JP5111014B2 - Steel for induction-hardened shaft parts and shaft parts - Google Patents
Steel for induction-hardened shaft parts and shaft parts Download PDFInfo
- Publication number
- JP5111014B2 JP5111014B2 JP2007214002A JP2007214002A JP5111014B2 JP 5111014 B2 JP5111014 B2 JP 5111014B2 JP 2007214002 A JP2007214002 A JP 2007214002A JP 2007214002 A JP2007214002 A JP 2007214002A JP 5111014 B2 JP5111014 B2 JP 5111014B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- shaft
- induction
- excluding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、例えば自動車のドライブシャフトなど、高い静的ねじり強度と高いねじり疲労強度が要求される回転動力伝達機構の軸部品、及び、軸部品を製造するために用いられる高周波焼入れ軸部品用鋼に関するものである。 The present invention relates to a shaft component of a rotary power transmission mechanism that requires high static torsional strength and high torsional fatigue strength, such as a drive shaft of an automobile, and steel for induction-hardened shaft components used for manufacturing the shaft component. It is about.
機械構造に用いられる動力伝達系の軸部品には、高い静的ねじり強度や高いねじり疲労強度が要求される。軸部品の静的ねじり強度とねじり疲労強度を高めるための有効な手段として、高周波焼入れが挙げられる。この高周波焼入れは、加工費が比較的廉価である上に処理時間が短いために効率がよく、しかも表面硬化、圧縮残留応力の付与を効率よく行なうことができ、また地球環境にも優しい。更に、製品に生じる歪が少なく綺麗な表面に仕上げることができるなど、多数の利点を有していることから、各種軸部品の強化手法として活用されている。 High static torsional strength and high torsional fatigue strength are required for power transmission shaft components used in machine structures. Induction hardening is an effective means for increasing the static torsional strength and torsional fatigue strength of shaft components. This induction hardening is efficient because the processing cost is relatively low and the processing time is short, and surface hardening and compressive residual stress can be efficiently applied, and it is also friendly to the global environment. Furthermore, since it has many advantages such as the fact that it can be finished to a beautiful surface with less distortion occurring in the product, it is used as a reinforcing method for various shaft parts.
例えば、特許文献1では、機械構造用軸物部品において、鋼素材を所定の形状に成形加工した後、周波数が100kHz以下の高周波焼入れを行ない、50%マルテンサイト硬さまでの硬化層深さCDと高周波焼入れ軸物部品の半径Rとの比(CD/R)が0.3〜0.7となる様にした機械構造用軸物部品が記載されており、軸物部品のねじり疲労強度に優れているとされている。高周波焼入れ軸部品用鋼としては、焼きならし材が使用されている。
For example, in
特許文献2では、断面内平均硬さHVaが560以上であり、高周波焼入れ層の旧オーステナイト結晶粒度が9番以上であり、さらに表面の残留応力が80kgf/mm2以下である高強度高周波焼入れ軸部品が記載されている。この高周波焼入れ軸部品は、ねじり強度に優れているとされている。
しかしながら、特許文献1に記載された高周波焼入れ軸部品は、高周波焼入れ前の鋼材として、焼きならし材を使用しているため、高周波焼入れによっては硬化され難い内部硬さは低いとみられる。また、特許文献2に記載された高周波焼入れ軸部品は、静的ねじり強度を高めたものであるが、ねじり疲労強度については不明である。
However, since the induction-hardened shaft component described in
なお、軸部品の静的ねじり強度を向上させるためには、(1)軸部品の炭素量を増やすことにより軸部品を硬くする手法や、(2)高周波焼入れ深さを深くすることによって軸部品を硬くする手法等が考えられる。しかし、(1)の場合、鋼材中の炭素量を上げすぎると、静的ねじり強度が逆に低下するという問題があり、(2)の場合は、高周波焼入れを深くし過ぎると、軸部品の表層に十分な残留応力を付与することができないため、ねじり疲労強度が低下してしまうという問題がある。 In order to improve the static torsional strength of the shaft component, (1) a method of hardening the shaft component by increasing the carbon content of the shaft component, or (2) a shaft component by increasing the induction hardening depth. A method of hardening the material is conceivable. However, in the case of (1), if the amount of carbon in the steel material is increased too much, there is a problem that the static torsional strength is reduced. In the case of (2), if the induction hardening is too deep, Since sufficient residual stress cannot be applied to the surface layer, there is a problem that the torsional fatigue strength decreases.
本発明は、上記(1)及び(2)の方法によらずに、静的ねじり強度を落とすことなく、高いねじり疲労強度を有する軸部品を提供することを目的とする。 An object of the present invention is to provide a shaft component having a high torsional fatigue strength without reducing the static torsional strength without depending on the methods (1) and (2).
上記課題を解決すべく、本発明者が鋭意研究を行なった結果、あらかじめ調質(焼入れ焼戻し)しておいた鋼材に更に高周波焼入れすることによって軸部品を製造することに思い至った。 In order to solve the above-mentioned problems, the present inventor conducted intensive research, and as a result, came up with the idea of manufacturing a shaft part by further induction-hardening a steel material that had been tempered (quenched and tempered) in advance.
高周波焼入れ後の軸部品に負荷されるトルクは、一般に軸部品の表層付近ほど強いため、従来から軸部品の表層部の硬さについては検討がなされていたが、軸部品の内部硬さとのバランスについては、特に議論されていない。むしろ、仮に予め調質しておいた軸部品用鋼を高周波焼入れした場合には、非調質の軸部品用鋼を高周波焼入れする場合に比べて軸部品表面の残留応力が少なく、ねじり疲労強度が低下することが懸念される。しかし、本発明者の検討によれば、軸部品用鋼の硬さを所定範囲に制御しておけば、高周波焼入れ後の表面硬さと内部硬さとのバランスを適切に制御でき、軸部品に繰り返しのトルクを与えた場合に、軸部品の内部を起点とする破壊と表面を起点とする破壊の両方を抑制でき、ねじり疲労強度がむしろ向上することが判明した。しかも静的ねじり強度を低下させることなく、ねじり疲労強度を向上できることを見出すに至り、本発明を完成した。 Since the torque applied to the shaft parts after induction hardening is generally stronger near the surface of the shaft parts, the hardness of the surface part of the shaft parts has been studied conventionally, but the balance with the internal hardness of the shaft parts There is no particular debate. Rather, if the shaft part steel that has been tempered in advance is induction hardened, the residual stress on the shaft part surface is less than that in the case of induction hardening of non-tempered shaft part steel, and the torsional fatigue strength There is a concern about the decline. However, according to the inventor's study, if the hardness of the steel for shaft parts is controlled within a predetermined range, the balance between the surface hardness and the internal hardness after induction hardening can be appropriately controlled, and the shaft parts are repeatedly applied. It has been found that when the torque is applied, both the fracture starting from the inside of the shaft part and the fracture originating from the surface can be suppressed, and the torsional fatigue strength is rather improved. In addition, the present inventors have found that the torsional fatigue strength can be improved without reducing the static torsional strength, thus completing the present invention.
本発明の高周波焼入れ軸部品用鋼は、
C:0.4〜0.6%(質量%の意味、以下同じ)、
Si:0.1〜1.5%、
Mn:0.3〜2%、
S:0.03%以下(0%を含まない)、
Cr:0.3%以下(0%を含まない)、
Ti:0.005〜0.05%、
B:0.0005〜0.005%、
をそれぞれ含有し、残部がFeおよび不可避的不純物からなる高周波焼入れ軸部品用鋼であって、該軸部品用鋼の表面からの深さがD/4(D:軸部品用鋼の直径)である位置のビッカース硬さを275HV〜350HVとしたものであり、好ましくは、更にCu:0.5%以下(0%を含まない)、Ni:0.5%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、V:0.3%以下(0%を含まない)、Zr:0.1%以下(0%を含まない)の1種または2種以上を含み、より好ましくは、更にMo:0.5%以下(0%を含まない)を含み、さらに好ましくは、Pb:0.3%以下(0%を含まない)、Bi:0.1%以下(0%を含まない)、Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)、Te:0.1%以下(0%を含まない)、REM:0.1%以下(0%を含まない)、よりなる群から選択されるいずれか1種または2種以上の元素を更に含むものである。
The steel for induction-hardened shaft parts of the present invention is
C: 0.4 to 0.6% (meaning mass%, the same shall apply hereinafter)
Si: 0.1 to 1.5%,
Mn: 0.3-2%,
S: 0.03% or less (excluding 0%),
Cr: 0.3% or less (excluding 0%),
Ti: 0.005 to 0.05%,
B: 0.0005 to 0.005%,
Each of which is a steel for induction-hardened shaft components, the balance being Fe and inevitable impurities, the depth from the surface of the shaft component steel being D / 4 (D: diameter of the shaft component steel) Vickers hardness at a certain position is 275 HV to 350 HV, preferably Cu: 0.5% or less (not including 0%), Ni: 0.5% or less (not including 0%), Nb: 0.05% or less (not including 0%), V: 0.3% or less (not including 0%), Zr: 0.1% or less (not including 0%) More preferably, Mo: 0.5% or less (not including 0%), further preferably Pb: 0.3% or less (not including 0%), Bi: 0.1 % Or less (excluding 0%), Ca: 0.005% or less (not including 0%), Mg: 0.005% Lower (not including 0%), Te: 0.1% or less (not including 0%), REM: 0.1% or less (not including 0%), any one selected from the group consisting of Or it further contains 2 or more types of elements.
また、本発明の軸部品は、上記軸部品用鋼を高周波焼入れしたものであって、軸部品の表面から、ビッカース硬さが450HVとなる位置までの距離tと、軸部品の断面の半径Rとの比t/R(以下、「焼入れ比」という)を0.1以上、0.5以下としたものである。 The shaft component of the present invention is obtained by induction-hardening the shaft component steel. The distance t from the surface of the shaft component to a position where the Vickers hardness is 450 HV, and the radius R of the cross section of the shaft component The ratio t / R (hereinafter referred to as “quenching ratio”) is 0.1 or more and 0.5 or less.
なお、本発明において用語「軸部品」は、回転動力を伝達するための棒状の部品を指すものであり、特にねじれ方向の強度や疲労強度を要求されるものである。
また、「軸部品の断面」は、軸方向に対して垂直である。
In the present invention, the term “shaft component” refers to a rod-shaped component for transmitting rotational power, and particularly requires strength in the torsional direction and fatigue strength.
Further, the “cross section of the shaft component” is perpendicular to the axial direction.
また、軸部品用鋼または軸部品の長さ方向に鋼の硬さが変化している場合であっても、軸部品用鋼または軸部品の必ずしも全区間において本発明の規定を満たしている必要は無く、一部の区間において本発明の規定を満たしていれば、本発明の軸部品用鋼または軸部品に該当するものとする。 Further, even if the hardness of the steel for the shaft part or the length of the shaft part is changed, it is necessary that all the sections of the steel for the shaft part or the shaft part satisfy the provisions of the present invention. However, if the provisions of the present invention are satisfied in a part of the section, it corresponds to the steel for shaft parts or the shaft parts of the present invention.
本発明の高周波焼入れ軸部品用鋼によれば、高周波焼入れ前に内部硬さを適切に制御するため、その後の高周波焼入れによって表面硬さを高めれば内部硬さと表面硬さを適切にバランスさせることができ、静的ねじり強度を犠牲にすることなく、ねじり疲労強度の高い高周波焼入れ軸部品を提供することができる。 According to the steel for induction-quenched shaft parts of the present invention, the internal hardness is appropriately controlled before induction hardening, and if the surface hardness is increased by subsequent induction hardening, the internal hardness and the surface hardness are appropriately balanced. Thus, it is possible to provide an induction-hardened shaft component having high torsional fatigue strength without sacrificing static torsional strength.
I:軸部品用鋼の化学成分組成
本実施の形態の軸部品用鋼材は、静的ねじり強度とねじり疲労強度を向上させるために、化学成分組成が適切に調整されていることを特徴の1つとする。よってまず、鋼材の化学成分組成について説明する。
I: Chemical component composition of steel for shaft parts The steel material for shaft parts of the present embodiment is characterized in that the chemical composition is appropriately adjusted in order to improve static torsional strength and torsional fatigue strength. I will. Therefore, first, the chemical composition of the steel material will be described.
C:0.4〜0.6%
Cは、鋼材の強度を確保するために必要な元素であり、軸部品として重要な特性である静的ねじり強度とねじり疲労強度を高めるのに有用である。従って、Cの含有量は、0.4%以上、好ましくは0.43%以上、さらに好ましくは0.45%以上にする。しかしCを過剰に含有させると、鋼材の割れ感受性が高くなり、静的ねじり強度が逆に低下してしまう。したがって、Cの含有量は、0.6%以下、好ましくは0.57%以下、さらに好ましくは0.55%以下にする。
C: 0.4 to 0.6%
C is an element necessary for securing the strength of the steel material, and is useful for increasing static torsional strength and torsional fatigue strength, which are important characteristics as a shaft component. Therefore, the C content is 0.4% or more, preferably 0.43% or more, and more preferably 0.45% or more. However, when C is excessively contained, the steel material becomes more susceptible to cracking, and the static torsional strength is reduced. Therefore, the C content is 0.6% or less, preferably 0.57% or less, and more preferably 0.55% or less.
Si:0.1〜1.5%
Siは、焼入れ性を改善し、低温焼戻しに対する軟化抵抗を高めるため、高周波焼入れ部の硬さを確保するのに必要な元素である。従ってSiの含有量は、0.1%以上、好ましくは0.15%以上、さらに好ましくは0.2%以上にする。しかし、Siを過剰に含有させると軸部品が脆化してしまうので、Siの含有量は、1.5%以下、好ましくは、1.2%以下、さらに好ましくは、1.0%以下にする。
Si: 0.1 to 1.5%
Si is an element necessary for ensuring the hardness of the induction-quenched portion in order to improve hardenability and increase softening resistance against low-temperature tempering. Therefore, the Si content is 0.1% or more, preferably 0.15% or more, more preferably 0.2% or more. However, if Si is excessively contained, the shaft part becomes brittle, so the Si content is 1.5% or less, preferably 1.2% or less, and more preferably 1.0% or less. .
Mn:0.3〜2%
Mnも、Siと同様に、焼入れ性を改善するものあり、軸部品として重要な特性である静的ねじり強度を確保するのに有用である。従って、Mnの含有量は、0.3%以上、好ましくは0.5%以上、さらに好ましくは0.7%以上にする。しかし、Mnを過剰に含有させると、焼割れが生じる場合があるので、2%以下、好ましくは1.8%以下、さらに好ましくは1.6%以下、さらに好ましくは1.4%以下にする。
Mn: 0.3-2%
Similar to Si, Mn also improves hardenability and is useful for securing static torsional strength, which is an important characteristic for shaft parts. Therefore, the Mn content is 0.3% or more, preferably 0.5% or more, more preferably 0.7% or more. However, if Mn is excessively contained, there is a case where burning cracks may occur. Therefore, it is 2% or less, preferably 1.8% or less, more preferably 1.6% or less, and further preferably 1.4% or less. .
S:0.03%以下(0%を含まない)
Sは、鋼材の強度、殊に加工方向に対して横目の強度を著しく低下させる。従ってSの含有量は、0.03%以下、好ましくは0.025%以下、さらに好ましくは0.02%以下にする。Sの含有量は少ない程望ましいが、Sを完全に除去することは技術的に困難であり、通常、0%超である。また、SはMnと共に硫化物系介在物を形成して被削性を改善するため、前記上限値以下であれば、積極的に鋼中に残存させてもよい。好ましいSの含有量は、0.005%以上、特に、0.01%以上である。
S: 0.03% or less (excluding 0%)
S remarkably reduces the strength of the steel material, particularly the strength of the transverse direction with respect to the processing direction. Therefore, the S content is 0.03% or less, preferably 0.025% or less, and more preferably 0.02% or less. The smaller the S content, the better. However, it is technically difficult to completely remove S, and it is usually more than 0%. In addition, S forms sulfide inclusions together with Mn to improve machinability. Therefore, S may be actively left in the steel as long as it is not more than the upper limit. A preferable S content is 0.005% or more, particularly 0.01% or more.
Cr:0.3%以下(0%を含まない)
Crは、焼入れ性を向上するものであり、軸部品の静的ねじり強度を高めるのに有効である。しかし、過剰に含有させると軸部品用鋼が硬くなり過ぎ、切断などの加工性を低下させる。従って、Cr量の上限は、0.3%、好ましくは0.25%、さらに好ましくは0.2%とする。
Cr: 0.3% or less (excluding 0%)
Cr improves the hardenability and is effective in increasing the static torsional strength of the shaft part. However, if excessively contained, the shaft part steel becomes too hard, and the workability such as cutting is lowered. Therefore, the upper limit of the Cr content is 0.3%, preferably 0.25%, and more preferably 0.2%.
Ti:0.005〜0.05%
Tiは、NやOとの親和性が強く、Bの焼入れ性の改善や粒界強化に有効であり、軸部品の静的ねじり強度やねじり疲労強度を高めるのに極めて有効である。また、結晶粒の微細化にも有効である。従って、Tiの含有量は、0.005%以上、好ましくは0.01%以上、より好ましくは0.015%以上である。一方、Tiを過剰に含有させると圧延材が硬くなり過ぎ、切断などの加工性を低下させる。従って、Ti量の上限は、0.05%、好ましくは0.045%、さらに好ましくは0.04%とする。
Ti: 0.005 to 0.05%
Ti has a strong affinity with N and O, is effective in improving the hardenability of B and strengthening grain boundaries, and is extremely effective in increasing the static torsional strength and torsional fatigue strength of shaft parts. It is also effective for making crystal grains finer. Therefore, the Ti content is 0.005% or more, preferably 0.01% or more, more preferably 0.015% or more. On the other hand, if Ti is contained excessively, the rolled material becomes too hard, and workability such as cutting is lowered. Therefore, the upper limit of Ti content is 0.05%, preferably 0.045%, and more preferably 0.04%.
B:0.0005〜0.005%
Bは、少量の添加で焼入れ性を高めると共に粒界強度を高める効果を有するので、軸部品の静的ねじり強度やねじり疲労強度を高めるのに極めて有効である。従って、B含有量は、0.0005%以上、好ましくは0.00055%以上、さらに好ましくは0.0006%以上にする。しかし、Bを多量に添加しても、上記した効果が飽和し、更には割れ発生の原因にもなるので、B量の上限は、0.005%、好ましくは0.0045%、さらに好ましくは0.004%としている。
B: 0.0005 to 0.005%
B has the effect of increasing the hardenability and increasing the grain boundary strength when added in a small amount, and thus is extremely effective in increasing the static torsional strength and torsional fatigue strength of the shaft component. Therefore, the B content is 0.0005% or more, preferably 0.00055% or more, more preferably 0.0006% or more. However, even if a large amount of B is added, the above-described effect is saturated and further causes cracking. Therefore, the upper limit of the B amount is 0.005%, preferably 0.0045%, more preferably 0.004%.
本発明で規定する含有元素は上記の通りであって、残部はFe及び不可避的不純物であってもよい。なお、該不可避的不純物としては、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され、例えば、Al、P、N、O等が考えられるが、混入量は、例えば、次のように考えられる。 The contained elements specified in the present invention are as described above, and the balance may be Fe and inevitable impurities. As the inevitable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. is allowed. For example, Al, P, N, O, etc. are conceivable. It seems like.
Al:0.05%以下(0%を含まない)
Alは、完全に除去することは技術的に困難であり、通常、0%超である。Alの含有量が多くなると酸化物系介在物の量が増大して軸部品の靭性が劣化する。従って、Al含有量の上限は、0.05%であり、好ましくは0.04%であり、さらに好ましくは0.03%である。一方、Alは脱酸剤として作用するため、また鋼の結晶粒の微細化のために積極的に添加する場合がある。この場合のAl含有量の下限値は、例えば0.0005%、好ましくは0.001%、さらに好ましくは0.002%である。
Al: 0.05% or less (excluding 0%)
Al is technically difficult to remove completely and is usually above 0%. As the Al content increases, the amount of oxide inclusions increases and the toughness of the shaft component deteriorates. Therefore, the upper limit of the Al content is 0.05%, preferably 0.04%, and more preferably 0.03%. On the other hand, Al acts as a deoxidizer and may be actively added for refinement of steel crystal grains. In this case, the lower limit of the Al content is, for example, 0.0005%, preferably 0.001%, and more preferably 0.002%.
P:0.02%以下(0%を含まない)
Pは、粒界偏析を起こして粒界強度を低下させ、鋼材の脆化の原因となるので、その含有量は、できる限り低いことが好ましい。従ってP量を、0.02%以下、好ましくは0.015%以下、より好ましくは0.01%以下に抑制することが推奨される。
P: 0.02% or less (excluding 0%)
P causes segregation at the grain boundaries to lower the grain boundary strength and causes embrittlement of the steel material. Therefore, the content is preferably as low as possible. Therefore, it is recommended that the P content be suppressed to 0.02% or less, preferably 0.015% or less, more preferably 0.01% or less.
N:0.01%以下(0%を含まない)
Nは、Tiと結合して析出硬化を促進させるが、多過ぎると鋼材の脆化の原因となるので、0.01%以下、好ましくは0.008%以下、さらに好ましくは0.006%以下に抑える。
N: 0.01% or less (excluding 0%)
N combines with Ti to promote precipitation hardening, but if it is too much, it causes embrittlement of the steel material, so 0.01% or less, preferably 0.008% or less, more preferably 0.006% or less. Keep it down.
O:0.005以下(0%を含まない)
Oは、酸化物系介在物を形成して軸部品の靭性を低下させる原因になるので、0.005%以下、好ましくは0.0045%以下、さらに好ましくは0.004%以下に抑える。
O: 0.005 or less (not including 0%)
O forms oxide inclusions and reduces the toughness of the shaft part, so it is limited to 0.005% or less, preferably 0.0045% or less, and more preferably 0.004% or less.
不可避的不純物としては、上記した元素の他、例えば、微量のZn、W、Co、As、Sn、Se、Sb、Ta等が想定し得る。 As unavoidable impurities, in addition to the elements described above, for example, trace amounts of Zn, W, Co, As, Sn, Se, Sb, Ta and the like can be assumed.
本実施の形態の軸部品用鋼材は、必要に応じて、更にCu等、他の元素を積極的に含有させて軸部品の特性を一段と高めることも有効である。 It is also effective for the shaft part steel material of the present embodiment to further enhance the characteristics of the shaft part by further containing other elements such as Cu as necessary.
例えば、Cu:0.5%以下(0%を含まない)、Ni:0.5%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、V:0.3%以下(0%を含まない)、Zr:0.1%以下(0%を含まない)よりなる群から選択されるいずれか1種または2種以上の元素を含有させると、軸部品の焼入れ性が高められ、疲労強度や静的強度を改善する効果がある。しかし、含有量が多すぎると軸部品の加工性が低下するため、Cu、Ni、Nb、V、Zrの含有量の上限を上述の通りとした。 For example, Cu: 0.5% or less (not including 0%), Ni: 0.5% or less (not including 0%), Nb: 0.05% or less (not including 0%), V: 0 When one or more elements selected from the group consisting of .3% or less (excluding 0%), Zr: 0.1% or less (not including 0%) are contained, a shaft part This has the effect of improving the hardenability and improving fatigue strength and static strength. However, if the content is too large, the workability of the shaft component is lowered, so the upper limit of the content of Cu, Ni, Nb, V, Zr is set as described above.
なお、Cuは、表面錆被膜の緻密性を高める作用を有しており、環境遮断性を高めて軸部品の耐食性を向上させるのに有効な元素であるので、この観点からも積極的に添加する場合がある。この場合のCu含有量の下限値は、例えば、0.1%、好ましくは0.15%、さらに好ましくは0.2%である。一方、Cuを過剰に含有させると、熱間加工性が劣化する。従って、Cu量の上限は0.5%、好ましくは0.45%、さらに好ましくは0.4%である。 In addition, since Cu has an effect of increasing the denseness of the surface rust film, and is an element effective for improving the corrosion resistance of the shaft parts by improving the environmental barrier properties, it is also actively added from this viewpoint. There is a case. In this case, the lower limit of the Cu content is, for example, 0.1%, preferably 0.15%, and more preferably 0.2%. On the other hand, when Cu is contained excessively, hot workability deteriorates. Therefore, the upper limit of the amount of Cu is 0.5%, preferably 0.45%, and more preferably 0.4%.
また、必要に応じ、更にMoを積極的に含有させて軸部品の特性を一段と高めることも有効である。 It is also effective to further increase the characteristics of the shaft parts by further containing Mo as required.
Mo:0.5%以下(0%を含まない)
Moは、焼入れ性を向上させると共に粒界強度を高める作用があり、軸部品の静的ねじり強度を向上させるのに有効である。Mo含有量の下限値は、例えば、0.05%、好ましくは0.1%、さらに好ましくは0.15%である。しかし、Moを過剰に含有させると圧延材が硬くなりすぎ、切断などの加工性を低下させる。従って、Mo含有量の上限は0.5%、好ましくは0.45%、さらに好ましくは0.4%である。
Mo: 0.5% or less (excluding 0%)
Mo has the effect of improving the hardenability and increasing the grain boundary strength, and is effective in improving the static torsional strength of the shaft part. The lower limit of the Mo content is, for example, 0.05%, preferably 0.1%, and more preferably 0.15%. However, if Mo is excessively contained, the rolled material becomes too hard, and the workability such as cutting is lowered. Therefore, the upper limit of the Mo content is 0.5%, preferably 0.45%, and more preferably 0.4%.
必要に応じて更に、Pb:0.3%以下(0%を含まない)、Bi:0.1%以下(0%を含まない)、Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)、Te:0.1%以下(0%を含まない)、REM:0.1%以下(0%を含まない)よりなる群から選択されるいずれか1種または2種以上の元素を積極的に含有させると、軸部品用鋼の機械的特性をほとんど劣化させることなく被削性を向上させることができる。ただし、含有量が多過ぎても被削性向上の効果は飽和するので、Pb、Bi、Ca、Mg、Te、REMの各元素の含有量の上限を上述の通りとした。 Further, if necessary, Pb: 0.3% or less (excluding 0%), Bi: 0.1% or less (not including 0%), Ca: 0.005% or less (not including 0%) Mg: 0.005% or less (excluding 0%), Te: 0.1% or less (not including 0%), REM: 0.1% or less (not including 0%) When any one or two or more elements are positively contained, the machinability can be improved without substantially deteriorating the mechanical properties of the shaft part steel. However, since the effect of improving the machinability is saturated even if the content is too large, the upper limit of the content of each element of Pb, Bi, Ca, Mg, Te, and REM is set as described above.
II:軸部品用鋼の硬さ
本発明の軸部品方向は、前記成分組成を満足しているだけでなく、D/4位置の硬さ(内部硬さ)275HV以上、好ましくは280HV以上、さらに好ましくは285HV以上に高められていることが重要である。あらかじめ内部硬さを高めておけば、高周波焼入後の表面硬さと内部硬さを適切にバランスさせることができ、軸部品の表面を起点とする破壊と軸部品内部を起点とする破壊の両方を防止できる。
II: Hardness of steel for shaft parts The shaft part direction of the present invention not only satisfies the above component composition but also has a D / 4 position hardness (internal hardness) of 275 HV or more, preferably 280 HV or more, It is important that it is preferably raised to 285 HV or higher. If the internal hardness is increased in advance, the surface hardness and internal hardness after induction hardening can be properly balanced, and both the failure starting from the surface of the shaft component and the failure starting from the inside of the shaft component Can be prevented.
ところで、内部硬さを275HV以上にするためには、圧延、鍛造等によって得られる原料鋼材(棒鋼など)に焼入れ、焼戻しなどによって調質する必要がある。内部硬さが275HV未満の鋼材は、調質不足であって、フェライトとパーライトが主要組織であるとみられる。フェライトとパーライトが主要組織になると、詳細については後述するが、軸部品用鋼に高周波焼入れを行なってもCが十分に拡散せず、この観点から考えても内部硬さが275HV未満の鋼材は、ねじり疲労強度が十分に高まらない。また、静的ねじり強度も低い。 By the way, in order to increase the internal hardness to 275 HV or higher, it is necessary to temper the raw steel material (bar steel, etc.) obtained by rolling, forging or the like by quenching, tempering, or the like. A steel material having an internal hardness of less than 275 HV is insufficiently tempered, and it seems that ferrite and pearlite are the main structures. When ferrite and pearlite are the main structures, the details will be described later, but even if induction hardening is performed on the steel for shaft parts, C does not diffuse sufficiently, and from this point of view, steel with an internal hardness of less than 275 HV The torsional fatigue strength does not increase sufficiently. Also, the static torsional strength is low.
一方、本発明の軸部品用鋼は、D/4位置の硬さ(内部硬さ)が350HV以下、好ましくは320HV以下、さらに好ましくは300HV以下である。内部硬さが高すぎると被削性が低下するためである。 On the other hand, the steel for shaft parts of the present invention has a D / 4 position hardness (internal hardness) of 350 HV or less, preferably 320 HV or less, more preferably 300 HV or less. This is because if the internal hardness is too high, the machinability is lowered.
III:軸部品用鋼の組織
上述したように、軸部品用鋼の内部硬さを所定の範囲内に制御するため、圧延、鍛造等によって得られる原料鋼材(棒鋼)を次のように調質する。例えば、前記材料鋼材を温度800℃〜950℃に加熱した後に、水焼入れし、焼戻しする。この焼入れ焼戻しによって軸部品用鋼は焼戻し組織になっており、より詳細には、焼戻しマルテンサイト組織が形成されている。焼戻しマルテンサイトは、フェライトやパーライトの組織に比べて硬い材料であるため、鋼材に含まれる焼戻しマルテンサイトの比率を高めることにより、軸部品用鋼のビッカース硬さを高めることができる。軸部品用鋼の断面に占める焼戻しマルテンサイトの好ましい面積比率は、70%以上であり、より好ましくは80%以上、更に好ましくは90%以上である。
III: Structure of shaft part steel As described above, in order to control the internal hardness of the shaft part steel within a predetermined range, the raw steel material (bar steel) obtained by rolling, forging, etc. is tempered as follows. To do. For example, the material steel is heated to a temperature of 800 ° C. to 950 ° C., then quenched with water and tempered. By this quenching and tempering, the shaft part steel has a tempered structure, and more specifically, a tempered martensite structure is formed. Since tempered martensite is a material harder than the structure of ferrite or pearlite, the Vickers hardness of steel for shaft parts can be increased by increasing the ratio of tempered martensite contained in the steel material. The preferable area ratio of the tempered martensite in the cross section of the steel for shaft parts is 70% or more, more preferably 80% or more, and still more preferably 90% or more.
また、高周波焼入れは、処理時間が短いことが一つの特徴であるが、処理時間が短いために鋼材の組織変化に特に影響の大きいCが十分に拡散されない。Cの拡散は、高周波焼
入れ前の組織の状態に大きく左右される。すなわち、殆どCを固溶しないフェライトと、Cを約0.77%固溶しているパーライトが混在する非調質鋼材は、Cの濃度が不均一であるために、高周波焼入れを行なってもCが十分に拡散しない。このような状態では、製造される軸部品のねじり疲労強度が低くなってしまう。これに対して、高周波焼入れ前の鋼材の組織を焼戻しマルテンサイトとすれば、C濃度の不均一が解消されるため、ねじり疲労強度を向上させることができる。
In addition, the induction hardening is characterized by a short treatment time, but because the treatment time is short, C that has a particularly large influence on the structural change of the steel material is not sufficiently diffused. The diffusion of C greatly depends on the state of the tissue before induction hardening. That is, the non-refined steel material in which ferrite that hardly dissolves C and pearlite that dissolves about 0.77% of C is mixed has a non-uniform C concentration. C does not diffuse sufficiently. In such a state, the torsional fatigue strength of the manufactured shaft component is lowered. On the other hand, if the structure of the steel material before induction hardening is tempered martensite, the non-uniformity of the C concentration is eliminated, so that the torsional fatigue strength can be improved.
IV:軸部品
本発明の軸部品は、前記軸部品用鋼を必要な形状に加工した後、高周波焼入れすることによって得られる。そして本発明の軸部品は、鋼材の段階で上述したように内部硬さが適切な範囲に高められており、かつその後の高周波焼入れによって表面硬さが高められているため、内部硬さと表面硬さとを適切にバランスでき、ねじり疲労強度を高めることができる。更には、このようにして得られる軸部品では、ねじり疲労強度の向上が、静的ねじり強度の低下を伴うことなく達成できる。特に焼入れ比が小さい場合にねじり疲労強度の向上と、静的ねじり強度の低下防止との両立をより顕著に達成できる。焼入れ比を比較的小さくしても、調質鋼を高周波焼入れした場合には内部硬さが高められているため、内部起点の疲労破壊を確実に防止でき非調質鋼を高周波焼入れした場合に比べてねじり疲労強度が高まるためと思われる。上述したように、高周波焼入れによる表面硬貨の程度は、軸部品の表面から、ビッカース硬さが450HVとなる位置までの距離tと、軸部品の断面の半径Rとの比t/R(焼入れ比)によって評価できるが、ねじり疲労強度の向上と静的ねじり強度の低下防止を高いレベルで達成できる焼入れ比の範囲は、0.5以下、好ましくは0.4以下、さらに好ましくは0.35以下である。ただし、高周波焼入れの実効を図るためには、焼入れ比は、0.1以上、好ましくは0.2以上、さらに好ましくは0.25以上とする。
IV: Shaft component The shaft component of the present invention is obtained by induction-quenching after processing the steel for shaft components into a necessary shape. In the shaft component of the present invention, the internal hardness is increased to an appropriate range as described above at the steel material stage, and the surface hardness is increased by subsequent induction hardening. And torsional fatigue strength can be increased. Furthermore, in the shaft part obtained in this way, improvement in torsional fatigue strength can be achieved without accompanying reduction in static torsional strength. In particular, when the quenching ratio is small, it is possible to more remarkably achieve both improvement in torsional fatigue strength and prevention of reduction in static torsional strength. Even if the quenching ratio is relatively small, the internal hardness is increased when induction-hardened tempered steel, so it is possible to reliably prevent fatigue fracture at the internal origin, and when induction-hardening non-tempered steel. This is probably because the torsional fatigue strength increases. As described above, the degree of surface coins by induction hardening is the ratio t / R (quenching ratio) between the distance t from the surface of the shaft part to the position where the Vickers hardness is 450 HV and the radius R of the cross section of the shaft part. However, the range of the quenching ratio that can achieve a high level of improvement in torsional fatigue strength and prevention of reduction in static torsional strength is 0.5 or less, preferably 0.4 or less, more preferably 0.35 or less. It is. However, in order to achieve effective induction hardening, the quenching ratio is set to 0.1 or more, preferably 0.2 or more, and more preferably 0.25 or more.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
実験例1
表1に示す成分組成の鋼(残部はFeおよび不可避的不純物)を真空高周波誘導炉(VIF)にて溶製し、50kg〜150kgのインゴットに鋳造し、1200℃に加熱してから直径30mmの棒鋼に熱間鍛造し、1200℃で1時間恒温保持した後に、大気中で放冷することにより溶体化処理を行なった。
Experimental example 1
Steel having the composition shown in Table 1 (the balance is Fe and inevitable impurities) is melted in a vacuum high frequency induction furnace (VIF), cast into a 50 kg to 150 kg ingot, heated to 1200 ° C., and then 30 mm in diameter. The steel bar was hot forged, held at 1200 ° C. for 1 hour, and then allowed to cool in the atmosphere to perform solution treatment.
この棒鋼を調質する場合としない場合に分けて、更に実験を継続した。
<調質鋼>
上記の溶体化処理を行なった棒鋼を約800℃〜950℃に加熱し、水焼入れした後、加熱温度:約650℃、保持時間:約1時間の条件で焼戻し調質鋼を得た。この調質鋼の焼戻しマルテンサイト組織は、面積率で70%以上であり、D/4位置のビッカース硬さ(高周波焼入れ前)は、下記表2及び表3に示す通り275HV以上であった。
<非調質鋼>
上記の溶体化処理を行なっただけの非調質鋼には、焼戻しマルテンサイト組織がなく、またD/4位置のビッカース硬さ(高周波焼入れ前)は、下記表2及び表3に示す通り275HV未満であった。
The experiment was further continued with and without tempering the steel bar.
<Refined steel>
The bar steel subjected to the above solution treatment was heated to about 800 ° C. to 950 ° C. and quenched with water, and then tempered tempered steel was obtained under the conditions of heating temperature: about 650 ° C. and holding time: about 1 hour. The tempered martensite structure of the tempered steel was 70% or more in terms of area ratio, and the Vickers hardness (before induction hardening) at the D / 4 position was 275 HV or more as shown in Tables 2 and 3 below.
<Non-tempered steel>
The non-tempered steel just subjected to the above solution treatment has no tempered martensite structure, and the Vickers hardness (before induction hardening) at the D / 4 position is 275 HV as shown in Tables 2 and 3 below. Was less than.
前記調質鋼および非調質鋼を切削して図1に示すねじり試験片形状に加工した。 The tempered steel and non-tempered steel were cut and processed into the shape of a torsional test piece shown in FIG.
次に、これら各加工品(ねじり試験片形状品)を以下の条件で高周波焼入れし、その後、下記条件で焼戻しを行うことによって軸部品(ねじり試験片)を製造した。
<高周波焼入れ>
高周波焼入れ装置の形式:移動焼入れ型
高周波焼入れ装置の仕様出力:200k[W]
仕様周波数:40k[Hz]
加熱保持時間:1.0〜1.5[秒]
焼入れ時の冷却剤:ソリュブル液(YS−16)、濃度:1.0〜2.5%
電圧条件:6.5k[V]、電流条件:7.0[A]
<焼戻し>
温度:150[℃]
時間:60[分]
Next, each processed product (a torsion test piece shape product) was induction-quenched under the following conditions, and then tempered under the following conditions to produce a shaft part (torsion test piece).
<Induction hardening>
Induction quenching machine type: Moving quenching type Induction hardening machine specification output: 200k [W]
Specification frequency: 40k [Hz]
Heating and holding time: 1.0 to 1.5 [seconds]
Cooling agent during quenching: soluble liquid (YS-16), concentration: 1.0-2.5%
Voltage condition: 6.5 k [V], current condition: 7.0 [A]
<Tempering>
Temperature: 150 [° C]
Time: 60 [minutes]
以上のようにして得られた各軸部品(ねじり試験片)を用い、下記試験要領にて静的ねじり強度、及び、ねじり疲労強度を測定した。その結果を表2及び表3に示す。
<静的ねじり試験>
使用した試験機:神鋼造機株式会社製 ねじり疲労試験機
試験機の性能:動荷重 −10kN・m〜+10kN・m
静荷重 −10kN・m〜+10kN・m
試験条件 :ねじり速度・・・30度/分(角度制御)
<ねじり疲労試験>
使用した試験機:神鋼造機株式会社製 ねじり疲労試験機
試験機の性能:動荷重 −10kN・m〜+10kN・m
静荷重 −15kN・m〜+15kN・m
試験条件 :周波数・・・2〜3Hz(0.8k〜1.0kN・mのトルク制御)
試験終了条件:破断、若しくは、100万回
Using each shaft part (torsion test piece) obtained as described above, static torsional strength and torsional fatigue strength were measured according to the following test procedure. The results are shown in Tables 2 and 3.
<Static torsion test>
Used testing machine: Torsional fatigue testing machine manufactured by Shinko Engineering Co., Ltd. Performance of testing machine: Dynamic load -10kN · m to + 10kN · m
Static load -10kN · m to + 10kN · m
Test conditions: Twist speed: 30 degrees / minute (angle control)
<Torsional fatigue test>
Used testing machine: Torsional fatigue testing machine manufactured by Shinko Engineering Co., Ltd. Performance of testing machine: Dynamic load -10kN · m to + 10kN · m
Static load -15kN · m to + 15kN · m
Test conditions: Frequency: 2 to 3 Hz (0.8 to 1.0 kN · m torque control)
Test termination condition: rupture or 1 million times
表2及び表3の供試鋼の番号は、表1の供試鋼の番号に対応する。
表2及び表3から明らかなように、高周波焼入れ前に予め調質処理して高周波焼入れ前のビッカース硬さ(D/4位置)を275HV以上にした軸部品(試験番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、39、41、43、45、47)は、同じ成分組成であって非調質の軸部品(試験番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、40、42、44、46、48)に比べて静的ねじり強度及びねじり疲労強度が向上している。
The numbers of the test steels in Table 2 and Table 3 correspond to the numbers of the test steels in Table 1.
As is apparent from Tables 2 and 3, shaft parts (
なお、試験番号31〜38の例では、使用した鋼材のC、Ti及びBのいずれかが不足するため、静的ねじり強度及びねじり疲労強度が不十分であった。 In the examples of test numbers 31 to 38, any of C, Ti, and B of the steel material used was insufficient, so that the static torsional strength and torsional fatigue strength were insufficient.
実験例2
本実施例では、C:0.49%、Si:0.51%、Mn:0.99%、S:0.015%、Cr:0.20%、Al:0.033%、Ti:0.022%、B:0.0016%、P:0.011%、N:0.0053%、O:0.0013%、Cu:0.02%である鋼材(残部はFe及び不可避的不純物)を用い、実験例1と同様にして調質または非調質の加工品(ねじり試験形状品)を製造した。
Experimental example 2
In this example, C: 0.49%, Si: 0.51%, Mn: 0.99%, S: 0.015%, Cr: 0.20%, Al: 0.033%, Ti: 0 0.02%, B: 0.0016%, P: 0.011%, N: 0.0053%, O: 0.0013%, Cu: 0.02% (the balance is Fe and inevitable impurities) In the same manner as in Experimental Example 1, a tempered or non-tempered processed product (torsion test shape product) was produced.
この加工品を実験例1と同様にして高周波焼入れ及び焼戻しして軸部品(ねじり試験片)を得た。なお高周波焼入れの電圧・電流条件は、下記A〜Fの6つの条件を試し、焼入れ比(t/R)を調節した。
電圧・電流条件:
条件A・・・ 電圧:6.5k[V]、電流:6.0[A]
条件B・・・ 電圧:6.5k[V]、電流:6.5[A]
条件C・・・ 電圧:6.5k[V]、電流:7.0[A]
条件D・・・ 電圧:7.0k[V]、電流:7.0[A]
条件E・・・ 電圧:7.0k[V]、電流:8.0[A]
条件F・・・ 電圧:7.5k[V]、電流:8.0[A]
This processed product was induction-quenched and tempered in the same manner as in Experimental Example 1 to obtain a shaft part (torsional test piece). In addition, the voltage and current conditions of induction hardening were tested the following six conditions A to F, and the quenching ratio (t / R) was adjusted.
Voltage and current conditions:
Condition A: Voltage: 6.5 k [V], Current: 6.0 [A]
Condition B: Voltage: 6.5 k [V], Current: 6.5 [A]
Condition C: Voltage: 6.5 k [V], Current: 7.0 [A]
Condition D: Voltage: 7.0 k [V], Current: 7.0 [A]
Condition E: Voltage: 7.0 k [V], Current: 8.0 [A]
Condition F ... Voltage: 7.5 k [V], Current: 8.0 [A]
得られた軸部品(ねじり試験片)の静的ねじり強度、及びねじり疲労強度を実験例1と同様に測定した。また、焼入れ比(t/R)軸部品(ねじり試験片)の中央部を横断し、断面の硬さ分布を測定することによって、焼入れ比(t/R)を調べた。その結果を表4及び図2に示す。 The static torsional strength and torsional fatigue strength of the obtained shaft part (torsional test piece) were measured in the same manner as in Experimental Example 1. Further, the quenching ratio (t / R) was examined by measuring the hardness distribution of the cross section across the center of the quenching ratio (t / R) shaft part (torsion test piece). The results are shown in Table 4 and FIG.
図2において、実線は、高周波焼入れ前に調質処理(焼入れ、焼戻し)を行なった試験(試験番号:奇数)に対応し、点線は、従来の非調質材料を用いた試験(試験番号:偶数)に対応している。 In FIG. 2, a solid line corresponds to a test (test number: odd number) in which tempering treatment (quenching, tempering) was performed before induction hardening, and a dotted line represents a test using a conventional non-tempered material (test number: Even number).
図2から、t/Rが約0.5以下の範囲では、実線にて示された調質鋼材が、点線にて示された非調質鋼材よりも、ねじり疲労強度が向上していることが明らかである。ここで注目すべきことは、ねじり疲労強度の向上手法として上述した(1)鋼中の炭素量を上げる方法、(2)単に焼入れ深さを深くする方法とは異なり、例えばt/Rを固定して調質によりねじり疲労強度を向上させても、静的ねじり強度は低下していない。すなわち、静的ねじり強度を維持したままでは従来不可能であったねじり疲労強度の向上が達成されている。 From FIG. 2, in the range where t / R is about 0.5 or less, the tempered steel material indicated by the solid line has improved torsional fatigue strength than the non-tempered steel material indicated by the dotted line. Is clear. What should be noted here is that, as a method for improving torsional fatigue strength, (1) the method of increasing the carbon content in steel, and (2) the method of simply increasing the quenching depth, for example, fixing t / R. Even if the torsional fatigue strength is improved by tempering, the static torsional strength is not lowered. That is, an improvement in torsional fatigue strength, which has been impossible in the past while maintaining the static torsional strength, has been achieved.
したがって、ビッカース硬さ(D/4位置)が275HV以上、350以下の軸部品用鋼は、以上説明した軸部品の製造を可能とする大変有用な鋼材である。 Accordingly, the steel for shaft parts having a Vickers hardness (D / 4 position) of 275 HV or more and 350 or less is a very useful steel material that enables the manufacture of the shaft parts described above.
本発明の軸部品及び軸部品用鋼は、静的ねじり強度及びねじり疲労強度の双方に非常に優れているので、例えば自動車のドライブシャフトなど、高い静的ねじり強度と高いねじり疲労強度が要求される回転動力伝達機構の軸部品に好適である。 Since the shaft component and the steel for shaft components of the present invention are very excellent in both static torsional strength and torsional fatigue strength, high static torsional strength and high torsional fatigue strength are required, for example, for drive shafts of automobiles. It is suitable for a shaft part of a rotating power transmission mechanism.
Claims (4)
Si:0.1〜1.5%、
Mn:0.3〜2%、
S:0.03%以下(0%を含まない)、
Cr:0.3%以下(0%を含まない)、
Ti:0.005〜0.05%、
B:0.0005〜0.005%、
をそれぞれ含有し、残部がFeおよび不可避的不純物からなる高周波焼入れ軸部品用鋼であって、該軸部品用鋼の表面からの深さがD/4(D:軸部品用鋼の直径)である位置のビッカース硬さが275HV〜350HVであることを特徴とする高周波焼入れ軸部品用鋼。 C: 0.4 to 0.6% (meaning mass%, the same shall apply hereinafter)
Si: 0.1 to 1.5%,
Mn: 0.3-2%,
S: 0.03% or less (excluding 0%),
Cr: 0.3% or less (excluding 0%),
Ti: 0.005 to 0.05%,
B: 0.0005 to 0.005%,
Each of which is a steel for induction-hardened shaft components, the balance being Fe and inevitable impurities, the depth from the surface of the shaft component steel being D / 4 (D: diameter of the shaft component steel) A steel for induction-hardened shaft parts, wherein the Vickers hardness at a certain position is 275 HV to 350 HV.
Pb:0.3%以下(0%を含まない)、
Bi:0.1%以下(0%を含まない)、
Ca:0.005%以下(0%を含まない)、
Mg:0.005%以下(0%を含まない)、
Te:0.1%以下(0%を含まない)、
REM:0.1%以下(0%を含まない)、
よりなる群から選択されるいずれか1種または2種以上を含有する請求項1または請求項2に記載の高周波焼入れ軸部品用鋼。 Furthermore,
Pb: 0.3% or less (excluding 0%),
Bi: 0.1% or less (excluding 0%),
Ca: 0.005% or less (excluding 0%),
Mg: 0.005% or less (excluding 0%),
Te: 0.1% or less (excluding 0%),
REM: 0.1% or less (excluding 0%),
The steel for induction-hardened shaft components according to claim 1 or 2 , which contains any one or more selected from the group consisting of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007214002A JP5111014B2 (en) | 2006-08-23 | 2007-08-20 | Steel for induction-hardened shaft parts and shaft parts |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006226833 | 2006-08-23 | ||
JP2006226833 | 2006-08-23 | ||
JP2007214002A JP5111014B2 (en) | 2006-08-23 | 2007-08-20 | Steel for induction-hardened shaft parts and shaft parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008075177A JP2008075177A (en) | 2008-04-03 |
JP5111014B2 true JP5111014B2 (en) | 2012-12-26 |
Family
ID=39347526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007214002A Expired - Fee Related JP5111014B2 (en) | 2006-08-23 | 2007-08-20 | Steel for induction-hardened shaft parts and shaft parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5111014B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5266880B2 (en) * | 2008-05-28 | 2013-08-21 | 新日鐵住金株式会社 | Low temperature tempered steel sheet |
JP5148384B2 (en) * | 2008-06-24 | 2013-02-20 | Ntn株式会社 | Constant velocity universal joint shaft and constant velocity universal joint |
JP5969204B2 (en) * | 2011-11-25 | 2016-08-17 | Jfe条鋼株式会社 | Induction hardened gear having excellent wear resistance and surface fatigue characteristics and method for producing the same |
WO2014027463A1 (en) * | 2012-08-16 | 2014-02-20 | 新日鐵住金株式会社 | Steel material for high frequency induction hardening |
JP6801542B2 (en) * | 2017-03-21 | 2020-12-16 | 日本製鉄株式会社 | Mechanical steel and its cutting method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0790379A (en) * | 1993-09-24 | 1995-04-04 | Kobe Steel Ltd | Production of induction-hardened shaft part improved in twisting fatigue property |
JPH0853714A (en) * | 1994-08-09 | 1996-02-27 | Kobe Steel Ltd | Shaft parts for machine structural use excellent in torsional fatigue strength |
JPH0978127A (en) * | 1995-09-11 | 1997-03-25 | Daido Steel Co Ltd | Production of high strength and high toughness axial parts for mechanical structure |
JP4347999B2 (en) * | 2000-08-30 | 2009-10-21 | 新日本製鐵株式会社 | Induction hardening steel and induction hardening parts with excellent torsional fatigue properties |
JP4517983B2 (en) * | 2003-01-17 | 2010-08-04 | Jfeスチール株式会社 | Steel material excellent in fatigue characteristics after induction hardening and method for producing the same |
JP4281440B2 (en) * | 2003-08-08 | 2009-06-17 | Jfeスチール株式会社 | Method for manufacturing drive shaft with excellent resistance to cracking and fatigue |
JP4771745B2 (en) * | 2004-10-13 | 2011-09-14 | 新日本製鐵株式会社 | Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft |
-
2007
- 2007-08-20 JP JP2007214002A patent/JP5111014B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008075177A (en) | 2008-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9890446B2 (en) | Steel for induction hardening roughly shaped material for induction hardening | |
JP6048436B2 (en) | Tempered high tensile steel plate and method for producing the same | |
JP3562192B2 (en) | Component for induction hardening and method of manufacturing the same | |
JP5886119B2 (en) | Case-hardened steel | |
JP5111014B2 (en) | Steel for induction-hardened shaft parts and shaft parts | |
JP2009127095A (en) | Case-hardening steel for power transmission component | |
JP2012214832A (en) | Steel for machine structure and method for producing the same | |
JP4384592B2 (en) | Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability | |
JPH1036937A (en) | Induction-hardened parts | |
JP4581966B2 (en) | Induction hardening steel | |
JP2001303173A (en) | Steel for carburizing and carbo-nitriding | |
JP2004027334A (en) | Steel for induction tempering and method of producing the same | |
JP4773106B2 (en) | Steel parts with excellent balance between strength and torsional characteristics, manufacturing method thereof, and steel materials for steel parts | |
JP2008223083A (en) | Crankshaft and manufacturing method therefor | |
WO2005031020A1 (en) | Steel product for induction hardening, induction-hardened member using the same, and methods for producing them | |
JP4488228B2 (en) | Induction hardening steel | |
JP4557833B2 (en) | High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof | |
JP6825605B2 (en) | Carburizing member | |
JPH08260039A (en) | Production of carburized and case hardened steel | |
TW201739933A (en) | Case hardened steel | |
JP2011208262A (en) | Method for producing case hardening steel having high fatigue strength | |
JP2007231411A (en) | Method of manufacturing machine structure component | |
JP5077814B2 (en) | Shaft and manufacturing method thereof | |
JP4450217B2 (en) | Non-tempered steel for soft nitriding | |
JP3996386B2 (en) | Carburizing steel with excellent torsional fatigue properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121009 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |