JP5116363B2 - Manufacturing method of conductor wire - Google Patents
Manufacturing method of conductor wire Download PDFInfo
- Publication number
- JP5116363B2 JP5116363B2 JP2007141795A JP2007141795A JP5116363B2 JP 5116363 B2 JP5116363 B2 JP 5116363B2 JP 2007141795 A JP2007141795 A JP 2007141795A JP 2007141795 A JP2007141795 A JP 2007141795A JP 5116363 B2 JP5116363 B2 JP 5116363B2
- Authority
- JP
- Japan
- Prior art keywords
- adhesive
- conductor wire
- solar cell
- metal foil
- predetermined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 239000000853 adhesive Substances 0.000 claims description 73
- 230000001070 adhesive effect Effects 0.000 claims description 69
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 51
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 45
- 239000011888 foil Substances 0.000 claims description 29
- 229920005989 resin Polymers 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 239000002313 adhesive film Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 238000005520 cutting process Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 3
- 229920006332 epoxy adhesive Polymers 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 40
- 239000011889 copper foil Substances 0.000 description 33
- 239000010408 film Substances 0.000 description 17
- 229910000679 solder Inorganic materials 0.000 description 17
- 239000000758 substrate Substances 0.000 description 11
- 238000005304 joining Methods 0.000 description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 229910052709 silver Inorganic materials 0.000 description 8
- 239000004332 silver Substances 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 229910001374 Invar Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000005341 toughened glass Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、例えば複数の太陽電池素子等、複数の電子部品を電気的に接続する導体線の製造方法に関する The present invention relates for example such as a plurality of solar cell elements, in the manufacture how the conductor lines electrically connecting a plurality of electronic components
従来から、半導体の起電力効果を利用して光エネルギを直接電力に変換する太陽電池が知られている。太陽電池は、パネル状の太陽電池素子を複数接続して構成されているが、これら太陽電池素子を接続する導体線、すなわち、インナーリード線としては、通常、銅線表面にハンダコートしたものを使用している。すなわち、太陽電池素子は、フラックスを使用してインナーリード線にコートされたハンダと当該太陽電池素子上の銀(Ag)からなるバスバー電極とをハンダ接合することにより、当該インナーリード線と電気的に接続される。 2. Description of the Related Art Conventionally, solar cells that directly convert light energy into electric power using a semiconductor electromotive force effect are known. A solar cell is configured by connecting a plurality of panel-like solar cell elements. As a conductor wire connecting these solar cell elements, that is, as an inner lead wire, a copper wire surface is usually solder-coated. I am using it. That is, the solar cell element is electrically connected to the inner lead wire by soldering the solder coated on the inner lead wire with the flux and using the bus bar electrode made of silver (Ag) on the solar cell element. Connected to.
しかしながら、このようなハンダ接合における接合温度は、鉛フリーのハンダを用いた場合には240℃程度の高い温度となる。そのため、太陽電池にハンダ接合を適用した場合には、シリコン等からなる太陽電池素子と銅線からなるインナーリード線との熱収縮率の違いに起因して、これら太陽電池素子とインナーリード線との間に応力が発生する。したがって、太陽電池においては、かかる応力が太陽電池素子の反りや割れの原因となり、不良に繋がったり、太陽電池素子からバスバー電極が剥離したりする事態を招来していた。 However, the bonding temperature in such solder bonding is as high as about 240 ° C. when lead-free solder is used. Therefore, when solder bonding is applied to a solar cell, the solar cell element and the inner lead wire are caused by the difference in thermal shrinkage between the solar cell element made of silicon or the like and the inner lead wire made of copper wire. Stress is generated during this period. Therefore, in the solar cell, the stress causes warping or cracking of the solar cell element, leading to a failure or peeling of the bus bar electrode from the solar cell element.
そこで、このような応力を軽減するために、インナーリード線を構成する銅線に代えて熱膨張係数が小さいインバー(Cu−36mass%Ni)を使用する技術が提案されている(例えば、特許文献1等参照。)。また、このようなインナーリード線の素材を変更する方法以外にも、接続の形状等を変えることにより、応力を小さくする等の工夫もなされている(例えば、特許文献2及び特許文献3等参照。)。さらに、インナーリード線ではないが、異方性導電膜を介して複数の電極を電気的に接続した太陽電池も提案されている(例えば、特許文献4等参照。)。 Therefore, in order to reduce such stress, a technique of using invar (Cu-36 mass% Ni) having a small thermal expansion coefficient instead of the copper wire constituting the inner lead wire has been proposed (for example, Patent Documents). 1 etc.). In addition to such a method of changing the material of the inner lead wire, contrivances such as reducing the stress by changing the shape of the connection or the like have been made (see, for example, Patent Document 2 and Patent Document 3). .) Furthermore, although not an inner lead wire, a solar cell in which a plurality of electrodes are electrically connected via an anisotropic conductive film has also been proposed (see, for example, Patent Document 4).
しかしながら、熱膨張係数が小さいインバーを使用した従来の技術においては、銅線に比べてインバーの体積抵抗率が大きく、インナーリード線自体の抵抗値が高くなることから、太陽電池の発電効率を低下させるという問題があり、インナーリード線の形状や接続の形状を変更するのは実用的ではない。 However, in the conventional technology using invar with a small thermal expansion coefficient, the volume resistivity of the invar is larger than that of the copper wire, and the resistance value of the inner lead wire itself is increased, thereby reducing the power generation efficiency of the solar cell. It is not practical to change the shape of the inner lead wire or the shape of the connection.
また、太陽電池素子とインナーリード線とをハンダ接合する従来の技術においては、ハンダの濡れ性を向上させるためにフラックスを必要とする。そのため、かかる技術においては、接合後にフラックスの洗浄が必要となり、この洗浄工程にも大きくタクトを取られてしまうという問題があり、また、フラックスの洗浄不足がある場合には、太陽電池素子の面上にフラックスが残存してしまうことから、発電効率の低下を招来するという問題もあった。 Moreover, in the conventional technique which solder-joins a solar cell element and an inner lead wire, a flux is required to improve solder wettability. Therefore, in such a technique, it is necessary to clean the flux after joining, and there is a problem that this cleaning process is largely tacted, and if there is insufficient cleaning of the flux, the surface of the solar cell element Since the flux remains on top, there is also a problem that power generation efficiency is reduced.
なお、このような問題は、複数の太陽電池素子を電気的に接続するインナーリード線に限らず、導体線とは熱収縮率が異なることによって当該導体線との間に生じた熱膨張による応力に起因する不良が発生するような任意の複数の電子部品に共通して存在するものである。 Such a problem is not limited to the inner lead wire that electrically connects a plurality of solar cell elements, but the stress due to thermal expansion generated between the conductor wire and the conductor wire due to a different thermal contraction rate. It exists in common with any of a plurality of electronic components that cause defects due to the above.
