[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5119053B2 - Biological sample separation method, biological sample detection method, biological sample separation system, and biological sample separation / detection system - Google Patents

Biological sample separation method, biological sample detection method, biological sample separation system, and biological sample separation / detection system Download PDF

Info

Publication number
JP5119053B2
JP5119053B2 JP2008148708A JP2008148708A JP5119053B2 JP 5119053 B2 JP5119053 B2 JP 5119053B2 JP 2008148708 A JP2008148708 A JP 2008148708A JP 2008148708 A JP2008148708 A JP 2008148708A JP 5119053 B2 JP5119053 B2 JP 5119053B2
Authority
JP
Japan
Prior art keywords
sample
column
phase column
reverse phase
eluted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008148708A
Other languages
Japanese (ja)
Other versions
JP2009294118A (en
Inventor
由貴江 笹倉
勝弘 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008148708A priority Critical patent/JP5119053B2/en
Publication of JP2009294118A publication Critical patent/JP2009294118A/en
Application granted granted Critical
Publication of JP5119053B2 publication Critical patent/JP5119053B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、生体試料分離方法,生体試料検出方法,生体試料分離システム、又は生体試料分離・検出システムに関する。   The present invention relates to a biological sample separation method, a biological sample detection method, a biological sample separation system, or a biological sample separation / detection system.

近年、生体試料中に微量に存在する成分の中から新たなバイオマーカーを探索する研究が世界中で行われており、またそれらの臨床検査への適用が期待されている。ペプチドのような血液中の低分子は有効なマーカーとして特に注目されている。   In recent years, researches for searching for new biomarkers from components present in minute amounts in biological samples have been performed all over the world, and their application to clinical tests is expected. Small molecules in blood such as peptides are attracting particular attention as effective markers.

生体試料は多数の成分の複雑な混合物である。従ってこれを解析するには、まず高速液体クロマトグラフィー(HPLC)等により成分を分離して試料の複雑性を減少させた後、未知の成分を高感度検出可能な質量分析(MS)によって解析する手法が広く用いられている。そして、生体試料中に微量に存在するマーカーをMS検出するためには、例えば血清であれば20μL(タンパク質量で1mg)程度が必要である。   A biological sample is a complex mixture of many components. Therefore, in order to analyze this, first, components are separated by high performance liquid chromatography (HPLC) or the like to reduce the complexity of the sample, and then unknown components are analyzed by mass spectrometry (MS) capable of highly sensitive detection. The method is widely used. And, in order to detect a marker present in a trace amount in a biological sample by MS, for example, about 20 μL (1 mg in protein amount) is necessary for serum.

HPLCでは通常、分離可能なタンパク質容量が大きいカラムほど、分離に高流速が必要となる。例えば上記1mgのタンパク質を分離する場合、流量1mL/min程度の大容量カラムが必要となる。しかしこの場合、溶出される試料の容量も大きくなることから、一度分離・分取する試料をMS測定前に濃縮する必要が生じる。例えば、100μLの試料を濃縮するのには3h程度を要し、解析スループット低下の要因となる。   In HPLC, a column having a larger protein capacity is generally required to have a higher flow rate for separation. For example, when separating 1 mg of the protein, a large-capacity column with a flow rate of about 1 mL / min is required. However, in this case, since the volume of the eluted sample increases, it is necessary to concentrate the sample once separated and sorted before the MS measurement. For example, it takes about 3 h to concentrate a 100 μL sample, which causes a reduction in analysis throughput.

例えば血清の場合、その成分の90%以上は、アルブミンをはじめとする一部の主要タンパク質に占められている(例えば、非特許文献1参照。)。従ってこれらを予め除去することで、必要な20μL相当の血清試料を流量の小さい低容量カラムに導入することが可能となり、後の濃縮に要する時間を低減することができる。   For example, in the case of serum, 90% or more of the components are occupied by some major proteins including albumin (see, for example, Non-Patent Document 1). Therefore, by removing these in advance, it becomes possible to introduce a necessary 20 μL serum sample into a low-volume column with a small flow rate, and the time required for subsequent concentration can be reduced.

主要タンパク質除去手法としては、支持体に固定化した抗体を用いた除去キットがすでに市販されている。しかしこれらを用いた場合、主要タンパク質結合性の低分子も同時に除去されることが分かっている。これらの中には有効なバイオマーカー候補も多いことが、同手法の利用上の課題である。   As a major protein removal method, a removal kit using an antibody immobilized on a support is already commercially available. However, it has been found that when these are used, the major protein-binding small molecules are also removed. Among them, there are many effective biomarker candidates, which is a problem in using this method.

逆相カラムから溶出する試料の有機溶媒濃度を下げる手法としては、有機溶媒を含む試料を、加熱キャピラリーネブライザーを通過させることで、有機溶媒を除去する手法が報告されている(例えば、特許文献1参照。)。同手法は加熱によって有機溶媒を蒸発,除去している。試料にタンパク質のような不安定な生体分子が含まれる場合、加熱によって試料が変性する可能性があり、同手法の使用は適さない。   As a technique for reducing the concentration of the organic solvent in the sample eluted from the reverse phase column, a technique for removing the organic solvent by passing the sample containing the organic solvent through a heated capillary nebulizer has been reported (for example, Patent Document 1). reference.). In this method, the organic solvent is evaporated and removed by heating. When an unstable biomolecule such as protein is contained in the sample, the sample may be denatured by heating, and the use of this method is not suitable.

また、タンパク質を含む生体試料を順相カラムに導入してタンパク質を素通りさせて除去し、順相カラムに吸着した低分子を溶出して第二のカラムに導入し、分離する手法が報告されている(例えば、特許文献2参照。)。同手法は第一のカラムでタンパク質を素通りさせて除去する。また同手法では、試料の第一のカラム導入前に、タンパク質と低分子を解離させるための有機溶媒添加による希釈を行っている。   In addition, a method has been reported in which a biological sample containing protein is introduced into a normal phase column, the protein is passed through and removed, the low molecule adsorbed on the normal phase column is eluted, introduced into the second column, and separated. (For example, refer to Patent Document 2). The technique removes the protein through the first column. In this method, the sample is diluted by adding an organic solvent to dissociate the protein and the low molecule before introducing the sample into the first column.

特表2006−504098号公報JP-T-2006-504098 特開2003−149216号公報JP 2003-149216 A Mol Cell Proteomics. 2002、1、845−67.p856に記載Mol Cell Proteomics. 2002, 1, 845-67.

本発明の1つの目的は、生体試料を安定かつ小容量で分離・分取することである。   One object of the present invention is to separate and sort biological samples in a stable and small volume.

本発明は、生体試料を第一の逆相カラムに吸着させ、有機溶媒を用いて第一の逆相カラムから溶出し、溶出した試料を希釈して有機溶媒濃度を低下させ、希釈した試料を第一のカラムより細い第二の逆相カラムに導入し、第一のカラムから溶出したときよりも低流速で試料を溶出することで、生体試料を分離・分取する生体試料分離方法を1つの特徴とする。   In the present invention, a biological sample is adsorbed on a first reversed-phase column, eluted from the first reversed-phase column using an organic solvent, the eluted sample is diluted to reduce the concentration of the organic solvent, and the diluted sample is A biological sample separation method for separating and sorting a biological sample by introducing it into a second reversed-phase column that is thinner than the first column and eluting the sample at a lower flow rate than when it is eluted from the first column. With one feature.

本発明の1つの実施形態によれば、一画分あたりの容量を低減し、濃縮工程を省略あるいは低減可能である生体試料分離方法を提供できる。   According to one embodiment of the present invention, it is possible to provide a biological sample separation method that can reduce the volume per fraction and omit or reduce the concentration step.

本発明の実施形態は、例えば、以下の特徴を持つ。生体試料を第一の逆相カラムに吸着させ、主要タンパク質が溶出されない濃度の有機溶媒(アセトニトリル等、<50%)でペプチド等の低分子のみを溶出し、溶出した低分子が逆相カラムに吸着可能な有機溶媒濃度(<25%)にまで試料を希釈し、希釈した試料を第一の逆相カラムより細い第二の逆相カラムに吸着させ、第一の逆相カラムから溶出したときよりも低流速で試料を分離・分取する。生体試料としては、血液(血清,血漿),尿,脳髄液,唾液等、主要タンパク質の存在がマーカー探索の妨げとなる生体試料が想定される。また解析対象としてはタンパク質やペプチド,代謝物等の低分子化合物が想定される。逆相カラムの支持体としては、シリカゲル,ポリマー,シリカゲルおよびカーボンのハイブリッド粒子といった支持体に極性の低いオクタデシル基(C18),オクチル基(C8),ブチル基(C4),トリメチル基(C3),フェニル基(Ph)等を化学結合させたものを用いることができる。有機溶媒としては、アセトニトリルやメタノール等を、水と混合して適切な濃度に調製して用いる。また、pHを調整するため、適宜トリフルオロ酢酸(TFA)等の酸を添加する。第一の逆相カラムからの試料の溶出には、一定濃度の有機溶媒を含む溶離液の定濃度送液,有機溶媒濃度が異なる複数種類の溶離液のステップワイズ送液,有機溶媒濃度を勾配的に変化させたグラジエント送液等を用いる。第二の逆相カラムからの試料の溶出にも同様の手法を用いることができる。第二の逆相カラムで混合物試料を分離する目的の場合は、有機溶媒濃度が異なる複数種類の溶離液のステップワイズ送液,有機溶媒濃度を勾配的に変化させたグラジエント送液が特に推奨される。また、第一のカラムからの溶出後に、試料の第二のカラムへの吸着を促進するために水による希釈を行っている。希釈によって有機溶媒濃度を低下させている。また、第一のカラムと第二のカラムとの間に希釈ユニットを設けることで、両カラムへの送液を一台のポンプで実施可能である。本発明は生体試料の1つであるタンパク質を吸着させて除去する手法としても使用できる。第一のカラムからの溶出後に、試料の第二のカラムへの吸着を促進するために水による希釈を行うことが望ましい。一方、本発明では第一のカラムと第二のカラムとの間に希釈ユニットを設けることで、両カラムへの送液を一台のポンプで実施することも可能である。

The embodiment of the present invention has, for example, the following features. A biological sample is adsorbed on the first reversed-phase column, and only low molecules such as peptides are eluted with an organic solvent (acetonitrile, etc., <50%) at a concentration that does not elute the main protein. When the sample is diluted to an adsorbable organic solvent concentration (<25%), and the diluted sample is adsorbed on the second reversed-phase column that is thinner than the first reversed-phase column and eluted from the first reversed-phase column Separate and sort samples at a lower flow rate. As the biological sample, biological samples such as blood (serum, plasma), urine, cerebral spinal fluid, saliva, etc., in which the presence of major proteins hinders marker search are assumed. In addition, low molecular weight compounds such as proteins, peptides, and metabolites are assumed to be analyzed. As a support of the reverse phase column, a low polarity octadecyl group (C18), octyl group (C8), butyl group (C4), trimethyl group (C3), a support such as silica gel, polymer, silica gel and carbon hybrid particles, Those obtained by chemically bonding a phenyl group (Ph) or the like can be used. As the organic solvent, acetonitrile, methanol or the like is mixed with water to prepare an appropriate concentration. In order to adjust the pH, an acid such as trifluoroacetic acid (TFA) is appropriately added. For elution of the sample from the first reversed-phase column, constant concentration of eluent containing a certain concentration of organic solvent, stepwise delivery of multiple types of eluent with different organic solvent concentrations, and gradient of organic solvent concentration Gradient liquid change etc. which were changed automatically are used. A similar technique can be used to elute the sample from the second reverse phase column. For the purpose of separating mixture samples with the second reversed-phase column, stepwise pumping of multiple types of eluents with different organic solvent concentrations, and gradient pumping with organic solvent concentrations changed in gradients are particularly recommended. The In addition, after elution from the first column, dilution with water is performed to promote adsorption of the sample to the second column. Dilution reduces the organic solvent concentration. In addition, by providing a dilution unit between the first column and the second column, liquid feeding to both columns can be performed with a single pump. The present invention can also be used as a technique for adsorbing and removing a protein that is one of biological samples. It is desirable to dilute with water after elution from the first column to promote adsorption of the sample to the second column. On the other hand, in the present invention, by providing a dilution unit between the first column and the second column, it is possible to carry out liquid feeding to both columns with a single pump.

以下、実施例により説明する。   Hereinafter, an example explains.

図1乃至図5を参照し、本発明の実施例1について説明する。本実施例では、(1)生体試料を第一の逆相カラムに吸着させ、(2)主要タンパク質が溶出されない濃度の有機溶媒でペプチドのみを溶出し、(3)溶出したペプチドが逆相カラムに吸着可能な有機溶媒濃度にまで試料を希釈し、(4)希釈した試料を第一の逆相カラムより細い第二の逆相カラムに吸着させ、(5)第一の逆相カラムから溶出したときよりも低流速で試料を分離・分取する、の順番で作業を進める。ただし、本発明は本実施例のみに限定されるものではなく、その技術思想の範囲内において、種々変形可能である。   A first embodiment of the present invention will be described with reference to FIGS. In this example, (1) the biological sample is adsorbed on the first reverse phase column, (2) only the peptide is eluted with an organic solvent at a concentration at which the main protein is not eluted, and (3) the eluted peptide is the reverse phase column. Dilute the sample to an organic solvent concentration that can be adsorbed to (4), adsorb the diluted sample to the second reversed-phase column that is thinner than the first reversed-phase column, and (5) elute from the first reversed-phase column The work is proceeded in the order of separating and sorting the sample at a lower flow rate than when it was done. However, the present invention is not limited to this embodiment, and various modifications can be made within the scope of the technical idea.

図1に示すように、本実施例ではHPLCシステムとしてポンプ101,オートサンプラ102,UV検出器103,フラクションコレクタ104,第一の流路切り替えバルブ105aおよび第二の流路切り替えバルブ105bを用いる。HPLCシステムの配管の状態を図1に、また送液のシーケンスを図2に示す。   As shown in FIG. 1, in this embodiment, a pump 101, an autosampler 102, a UV detector 103, a fraction collector 104, a first flow path switching valve 105a, and a second flow path switching valve 105b are used as an HPLC system. Fig. 1 shows the state of the piping of the HPLC system, and Fig. 2 shows the sequence of liquid feeding.

ここでは第一の逆相カラム106と第二の逆相カラム107をオフラインとして実験を行った。オフラインとは、一つの流路中でカラムを連結せず、試料を第一のカラムで分離した後に一度回収し、第二のカラムに再度導入する実験手法である。配管はポンプ101から第一の流路切り替えバルブ105aを介して第一の逆相カラム106と第二の逆相カラム107を並列に連結し、次に両カラムは第二の流路切り替えバルブ105bを経てUV検出器103に導入され、フラクションコレクタ104によって分取される。図1の第一の流路切り替えバルブ105aおよび第二の流路切り替えバルブ105bのバルブ位置を図中実線で表されるバルブ位置1とした場合、オートサンプラ102から、第一の流路切り替えバルブ105a,第一の逆相カラム106,第二の流路切り替えバルブ105b,UV検出器103へと配管が接続されることとなる。また、図中破線で表されるバルブ位置2とした場合、オートサンプラ102から、第一の流路切り替えバルブ105a,第二の逆相カラム107,第二の流路切り替えバルブ105b,UV検出器103へと配管が接続されることとなる。溶離液A液として0.1%TFAを含む5%アセトニトリル、溶離液B液として0.1%TFAを含む95%アセトニトリルを調製して用いた。   Here, the experiment was conducted with the first reversed phase column 106 and the second reversed phase column 107 offline. Off-line is an experimental technique in which a column is not connected in a single flow path, but the sample is once collected after being separated in the first column and then introduced again into the second column. The pipe connects the first reverse-phase column 106 and the second reverse-phase column 107 in parallel from the pump 101 via the first flow path switching valve 105a, and then both columns are connected to the second flow path switching valve 105b. Then, it is introduced into the UV detector 103 and sorted by the fraction collector 104. When the valve positions of the first flow path switching valve 105a and the second flow path switching valve 105b in FIG. 1 are set to a valve position 1 represented by a solid line in the drawing, the first flow path switching valve is supplied from the autosampler 102. The pipes are connected to 105a, the first reverse phase column 106, the second flow path switching valve 105b, and the UV detector 103. When the valve position 2 is represented by a broken line in the figure, the first flow path switching valve 105a, the second reverse phase column 107, the second flow path switching valve 105b, and the UV detector are provided from the autosampler 102. A pipe is connected to 103. As eluent A, 5% acetonitrile containing 0.1% TFA was prepared, and as eluent B, 95% acetonitrile containing 0.1% TFA was prepared and used.

以下、図2を参照して、HPLCの各工程について詳細に説明する。
(1)生体試料を第一の逆相カラム106に吸着させる工程:オートサンプラ102を用いて血清20μLを第一の逆相カラム106(4.6mmI.D.x100mm,粒子径3μm)に導入する。逆相カラムとは、疎水性の固定相に対して液体の移動相を送液し、各種の化合物をその両相との疎水性相互作用の差によって分離するためのカラムである。
(2)ペプチドを第一の逆相カラム106から溶出する工程:血清導入後5分間で、B液濃度0〜50%のリニアグラジエントにより、ペプチドを溶出する。ポンプ101からUV検出器103までの配管の長さを考慮し、グラジエント開始後1分から、アルブミンが検出される直前(5.5分)までの、4.5分間分の溶出液(4.5ml)を回収する。
(3)溶出したペプチドを第二の逆相カラムに吸着可能な有機溶媒濃度にまで希釈する工程:回収した4.5mLの溶出液に対して4.5mLの水を添加し、最終的なアセトニトリル濃度を約12%とする。
(4)希釈した試料を第二の逆相カラムに吸着させる工程:希釈した試料溶液9mLを、オートサンプラ102を用いて第二の逆相カラム107(2mmI.D.x150mm,粒子径5μm)に導入する。第二の逆相カラムとは、第一の逆相カラムと同じ分離特性を持つが、第一の逆相カラムよりも細いカラムである。
(5)第二の逆相カラムから試料を分離・分取する工程:試料導入後10分間で、B液濃度12〜50%のリニアグラジエントにより、ペプチドを溶出する。ポンプ101からUV検出器103までの配管の長さを考慮し、グラジエント開始後1〜11分(全体シーケンスにおいて11〜21分)までの10分間分の溶出液を、18秒毎に分取(各60μL)する。
Hereafter, each process of HPLC is demonstrated in detail with reference to FIG.
(1) Step of adsorbing biological sample to first reversed phase column 106: Using autosampler 102, 20 μL of serum is introduced into first reversed phase column 106 (4.6 mm ID × 100 mm, particle diameter 3 μm). . A reverse phase column is a column for sending a liquid mobile phase to a hydrophobic stationary phase and separating various compounds based on the difference in hydrophobic interaction between the two phases.
(2) Step of eluting the peptide from the first reverse phase column 106: The peptide is eluted with a linear gradient having a B solution concentration of 0 to 50% in 5 minutes after the introduction of serum. Considering the length of the pipe from the pump 101 to the UV detector 103, the eluate for 4.5 minutes from the 1 minute after the start of the gradient to just before the albumin is detected (5.5 minutes) (4.5 ml) ).
(3) Step of diluting the eluted peptide to an organic solvent concentration that can be adsorbed on the second reversed-phase column: 4.5 mL of water is added to the recovered 4.5 mL of the eluate, and the final acetonitrile The concentration is about 12%.
(4) Step of adsorbing the diluted sample on the second reverse phase column: 9 mL of the diluted sample solution is applied to the second reverse phase column 107 (2 mm ID x 150 mm, particle diameter 5 μm) using the autosampler 102. Introduce. The second reversed phase column has the same separation characteristics as the first reversed phase column but is thinner than the first reversed phase column.
(5) Separating and separating the sample from the second reversed-phase column: The peptide is eluted with a linear gradient with a B solution concentration of 12 to 50% in 10 minutes after the introduction of the sample. Considering the length of the pipe from the pump 101 to the UV detector 103, the eluate for 10 minutes from the start of the gradient to 1 to 11 minutes (11 to 21 minutes in the entire sequence) is collected every 18 seconds ( 60 μL each).

(分離した試料の質量分析による測定)
分離した試料を質量分析部110(質量分析装置)、例えば、マトリックス支援レーザー脱離イオン化飛行時間型質量分析装置(MALDI−TOF−MS)を用いて測定し、各フラクションで得られるピーク数を測定する。その結果、溶出を行った10分間の間で合計3109本のペプチドピークが検出された。
(Measurement of separated sample by mass spectrometry)
The separated sample is measured using a mass spectrometer 110 (mass spectrometer), for example, a matrix-assisted laser desorption / ionization time-of-flight mass spectrometer (MALDI-TOF-MS), and the number of peaks obtained in each fraction is measured. To do. As a result, a total of 3109 peptide peaks were detected during 10 minutes of elution.

本実施例では第一の逆相カラムと第二の逆相カラムの間に希釈ユニットを設けることで、全ての工程をオンラインで行う例について示す。   In this example, an example is shown in which all steps are performed online by providing a dilution unit between the first reverse phase column and the second reverse phase column.

図3に示すように、本実施例ではHPLCシステムとしてポンプ101,オートサンプラ102,UV検出器103,フラクションコレクタ104,第一の流路切り替えバルブ105aおよび第二の流路切り替えバルブ105bを用いる。HPLCシステムの配管の状態を図3に、また送液のシーケンスを図4に示す。ポンプ101から第一の流路切り替えバルブ105aを介して第一の逆相カラム106が連結され、次に希釈ユニット301を連結し、第二の流路切り替えバルブ105bを経て第二の逆相カラム107が連結され、最後にUV検出器103に導入され、フラクションコレクタ104によって分取される。この場合、第二の逆相カラムから試料を分離・分取する工程において、第一の逆相カラム106および希釈ユニット301はデッドボリュームとなり、第二の逆相カラムにおける分離精度悪化の原因となりうる。そこで第一の流路切り替えバルブ105aと第二の流路切り替えバルブ105bを直接連結する流路を別途設けることで、ポンプ101から第一の逆相カラム106および希釈ユニット301を介さずに、第二の逆相カラム107に送液可能な構成とする。図3の第一の流路切り替えバルブ105aおよび第二の流路切り替えバルブ105bのバルブ位置を図中実線で表されるバルブ位置1とした場合、オートサンプラ102から、第一の流路切り替えバルブ105a,第一の逆相カラム106,希釈ユニット301,第二の流路切り替えバルブ105b,第二の逆相カラム107,UV検出器103へと配管が接続されることとなる。また、図中破線で表されるバルブ位置2とした場合、オートサンプラ102から、第一の流路切り替えバルブ105a,第二の流路切り替えバルブ105b,第二の逆相カラム107,UV検出器103へと配管が接続されることとなる。   As shown in FIG. 3, in this embodiment, a pump 101, an autosampler 102, a UV detector 103, a fraction collector 104, a first flow path switching valve 105a, and a second flow path switching valve 105b are used as an HPLC system. FIG. 3 shows the state of the piping of the HPLC system, and FIG. 4 shows the liquid feeding sequence. The first reverse phase column 106 is connected from the pump 101 via the first flow path switching valve 105a, then the dilution unit 301 is connected, and then the second reverse phase column via the second flow path switching valve 105b. 107 is connected, and finally introduced into the UV detector 103 and sorted by the fraction collector 104. In this case, in the step of separating and separating the sample from the second reverse phase column, the first reverse phase column 106 and the dilution unit 301 become dead volumes, which may cause deterioration of the separation accuracy in the second reverse phase column. . Therefore, by separately providing a flow path that directly connects the first flow path switching valve 105a and the second flow path switching valve 105b, the pump 101 does not go through the first reverse phase column 106 and the dilution unit 301, and the The liquid is fed to the second reverse phase column 107. When the valve positions of the first flow path switching valve 105a and the second flow path switching valve 105b in FIG. 3 are set to the valve position 1 represented by a solid line in the drawing, the first flow path switching valve is supplied from the autosampler 102. A pipe is connected to 105 a, the first reverse phase column 106, the dilution unit 301, the second flow path switching valve 105 b, the second reverse phase column 107, and the UV detector 103. Further, when the valve position is represented by a broken line in the figure, the first flow path switching valve 105a, the second flow path switching valve 105b, the second reverse phase column 107, and the UV detector are supplied from the autosampler 102. A pipe is connected to 103.

また、図5に、希釈ユニットの構造例を示す。本希釈ユニットは配管502の下部に空
洞部503が突出する構造を持つ。空洞部503の体積は9mLであり、空洞部503の底面部には希釈液を注入するための希釈液注入ポート501が取り付けられている。空洞部503にはあらかじめ、希釈液注入ポート501を介して希釈液が4.5mL導入されている。
FIG. 5 shows a structural example of the dilution unit. The present dilution unit has a structure in which a hollow portion 503 projects at the lower part of the pipe 502. The volume of the cavity 503 is 9 mL, and a diluent injection port 501 for injecting a diluent is attached to the bottom surface of the cavity 503. Into the cavity 503, 4.5 mL of diluent is introduced in advance via the diluent injection port 501.

第一の逆相カラム106から溶出された試料が同希釈ユニット内に流入すると、はじめに重力によって試料は空洞部503に蓄積される。流入された試料の量が4.5mL(あらかじめ導入されていた希釈液とあわせると9mL(すなわち空洞部503の容積))を超えた時点で、希釈液によって希釈された試料は空洞部503から第二の逆相カラム107へと流出する。試料流出に先立って始めに空洞部503に存在していた空気が押し出されるため、空気の体積に相当する4.5mL分は、希釈ユニット301と第二の逆相カラム107の間を介する第二の流路切り替えバルブ105bを切り替えることでドレインに排出し、その後流出される試料のみ第二の逆相カラム107に導入する。すなわち、試料流出に先立って押し出される空洞部503の空気を、希釈ユニットと第二の逆相カラム107の間に介したバルブを切り替えることでドレインに排出し、その後流出される試料のみを第二の逆相カラム107に導入する。   When the sample eluted from the first reverse phase column 106 flows into the dilution unit, the sample is first accumulated in the cavity 503 by gravity. When the amount of the sample that has flowed in exceeds 4.5 mL (9 mL (that is, the volume of the cavity 503) when combined with the previously introduced diluent), the sample diluted with the diluent is added from the cavity 503. It flows out to the second reverse phase column 107. Prior to the sample outflow, the air present in the cavity 503 is pushed out first, so that 4.5 mL corresponding to the volume of the air passes through the second unit between the dilution unit 301 and the second reverse phase column 107. By switching the flow path switching valve 105b, the sample is discharged to the drain, and only the sample that flows out thereafter is introduced into the second reverse phase column 107. That is, the air in the cavity 503 pushed out before the sample outflow is discharged to the drain by switching a valve interposed between the dilution unit and the second reverse-phase column 107, and only the sample that flows out after that is discharged into the second. The reverse phase column 107 is introduced.

以下、図4を参照して、HPLCの各工程について詳細に説明する。
(1)生体試料を第一の逆相カラムに吸着させる工程:オートサンプラ102を用いて血清20μLを第一の逆相カラム106に導入する。
(2)ペプチドを第一の逆相カラムから溶出する工程:血清導入後5分間で、B液濃度0〜50%のリニアグラジエントにより、ペプチドを溶出する。
(3)溶出したペプチドを第二の逆相カラムに吸着可能な有機溶媒濃度にまで希釈する工程:第一の逆相カラム106から溶出された試料は、第一の逆相カラム106と第二の逆相カラム107との間に設けられた希釈ユニット301に導入される。
(4)希釈した試料を第二の逆相カラムに吸着させる工程:希釈ユニット301からの試料流出に先立って、希釈ユニット内部の空洞部に存在する空気が押し出されるため、空気の体積に相当する4.5mL分は、希釈ユニット301と第二の逆相カラム107の間を介するバルブ150bを切り替えることでドレインに排出し、その後流出される試料のみ第二の逆相カラム107に導入する。
(5)第二の逆相カラムから試料を分離・分取する工程:第二の逆相カラム107への試料導入終了後10分間(全体シーケンスにおいて19.5〜29.5分)で、B液濃度12〜50%のリニアグラジエントにより、ペプチドを溶出する。ポンプ101からUV検出器103までの配管の長さを考慮し、グラジエント開始後1〜11分(全体シーケンスにおいて20.5〜30.5分)の10分間分の溶出液を、18秒毎に分取(各60μL)する。
Hereinafter, each process of HPLC is demonstrated in detail with reference to FIG.
(1) Step of adsorbing a biological sample to the first reverse phase column: 20 μL of serum is introduced into the first reverse phase column 106 using the autosampler 102.
(2) Step of eluting the peptide from the first reverse phase column: The peptide is eluted with a linear gradient with a B solution concentration of 0 to 50% within 5 minutes after the introduction of serum.
(3) Step of diluting the eluted peptide to an organic solvent concentration that can be adsorbed on the second reverse phase column: The sample eluted from the first reverse phase column 106 Are introduced into a dilution unit 301 provided between the reverse phase column 107 and the reverse phase column 107.
(4) Adsorbing the diluted sample to the second reverse phase column: Prior to the sample outflow from the dilution unit 301, air existing in the cavity inside the dilution unit is pushed out, which corresponds to the volume of air. The 4.5 mL portion is discharged to the drain by switching the valve 150b between the dilution unit 301 and the second reverse phase column 107, and only the sample that flows out thereafter is introduced into the second reverse phase column 107.
(5) Step of separating and separating the sample from the second reverse phase column: 10 minutes after completion of sample introduction into the second reverse phase column 107 (19.5 to 29.5 minutes in the entire sequence), B The peptide is eluted with a linear gradient with a liquid concentration of 12-50%. Considering the length of the pipe from the pump 101 to the UV detector 103, the eluate for 10 minutes from 1 to 11 minutes (20.5 to 30.5 minutes in the whole sequence) after the start of the gradient is added every 18 seconds. Aliquot (60 μL each).

本実施例で述べたように、生体試料からアルブミンのような過剰タンパク質を第一の逆相カラムよって除去し、試料の総タンパク質濃度を低下させることで、残存成分を第一の逆相カラムより細い第二の逆相カラムによって、低流速で分離する手法を提供する。具体的に述べると、単一の逆相カラムのみを用いて高流速で分離を行う手法を比較例とする場合、比較例が、分取される試料の容量が一画分あたり300μLであり、MS解析前の濃縮工程で9時間を要する場合、本実施例の手法を用いることで一画分あたりの容量を60μLにまで低減し、濃縮工程を省略あるいは1/5以下に低減可能であることから、解析のスループットを5倍以上に向上させることができる。本技術は特に質量分析を用いたハイスループットな生体試料解析において有効となる。   As described in this example, excess protein such as albumin is removed from the biological sample by the first reversed-phase column, and the total protein concentration of the sample is reduced, so that the remaining components are removed from the first reversed-phase column. A thin second reversed phase column provides a technique for separation at a low flow rate. Specifically, when the method of performing separation at a high flow rate using only a single reverse phase column is used as a comparative example, the comparative example has a sample volume of 300 μL per fraction, When 9 hours are required for the concentration step before MS analysis, the volume per fraction can be reduced to 60 μL by using the method of this example, and the concentration step can be omitted or reduced to 1/5 or less. Therefore, the analysis throughput can be improved by 5 times or more. This technique is particularly effective in high-throughput biological sample analysis using mass spectrometry.

HPLCシステム配管例1を示した説明図である。It is explanatory drawing which showed the HPLC system piping example 1. FIG. 配管例1における送液シーケンスを示した説明図である。It is explanatory drawing which showed the liquid feeding sequence in the piping example. HPLCシステム配管例2を示した説明図である。It is explanatory drawing which showed the HPLC system piping example 2. FIG. 配管例2における送液シーケンスを示した説明図である。It is explanatory drawing which showed the liquid feeding sequence in the example 2 of piping. 希釈ユニット構成を示した説明図である。It is explanatory drawing which showed the dilution unit structure.

符号の説明Explanation of symbols

101 ポンプ
102 オートサンプラ
103 UV検出器
104 フラクションコレクタ
105a 第一の流路切り替えバルブ
105b 第二の流路切り替えバルブ
106 第一の逆相カラム
107 第二の逆相カラム
301 希釈ユニット
501 希釈液注入ポート
101 Pump 102 Autosampler 103 UV detector 104 Fraction collector 105a First flow path switching valve 105b Second flow path switching valve 106 First reverse phase column 107 Second reverse phase column 301 Dilution unit 501 Diluent injection port

Claims (12)

試料を第一の逆相カラムに導入して前記試料中の不要成分を除去し、前記第一の逆相カラムに吸着した前記試料の成分を有機溶媒を用いてグラジエント溶出により第一の逆相カラムから溶出し、当該第一の逆相カラムから溶出した試料を希釈して有機溶媒濃度を低下させ、当該希釈した試料を第一のカラムより細い第二の逆相カラムに導入し、第一の逆相カラムから溶出したときよりも低流速でグラジエント溶出することで、前記試料の成分を分離・分取する試料分離方法。 The sample is introduced into the first reversed-phase column to remove unnecessary components in the sample, and the components of the sample adsorbed on the first reversed-phase column are first eluted by gradient elution using an organic solvent. The sample eluted from the column and diluted from the first reverse phase column is diluted to reduce the organic solvent concentration, and the diluted sample is introduced into the second reverse phase column that is thinner than the first column. than when eluted from a reversed phase column by gradient elution with a low flow rate, specimen separation method the components of the sample you preparative separation · min. 請求項1において、前記試料はタンパク質を含み、前記第一の逆相カラムから主要タンパク質以外の成分を溶出し、溶出した試料を水で希釈することを特徴とする試料分離方法。 According to claim 1, before Ki試 fee includes a protein, the first components other than the main protein from the reverse phase column and eluted in, specimen separating how to characterized in that the eluted sample is diluted with water. 請求項1において、
第一の逆相カラムから溶出した前記試料を一旦回収し、希釈して第二の逆送カラムに導入する試料分離方法。
In claim 1,
The sample eluted from the first reversed phase column once collected, specimen separating how to introduce the second backhaul column diluted.
請求項1において、
第一の逆相カラムと第二の逆相カラムとの間に希釈ユニットを設け、第一のカラムから溶出した試料を前記希釈ユニットを介して第二の逆送カラムに導入する試料分離方法。
In claim 1,
The dilution unit is provided between the first reversed phase column and a second reverse phase column, a second specimen you introduced into the backhaul column samples eluted from the first column through the dilution unit separation Method.
請求項において、
前記希釈ユニットが配管下部に空洞部が突出する構造を持ち、同空洞部にはあらかじめ希釈用水が導入されており、第一のカラムから溶出された試料が同ユニット内に流入する際に重力によって試料が空洞部に蓄積され、流入量が空洞部の容積を超えた時点で、希釈された試料が空洞部から第二の逆送カラムへと流出することを特徴とする試料分離方法。
In claim 4 ,
The dilution unit has a structure in which a cavity protrudes at the lower part of the pipe, and dilution water is introduced into the cavity in advance, so that the sample eluted from the first column flows into the unit by gravity. samples are accumulated in the cavity, when the inflow exceeds the volume of the cavity, specimen separation method you characterized in that sample diluted flows out into the second backhaul column from the cavity.
請求項4において、
試料流出に先立って押し出される空洞部の空気を、希釈ユニットと第二のカラムの間に介したバルブを切り替えることでドレインに排出し、その後流出される試料のみを第二のカラムに導入することを特徴とする試料分離方法。
In claim 4,
The air in the cavity that is pushed out prior to the sample outflow is discharged to the drain by switching the valve between the dilution unit and the second column, and then only the sample that flows out is introduced into the second column. specimen separation method it said.
請求項1乃至5のいずれかにおいて、
第一の逆相カラムにおける分離のための送液と、第二の逆相カラムにおける分離のための送液を、同じポンプによって実施することを特徴とする試料分離方法。
In any one of Claims 1 thru | or 5,
Feeding the liquid for the separation in the first reverse phase column, specimen separating how to characterized in that the liquid feed for the separation in the second reverse phase column, carried out by the same pump.
請求項1乃至7のいずれか記載の生体試料分離方法により分離された試料を質量分析によって検出することを特徴とする試料分離検出方法。 Specimen separation detecting how to characterized in that the sample separated by the method of the biological sample separation according to any one of claims 1 to 7, detected by mass spectrometry. ポンプと、オートサンプラと、検出器と、第一の逆相カラムと第二の逆相カラムとを有し、
前記オートサンプラから導入された試料を第一の逆相カラムに導入して前記試料中の不要成分を除去し、前記第一の逆相カラムに吸着した前記試料を有機溶媒を用いてグラジエント溶出により第一の逆相カラムから溶出し、当該第一の逆相カラムから溶出した試料を希釈して有機溶媒濃度を低下させ、当該希釈した試料を第一のカラムより細い第二の逆相カラムに導入し、第一の逆相カラムから溶出したときよりも低流速でグラジエント溶出することで、前記試料の成分を分離・分取する試料分離システム。
A pump, an autosampler, a detector, a first reverse phase column and a second reverse phase column;
The sample introduced from the autosampler is introduced into a first reverse phase column to remove unnecessary components in the sample, and the sample adsorbed on the first reverse phase column is subjected to gradient elution using an organic solvent. The sample eluted from the first reversed-phase column is diluted with the sample eluted from the first reversed-phase column to reduce the concentration of the organic solvent, and the diluted sample is put into a second reversed-phase column thinner than the first column. A sample separation system that separates and separates the components of the sample by introducing gradient elution at a lower flow rate than when elution from the first reversed-phase column .
請求項9に記載の試料分離システムと、分取された試料の成分を検出する質量分析部とを有することを特徴とする試料分離・検出システム。 Specimen separation and detection system that, comprising a specimen separation system; and a mass analyzer for detecting components of the fractionated sample to claim 9. 請求項9において、In claim 9,
第一の逆相カラムと第二の逆相カラムとの間に希釈ユニットを設け、第一のカラムから溶出した試料を前記希釈ユニットを介して第二の逆送カラムに導入する試料分離システム。A sample separation system in which a dilution unit is provided between a first reverse phase column and a second reverse phase column, and a sample eluted from the first column is introduced into the second reverse feed column via the dilution unit.
請求項11において、In claim 11,
前記希釈ユニットが配管下部に空洞部が突出する構造を持ち、同空洞部にはあらかじめ希釈用水が導入されており、第一のカラムから溶出された試料が同ユニット内に流入する際に重力によって試料が空洞部に蓄積され、流入量が空洞部の容積を超えた時点で、希釈された試料が空洞部から第二の逆送カラムへと流出することを特徴とする試料分離システム。The dilution unit has a structure in which a cavity protrudes at the lower part of the pipe, and dilution water is introduced into the cavity in advance, so that the sample eluted from the first column flows into the unit by gravity. A sample separation system, wherein the sample is accumulated in the cavity and the diluted sample flows out from the cavity to the second reverse feed column when the amount of inflow exceeds the volume of the cavity.
JP2008148708A 2008-06-06 2008-06-06 Biological sample separation method, biological sample detection method, biological sample separation system, and biological sample separation / detection system Expired - Fee Related JP5119053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148708A JP5119053B2 (en) 2008-06-06 2008-06-06 Biological sample separation method, biological sample detection method, biological sample separation system, and biological sample separation / detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148708A JP5119053B2 (en) 2008-06-06 2008-06-06 Biological sample separation method, biological sample detection method, biological sample separation system, and biological sample separation / detection system

Publications (2)

Publication Number Publication Date
JP2009294118A JP2009294118A (en) 2009-12-17
JP5119053B2 true JP5119053B2 (en) 2013-01-16

Family

ID=41542419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148708A Expired - Fee Related JP5119053B2 (en) 2008-06-06 2008-06-06 Biological sample separation method, biological sample detection method, biological sample separation system, and biological sample separation / detection system

Country Status (1)

Country Link
JP (1) JP5119053B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102762980B (en) * 2010-03-03 2015-11-25 株式会社日立高新技术 Analytical equipment
JP6255234B2 (en) * 2013-12-19 2017-12-27 国立大学法人東北大学 Method for measuring biotin or related substances in biological samples
JP6708254B2 (en) * 2016-05-20 2020-06-10 株式会社島津製作所 Pretreatment device and analysis system including the pretreatment device
WO2021059463A1 (en) * 2019-09-26 2021-04-01 株式会社島津製作所 Method for analyzing 5-fluorouracil and 5-fluorodihydrouracil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149218A (en) * 2001-11-08 2003-05-21 Nano Solution:Kk Two-dimensional high-performance liquid chromatograph and protein analyzing apparatus using the same
US8123949B2 (en) * 2005-01-20 2012-02-28 Waters Technologies Corporation Methods for separating compounds
JP2007000687A (en) * 2005-06-21 2007-01-11 Shimadzu Corp Method and apparatus for analyzing peptide in biological sample

Also Published As

Publication number Publication date
JP2009294118A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
Gilar et al. Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods
Neverova et al. Role of chromatographic techniques in proteomic analysis
JP5524059B2 (en) Isolation method of functional polymer
Nägele et al. 2D-LC/MS techniques for the identification of proteins in highly complex mixtures
US8017015B2 (en) Monolithic column chromatography
US20040126890A1 (en) Biomolecule open channel solid phase extraction systems and methods
US20080090295A1 (en) Method and device for preparing an analyte for analysis by mass spectrometry
EP1962097A1 (en) Mass spectrometric quantitative detection of methyl malonic acid and succinic acid using hilic on a zwitterionic stationary phase
US20070017868A1 (en) Fluidic analysis with hydrophobic and hydrophilic compounds trapping
CN105510483A (en) System for full-automated and online detection of perfluoro and polyfluoro compounds in serum
JP2013522592A (en) Method for recognition and quantification of multiple analytes in a single analysis
JP5119053B2 (en) Biological sample separation method, biological sample detection method, biological sample separation system, and biological sample separation / detection system
Roberg-Larsen et al. Recent advances in on-line upfront devices for sensitive bioanalytical nano LC methods
WO2015051343A1 (en) High throughput mass spectrometric analysis of proteome samples
JP2004101477A (en) Two-dimensional high performance liquid chromatographic device and protein analyzer using the same
JP2015505619A (en) Systems and methods for recognition and quantification of a large number of analytes based on selected substances in a single analysis
US10281474B2 (en) Method for analyzing samples of biological fluid and apparatus for performing the same
TWI761660B (en) A dual-column lc-ms system and methods of use thereof
EP1048950A1 (en) Identification of ligands for orphan receptors using on-line coupling of mass spectrometry to continuous-flow separation techniques
US20080145950A1 (en) Method for extracting an analyte
JP7026138B2 (en) Automatic analyzer and analysis method
Delmotte et al. Miniaturized monolithic disks for immunoadsorption of cardiac biomarkers from serum
AU2022422105A1 (en) Methods for detecting a protein in a sample in a fluidic device using mass spectrometry
Farouk et al. Sensitivity Enhancement for Separation-Based Analytical Techniques Utilizing Large Volume Injection and Analyte Derivatization for Trace Analysis in Bio-Fluids
Aitken Liquid chromatography coupled to ms for proteome analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees