JP5109323B2 - Electrode for electrochemical device, method for producing the same, and electrochemical device - Google Patents
Electrode for electrochemical device, method for producing the same, and electrochemical device Download PDFInfo
- Publication number
- JP5109323B2 JP5109323B2 JP2006269058A JP2006269058A JP5109323B2 JP 5109323 B2 JP5109323 B2 JP 5109323B2 JP 2006269058 A JP2006269058 A JP 2006269058A JP 2006269058 A JP2006269058 A JP 2006269058A JP 5109323 B2 JP5109323 B2 JP 5109323B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrochemical
- electrochemical device
- metal complex
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、電気化学素子用電極に係り、特に、エネルギー密度を向上させ、出力特性に優れた電気化学素子用電極及びその製造方法、並びに電気化学素子に関するものである。 The present invention relates to an electrode for an electrochemical element, and more particularly to an electrode for an electrochemical element that improves energy density and has excellent output characteristics, a method for manufacturing the electrode, and an electrochemical element.
近年、地球の環境問題などから、エンジン駆動であるガソリン車やディーゼル車に代わり、電気自動車やハイブリッド車への期待が高まっている。これらの電気自動車やハイブリッド車では、モーターを駆動させるための電源としては、高エネルギー密度かつ高出力密度特性を有する電気化学素子が用いられる。このような電気化学素子としては、二次電池、電気二重層キャパシタがある。 In recent years, due to environmental problems on the earth, there are increasing expectations for electric vehicles and hybrid vehicles in place of engine-driven gasoline vehicles and diesel vehicles. In these electric vehicles and hybrid vehicles, an electrochemical element having high energy density and high output density characteristics is used as a power source for driving the motor. Such electrochemical elements include secondary batteries and electric double layer capacitors.
しかしながら、二次電池では出力密度が低く、電気二重層キャパシタではエネルギー密度が低いという問題点がある。この問題を解決する電極材料として導電性高分子が提案されている。これは導電性高分子に対する電解質イオンのドープ反応及び脱ドープ反応を原理としている。このような導電性高分子としては、ポリアニリン、ポリチオフェン、ポリピリジン等が研究されている。 However, the secondary battery has a low output density, and the electric double layer capacitor has a low energy density. Conductive polymers have been proposed as electrode materials that solve this problem. This is based on the principle of doping and dedoping reactions of electrolyte ions on conductive polymers. As such a conductive polymer, polyaniline, polythiophene, polypyridine and the like have been studied.
ところが、このような導電性高分子を電極として使用する際に、炭素材料などの導電性材料と混合してシート状電極とすると、導電性高分子のドープ反応及び脱ドープ反応が抑制されて、出力特性や容量特性が低下するという問題点がある。これに対してナノカーボンに導電性高分子層をナノオーダーで被覆して特性を改善する試みがある。(特許文献1参照)
しかしながら、一般的な導電性高分子は膜中のイオン拡散性が悪いため、どうしても薄膜化(ナノコンポジット化)しなくてはならず、電極の作製工程が複雑化するという問題点があった。 However, since a general conductive polymer has poor ion diffusibility in the film, it has to be thinned (nanocomposite), and there is a problem that the electrode manufacturing process becomes complicated.
また、コンポジット化するには、導電性高分子を担持させるための基材(例えば、ケッチェンブラック、カーボンナノチューブ)が必要であるが、この基材自体はほとんど容量を持たないため、この基材の分は電極としては無駄な体積、重さとなる。その結果、電極中の活物質の体積、量をある値以上増やすことが難しいという問題点があった。 Further, in order to make a composite, a base material (for example, ketjen black or carbon nanotube) for supporting a conductive polymer is necessary, but this base material itself has almost no capacity. This is a wasteful volume and weight as an electrode. As a result, there is a problem that it is difficult to increase the volume and amount of the active material in the electrode by a certain value or more.
本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、エネルギー密度を向上させ、出力特性に優れた電気化学素子用電極及びその製造方法、並びに電気化学素子を提供することにある。 The present invention has been proposed in order to solve the above-described problems of the prior art, and its purpose is to improve the energy density and to provide an output for an electrochemical element excellent in output characteristics, and a method for producing the same. An object is to provide an electrochemical device.
上記課題を解決するため、本発明者は、その特徴的な構造から膜内のイオン拡散性が良い金属錯体高分子に着目し、鋭意検討を重ねた結果、本発明を完成させるに至ったものである。 In order to solve the above-mentioned problems, the present inventor has paid attention to a metal complex polymer having good ion diffusibility in the film because of its characteristic structure, and as a result of intensive studies, the inventor has completed the present invention. It is.
すなわち、請求項1に記載の電気化学素子用電極は、下記の化学式(1)で示される構成単位、または、化学式(1)の誘導体からなる構成単位を有する4座シッフ塩基の高分子金属錯体化合物と活性炭と導電補助剤とを、重量比が60:40:10〜90:10:10の範囲で混合したシート状複合体から構成されていることを特徴とする。
上記のような構成を有する請求項1に記載の発明によれば、その特徴的な構造から膜内のイオン拡散性が良いため、電極を作製するに当たっては、その粉末を利用することができる。その結果、電極作製プロセスが簡単なものとなり、電極中の活物質量、体積を容易に増やすことができる
According to the first aspect of the present invention having the above-described configuration, the ion diffusibility in the film is good due to its characteristic structure, and therefore the powder can be used for producing the electrode. As a result, the electrode manufacturing process becomes simple, and the amount and volume of the active material in the electrode can be easily increased.
請求項2に記載の電気化学素子用電極の製造方法は、上記化学式(1)で示される構成単位、または、化学式(1)の誘導体からなる構成単位を有する遷移金属の錯体モノマーを、電解重合または化学重合して遷移金属の高分子錯体化合物を形成し、これを粉末状にして活性炭、導電補助剤と、重量比が60:40:10〜90:10:10の範囲で混合するとともに、結着剤と混合後、シート状にして電極を形成することを特徴とする。
The method for producing an electrode for an electrochemical element according to claim 2 comprises electrolytic polymerization of a transition metal complex monomer having a structural unit represented by the chemical formula (1) or a structural unit composed of a derivative of the chemical formula (1). Alternatively, a polymer complex compound of transition metal is formed by chemical polymerization, and this is powdered and mixed with activated carbon and a conductive additive in a weight ratio of 60:40:10 to 90:10:10, After mixing with the binder, the electrode is formed into a sheet shape.
上記のような構成を有する請求項2に記載の発明によれば、遷移金属の高分子錯体化合物の粉末を利用して電極を作製することができるので、電極作製プロセスが簡単なものとなり、さらに、電極中の活物質量、体積を容易に増やすことができる。
According to the invention described in claim 2 having the above-described configuration, since the electrode can be produced using the powder of the polymer complex compound of the transition metal, the electrode production process becomes simple. The amount and volume of the active material in the electrode can be easily increased.
本発明によれば、エネルギー密度を向上させ、出力特性に優れた電気化学素子用電極及びその製造方法、並びに電気化学素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, energy density can be improved and the electrode for electrochemical elements excellent in output characteristics, its manufacturing method, and an electrochemical element can be provided.
以下、本発明に係る電気化学素子用電極及びその製造方法、並びに電気化学素子の実施の形態について説明する。 Hereinafter, an electrode for an electrochemical device according to the present invention, a method for producing the same, and an embodiment of the electrochemical device will be described.
(1)電気化学素子用電極
(1−1)構成
(A)シート状複合体
本発明に係る電気化学素子用電極は、以下に示す化学式(1)で示される構成単位、または、化学式(1)の誘導体からなる構成単位を有する金属錯体高分子と炭素を含むシート状複合体から構成されている。
(A−1)シート状複合体の製造方法
このシート状複合体を得る方法としては、例えば、上記金属錯体高分子粉末と炭素粉末(活性炭及び導電補助剤を用いる)の混合物に、潤滑剤及びバインダーを加えてペースト状シートとし、これを圧延ロールで圧延してシート状に形成する方法が用いられる。なお、潤滑剤としては、メタノール、エタノール、イソプロピルアルコール等のアルコール類が用いられ、バインダーとしては、ポリテトラフルオロエチレン等のフッ素系樹脂が用いられる。また、潤滑剤は加熱、乾燥して除去する。
(A-1) Method for producing sheet composite As a method for obtaining this sheet composite, for example, a mixture of the metal complex polymer powder and the carbon powder (using activated carbon and a conductive additive), a lubricant and A method is used in which a binder is added to form a paste-like sheet, which is rolled with a rolling roll to form a sheet. As the lubricant, alcohols such as methanol, ethanol and isopropyl alcohol are used, and as the binder, a fluorine resin such as polytetrafluoroethylene is used. The lubricant is removed by heating and drying.
(A−2)シート状複合体における金属錯体高分子と炭素の混合比
前記シート状複合体を形成するための金属錯体高分子と炭素(活性炭及び導電補助剤を用いる)の混合比には特に制限はないが、金属錯体高分子と活性炭と導電補助剤の重量比が40:60:10〜100:0:10の範囲にあるのが好ましく、60:40:10〜90:10:10の範囲にあるのがより好ましい。
(A-2) Mixing ratio of metal complex polymer and carbon in sheet-like composite The mixing ratio of metal complex polymer and carbon (using activated carbon and a conductive additive) for forming the sheet-like composite is particularly Although there is no limitation, it is preferable that the weight ratio of the metal complex polymer, the activated carbon, and the conductive auxiliary agent is in the range of 40:60:10 to 100: 0: 10, and 60:40:10 to 90:10:10 More preferably, it is in the range.
金属錯体高分子の重量比が60%以上の場合、シート状複合体に含まれる活物質の割合が多くなるため、電池の容量がより大きくなる。また、金属錯体高分子の重量比が90%以下の場合、すなわち炭素の重量比が10%以上の場合、シート状複合体中に電子伝導を担う炭素によるネットワーク構造が形成されやすくなるため、大電流での充放電特性が良くなる。 When the weight ratio of the metal complex polymer is 60% or more, since the proportion of the active material contained in the sheet-like composite increases, the capacity of the battery becomes larger. In addition, when the weight ratio of the metal complex polymer is 90% or less, that is, when the weight ratio of carbon is 10% or more, a network structure with carbon responsible for electronic conduction is easily formed in the sheet-like composite. Charging / discharging characteristics with current are improved.
(A−3)シート状複合体の厚さ
前記シート状複合体の厚さは特に制限はないが、5μmから400μmの範囲にあることが好ましい。5μm以上とすることで、電極に占める集電体等の他の部材の割合が小さくなるため、電極のエネルギー密度が高まる。また、400μm以下とすることで、電極の抵抗が小さくなり、大電流充放電特性が高まる。
(A-3) Thickness of the sheet composite The thickness of the sheet composite is not particularly limited, but is preferably in the range of 5 µm to 400 µm. By setting it as 5 micrometers or more, since the ratio of other members, such as a collector which occupies for an electrode, becomes small, the energy density of an electrode increases. Moreover, by setting it as 400 micrometers or less, resistance of an electrode becomes small and a large current charging / discharging characteristic improves.
(B)シート状複合体の構成要素
次に、前記シート状複合体の構成要素である金属錯体高分子及び炭素について説明する。
(B−1)金属錯体高分子粉末
金属錯体高分子粉末は、上記化学式(1)で示される構成単位、または、化学式(1)の誘導体からなる構成単位を有する金属錯体モノマーを、支持電解質としてのイオン性物質を含む電解溶液中で電解酸化重合することにより得られる。
(B) Constituent elements of sheet-like composite Next, the metal complex polymer and carbon that are constituent elements of the sheet-like composite will be described.
(B-1) Metal Complex Polymer Powder The metal complex polymer powder uses a metal complex monomer having a structural unit represented by the chemical formula (1) or a structural unit composed of a derivative of the chemical formula (1) as a supporting electrolyte. It can be obtained by electrolytic oxidation polymerization in an electrolytic solution containing the ionic substance.
(B−1−1)イオン性物質
イオン性物質とは、電解酸化操作時に支持電解質としての機能を発揮すると共に、生成したポリマーに陰イオンをドーピングするための物質であり、例えば、過塩素酸イオンを生成する過塩素酸、過塩素酸ナトリウム、過塩素酸カリウムのような物質をいう。その他の陰イオンについても、同様に陰イオンの源となる物質を意味する。
(B-1-1) Ionic substance An ionic substance is a substance for exhibiting a function as a supporting electrolyte during electrolytic oxidation operation and for doping an anion into the produced polymer. For example, perchloric acid Substances such as perchloric acid, sodium perchlorate, and potassium perchlorate that generate ions. Other anions also mean substances that are sources of anions.
(B−1−2)支持電解質
上記の電解酸化重合に際して用いる支持電解質としては、溶媒に可溶で、且つ、陰イオンを解離しやすい塩を使用する。より具体的には、過塩素酸テトラブチルアンモニウム、過塩素酸テトラエチルアンモニウム、過塩素酸リチウムなどの過塩素酸塩;テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸テトラエチルアンモニウム、テトラフルオロホウ酸テトラブチルアンモニウムなどのテトラフルオロホウ酸塩;トルエンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウムなどのスルホン酸;塩ヨウ化リチウムなどのヨウ素酸塩;臭化リチウムなどの臭化水素酸塩;塩化リチウムなどの塩酸塩などが挙げられる。
(B-1-2) Supporting electrolyte As the supporting electrolyte used in the electrolytic oxidation polymerization, a salt that is soluble in a solvent and easily dissociates anions is used. More specifically, perchlorate such as tetrabutylammonium perchlorate, tetraethylammonium perchlorate, lithium perchlorate; sodium tetrafluoroborate, lithium tetrafluoroborate, tetraethylammonium tetrafluoroborate, tetra Tetrafluoroborate such as tetrabutylammonium fluoroborate; sulfonic acid such as sodium toluenesulfonate, lithium trifluoromethanesulfonate; iodate such as lithium chloroiodide; hydrobromide such as lithium bromide; Examples thereof include hydrochlorides such as lithium chloride.
これらの中でも、過塩素酸テトラブチルアンモニウム、テトラフルオロホウ酸テトラエチルアンモニウム及びテトラフルオロホウ酸テトラブチルアンモニウムがより好ましい。 Among these, tetrabutylammonium perchlorate, tetraethylammonium tetrafluoroborate, and tetrabutylammonium tetrafluoroborate are more preferable.
(B−1−3)電解酸化重合に使用する溶媒
この電解酸化重合に使用する溶媒は、支持電解質をよく溶解するものが好ましく、具体的には、非プロトン性有機溶媒、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオンニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N’−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルホキシスルホキシド、トリメチルホスフェイト、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどが挙げられる。これらの溶媒の中では、アセトニトリル、プロピレンカーボネートがより好ましい。
(B-1-3) Solvent used for electrolytic oxidation polymerization The solvent used for this electrolytic oxidation polymerization is preferably one that dissolves the supporting electrolyte well. Specifically, an aprotic organic solvent, ethylene carbonate, propylene carbonate , Butylene carbonate, γ-butyrolactone, γ-valerolactone, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropiononitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidinone, N -Methyl oxazolidinone, N, N'-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxy sulfoxide, trimethyl phosphate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate Such as over doors and the like. Among these solvents, acetonitrile and propylene carbonate are more preferable.
なお、上記溶媒中の金属錯体モノマーの濃度は、1〜20mmol/リットル程度が好ましく、5〜10mmol/リットル程度がより好ましい。また、上記溶媒中の支持電解質の濃度は、0.01〜1モル/リットル程度が好ましく、0.5〜1モル/リットル程度がより好ましい。 The concentration of the metal complex monomer in the solvent is preferably about 1 to 20 mmol / liter, and more preferably about 5 to 10 mmol / liter. The concentration of the supporting electrolyte in the solvent is preferably about 0.01 to 1 mol / liter, and more preferably about 0.5 to 1 mol / liter.
(B−1−4)電解方法
電解は、定電流法、定電位法、電位走査法等のいずれの方法により行なっても良く、また、2極法でも3極法でも行なうことができる。3極法で行なう場合に用いる参照電極としては、Ag/Ag+が好ましい。また、電極としては、導電性ガラス、Pt、カーボン電極などを用いることができる。例えば、定電位法の場合の電位は、通常0〜1.0Vvs.Ag/Ag+の範囲である。
(B-1-4) Electrolysis Method Electrolysis may be performed by any method such as a constant current method, a constant potential method, a potential scanning method, or the like, and can be performed by a bipolar method or a tripolar method. As the reference electrode used in the case of the triode method, Ag / Ag + is preferable. Further, as the electrode, conductive glass, Pt, carbon electrode, or the like can be used. For example, the potential in the case of the constant potential method is usually 0 to 1.0 V vs. It is a range of Ag / Ag + .
上記のような条件下で電解重合を行なうことにより、導電性ガラス、Pt、カーボン電極等の陽極表面上に、フィルム状の金属錯体高分子が次第に形成される。このようにして形成された金属錯体高分子を有機溶媒中で剥ぎ取り、乾燥、粉砕し、これを金属錯体高分子粉末とする。 By performing electropolymerization under the above conditions, a film-like metal complex polymer is gradually formed on the surface of the anode such as conductive glass, Pt, or carbon electrode. The metal complex polymer formed in this way is peeled off in an organic solvent, dried and pulverized to obtain a metal complex polymer powder.
(B−1−5)化学重合
本発明に係る金属錯体高分子は、上記金属錯体モノマーを溶媒中で酸化剤の存在下で化学的に重合させることによっても得ることができる。このようにして形成された金属錯体高分子を乾燥、粉砕し、これを金属錯体高分子粉末とする。この重合反応における溶媒としては、プロピレンカーボネート、アセトニトリル、クロロホルム等を用いることが好ましく、クロロホルムがより好ましい。また、化学的重合反応における溶媒中の金属錯体高分子の濃度は、1〜20mmol/リットル程度が好ましく、5〜10mmol/リットル程度がより好ましい。
(B-1-5) Chemical Polymerization The metal complex polymer according to the present invention can also be obtained by chemically polymerizing the metal complex monomer in a solvent in the presence of an oxidizing agent. The metal complex polymer thus formed is dried and pulverized to obtain a metal complex polymer powder. As a solvent in this polymerization reaction, it is preferable to use propylene carbonate, acetonitrile, chloroform or the like, and chloroform is more preferable. Further, the concentration of the metal complex polymer in the solvent in the chemical polymerization reaction is preferably about 1 to 20 mmol / liter, and more preferably about 5 to 10 mmol / liter.
また、酸化剤としては、一般的に用いられている酸化剤が広く使用でき、具体的にはCe(IV)(NH4)2(NO3)4、KMnO4、K2Cr2O7、K3Fe(CN)6などが挙げられる。化学重合時に使用する酸化剤の中では、Ce(IV)(NH4)2(NO3)4がより好ましい。なお、この酸化剤は、反応溶液中1〜60mmol/リットル程度の濃度で使用される。また、化学的重合反応における反応温度は−20〜80℃程度であり、反応時間は1〜72時間程度である。 Further, as the oxidizing agent, generally used oxidizing agents can be widely used. Specifically, Ce (IV) (NH 4 ) 2 (NO 3 ) 4 , KMnO 4 , K 2 Cr 2 O 7 , Examples thereof include K 3 Fe (CN) 6 . Of the oxidizing agents used during chemical polymerization, Ce (IV) (NH 4 ) 2 (NO 3 ) 4 is more preferred. This oxidizing agent is used in the reaction solution at a concentration of about 1 to 60 mmol / liter. The reaction temperature in the chemical polymerization reaction is about -20 to 80 ° C, and the reaction time is about 1 to 72 hours.
(B−1−6)金属錯体高分子粉末の粒径
上記のようにして得られる金属錯体高分子粉末の粒径は、0.1〜100μmが好ましく、0.1〜10μmがより好ましい。
(B-1-6) Particle Size of Metal Complex Polymer Powder The particle size of the metal complex polymer powder obtained as described above is preferably 0.1 to 100 μm, and more preferably 0.1 to 10 μm.
(B−2)炭素
上記シート状複合体に含まれる炭素(活性炭及び導電補助剤)は、シート状複合体全体に均一に分布していることが好ましい。そのため、炭素の形状は粒子が好ましい。粒子の場合のその粒径は、0.05μmから100μmの範囲にあることが好ましく、さらに好ましくは0.1μmから50μmの範囲で、最も好ましくは0.5μmから10μmの範囲である。
(B-2) Carbon It is preferable that the carbon (activated carbon and conductive auxiliary agent) contained in the sheet composite is uniformly distributed throughout the sheet composite. Therefore, the shape of carbon is preferably particles. In the case of particles, the particle size is preferably in the range of 0.05 μm to 100 μm, more preferably in the range of 0.1 μm to 50 μm, and most preferably in the range of 0.5 μm to 10 μm.
(B−2−1)炭素粒子の形状
導電補助剤としての炭素粒子の形状には特に制限はないが、一次粒子が数珠状に連なった二次粒子構造を持つ炭素や繊維状の炭素が好ましい。この二次粒子構造を持つ炭素や繊維状の炭素は凝集体であるが、粒径はそれほど大きくないため、シート状複合体全体に均一に分散させることが可能である。
(B-2-1) Shape of carbon particles The shape of carbon particles as a conductive auxiliary agent is not particularly limited, but carbon having a secondary particle structure in which primary particles are arranged in a bead shape or fibrous carbon is preferable. . Carbon having this secondary particle structure or fibrous carbon is an aggregate, but since the particle size is not so large, it can be uniformly dispersed throughout the sheet-like composite.
このような炭素材料としては、アセチレンブラック、ケッチェンブラック等のカーボンブラックや気相成長炭素繊維(VGCF)、メソフェーズピッチ炭素繊維、カーボンナノチューブ等が挙げられる。 Examples of such a carbon material include carbon black such as acetylene black and ketjen black, vapor grown carbon fiber (VGCF), mesophase pitch carbon fiber, and carbon nanotube.
また、活性炭としてはアルカリ賦活炭、水蒸気賦炭が使用でき、比表面積が100〜3000m2/gのものが好ましく、1500〜3000m2/gのものがより好ましい。粒子の場合のその粒径は、0.05μmから100μmの範囲にあることが好ましく、さらに好ましくは0.1μmから50μmの範囲で、最も好ましくは0.5μmから10μmの範囲である。 Moreover, as activated carbon, alkali activated carbon and steam carbonization can be used, and those having a specific surface area of 100 to 3000 m 2 / g are preferable, and those having 1500 to 3000 m 2 / g are more preferable. In the case of particles, the particle size is preferably in the range of 0.05 μm to 100 μm, more preferably in the range of 0.1 μm to 50 μm, and most preferably in the range of 0.5 μm to 10 μm.
(1−2)作用・効果
上述したように、上記化学式(1)で示される構成単位、または、化学式(1)の誘導体からなる構成単位を有する金属錯体高分子化合物は、その特徴的な構造から膜内のイオン拡散性が良いため、電極を作製するに当たっては、その粉末を利用することができる。そのため、電極作製プロセスが簡単で、電極中の活物質量、体積を容易に増やすことができる。
(1-2) Action / effect As described above, the metal complex polymer compound having the structural unit represented by the chemical formula (1) or the structural unit composed of the derivative of the chemical formula (1) has a characteristic structure. Since the ion diffusibility in the film is good, the powder can be used for producing the electrode. Therefore, the electrode manufacturing process is simple, and the amount and volume of the active material in the electrode can be easily increased.
(1−3)他の実施形態
なお、本発明は、上述したようなシート電極だけでなく、塗布電極でも同様の性能を示す電極を作製することができる。すなわち、塗布電極は、ポリマー(金属錯体高分子)、活性炭、KB(ケッチェンブラック)をCMC(カルボキシメチルセルロース)と水と混合してスラリーを作製し、これを集電体に塗布した後、水を乾燥させることにより得られる。
(1-3) Other Embodiments In addition to the sheet electrode as described above, the present invention can produce an electrode exhibiting similar performance with a coated electrode. That is, the coated electrode is prepared by mixing a polymer (metal complex polymer), activated carbon, KB (Ketjen Black) with CMC (carboxymethylcellulose) and water, applying this to a current collector, Can be obtained by drying.
(2)電気化学素子
上述したような本発明に係る電極は、以下のような電気化学素子の電極として用いることができる。
(2) Electrochemical element The electrode according to the present invention as described above can be used as an electrode of the following electrochemical element.
(二次電池)
二次電池は、以下のようにして作製することができる。リチウム二次電池の場合は、電解液としてリチウム塩を溶質とした非水系電解液を用いる。そして、正極として本発明の電極を用い、負極としてリチウム金属、またはリチウムを吸蔵、放出する炭素など、リチウムを吸蔵、放出する電極材料を用いて形成した電極を用いる。このようにして作製したリチウム二次電池は、正極の出力性能が高いので、高出力密度を有する。また、負極に本発明の電極を用いた場合は、出力特性、サイクル特性が向上する。
(Secondary battery)
The secondary battery can be manufactured as follows. In the case of a lithium secondary battery, a non-aqueous electrolyte solution having a lithium salt as a solute is used as the electrolyte solution. The electrode of the present invention is used as a positive electrode, and an electrode formed using an electrode material that absorbs and releases lithium, such as lithium metal or carbon that absorbs and releases lithium, is used as a negative electrode. The lithium secondary battery thus produced has a high output density because the output performance of the positive electrode is high. Further, when the electrode of the present invention is used for the negative electrode, output characteristics and cycle characteristics are improved.
また、プロトン電池を形成する場合は、電解液としてプロトンを有する酸性水溶液を用いる。そして、正極に本発明の電極を用い、負極はキノキサリン系ポリマー等のプロトン電池の負極を用いる。以上のプロトン電池は正極の出力性能が高いので、高出力密度を有する。 When forming a proton battery, an acidic aqueous solution having protons is used as the electrolytic solution. And the electrode of this invention is used for a positive electrode, and the negative electrode of proton batteries, such as a quinoxaline type polymer, is used for a negative electrode. The proton battery described above has a high output density because the output performance of the positive electrode is high.
(電気二重層キャパシタ)
電気二重層キャパシタは、次のようにして作製することができる。なお、電解液としては、非水系、水系のいずれの電解液も用いることができる。そして、正極として本発明の電極を用い、負極として活性炭などの電気二重層容量を有する電極を用いる。
(Electric double layer capacitor)
The electric double layer capacitor can be manufactured as follows. As the electrolytic solution, any of non-aqueous and aqueous electrolytic solutions can be used. The electrode of the present invention is used as the positive electrode, and an electrode having an electric double layer capacity such as activated carbon is used as the negative electrode.
このようにして作製した電気二重層キャパシタは、正極の容量密度が高いので、高容量密度を有する。また、正極として電気二重層容量を有する電極を用い、負極として本発明の電極を用いることもできる。この場合は負極の電位が活性炭より低いので、高電圧特性を有する。 The electric double layer capacitor thus produced has a high capacity density because the capacity density of the positive electrode is high. Further, an electrode having an electric double layer capacity can be used as the positive electrode, and the electrode of the present invention can be used as the negative electrode. In this case, since the potential of the negative electrode is lower than that of activated carbon, it has high voltage characteristics.
(電気化学キャパシタ)
電気化学キャパシタは、次のようにして作製することができる。電解液としては、リチウム塩、第4級アンモニウム塩又は第4級ホスホニウム塩を溶質とした非水系電解液を用いる。そして、正極として本発明の電極を用い、負極として酸化還元反応特性を有するポリチオフェン等の導電性高分子を用いる。
(Electrochemical capacitor)
The electrochemical capacitor can be manufactured as follows. As the electrolytic solution, a non-aqueous electrolytic solution having a lithium salt, a quaternary ammonium salt or a quaternary phosphonium salt as a solute is used. Then, the electrode of the present invention is used as the positive electrode, and a conductive polymer such as polythiophene having oxidation-reduction reaction characteristics is used as the negative electrode.
この電気化学キャパシタは、正極の容量、出力特性が高いので高容量、高出力密度を有する。また、正極として前記の導電性高分子、または酸化ルテニウム等の金属酸化物を用い、負極として本発明の電極を用いることもできる。この場合は負極の電位が低いので、高電圧特性を有する。 This electrochemical capacitor has a high capacity and a high output density because the capacity and output characteristics of the positive electrode are high. Alternatively, the conductive polymer or a metal oxide such as ruthenium oxide can be used as the positive electrode, and the electrode of the present invention can be used as the negative electrode. In this case, since the potential of the negative electrode is low, it has high voltage characteristics.
さらに、両極に本発明の電極を用いると、負極の電位が低いので、従来にない高電圧特性を有する電気化学素子を得ることができる。 Further, when the electrode of the present invention is used for both electrodes, the potential of the negative electrode is low, so that an electrochemical element having unprecedented high voltage characteristics can be obtained.
以下の説明においては、上記化学式(1)の「Me(Metal)」としてニッケル(Ni)を用い、「X」として酸素(O)を用いた、下記の化学式(2)で示されるNiSalen(N,N’−Bis(salicylidene)ethylenediaminatonickel)を例に挙げて説明する。
以下に述べるようにして、本発明に係る電極を作製した。
(1)5mmol NiSalenをクロロホルムに溶解させる。
(2)5mmol Ce(IV)(NH4)2(NO3)6をPCに溶解させたものを、撹拌している(1)の溶液にゆっくり加えると、ポリNiSalenが析出してくる。
(3)(2)で溶液中に析出したポリNiSalenをろ過により採取する。
(4)(3)で採取したポリNiSalenを有機溶媒及び水で洗浄し、残存したモノマー及び酸化剤を除去する。
(5)(4)のポリNiSalenを真空乾燥し、残存した溶媒を除去する。
(6)(5)で得られたポリNiSalenを粉砕し、粒子径を10μm以下にする。
(7)(6)で得られたポリNiSalenを活性炭、KB、PTFEと混ぜ合わせ、シート電極を得る。このとき電極材料の重量比は、ポリNiSalen:活性炭:KB:PTFE=8:2:1:0.6とする。
(8)(7)で得られたシート電極を圧延ロールで圧延し、150μmのシート電極を得る。
(9)(8)で得られたシート電極を、エッチングAl集電体にカーボン接着剤を用いて接着する。
(10)(9)で得られた電極を150℃で減圧乾燥し、これを試験電極とする。
(11)(10)で得られた試験電極を電解液中に浸し、真空下で電解液を試験電極に含浸させる。電解液には1M TEABF4/PCを使用する。
(12)(11)で得られた試験電極、対極の大面積活性炭シート電極、Ag/Ag+参照電極を1M TEABF4/PC中に浸漬し、サイクリックボルタンメトリー測定及び単極充放電試験を行った。なお、単極充放電試験は、1mA/cm2、−1〜+0.6Vvs.Ag/Ag+の電位範囲で行った。
An electrode according to the present invention was produced as described below.
(1) 5 mmol NiSalen is dissolved in chloroform.
(2) When a solution obtained by dissolving 5 mmol Ce (IV) (NH 4 ) 2 (NO 3 ) 6 in PC is slowly added to the stirring solution (1), polyNiSalen is precipitated.
(3) The polyNiSalen precipitated in the solution in (2) is collected by filtration.
(4) The poly-NiSalen collected in (3) is washed with an organic solvent and water to remove the remaining monomer and oxidizing agent.
(5) The poly-NiSalen of (4) is vacuum-dried to remove the remaining solvent.
(6) The poly NiSalen obtained in (5) is pulverized so that the particle diameter is 10 μm or less.
(7) The poly NiSalen obtained in (6) is mixed with activated carbon, KB and PTFE to obtain a sheet electrode. At this time, the weight ratio of the electrode material is set to polyNiSalen: activated carbon: KB: PTFE = 8: 2: 1: 0.6.
(8) The sheet electrode obtained in (7) is rolled with a rolling roll to obtain a 150 μm sheet electrode.
(9) The sheet electrode obtained in (8) is bonded to the etching Al current collector using a carbon adhesive.
(10) The electrode obtained in (9) is dried under reduced pressure at 150 ° C., and this is used as a test electrode.
(11) The test electrode obtained in (10) is immersed in the electrolytic solution, and the test electrode is impregnated with the electrolytic solution under vacuum. 1M TEABF 4 / PC is used as the electrolyte.
(12) The test electrode obtained in (11), the counter electrode large area activated carbon sheet electrode, and the Ag / Ag + reference electrode are immersed in 1M TEABF 4 / PC, and cyclic voltammetry measurement and single electrode charge / discharge test are performed. It was. The single electrode charge / discharge test was performed at 1 mA / cm 2 , −1 to +0.6 Vvs. The measurement was performed in the potential range of Ag / Ag + .
なお、上記TEABF4は、テトラエチルアンモニウムテトラフルオロボレート、PCはプロピレンカーボネート、KBはケッチェンブラック、PTFEはポリテトラフルオロエチレンを意味する。 The TEABF 4 is tetraethylammonium tetrafluoroborate, PC is propylene carbonate, KB is ketjen black, and PTFE is polytetrafluoroethylene.
(単極充放電で得られたキャパシタンス)
単極充放電試験の結果は、表1に示す通りである。
The results of the single electrode charge / discharge test are as shown in Table 1.
表1から明らかなように、比較の活性炭を用いた電極に比べて、本発明に係るポリNiSalenを用いた正極の容量は高く、これまでにないシート状の高分子電極が得られていることが示された。 As is clear from Table 1, the capacity of the positive electrode using the poly-NiSalen according to the present invention is higher than that of the electrode using the comparative activated carbon, and an unprecedented sheet-like polymer electrode is obtained. It has been shown.
(CV曲線)
本発明に係るポリNiSalen複合電極のCV曲線は、図1に示すようになった。図から明らかなように、0V〜1Vに酸化電流が見られ、正極として用いることができることが分かった。また、−3V〜−2.5Vに還元電流が見られ、負極として用いることができることが分かった。なお、図中、略長方形形状を有するのが活性炭を用いた場合のCV曲線である。
(CV curve)
The CV curve of the poly NiSalen composite electrode according to the present invention is as shown in FIG. As is apparent from the figure, an oxidation current was observed at 0 V to 1 V, and it was found that the electrode could be used as a positive electrode. Moreover, it turned out that a reduction current is seen in -3V--2.5V, and it can use as a negative electrode. In addition, in the figure, a CV curve in the case of using activated carbon has a substantially rectangular shape.
Claims (6)
The electrochemical device according to claim 3 , wherein the electrochemical device is an electrochemical capacitor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006269058A JP5109323B2 (en) | 2006-09-29 | 2006-09-29 | Electrode for electrochemical device, method for producing the same, and electrochemical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006269058A JP5109323B2 (en) | 2006-09-29 | 2006-09-29 | Electrode for electrochemical device, method for producing the same, and electrochemical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008091134A JP2008091134A (en) | 2008-04-17 |
JP5109323B2 true JP5109323B2 (en) | 2012-12-26 |
Family
ID=39375084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006269058A Expired - Fee Related JP5109323B2 (en) | 2006-09-29 | 2006-09-29 | Electrode for electrochemical device, method for producing the same, and electrochemical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5109323B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145225A1 (en) * | 2008-05-29 | 2009-12-03 | Dic株式会社 | Secondary battery, method for producing the same, and ink for forming electrode |
JP5596908B2 (en) * | 2008-06-09 | 2014-09-24 | 株式会社カネカ | Energy storage device |
CN105294489B (en) * | 2015-10-18 | 2017-12-12 | 桂林理工大学 | 4 carbamoyl benzoate Buddha's warrior attendant alkyl ester contracting o-bromoaniline Schiff base nickel complexes synthesize and application |
CA3041909A1 (en) * | 2016-10-28 | 2018-05-03 | Adven Industries, Inc. | Conductive-flake strengthened, polymer stabilized electrode composition and method of preparing |
JP7058515B2 (en) * | 2017-02-22 | 2022-04-22 | 三洋化成工業株式会社 | Coated positive electrode active material for lithium-ion batteries |
RU2726938C1 (en) * | 2019-09-10 | 2020-07-17 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" | Electrode with protective sublayer to prevent destruction of lithium-ion batteries during ignition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01149363A (en) * | 1987-12-03 | 1989-06-12 | Tanaka Kikinzoku Kogyo Kk | Manufacture of conductive film |
CA2474484C (en) * | 2002-01-25 | 2013-03-26 | Engen Group, Inc. | Polymer-modified electrode for energy storage devices and electrochemical supercapacitor based on said polymer-modified electrode |
ATE440372T1 (en) * | 2003-10-14 | 2009-09-15 | Gen3 Partners Inc | ELECTRODE FOR ENERGY STORAGE DEVICES AND ELECTROCHEMICAL SUPERCAPACITOR BASED ON THE ELECTRODE |
WO2006038292A1 (en) * | 2004-09-30 | 2006-04-13 | Nippon Chemi-Con Corporation | Electrode material and electrochemical device |
EP1807889A4 (en) * | 2004-09-30 | 2009-12-16 | Nippon Chemicon | Method for producing electrode material |
EP1889270A4 (en) * | 2005-06-10 | 2010-05-26 | Nippon Chemicon | Method for producing electrode for electrochemical element and method for producing electrochemical element with the electrode |
-
2006
- 2006-09-29 JP JP2006269058A patent/JP5109323B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008091134A (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Senthilkumar et al. | Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor | |
Bavio et al. | Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline-carbon nanotubes | |
Zhong et al. | Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes | |
JP5637858B2 (en) | Electric double layer capacitor | |
JP5392355B2 (en) | Electric double layer capacitor | |
CN101241803B (en) | A poly-bile mixed super capacitor and its making method | |
CN102800432A (en) | Method for preparing oxidized graphene/conductive polypyrrole nano wire composite material | |
JP5109323B2 (en) | Electrode for electrochemical device, method for producing the same, and electrochemical device | |
JP2009238945A (en) | Energy storage device | |
JP5011561B2 (en) | Electrode material | |
Wei et al. | Boosting the performance of positive electrolyte for VRFB by employing zwitterion molecule containing sulfonic and pyridine groups as the additive | |
Fu et al. | Nafion doped polyaniline/graphene oxide composites as electrode materials for high performance flexible supercapacitors based on Nafion membrane | |
JP2009295922A (en) | Energy storage device | |
Xie et al. | Electrochemical properties of KI-modified and H2SO4-protonated polyvinyl alcohol gel polymer electrolyte applied for activated carbon paper electrode | |
CN104681300A (en) | Polyaniline-sulfonated graphene composite electrode material and preparation method thereof | |
Faraji et al. | 2.0-V flexible all-solid-state symmetric supercapacitor device with high electrochemical performance composed of MWCNTs-WO 3-graphite sheet | |
CN102930991B (en) | Electrochemistry one-step method prepares the method for graphene/polyaniline conductive composite material | |
Li et al. | Performance of room-temperature activated tubular polypyrrole modified graphite felt composite electrode in vanadium redox flow battery | |
Hong et al. | Fabrication of Polypyrrole Hollow Nanospheres by Hard-Template Method for Supercapacitor Electrode Material | |
JP2007250994A (en) | Conductive polymer redox type electrochemical element used as polar device | |
CN106898497A (en) | Bifunctional electrodes and its preparation method and application | |
Yaqoob et al. | Polyaniline‐based materials for supercapacitors | |
Tai et al. | Hydrothermal synthesis of flower-like NiCo2-LDH/MXene-Ti3C2 composites for high-performance capacitors | |
JP2006351289A (en) | Manufacturing method of porous material and product using obtained porous material | |
JP2009099524A (en) | Electrode material and its manufacturing method, electrode for electrochemical element, and electrochemical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120924 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5109323 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |