, and method for manufacturing wavelength conversion member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6186569B2 (en) * 2013-09-18 2017-08-30 国立研究開発法人産業技術総合研究所 Pseudo-sunlight irradiation device and phosphor powder for the device
JP6396260B2 (en) * 2015-06-29 2018-09-26 国立研究開発法人産業技術総合研究所 Vanadium oxide fluorescent powder and production method
JP6529029B2 (en) * 2015-06-29 2019-06-12 国立研究開発法人産業技術総合研究所 Rare earth free white lighting device
JP6842631B2 (en) * 2017-06-07 2021-03-17 リンテック株式会社 A coating liquid for forming a luminescent film, a method for preparing the same, and a method for producing a luminescent film.
AU2019300832A1 (en) * 2018-07-09 2021-02-04 Merck Sharp & Dohme Llc Enzymatic synthesis of 4'-ethynyl nucleoside analogs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803631B2 (en) * 1995-07-03 1998-09-24 株式会社デンソー ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
US6522065B1 (en) * 2000-03-27 2003-02-18 General Electric Company Single phosphor for creating white light with high luminosity and high CRI in a UV led device
JP4317478B2 (en) * 2004-03-31 2009-08-19 三菱化学株式会社 Phosphor-type light emitting device and endoscope device using the same as an illumination source
JP2008159708A (en) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd Light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051933A (en) * 2017-08-28 2020-04-21 松下知识产权经营株式会社 Wavelength conversion member, light source, lighting device, and method for manufacturing wavelength conversion member
CN111051933B (en) * 2017-08-28 2022-03-18 松下知识产权经营株式会社 Wavelength conversion member, light source, lighting device, and method for manufacturing wavelength conversion member

Also Published As

Publication number Publication date
JP2010031103A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4730458B2 (en) Red phosphor, method for producing red phosphor, white light source, illumination device, and liquid crystal display device
JP5120949B2 (en) Method for producing white phosphor
TWI381044B (en) Phosphor converted light emitting device
Im et al. A novel blue-emitting silica-coated KBaPO4: Eu2+ phosphor under vacuum ultraviolet and ultraviolet excitation
TW201229207A (en) Red light-emitting fluorescent substance and light-emitting device employing the same
JP2803631B2 (en) ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD
TWI373513B (en)
JP5182851B2 (en) Method for producing vanadium oxide phosphor thin film
TW200819518A (en) Phosphor
TW528791B (en) Phosphor multilayer and EL panel
JP2018503980A (en) Phosphor conversion LED
US8007686B2 (en) Nitride red phosphors and white light emitting diode using rare-earth-co-doped nitride red phosphors
US20080044590A1 (en) Manufacturing Method of Phosphor Film
JPH0272592A (en) Film el element
WO2019021756A1 (en) Phosphor and production method therefor, phosphor sheet, and illumination device
US20210167257A1 (en) Light conversion material, producing method thereof, light-emitting device and backlight module employing the same
TWI421328B (en) Phosphors and white light emitting devices utilizing the same
TW201006913A (en) Red phosphor and forming method thereof for use in solid state lighting
KR100979468B1 (en) Red Phospher and White Light Emitting Device Comprising It
JP5331021B2 (en) Yellow phosphor and method for producing the same
WO2012020704A1 (en) Inorganic-oxide fluorescent material and thin film of white fluorescent material
KR20180003523A (en) Garnet phosphor and light emitting diodes comprising the garnet phosphor for solid-state lighting applications
TWI593780B (en) Fluorescent materials of light-emitting diodes and the method for preparing the same
TW201843296A (en) Phosphors with narrow green emission
JP5192854B2 (en) Phosphor and display panel using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250