本発明は、このような実情に鑑みてなされたものであり、接続する電子部品の不良の発生を大幅に軽減することができる導体線を極めて効率良く容易に製造することができる導体線の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and manufacture of a conductor wire capable of extremely efficiently and easily manufacturing a conductor wire that can greatly reduce the occurrence of defects in electronic components to be connected. an object of the present invention is to provide an mETHODS.
本願発明者は、導体線の接合に関して鋭意研究を重ねた結果、接合材料としてハンダに代わる新たな材料を見出し、本発明を完成させるに至った。 The inventor of the present application has conducted extensive research on the bonding of conductor wires, and as a result, has found a new material to replace solder as the bonding material, and has completed the present invention.
すなわち、上述した目的を達成する本発明に係る導体線の製造方法は、複数の電子部品を電気的に接続する導体線の製造方法であって、上記電子部品とは熱収縮率が異なる上記導体線の主材料となる所定の金属線の一端から所定長にわたって表面側にのみ接着剤が塗布されるとともに、当該金属線の他端から所定長にわたって裏面側にのみ上記接着剤が塗布された状態となるように、上記主材料に上記接着剤を塗布する塗布工程と、上記塗布工程にて塗布された上記接着剤を乾燥又はBステージ化してフィルム化するフィルム化工程とを備え、上記塗布工程は、第1のコーターを用いて、上記主材料としての長尺状の金属箔の裏面に、当該金属箔の一方の端縁から当該金属箔の短手方向の半分長未満の所定長の幅で、当該金属箔の長手方向にわたって液体状の上記接着剤を塗布する工程と、所定のローラーを用いて、上記裏面のみに上記接着剤が塗布された上記金属箔の表裏面を反転する工程と、第2のコーターを用いて、表裏面が反転された上記金属箔の表面に、当該金属箔の他方の端縁から当該金属箔の短手方向の半分長未満の所定長の幅で、当該金属箔の長手方向にわたって液体状の上記接着剤を塗布する工程とを有することを特徴としている。 That is, the method for manufacturing a conductor wire according to the present invention that achieves the above-described object is a method for manufacturing a conductor wire for electrically connecting a plurality of electronic components, wherein the conductor has a different thermal contraction rate from the electronic component. A state in which the adhesive is applied only to the surface side from one end of a predetermined metal wire as a main material of the wire over a predetermined length, and the adhesive is applied only to the back surface from the other end of the metal wire over a predetermined length and so that, with a coating step of applying the adhesive to the main material, and a film step of a film by dry or B stage the adhesive agent applied in the coating step, the coating step Using a first coater, a width of a predetermined length less than a half length in the short direction of the metal foil from one edge of the metal foil on the back surface of the long metal foil as the main material In the longitudinal direction of the metal foil Using the second coater, the step of applying the liquid adhesive, the step of reversing the front and back surfaces of the metal foil coated with the adhesive only on the back surface using a predetermined roller, and the second coater In the surface of the metal foil with the front and back surfaces reversed, the liquid foil extends in the longitudinal direction of the metal foil with a predetermined length less than half the length of the metal foil from the other edge of the metal foil. And a step of applying the adhesive .
このような本発明にかかる導体線の製造方法においては、従来のハンダ接合ではなく、接着剤を介して電子部品と接合することが可能な導体線を、長尺状の金属箔のライン加工によって極めて効率よく容易に製造することができる。 In such a method of manufacturing a conductor wire according to the present invention, a conductor wire that can be joined to an electronic component via an adhesive is not formed by a long metal foil line process, rather than a conventional solder joint. It can be manufactured very efficiently and easily.
本発明によれば、電子部品の不良の発生を大幅に軽減することができ、特に電子部品としての太陽電池素子との接合用のインナーリード線として用いることにより、太陽電池の発電効率の低下を回避することができる。また、本発明によれば、このような導体線を極めて効率よく容易に製造することができる。 According to the present invention, it is possible to greatly reduce the occurrence of defects in electronic components, and in particular, by using them as inner lead wires for joining with solar cell elements as electronic components, the power generation efficiency of solar cells can be reduced. It can be avoided. Further, according to the present invention, such a conductor wire can be manufactured very efficiently and easily.
以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
この実施の形態は、半導体の起電力効果を利用して光エネルギを直接電力に変換する太陽電池である。特に、この太陽電池は、複数のパネル状の太陽電池素子と、これら太陽電池素子を電気的に接続する導体線としてのインナーリード線とを、従来のハンダ接合ではない方法で接合したものである。 This embodiment is a solar cell that directly converts light energy into electric power using the electromotive force effect of a semiconductor. In particular, this solar cell is obtained by joining a plurality of panel-like solar cell elements and inner lead wires as conductor wires that electrically connect these solar cell elements by a method other than conventional solder bonding. .
太陽電池は、例えば図1に断面図を示すように、所定のアルミニウムフレーム11に支持された、受光面となる透明強化ガラス12と、耐候性フィルム13との間に、エチレン・酢酸ビニル共重合体(Ethylene-Vinyl Acetate;EVA)等の透明樹脂14を埋め込み、この透明樹脂14内に複数の太陽電池素子20が所定の規則にしたがって配列されて構成される。 For example, as shown in a cross-sectional view in FIG. 1, a solar cell is composed of an ethylene / vinyl acetate copolymer between a transparent tempered glass 12 supported by a predetermined aluminum frame 11 and a weather resistant film 13. A transparent resin 14 such as a combination (Ethylene-Vinyl Acetate; EVA) is embedded, and a plurality of solar cell elements 20 are arranged in the transparent resin 14 according to a predetermined rule.
太陽電池素子20は、概略的には、図2に断面図を示すとともに、図3に斜視図を示すように、シリコン等の半導体基板21の表面上に、銀(Ag)からなる集電用のフィンガー電極22及び出力取り出し用のバスバー電極23が同一層で互いに直交するように形成されて構成される。なお、同図においては、太陽電池素子20の表面側の断面を示しているが、太陽電池素子20の裏面側には、特に図示しないが、所定の電極が形成されている。 The solar cell element 20 is schematically shown in a sectional view in FIG. 2 and, as shown in a perspective view in FIG. 3, on a surface of a semiconductor substrate 21 such as silicon for collecting current made of silver (Ag). The finger electrodes 22 and the output bus bar electrodes 23 are formed to be orthogonal to each other in the same layer. In addition, in the same figure, although the cross section of the surface side of the solar cell element 20 is shown, although it does not illustrate in particular on the back surface side of the solar cell element 20, the predetermined electrode is formed.
また、このような太陽電池素子20の表裏面には、それぞれ、バスバー電極23に沿って、当該太陽電池素子20とは熱収縮率が異なる銅線等の金属線を主材料とするインナーリード線40が、所定の接着剤30を介して接合される。 Further, on the front and back surfaces of such a solar cell element 20, inner lead wires whose main material is a metal wire such as a copper wire having a thermal contraction rate different from that of the solar cell element 20 along the bus bar electrode 23. 40 is bonded via a predetermined adhesive 30.
ここで、接着剤30としては、異方性導電接着フィルム(Anisotropic Conductive Film;ACF)を用いるのが望ましい。異方性導電接着フィルムとは、フィルム状の絶縁樹脂材料中に微細な導電性粒子を分散させた素材からなり、加圧及び加温することにより、接着機能とともに、導電性粒子を介して厚み方向には電気的接続機能を有し、厚み方向と垂直方向には絶縁機能を有するものである。具体的には、異方性導電接着フィルムとしては、30重量%以下の導電性粒子を配合したエポキシ系接着剤を硬化したものが望ましく、硬化後のヤング率が0.1GPa〜30GPa程度のものが望ましい。また、導電性を必要としない場合には、接着剤30としては、非導電性フィルム(Non-conductive Film;NCF)や、硬化性樹脂をバインダとする導電性ペーストを用いてもよい。 Here, as the adhesive 30, it is desirable to use an anisotropic conductive adhesive film (ACF). An anisotropic conductive adhesive film is made of a material in which fine conductive particles are dispersed in a film-like insulating resin material. By applying pressure and heating, the thickness of the conductive conductive adhesive film is increased through the conductive particles. It has an electrical connection function in the direction and an insulation function in the direction perpendicular to the thickness direction. Specifically, the anisotropic conductive adhesive film is preferably a cured epoxy adhesive containing 30% by weight or less of conductive particles, and has a Young's modulus after curing of about 0.1 GPa to 30 GPa. Is desirable. In the case where conductivity is not required, the adhesive 30 may be a non-conductive film (NCF) or a conductive paste using a curable resin as a binder.
太陽電池素子20は、このような接着剤30を介して、図1及び図2に示すように、インナーリード線40の一端を表面側のバスバー電極23の略全長にわたって配線して当該バスバー電極23と接合することにより、当該インナーリード線40と電気的に接続される。また、インナーリード線40の他端は、接着剤30を介して、隣接する太陽電池素子20の裏面側の電極と電気的に接続される。すなわち、太陽電池素子20は、バスバー電極23を介してインナーリード線40と接合することにより、隣接する太陽電池素子20と電気的に接続している。なお、インナーリード線40としては、その耐候性を向上させるために、金属線単体を使用するのではなく、金属線表面に錫メッキやプリコート等の防錆処理を施すのが望ましい。また、太陽電池においては、接着剤30とインナーリード線40とを別個の単体として提供するのではなく、接着剤30を金属線表面に塗布したインナーリード線40として提供してもよい。具体的には、太陽電池においては、銅箔に異方性導電接着フィルムを塗布し、それをスリット状に切断することにより、異方性導電接着フィルム付きのインナーリード線40を使用するようにしてもよく、この場合、太陽電池素子20上への異方性導電接着フィルムの仮貼付等の工程を省略することができる。このような接着剤付きのインナーリード線の製造方法については、後に詳述するものとする。 As shown in FIG. 1 and FIG. 2, the solar cell element 20 is configured such that one end of the inner lead wire 40 is wired over substantially the entire length of the bus bar electrode 23 on the surface side via the adhesive 30. Is electrically connected to the inner lead wire 40. The other end of the inner lead wire 40 is electrically connected to the electrode on the back surface side of the adjacent solar cell element 20 through the adhesive 30. That is, the solar cell element 20 is electrically connected to the adjacent solar cell element 20 by joining to the inner lead wire 40 via the bus bar electrode 23. In addition, as the inner lead wire 40, in order to improve the weather resistance, it is desirable not to use a single metal wire but to subject the metal wire surface to rust prevention treatment such as tin plating or pre-coating. Further, in the solar cell, the adhesive 30 and the inner lead wire 40 may be provided as the inner lead wire 40 in which the adhesive 30 is applied to the surface of the metal wire, instead of being provided as separate units. Specifically, in a solar cell, an inner conductive wire 40 with an anisotropic conductive adhesive film is used by applying an anisotropic conductive adhesive film to a copper foil and cutting it into a slit shape. In this case, steps such as temporary sticking of the anisotropic conductive adhesive film on the solar cell element 20 can be omitted. A method for manufacturing such an inner lead wire with an adhesive will be described in detail later.
このような太陽電池素子20を備える太陽電池を製造するにあたっては、例えば図4中(a)に示すように、太陽電池素子20を用意すると、図4中(b)に示すように、接着剤30を介して、太陽電池素子20にインナーリード線40を接続する。そして、図4中(c)に示すように、このような太陽電池素子20を複数配列し、隣接する太陽電池素子20同士を電気的に接続した状態で、図4中(d)及び図4中(e)に示すように、耐候性フィルム13、透明樹脂14となる透明樹脂フィルム、太陽電池素子20、透明樹脂14となる透明樹脂フィルム、及び、透明強化ガラス12を、この順序で下から積層して熱プレスによってラミネートし、所定のフレーム端子を取り付けることにより、太陽電池が製造される。 In manufacturing a solar cell including such a solar cell element 20, for example, as shown in FIG. 4A, when the solar cell element 20 is prepared, as shown in FIG. 4B, an adhesive is prepared. The inner lead wire 40 is connected to the solar cell element 20 through 30. 4 (c), a plurality of such solar cell elements 20 are arranged and adjacent solar cell elements 20 are electrically connected to each other in FIG. 4 (d) and FIG. As shown in the middle (e), the weather resistant film 13, the transparent resin film that becomes the transparent resin 14, the solar cell element 20, the transparent resin film that becomes the transparent resin 14, and the transparent tempered glass 12 are arranged in this order from the bottom. A solar cell is manufactured by laminating and laminating by hot pressing and attaching a predetermined frame terminal.
このように、太陽電池においては、太陽電池素子20とインナーリード線40とを、従来のハンダ接合ではなく、異方性導電接着フィルム等からなる接着剤30を介して接合する。したがって、太陽電池においては、接着剤30の樹脂が硬化する180℃程度といったように、従来のハンダ接合よりも低温度で太陽電池素子20とインナーリード線40とを接合することができるため、熱膨張による応力を軽減することができ、太陽電池素子20の反りや割れやバスバー電極23の剥離等の不良が発生するのを大幅に軽減することができる。また、接着剤30自体も、ハンダに比べてヤング率が小さいことから、応力緩和に効果的である。そして、太陽電池においては、インナーリード線40の形状や接続の形状を変更する必要がないことから、発電効率の低下を回避することができ、ハンダ接合のようにフラックスを必要としないことから、余計な洗浄工程等にタクトを取られたり、洗浄不足による発電効率の低下を懸念したりすることもなく、高い歩留まりでの製造を実現することができる。 Thus, in the solar cell, the solar cell element 20 and the inner lead wire 40 are joined via the adhesive 30 made of an anisotropic conductive adhesive film or the like instead of the conventional solder joint. Therefore, in the solar cell, the solar cell element 20 and the inner lead wire 40 can be bonded at a lower temperature than the conventional solder bonding, such as about 180 ° C. at which the resin of the adhesive 30 is cured. Stress due to expansion can be reduced, and the occurrence of defects such as warpage and cracking of the solar cell element 20 and peeling of the bus bar electrode 23 can be greatly reduced. Also, the adhesive 30 itself is effective in stress relaxation because it has a Young's modulus smaller than that of solder. And in the solar cell, since it is not necessary to change the shape of the inner lead wire 40 and the shape of the connection, it is possible to avoid a decrease in power generation efficiency, and because flux is not required like solder bonding, Manufacturing with a high yield can be realized without worrying about extra cleaning steps and worrying about a decrease in power generation efficiency due to insufficient cleaning.
本願発明者は、このような接着剤30を使用することによる効果を確認するために、太陽電池素子20を模擬したサンプルを作製し、その状態を観察した。 The present inventor made a sample simulating the solar cell element 20 and observed its state in order to confirm the effect of using such an adhesive 30.
具体的には、図5に示すように、ガラス基板51の表面上に焼成タイプの銀ペースト52を塗布し、その上にインナーリード線40を模擬したタブ線53を設けたサンプルを作製した。銀ペースト52を塗布したガラス基板51としては、横15mm×縦80mm×厚さ0.7mmの大きさからなり、線膨張係数がシリコンと近い無アルカリガラス仕様からなるものを用いた。タブ線53としては、幅2mm×厚さ0.15mmの銅線に、Sn−Ag−Cu鉛フリーハンダを片面に40μmの厚さでディップメッキした仕様のものを用いた。そして、このタブ線53を、ソニーケミカル&インフォメーションデバイス社製の異方性導電接着フィルム「CP5832KS」を用いて、銀ペースト52を塗布したガラス基板51の表面上に接合した。このときの接合条件は、温度180℃、圧力2MPaでの15秒間の加温及び加圧である。なお、異方性導電接着フィルム「CP5832KS」は、約13重量%の導電性粒子がエポキシ系接着剤に配合されたものであり、硬化後のヤング率は、約2GPaである。 Specifically, as shown in FIG. 5, a sample in which a firing type silver paste 52 was applied on the surface of a glass substrate 51 and a tab wire 53 simulating the inner lead wire 40 was provided thereon was produced. As the glass substrate 51 to which the silver paste 52 is applied, a glass substrate 51 having a size of 15 mm wide × 80 mm long × 0.7 mm thick and having a linear expansion coefficient close to that of silicon is used. As the tab wire 53, a copper wire having a width of 2 mm and a thickness of 0.15 mm and Sn-Ag-Cu lead-free solder having a dip plating thickness of 40 μm on one side was used. And this tab wire 53 was joined on the surface of the glass substrate 51 which apply | coated the silver paste 52 using the anisotropic conductive adhesive film "CP5832KS" by a Sony chemical & information device company. The joining conditions at this time are heating and pressurization for 15 seconds at a temperature of 180 ° C. and a pressure of 2 MPa. The anisotropic conductive adhesive film “CP5832KS” is obtained by blending approximately 13% by weight of conductive particles with an epoxy adhesive, and the Young's modulus after curing is approximately 2 GPa.
また、比較対象のサンプルとして、上述した仕様からなる銀ペースト52を塗布したガラス基板51及びタブ線53を用い、タブ線53を、千住金属工業社製のフラックス「デルタフラックス」を用いて、銀ペースト52を塗布したガラス基板51の表面上にハンダ接合したものを作製した。このときの接合条件は、温度240℃、圧力2MPaでの15秒間の加温及び加圧である。 Further, as a sample for comparison, a glass substrate 51 and a tab wire 53 coated with the silver paste 52 having the above-described specifications are used, and the tab wire 53 is made of silver using a flux “Delta Flux” manufactured by Senju Metal Industry Co., Ltd. A solder bonded product was produced on the surface of the glass substrate 51 to which the paste 52 was applied. The bonding conditions at this time are heating and pressurization for 15 seconds at a temperature of 240 ° C. and a pressure of 2 MPa.
このようにして作製した2種類×2個の合計4個のサンプルの外観を観察し、割れ等の不良が発生したか否かを確認した。この結果を図6(A)及び図6(B)に示す。 The appearance of a total of 4 samples of 2 types × 2 produced in this way was observed to confirm whether or not defects such as cracks occurred. The results are shown in FIGS. 6 (A) and 6 (B).
サンプルの裏面外観を観察したところ、図6(A)に示すハンダ接合によるサンプルについては、同図中四角で囲った領域からわかるように、4本のタブ線のうち3本のタブ線が接合したガラス基板に割れが発生したのに対して、図6(B)に示す異方性導電接着フィルムを用いた接合によるサンプルについては、ガラス基板の割れが全く発生しないという結果が得られた。 When the back surface appearance of the sample was observed, as shown in the area surrounded by the square in FIG. 6A, three tab lines out of the four tab lines were joined. As a result, the glass substrate was not cracked at all, but the sample by bonding using the anisotropic conductive adhesive film shown in FIG. 6B did not crack at all.
この結果から明らかなように、太陽電池に異方性導電接着フィルム等の接着剤30を用いることは、太陽電池素子20の不良の発生軽減に大いに有効であるといえる。 As is clear from this result, it can be said that the use of the adhesive 30 such as an anisotropic conductive adhesive film for the solar cell is very effective in reducing the occurrence of defects in the solar cell element 20.
さて、太陽電池においては、上述したように、接着剤30とインナーリード線40とを別個の単体として提供するのではなく、接着剤30を金属線表面に塗布したインナーリード線40として提供してもよい。 In the solar cell, as described above, the adhesive 30 and the inner lead wire 40 are not provided as separate single pieces, but are provided as the inner lead wire 40 in which the adhesive 30 is applied to the surface of the metal wire. Also good.
ここで、太陽電池においては、上述したように、1本のインナーリード線40の一端を太陽電池素子20の表面側のバスバー電極23に接合するとともに、その他端を隣接する太陽電池素子20の裏面側の電極に接合する必要がある。そのため、接着剤30を金属線表面に塗布したインナーリード線40としては、例えば図7に断面図を示すように、金属線60の一端から所定長にわたって表面側にのみ接着剤30が塗布されるとともに、他端から所定長にわたって裏面側にのみ接着剤30が塗布されたものを製造する必要がある。 Here, in the solar cell, as described above, one end of one inner lead wire 40 is joined to the bus bar electrode 23 on the surface side of the solar cell element 20, and the other end is the back surface of the adjacent solar cell element 20. It is necessary to join to the side electrode. Therefore, as the inner lead wire 40 in which the adhesive 30 is applied to the surface of the metal wire, for example, as shown in a sectional view in FIG. At the same time, it is necessary to manufacture a material in which the adhesive 30 is applied only on the back surface side over a predetermined length from the other end.
このようなインナーリード線40としては、当該インナーリード線40の主材料となる金属箔の片面のみに接着剤30を塗布し、当該接着剤30を乾燥又はBステージ化(半硬化)してフィルム化した金属箔を、図8(a)上段及び図8(b)上段に示すように、長手方向の略中央部分で屈曲させることによって略Z字状に形成された金属線60となるように、いわゆるトムソン刃型(ビク刃型)等の所定の切断装置を用いて切断し、さらに、図8(a)下段及び図8(b)下段に示すように、切断した金属線60を1本の直線状にするように、当該金属線60の一端から屈曲させた部分までの領域を折曲することにより、その一端を太陽電池素子20の表面側のバスバー電極23に接合するとともに、その他端を隣接する太陽電池素子20の裏面側の電極に接合することができるように形成したものが挙げられる。 As such an inner lead wire 40, the adhesive 30 is applied only to one surface of the metal foil which is the main material of the inner lead wire 40, and the adhesive 30 is dried or B-staged (semi-cured) to form a film. As shown in the upper part of FIG. 8 (a) and the upper part of FIG. 8 (b), the formed metal foil is bent at a substantially central portion in the longitudinal direction so that a metal wire 60 formed in a substantially Z shape is obtained. In addition, the metal wire 60 is cut using a predetermined cutting device such as a so-called Thomson blade type (Bik blade type), and further, as shown in the lower stage of FIG. 8A and the lower stage of FIG. The metal wire 60 is bent in a region from one end to the bent portion so that the one end is joined to the bus bar electrode 23 on the surface side of the solar cell element 20 and the other end On the back side of the adjacent solar cell element 20 It includes those formed so that it can be joined to the pole.
また、かかるインナーリード線40としては、図9に示すように、金属箔の片面のみに接着剤30を塗布して乾燥又はBステージ化してフィルム化し、所定の切断装置を用いて所定幅でスリット状に切断することによって形成した2本の金属線60における当該接着剤30が塗布されていない端部同士を、所定の接合剤70を用いて接合することにより、その一端を太陽電池素子20の表面側のバスバー電極23に接合するとともに、その他端を隣接する太陽電池素子20の裏面側の電極に接合することができるように形成したものが挙げられる。 Also, as shown in FIG. 9, the inner lead wire 40 is coated with an adhesive 30 only on one side of a metal foil, dried or B-staged into a film, and slitted with a predetermined width using a predetermined cutting device. The ends of the two metal wires 60 that are formed by cutting in a shape are not coated with the adhesive 30 by using a predetermined bonding agent 70, and one end of the solar cell element 20 is bonded to the end of the solar cell element 20. What was formed so that it might join to the electrode of the back surface side of the adjacent solar cell element 20 while joining to the bus bar electrode 23 of the surface side is mentioned.
さらに、かかるインナーリード線40としては、特に図示しないが、金属箔の片面のみに接着剤30を塗布して乾燥又はBステージ化してフィルム化し、所定の切断装置を用いて所定幅でスリット状に切断することによって形成した金属線60を、太陽電池素子20との接合時に、長手方向の略中央部分で捻ることにより、その一端を太陽電池素子20の表面側のバスバー電極23に接合するとともに、その他端を隣接する太陽電池素子20の裏面側の電極に接合することができるように形成したものが挙げられる。 Further, as the inner lead wire 40, although not particularly illustrated, the adhesive 30 is applied to only one side of the metal foil, dried or B-staged to form a film, and formed into a slit with a predetermined width using a predetermined cutting device. When the metal wire 60 formed by cutting is twisted at a substantially central portion in the longitudinal direction at the time of joining to the solar cell element 20, one end thereof is joined to the bus bar electrode 23 on the surface side of the solar cell element 20, What formed so that the other end can be joined to the electrode of the back surface side of the adjacent solar cell element 20 is mentioned.
さらにまた、インナーリード線40は、以下のような方法により、効率よく容易に製造することもできる。 Furthermore, the inner lead wire 40 can also be efficiently and easily manufactured by the following method.
具体的には、図10に示すように、長尺状の銅箔100をインナーリード線40の主材料として用意し、この銅箔100をライン加工することにより、インナーリード線40を製造する。なお、銅箔100の短手方向の長さは、太陽電池を構成するために所定の間隔を設けて配列された2枚の太陽電池素子20を接続する1本のインナーリード線40の長さと同一とされる。 Specifically, as shown in FIG. 10, an elongated copper foil 100 is prepared as a main material of the inner lead wire 40, and the inner lead wire 40 is manufactured by line processing the copper foil 100. The length of the copper foil 100 in the short direction is the length of one inner lead wire 40 connecting two solar cell elements 20 arranged at a predetermined interval in order to constitute a solar cell. Identical.
まず、インナーリード線40を製造するにあたっては、銅箔100を裏面が上方になるように製造ラインにセットすると、所定のコーター101を用いて、当該銅箔100の裏面に液体状の接着剤30を塗布する。ここで、コーター101は、接着剤30の塗布領域が、銅箔100の一方の端縁から当該銅箔100の短手方向の半分長未満の所定長の幅を有するように、当該銅箔100の一方の端縁近傍に設けられる。したがって、接着剤30は、銅箔100の一方の端縁から当該銅箔100の短手方向の半分長未満の所定長の幅で、当該銅箔100の長手方向にわたって塗布される。 First, in manufacturing the inner lead wire 40, when the copper foil 100 is set on the production line so that the back surface is upward, the liquid adhesive 30 is applied to the back surface of the copper foil 100 using a predetermined coater 101. Apply. Here, the coater 101 has the copper foil 100 so that the application region of the adhesive 30 has a predetermined length less than a half length in the short direction of the copper foil 100 from one edge of the copper foil 100. It is provided in the vicinity of one end edge. Therefore, the adhesive 30 is applied over the longitudinal direction of the copper foil 100 with a predetermined length less than a half length of the copper foil 100 in the short direction from one edge of the copper foil 100.
このようにして裏面のみに接着剤30が塗布された銅箔100は、表面が上方になるように、2つのローラー102,103によって反転される。ここで、塗布された接着剤30がローラー102,103に付着することによって銅箔100から剥がれないように、ローラー102,103は、銅箔100が接触する回転軸方向の長さが、銅箔100の短手方向の長さの略半分長とされ、且つ、接着剤30の塗布領域に近い銅箔100の一方の端縁とは反対側の他方の端縁近傍に設けられる。 Thus, the copper foil 100 with the adhesive 30 applied only to the back surface is reversed by the two rollers 102 and 103 so that the front surface is upward. Here, the length of the rotating shaft direction which the copper foil 100 contacts is the copper foil so that the applied adhesive 30 may not peel off from the copper foil 100 by adhering to the rollers 102 and 103. The length of the copper foil 100 is approximately half the length in the short direction of 100, and is provided in the vicinity of the other edge opposite to one edge of the copper foil 100 close to the application region of the adhesive 30.
そして、表裏面が反転された銅箔100の表面には、所定のコーター104を用いて液体状の接着剤30が塗布される。このコーター104も、接着剤30の塗布領域が、銅箔100の他方の端縁から当該銅箔100の短手方向の半分長未満の所定長の幅を有するように、当該銅箔100の他方の端縁近傍に設けられる。したがって、接着剤30は、銅箔100の他方の端縁から当該銅箔100の短手方向の半分長未満の所定長の幅で、当該銅箔100の長手方向にわたって塗布されることになる。 And the liquid adhesive 30 is apply | coated to the surface of the copper foil 100 by which the front and back were reversed using the predetermined coater 104. FIG. This coater 104 also has the other side of the copper foil 100 so that the application region of the adhesive 30 has a predetermined length less than half the length of the copper foil 100 in the short direction from the other edge of the copper foil 100. It is provided in the vicinity of the edge. Therefore, the adhesive 30 is applied over the longitudinal direction of the copper foil 100 with a predetermined length less than a half length of the copper foil 100 in the short direction from the other edge of the copper foil 100.
このようにして表裏面ともに接着剤30が塗布された銅箔100は、液体状の接着剤30を乾燥又はBステージ化してフィルム化するために、フィルム化装置105に供給される。具体的には、フィルム化装置105としては、接着剤30の樹脂が熱硬化性樹脂である場合には、供給された銅箔100に塗布された接着剤30を所定温度に加熱して乾燥するオーブン等の乾燥装置が用いられ、樹脂が光硬化性樹脂である場合には、供給された銅箔100に塗布された接着剤30に紫外光等を照射するレーザ装置等の光照射装置が用いられる。 The copper foil 100 thus coated with the adhesive 30 on both the front and back sides is supplied to the film forming apparatus 105 in order to dry or form the liquid adhesive 30 into a B-stage. Specifically, as the film forming apparatus 105, when the resin of the adhesive 30 is a thermosetting resin, the adhesive 30 applied to the supplied copper foil 100 is heated to a predetermined temperature and dried. When a drying device such as an oven is used and the resin is a photocurable resin, a light irradiation device such as a laser device that irradiates ultraviolet light or the like to the adhesive 30 applied to the supplied copper foil 100 is used. It is done.
そして、銅箔100は、フィルム化装置105を通過して液体状の接着剤30がフィルム化されると、カッター等の図示しない切断装置を用いて、所定幅でスリット状に短手方向に沿って切断される。これにより、先に図7に示したように、銅線の表裏面に接着剤30が塗布されたインナーリード線40を製造することができる。 And when the copper foil 100 passes through the film forming apparatus 105 and the liquid adhesive 30 is formed into a film, it uses a cutting device (not shown) such as a cutter to form a slit with a predetermined width along the short direction. Is cut off. Thereby, as previously shown in FIG. 7, the inner lead wire 40 in which the adhesive 30 is applied to the front and back surfaces of the copper wire can be manufactured.
このように、長尺状の銅箔100をライン加工することにより、接着剤30を塗布したインナーリード線40を極めて効率よく容易に製造することができる。このような製造方法は、均一品質のインナーリード線40を量産する方法として極めて有効である。また、この製造方法においては、接着剤30がフィルム化された銅箔100を、リールを用いて巻き取って保管しておき、インナーリード線40に形成するための切断工程を後工程とすることができるため、保管が容易であり、また、受注に応じて必要本数のみを切断すればよいため、歩留まりを向上させることができる。 Thus, by carrying out line processing of the long copper foil 100, the inner lead wire 40 coated with the adhesive 30 can be manufactured very efficiently and easily. Such a manufacturing method is extremely effective as a method for mass-producing the inner lead wires 40 of uniform quality. Moreover, in this manufacturing method, the copper foil 100 in which the adhesive 30 is formed into a film is wound and stored using a reel, and the cutting process for forming the inner lead wire 40 is a subsequent process. Therefore, it is easy to store, and only the necessary number has to be cut according to the order, so that the yield can be improved.
なお、本発明は、上述した実施の形態に限定されるものではない。例えば、上述した実施の形態では、主にシリコン系の太陽電池に適用した例について説明したが、本発明は、導体線を介して隣接する太陽電池素子同士を接続するものであれば適用することができる。したがって、本発明は、単結晶シリコン型、多結晶シリコン型、微結晶シリコン型、アモルファスシリコン型をはじめとする任意のシリコン系の太陽電池の他、GaAs型やカルコバイライト型等の他の半導体化合物系の太陽電池や、色素増感太陽電池等の色素系の太陽電池にも適用することができる。また、本発明は、薄膜型や多接合型等、形態に限定されることもない。 The present invention is not limited to the embodiment described above. For example, in the above-described embodiment, an example in which the present invention is mainly applied to a silicon-based solar cell has been described. However, the present invention is applicable as long as adjacent solar cell elements are connected to each other via a conductor wire. Can do. Therefore, the present invention is not limited to any silicon solar cell including single crystal silicon type, polycrystalline silicon type, microcrystalline silicon type, amorphous silicon type, and other semiconductors such as GaAs type and calcobylite type. The present invention can also be applied to compound-based solar cells and dye-based solar cells such as dye-sensitized solar cells. Further, the present invention is not limited to forms such as a thin film type and a multi-junction type.
また、上述した実施の形態では、バスバー電極を介して太陽電池素子とインナーリード線とを接合した太陽電池について説明したが、本発明は、例えばコストの削減を図ることができるバスバー電極がないタイプのもの等、バスバー電極に比べると電極幅が狭いフィンガー電極を介して太陽電池素子とインナーリード線とを接合することにより、隣接する太陽電池素子と電気的に接続した太陽電池であっても適用することができる。この場合、接着剤としては、半導体基板等に電気的に接合可能なものであればよく、異方性導電接着フィルムやその他の導電性接着剤を用いればよい。このようなフィンガー電極を介して太陽電池素子とインナーリード線とを接合する太陽電池においては、フィンガー電極の電極幅が狭いことに起因して、ハンダ接合では必要な強度を持たせることができないため、本発明のように導電性接着剤を用いることは極めて有効である。 Further, in the above-described embodiment, the solar cell in which the solar cell element and the inner lead wire are joined via the bus bar electrode has been described. However, the present invention is a type that does not have a bus bar electrode that can reduce cost, for example. Even solar cells that are electrically connected to adjacent solar cell elements by joining solar cell elements and inner lead wires through finger electrodes that have a narrower electrode width than bus bar electrodes can do. In this case, as the adhesive, any adhesive that can be electrically bonded to a semiconductor substrate or the like may be used, and an anisotropic conductive adhesive film or other conductive adhesive may be used. In a solar cell in which the solar cell element and the inner lead wire are joined via such a finger electrode, the electrode electrode of the finger electrode is narrow, so that the solder joint cannot have the required strength. It is extremely effective to use a conductive adhesive as in the present invention.
さらに、上述した実施の形態では、複数の太陽電池素子を電気的に接続するインナーリード線について説明したが、本発明は、導体線とは熱収縮率が異なることによって当該導体線との間に生じた熱膨張による応力に起因する不良が発生するような任意の複数の電子部品を電気的に接続する場合であっても容易に適用することができる。 Further, in the above-described embodiment, the inner lead wire for electrically connecting a plurality of solar cell elements has been described. However, the present invention is different from the conductor wire in that the thermal contraction rate is different from the conductor wire. The present invention can be easily applied even when a plurality of arbitrary electronic components that cause defects due to the stress caused by thermal expansion are electrically connected.
さらにまた、上述した実施の形態では、長尺状の銅箔をライン加工する製造方法について説明したが、本発明は、導体線の主材料に限定されるものではなく、他の金属箔をライン加工する場合であっても適用することができる。 Furthermore, in the above-described embodiment, the manufacturing method for processing a long copper foil has been described. However, the present invention is not limited to the main material of the conductor wire, and other metal foils are lined. Even when processing, it can be applied.
このように、本発明は、その趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。 Thus, it goes without saying that the present invention can be modified as appropriate without departing from the spirit of the present invention.
11 アルミニウムフレーム
12 透明強化ガラス
13 耐候性フィルム
14 透明樹脂
20 太陽電池素子
21 半導体基板
22 フィンガー電極
23 バスバー電極
30 接着剤
40 インナーリード線
51 ガラス基板
52 銀ペースト
53 タブ線
60 金属線
70 接合剤
100 銅箔
101,104 コーター
102,103 ローラー
105 フィルム化装置
DESCRIPTION OF SYMBOLS 11 Aluminum frame 12 Transparent tempered glass 13 Weather resistant film 14 Transparent resin 20 Solar cell element 21 Semiconductor substrate 22 Finger electrode 23 Busbar electrode 30 Adhesive 40 Inner lead wire 51 Glass substrate 52 Silver paste 53 Tab wire 60 Metal wire 70 Bonding agent 100 Copper foil 101, 104 Coater 102, 103 Roller 105 Filming device
Claims (10)
上記電子部品とは熱収縮率が異なる上記導体線の主材料となる所定の金属線の一端から所定長にわたって表面側にのみ接着剤が塗布されるとともに、当該金属線の他端から所定長にわたって裏面側にのみ上記接着剤が塗布された状態となるように、上記主材料に上記接着剤を塗布する塗布工程と、
上記塗布工程にて塗布された上記接着剤を乾燥又はBステージ化してフィルム化するフィルム化工程とを備え、
上記塗布工程は、
第1のコーターを用いて、上記主材料としての長尺状の金属箔の裏面に、当該金属箔の一方の端縁から当該金属箔の短手方向の半分長未満の所定長の幅で、当該金属箔の長手方向にわたって液体状の上記接着剤を塗布する工程と、
所定のローラーを用いて、上記裏面のみに上記接着剤が塗布された上記金属箔の表裏面を反転する工程と、
第2のコーターを用いて、表裏面が反転された上記金属箔の表面に、当該金属箔の他方の端縁から当該金属箔の短手方向の半分長未満の所定長の幅で、当該金属箔の長手方向にわたって液体状の上記接着剤を塗布する工程とを有すること
を特徴とする導体線の製造方法。 A method of manufacturing a conductor wire for electrically connecting a plurality of electronic components,
The adhesive is applied only on the surface side from one end of a predetermined metal wire, which is the main material of the conductor wire, which has a different heat shrinkage rate from the electronic component, and from the other end of the metal wire to a predetermined length. An application step of applying the adhesive to the main material so that the adhesive is applied only on the back side;
A film forming step of forming a film by drying or B-stage the adhesive applied in the application step,
The application process
Using the first coater, on the back surface of the long metal foil as the main material, the width of a predetermined length less than half the length of the metal foil from one edge of the metal foil, Applying the liquid adhesive across the longitudinal direction of the metal foil;
Using a predetermined roller, reversing the front and back surfaces of the metal foil in which the adhesive is applied only to the back surface;
Using the second coater, on the surface of the metal foil whose front and back surfaces are reversed, the metal with a predetermined width less than half the length of the metal foil from the other edge of the metal foil. And a step of applying the liquid adhesive in the longitudinal direction of the foil.
を特徴とする請求項1記載の導体線の製造方法。 A step of cutting the metal foil formed by the adhesive in the film forming step using a predetermined cutting device along a short direction in a slit shape with a predetermined width to form the conductor wire; The method of manufacturing a conductor wire according to claim 1, comprising:
を特徴とする請求項1記載の導体線の製造方法。 The roller has a length in the rotation axis direction that the metal foil is in contact with, which is substantially half the length in the short direction of the metal foil, and one of the metal foils close to the application area of the adhesive. The method for manufacturing a conductor wire according to claim 1, wherein the conductor wire is provided in the vicinity of the other end edge opposite to the end edge.
を特徴とする請求項1記載の導体線の製造方法。 The method for producing a conductor wire according to claim 1, wherein in the film forming step, the adhesive is dried or B-staged to form a film using a predetermined film forming apparatus.
を特徴とする請求項4記載の導体線の製造方法。 When the resin of the adhesive is a thermosetting resin, the film forming apparatus is a drying apparatus that heats the adhesive to a predetermined temperature and dries, and when the resin is a photocurable resin Is a light irradiation device for irradiating the adhesive with light. The method for producing a conductor wire according to claim 4.
を特徴とする請求項1記載の導体線の製造方法。 The method for producing a conductor wire according to claim 1.
を特徴とする請求項6記載の導体線の製造方法。 The method for producing a conductor wire according to claim 6.
を特徴とする請求項7記載の導体線の製造方法。 The method for producing a conductor wire according to claim 7.
を特徴とする請求項1乃至請求項8のうちいずれか1項記載の導体線の製造方法。 The method for manufacturing a conductor wire according to any one of claims 1 to 8, wherein
上記導体線は、上記複数の太陽電池素子を電気的に接続するインナーリード線であること The conductor wire is an inner lead wire that electrically connects the plurality of solar cell elements.
を特徴とする請求項1乃至請求項9のうちいずれか1項記載の導体線の製造方法。 The method for manufacturing a conductor wire according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007141795A JP5116363B2 (en) | 2007-05-29 | 2007-05-29 | Manufacturing method of conductor wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007141795A JP5116363B2 (en) | 2007-05-29 | 2007-05-29 | Manufacturing method of conductor wire |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012122811A Division JP5433729B2 (en) | 2012-05-30 | 2012-05-30 | Manufacturing method of solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008300403A JP2008300403A (en) | 2008-12-11 |
JP5116363B2 true JP5116363B2 (en) | 2013-01-09 |
Family
ID=40173677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007141795A Active JP5116363B2 (en) | 2007-05-29 | 2007-05-29 | Manufacturing method of conductor wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5116363B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012182490A (en) * | 2012-05-30 | 2012-09-20 | Sony Chemical & Information Device Corp | Manufacturing method for solar cell |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2408014A4 (en) | 2009-03-11 | 2015-09-09 | Shinetsu Chemical Co | Connection sheet for solar battery cell electrode, process for manufacturing solar cell module, and solar cell module |
JP5229497B2 (en) | 2009-06-03 | 2013-07-03 | デクセリアルズ株式会社 | Manufacturing method of solar cell module |
JP5185898B2 (en) * | 2009-09-03 | 2013-04-17 | 株式会社日立ハイテクノロジーズ | Solar cell tab wire sticking device and sticking method thereof |
JP2011222744A (en) * | 2010-04-09 | 2011-11-04 | Sony Chemical & Information Device Corp | Tab wire for connecting solar battery, connection method and solar battery module |
JP5158238B2 (en) | 2010-08-26 | 2013-03-06 | 日立化成株式会社 | Adhesive film for solar cell electrode and method for producing solar cell module using the same |
KR101279975B1 (en) | 2010-10-05 | 2013-07-05 | 제일모직주식회사 | Electrical connecting material between conductors |
JP5643620B2 (en) * | 2010-11-29 | 2014-12-17 | デクセリアルズ株式会社 | Solar cell module and method for manufacturing solar cell module |
JP2012204442A (en) * | 2011-03-24 | 2012-10-22 | Sanyo Electric Co Ltd | Method for manufacturing solar cell module |
TWI433331B (en) | 2011-05-17 | 2014-04-01 | Neo Solar Power Corp | Machine for manufacturing electrode tape |
US9490376B2 (en) * | 2011-09-29 | 2016-11-08 | Lg Electronics Inc. | Solar cell module |
JP6039905B2 (en) * | 2012-02-14 | 2016-12-07 | デクセリアルズ株式会社 | Conductive adhesive, solar cell module, and method for manufacturing solar cell module |
JP5242824B1 (en) * | 2012-02-29 | 2013-07-24 | 株式会社エヌ・ピー・シー | Conductive paste coating mechanism and cell wiring device |
KR101367297B1 (en) | 2012-08-23 | 2014-03-03 | 주식회사 아론 | Electrode bonding device for solar cell and bonding method thereof |
CN103633186B (en) * | 2012-08-23 | 2016-06-15 | 亚纶株式会社 | The electrode engagement device of solar battery cell and joint method |
WO2014034006A1 (en) * | 2012-09-03 | 2014-03-06 | 三菱電機株式会社 | Solar cell element and solar cell module |
JP6113196B2 (en) * | 2013-01-16 | 2017-04-12 | 三菱電機株式会社 | Solar cell and manufacturing method thereof |
JP2016021577A (en) * | 2015-08-12 | 2016-02-04 | デクセリアルズ株式会社 | Solar cell module, manufacturing method of solar cell module, conductive adhesive |
TW201811518A (en) | 2016-06-21 | 2018-04-01 | 美商3M新設資產公司 | Conversion and application of material strips |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3475959B2 (en) * | 1992-05-26 | 2003-12-10 | 日立化成工業株式会社 | ADHESIVE COMPOSITION, PROCESS FOR PRODUCING FILM ADHESIVE USING THE ADHESIVE COMPOSITION, CONNECTOR OF ELECTRODES USING THE ADHESIVE, AND METAL FOIL WITH ADHESIVE |
JP2005072115A (en) * | 2003-08-21 | 2005-03-17 | Sekisui Jushi Co Ltd | Solar cell module |
JP2005101519A (en) * | 2003-09-05 | 2005-04-14 | Hitachi Chem Co Ltd | Solar cell unit and solar cell module |
JP2005129773A (en) * | 2003-10-24 | 2005-05-19 | Kyocera Corp | Solar cell module and wiring for connecting solar cell element |
JP2004339520A (en) * | 2004-05-31 | 2004-12-02 | Sony Chem Corp | Thermosetting adhesive material |
JP5323310B2 (en) * | 2005-11-10 | 2013-10-23 | 日立化成株式会社 | Connection structure and manufacturing method thereof |
JP2007214533A (en) * | 2006-01-16 | 2007-08-23 | Hitachi Chem Co Ltd | Conductive bonding film and solar cell module |
JPWO2007125903A1 (en) * | 2006-04-26 | 2009-09-10 | 日立化成工業株式会社 | Adhesive tape and solar cell module using the same |
JP4697194B2 (en) * | 2006-10-13 | 2011-06-08 | 日立化成工業株式会社 | Solar cell connection method and solar cell module |
-
2007
- 2007-05-29 JP JP2007141795A patent/JP5116363B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012182490A (en) * | 2012-05-30 | 2012-09-20 | Sony Chemical & Information Device Corp | Manufacturing method for solar cell |
Also Published As
Publication number | Publication date |
---|---|
JP2008300403A (en) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5116363B2 (en) | Manufacturing method of conductor wire | |
JP4024161B2 (en) | Manufacturing method of solar cell module | |
JP5436901B2 (en) | Manufacturing method of solar cell module | |
JP5380810B2 (en) | Solar cell module | |
JP6082046B2 (en) | Improved photovoltaic cell assembly | |
JP3548246B2 (en) | Photovoltaic element and method for manufacturing the same | |
JP4441102B2 (en) | Photovoltaic element and manufacturing method thereof | |
US5457057A (en) | Photovoltaic module fabrication process | |
CN114068734A (en) | Manufacturing method of photovoltaic cell assembly | |
JP2013541205A (en) | Improved photovoltaic cell assembly and method | |
JPWO2008152865A1 (en) | Thin film solar cell and manufacturing method thereof | |
JP5892584B2 (en) | Solar cell module and method for manufacturing solar cell module | |
JP5739076B2 (en) | Solar cell module and manufacturing method thereof | |
JP5433729B2 (en) | Manufacturing method of solar cell | |
TW201101426A (en) | Method for forming an electrical connection | |
WO2017073299A1 (en) | Ultrasonic soldering method and ultrasonic soldering device | |
CN113611757A (en) | Photovoltaic cell and photovoltaic chain and associated manufacturing method | |
WO2011152309A1 (en) | Solar cell module and method for manufacturing same | |
WO2010090277A1 (en) | Method for manufacturing thin film solar cell | |
US8329495B2 (en) | Method of forming photovoltaic modules | |
TW201842513A (en) | Ageing-resistant aluminium connectors for solar cells | |
WO2014010486A1 (en) | Solar cell module and manufacturing method for same | |
JP2006041351A (en) | Process for manufacturing photovoltaic element | |
JP2008282919A (en) | Connection method of ribbon wire of electronic component module or cis-system thin-film solar cell module | |
CN104716061B (en) | Ultrasonic welding method and the photovoltaic module welded using this method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120410 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121009 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121016 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5116363 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151026 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |