[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5107958B2 - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
JP5107958B2
JP5107958B2 JP2009094535A JP2009094535A JP5107958B2 JP 5107958 B2 JP5107958 B2 JP 5107958B2 JP 2009094535 A JP2009094535 A JP 2009094535A JP 2009094535 A JP2009094535 A JP 2009094535A JP 5107958 B2 JP5107958 B2 JP 5107958B2
Authority
JP
Japan
Prior art keywords
electrode
address
discharge
sustain
subfield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009094535A
Other languages
Japanese (ja)
Other versions
JP2009199088A (en
Inventor
孝 佐々木
雄一郎 木村
悟 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009094535A priority Critical patent/JP5107958B2/en
Publication of JP2009199088A publication Critical patent/JP2009199088A/en
Application granted granted Critical
Publication of JP5107958B2 publication Critical patent/JP5107958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Description

本発明は、パーソナルコンピュータやワークステーションなどのディスプレイ装置、平面型テレビジョン、広告や情報などの表示用プラズマディスプレイに使用されるアドレス・表示分離方式のA/C型プラズマディスプレイ装置(PDP装置)に関する。   The present invention relates to an A / C type plasma display device (PDP device) of an address / display separation system used for display devices such as personal computers and workstations, flat-screen televisions, and plasma displays for displaying advertisements and information. .

AC型カラーPDP装置においては、表示するセルを選択する期間(アドレス期間)と表示点灯のための放電を行う表示期間(サステイン期間)とを分離したアドレス・表示分離方式が広く採用されている。この方式においては、アドレス期間で、点灯するセルに電荷を蓄積し、その電荷を利用してサステイン期間で表示のための放電を行う。   In an AC type color PDP device, an address / display separation method is widely adopted in which a period for selecting a cell to be displayed (address period) and a display period (sustain period) for discharging for display lighting are separated. In this system, charges are accumulated in the cells to be lit in the address period, and discharge for display is performed in the sustain period using the charges.

また、PDP装置には、第1の方向に伸びる複数の第1電極を互いに平行に設け、第1の方向に対して垂直な第2の方向に伸びる複数の第2電極を互いに平行に設けた2電極型の装置と、第1の方向に伸びる複数の第1電極と第2電極を交互に平行に設け、第1の方向に対して垂直な第2の方向に伸びる複数の第3電極を互いに平行に設けた3電極型の装置とがあり、近年は3電極型PDPが広く使用されている。本発明は、2電極型と3電極型のいずれのPDP装置にも適用可能であるが、ここではまず3電極型PDP装置を例として説明を行う。   Further, the PDP device is provided with a plurality of first electrodes extending in the first direction in parallel with each other, and a plurality of second electrodes extending in the second direction perpendicular to the first direction are provided in parallel with each other. A two-electrode type device, and a plurality of first electrodes and second electrodes extending in the first direction are alternately provided in parallel, and a plurality of third electrodes extending in a second direction perpendicular to the first direction are provided. There are three-electrode type devices provided in parallel to each other, and in recent years, a three-electrode type PDP has been widely used. The present invention can be applied to both a two-electrode type and a three-electrode type PDP device. Here, a three-electrode type PDP device will be described as an example.

図1は、3電極型プラズマディスプレイパネル(PDP)のパネル構造の例を示す分解斜視図である。図示のように、前面基板1にはサステイン放電を行うX電極(第1電極)11とY電極(第2電極)12が交互に平行に配置されている。これらの電極群は、誘電体層13で覆われ、更にその表面はMgOなどの保護層14で覆われている。背面基板2には、X電極11、Y電極12に対してほぼ垂直方向に伸びるアドレス電極15が配置されており、これらの電極は更に誘電体層16で覆われている。アドレス電極15の両側には、隔壁17が配置され、列方向のセルを区分けしている。更にアドレス電極15上の誘電体層16及び隔壁17の側面には紫外線により励起されて赤(R)、緑(G)、青(B)の可視光を発生する蛍光体18、19、20が塗布されている。この前面基板1と背面基板2を保護層14と隔壁17が接するように貼りあわせて、ネオン(Ne)やキセノン(Xe)などの放電ガスなどを封入し、パネルを構成している。   FIG. 1 is an exploded perspective view showing an example of a panel structure of a three-electrode type plasma display panel (PDP). As shown in the figure, X electrodes (first electrodes) 11 and Y electrodes (second electrodes) 12 that perform sustain discharge are alternately arranged in parallel on the front substrate 1. These electrode groups are covered with a dielectric layer 13, and the surface thereof is further covered with a protective layer 14 such as MgO. On the back substrate 2, address electrodes 15 extending in a substantially vertical direction with respect to the X electrodes 11 and the Y electrodes 12 are arranged, and these electrodes are further covered with a dielectric layer 16. On both sides of the address electrode 15, partition walls 17 are arranged to partition cells in the column direction. Further, on the side surfaces of the dielectric layer 16 and the partition wall 17 on the address electrode 15, phosphors 18, 19, and 20 that are excited by ultraviolet rays and generate visible light of red (R), green (G), and blue (B). It has been applied. The front substrate 1 and the rear substrate 2 are bonded together so that the protective layer 14 and the partition wall 17 are in contact with each other, and a discharge gas such as neon (Ne) or xenon (Xe) is enclosed therein to constitute a panel.

この構造において、X電極11とY電極12はそれぞれ金属層で形成されるバス電極と透明電極で構成され、1対のX電極11とY電極12の透明電極が近接するように配置されている。表示セルは、1対のX電極11及びY電極12とアドレス電極15の交差部分に形成される。   In this structure, the X electrode 11 and the Y electrode 12 are each composed of a bus electrode and a transparent electrode formed of a metal layer, and the transparent electrodes of the pair of the X electrode 11 and the Y electrode 12 are arranged close to each other. . The display cell is formed at the intersection of the pair of X electrode 11 and Y electrode 12 and address electrode 15.

プラズマディスプレイパネルは、放電強度を制御して階調表示を行うことが困難なため、1画像(1フレーム:1/60秒)を複数のサブフィールドで構成し、セル毎に点灯するサブフィールドを組み合わせることにより階調表示を行う。図2は、サブフィールド構成の従来例を示す図であり、現在のPDP装置で広く採用されているアドレス・表示分離方式の場合の例である。図示のように、1フレームはn個のサブフィールドSF1−SFnで構成される。各サブフィールドは、リセット期間Rとアドレス期間Aとサステイン期間Sとを有する。リセット期間Rでは、その直前のサブフィールドのサステイン期間に形成された電荷を消去する(又は減少させる)と共に、次のアドレス期間の放電を援助するために電荷の再配置を行い、全セルを略同じ状態にする。アドレス期間Aでは、点灯させるセル(点灯セル)を決定するアドレス放電を行い、点灯セル内にサステイン放電を選択的に発生させるための壁電荷を形成する。サステイン期間Sでは、点灯セルで繰り返しサステイン放電を発生させる。リセット期間Rとアドレス期間Aにおける動作は各サブフィールドで同じである。サステイン期間に印加するサステインパルス数により表示輝度が決定され、サブフィールド毎に印加されるサステインパルス数が異なるのが一般的であるが、1フレームにサステインパルス数が同一又は類似したサブフィールド、すなわち表示輝度の同一又は類似したサブフィールドを設ける場合もある。また、各種の輝度重み付けのサブフィールドを各フレーム内でどのように配置するかについても各種の構成が提案されているが、ここでは説明を簡単にするために輝度が増加する方向にサブフィールドが配置されている場合を例として以下の説明を行うが、本発明はこのようなサブフィールドの配置に限定されるものではない。   Since it is difficult to perform gradation display by controlling the discharge intensity in the plasma display panel, one image (one frame: 1/60 second) is composed of a plurality of subfields, and a subfield that is lit for each cell is provided. Tone display is performed by combining. FIG. 2 is a diagram showing a conventional example of a subfield configuration, which is an example of an address / display separation method widely used in current PDP apparatuses. As shown in the figure, one frame is composed of n subfields SF1-SFn. Each subfield has a reset period R, an address period A, and a sustain period S. In the reset period R, the charge formed in the sustain period of the immediately preceding subfield is erased (or reduced), and charge rearrangement is performed to assist discharge in the next address period, so that all cells are omitted. Make the same state. In the address period A, an address discharge for determining a cell to be lit (lit cell) is performed, and wall charges for selectively generating a sustain discharge are formed in the lit cell. In the sustain period S, a sustain discharge is repeatedly generated in the lighted cell. The operations in the reset period R and the address period A are the same in each subfield. The display luminance is determined by the number of sustain pulses applied during the sustain period, and the number of sustain pulses applied for each subfield is generally different, but a subfield having the same or similar number of sustain pulses in one frame, that is, In some cases, subfields having the same or similar display luminance are provided. Also, various configurations have been proposed as to how to arrange various luminance weighting subfields within each frame. Here, in order to simplify the explanation, the subfields are arranged in a direction in which the luminance increases. Although the following description will be given by taking the case of arrangement as an example, the present invention is not limited to such arrangement of subfields.

図3は、アドレス・表示分離方式の3電極型PDP装置の駆動波形の従来例を示す図である。図示のように、リセット期間Rにおいては、Y電極にオンセルリセット電圧87を印加した状態でX電極に電圧が徐々に低下するオンセルリセット鈍波81を印加して、前のサブフィールドでサステイン放電が行われたセル(点灯セル)の壁電荷を消去又は減少させる。この処理をオンセルリセット処理と呼ぶ。次に、X電極に書き込みリセット電圧82を印加した状態で、Y電極に書き込み鈍波88を印加して、すべてのセルにおいて放電を発生させて、電極近傍に同じ壁電荷を形成する。更に、X電極に調整電圧83を印加した状態でY電極に調整鈍波89を印加して、形成した壁電荷が所定量になるように調整する。ここでは、Y電極の近傍に負の壁電荷を、X電極の近傍とアドレス電極の近傍に正の壁電荷を形成する。以上がリセット処理であり、このリセット処理により全セルが同じ状態になる。なお、ここでは次のアドレス期間における処理を容易にするために全セルに所定の壁電荷量を残したが、壁電荷を残さない場合など、各種の変形例がある。   FIG. 3 is a diagram showing a conventional example of driving waveforms of an address / display separation type three-electrode type PDP device. As shown in the figure, in the reset period R, an on-cell reset blunt wave 81 whose voltage gradually decreases is applied to the X electrode while the on-cell reset voltage 87 is applied to the Y electrode, and the sustain in the previous subfield is performed. The wall charge of the discharged cell (lighted cell) is erased or reduced. This process is called an on-cell reset process. Next, in the state where the write reset voltage 82 is applied to the X electrode, the write blunt wave 88 is applied to the Y electrode to generate a discharge in all the cells, thereby forming the same wall charge in the vicinity of the electrode. Further, an adjustment blunt wave 89 is applied to the Y electrode in a state where the adjustment voltage 83 is applied to the X electrode, and the formed wall charge is adjusted to a predetermined amount. Here, a negative wall charge is formed in the vicinity of the Y electrode, and a positive wall charge is formed in the vicinity of the X electrode and the address electrode. The above is the reset process, and all the cells are in the same state by this reset process. Here, in order to facilitate the processing in the next address period, a predetermined wall charge amount is left in all cells, but there are various modifications such as a case where no wall charge is left.

更に、前のサブフィールドでサステイン放電が行われたセルの壁電荷を消去又は減少させる処理をサステイン期間の処理に含める場合があるが、ここでは以下の説明を含めてリセット期間の処理の一部とする。いずれにしても、この処理はサステイン期間とリセット期間の間に行われる。   Furthermore, there is a case where the process of erasing or reducing the wall charge of the cell in which the sustain discharge has been performed in the previous subfield may be included in the process of the sustain period. Here, a part of the process of the reset period including the following explanation is included. And In any case, this process is performed between the sustain period and the reset period.

次のアドレス期間Aにおいては、X電極にXバイアス電圧84を、Y電極にYバイアス電圧(非選択電位)90を印加した状態で、印加するY電極の位置を順次変えながら電圧−Vsのスキャンパルス91を印加し、スキャンパルス91に同期して点灯セルのアドレス電極に電圧VAのアドレスパルス94を印加する。これにより、点灯セルではY電極とアドレス電極間に大きな電圧VA+Vsが印加されるのでアドレス放電が発生する。この時、X電極とY電極の間にも大きな電界ができているので、Y電極とアドレス電極間のアドレス放電に誘発されてY電極とX電極間でもアドレス放電が発生する。このY電極とX電極間のアドレス放電に移行することにより、Y電極とX電極の近傍にはそれぞれの電極に印加されている電圧と逆極性の壁電荷が蓄積される。この壁電荷が次のサステイン放電を選択的に発生させるために使用される。ここでは、Xバイアス電圧84をVx、Yバイアス電圧(非選択電位)90を負電圧−Vy、スキャンパルス91の電圧を−Vs、アドレスパルス94の電圧をVAとしている。これらの電圧は、スキャンパルス91とアドレスパルス94を同時に印加したセルでアドレス放電が発生し、他のセルでは放電が発生せず、アドレス放電が発生したセル(点灯セル)では、X電極及びY電極の近傍に次のサステイン放電を選択的に発生させることが可能な壁電荷が形成されるように設定される。なお、リセット期間の終了時に全セルに残された壁電荷は、スキャンパルス91とアドレスパルス94によりY電極とアドレス電極間に印加される電圧が小さくても確実にアドレス放電が発生するように働く。アドレス放電が発生しなかったセルの壁電荷(リセット期間に形成された壁電荷)は、次に放電が発生するまで保持される。更に、ここでは点灯セルにおいてアドレス放電を発生させて選択的にサステイン放電を行うのに必要な壁電荷を形成する例を説明したが、リセット期間に全セルに一様な壁電荷を形成し、非点灯セルでアドレス放電を発生させて壁電荷を消去する方法もある。   In the next address period A, with the X bias voltage 84 applied to the X electrode and the Y bias voltage (non-selection potential) 90 applied to the Y electrode, scanning of the voltage −Vs is performed while sequentially changing the position of the applied Y electrode. A pulse 91 is applied, and an address pulse 94 of voltage VA is applied to the address electrode of the lighted cell in synchronization with the scan pulse 91. Thereby, in the lighting cell, a large voltage VA + Vs is applied between the Y electrode and the address electrode, so that an address discharge is generated. At this time, since a large electric field is generated between the X electrode and the Y electrode, the address discharge is also generated between the Y electrode and the X electrode by being induced by the address discharge between the Y electrode and the address electrode. By shifting to the address discharge between the Y electrode and the X electrode, wall charges having opposite polarities to the voltages applied to the respective electrodes are accumulated in the vicinity of the Y electrode and the X electrode. This wall charge is used to selectively generate the next sustain discharge. Here, the X bias voltage 84 is Vx, the Y bias voltage (non-selection potential) 90 is a negative voltage -Vy, the scan pulse 91 voltage is -Vs, and the address pulse 94 voltage is VA. These voltages generate address discharge in the cells to which the scan pulse 91 and the address pulse 94 are simultaneously applied, do not generate discharge in the other cells, and in the cells in which address discharge has occurred (lighted cells), the X electrodes and Y It is set so that a wall charge capable of selectively generating the next sustain discharge is formed in the vicinity of the electrode. Note that the wall charges left in all the cells at the end of the reset period work to ensure that an address discharge is generated even if the voltage applied between the Y electrode and the address electrode is small by the scan pulse 91 and the address pulse 94. . The wall charges of the cells in which no address discharge has occurred (wall charges formed during the reset period) are held until the next discharge occurs. Furthermore, although the example which forms the wall charge required to generate the address discharge in the lighting cell and selectively perform the sustain discharge is described here, the uniform wall charge is formed in all the cells during the reset period. There is also a method of erasing wall charges by generating an address discharge in a non-lighted cell.

次のサステイン期間においては、X電極に電圧−Vsのサステインパルス85を、Y電極に電圧Vsのサステインパルス92を印加する。これによりX電極とY電極間に2Vsの電圧が印加され、アドレス放電の発生した点灯セルでは、アドレス放電で形成された壁電荷による電圧が加算されるので放電開始電圧を超えてサステイン放電が発生し、アドレス放電の発生しなかった非点灯セルでは放電が発生しない。サステイン放電が発生したセルでは、サステイン放電により逆極性の壁電荷が形成される。次に、X電極に電圧Vsのサステインパルス86を、Y電極に電圧−Vsのサステインパルス93を印加すると、サステイン放電の発生した点灯セルではサステイン放電により形成された逆極性の壁電荷による電圧が加算されて次のサステイン放電が発生し、サステイン放電の発生しなかった非点灯セルでは放電が発生しない。このように、サステインパルスを印加することにより形成される壁電荷の極性が反転するので、X電極とY電極間に逆極性のサステインパルスを交互に印加することにより点灯セルではサステイン放電が連続して発生する。   In the next sustain period, a sustain pulse 85 having a voltage −Vs is applied to the X electrode, and a sustain pulse 92 having a voltage Vs is applied to the Y electrode. As a result, a voltage of 2 Vs is applied between the X electrode and the Y electrode, and in the lighting cell in which the address discharge is generated, the voltage due to the wall charge formed by the address discharge is added, so the sustain discharge is generated exceeding the discharge start voltage. However, no discharge occurs in a non-lighted cell in which no address discharge has occurred. In the cell in which the sustain discharge is generated, wall charges having a reverse polarity are formed by the sustain discharge. Next, when a sustain pulse 86 having a voltage Vs is applied to the X electrode and a sustain pulse 93 having a voltage −Vs is applied to the Y electrode, the voltage due to the reverse polarity wall charges formed by the sustain discharge is generated in the lighting cell in which the sustain discharge has occurred. Addition causes the next sustain discharge to occur, and no discharge occurs in the non-lighted cells in which no sustain discharge has occurred. Thus, since the polarity of the wall charges formed by applying the sustain pulse is reversed, the sustain discharge continues in the lighted cell by alternately applying the sustain pulse having the opposite polarity between the X electrode and the Y electrode. Occur.

サブフィールドの輝度は、サステイン放電の回数により設定される。図3に示すように、SF1では2回のサステイン放電が発生し、SF2では4回のサステイン放電が発生しており、輝度のより大きなサブフィールドでは更にサステイン放電の回数を増加させる。一般に、サステインパルスの周期は一定であるので、サステイン放電の回数によりサステイン期間の長さが決定される。なお、AC型では一般的に極性の反転する2回の放電が一組となっているため、サステイン放電の回数は2の倍数で増加させる。   The luminance of the subfield is set by the number of sustain discharges. As shown in FIG. 3, the sustain discharge is generated twice in SF1, and the sustain discharge is generated four times in SF2, and the number of sustain discharges is further increased in the subfield having a higher luminance. In general, since the cycle of the sustain pulse is constant, the length of the sustain period is determined by the number of sustain discharges. In the AC type, since the two discharges whose polarity is inverted are generally one set, the number of sustain discharges is increased by a multiple of two.

ここで、PDPにおける放電について説明する。リセット期間において、全セルに所定量の壁電荷を形成するための放電、言い換えればリセット電圧82と書き込み鈍波88による放電及び調整電圧83と調整鈍波89による放電は、表示に関係しない放電であり、これによる発光は全セルで同じであるのでコントラストを低下させることになる。また、図3には示していないが、初期化のためにX電極とY電極間に大きな電圧を印加して全セルで初期化放電を発生させる場合もあり、そのような放電も表示に関係しない放電であり、コントラストを低下させる。このような放電はできるだけ小さいことが望ましい。そのため、初期化放電はできるだけ行わないようにしている。また、全セルに所定量の壁電荷を形成するための放電は、上記のように鈍波を使用することにより、発光強度を非常に小さくしている。   Here, the discharge in the PDP will be described. During the reset period, discharge for forming a predetermined amount of wall charges in all cells, in other words, discharge due to the reset voltage 82 and the write blunt wave 88 and discharge due to the adjustment voltage 83 and the adjustment blunt wave 89 are discharges not related to display. The light emission by this is the same in all the cells, so that the contrast is lowered. Although not shown in FIG. 3, there is a case where a large voltage is applied between the X electrode and the Y electrode for initialization to generate an initialization discharge in all cells, and such discharge is also related to display. Does not discharge, reducing the contrast. Such a discharge is desirably as small as possible. Therefore, the initialization discharge is not performed as much as possible. In addition, the discharge for forming a predetermined amount of wall charges in all the cells uses an obtuse wave as described above, thereby making the emission intensity very small.

リセット期間において前のサブフィールドでの点灯セルの壁電荷を消去又は減少させるオンセルリセット処理による放電、言い換えればオンセルリセット電圧87とオンセルリセット鈍波81による放電は、前のサブフィールドの表示に関係する放電である。また、アドレス放電及びサステイン放電は表示に関係する放電である。   The discharge by the on-cell reset process for erasing or reducing the wall charge of the lighted cell in the previous subfield in the reset period, in other words, the discharge by the on-cell reset voltage 87 and the on-cell reset blunt wave 81 is displayed in the previous subfield. It is a discharge related to. The address discharge and the sustain discharge are discharges related to display.

従来は、各サブフィールドの輝度はサステイン放電による発光輝度のみを考慮するのが一般的であった。また、電荷消去は、オンセルリセット電圧87とオンセルリセット鈍波81による放電のように、鈍波を使用して強度の小さな放電で行われた。   Conventionally, the luminance of each subfield generally takes into account only the luminance of light emitted by the sustain discharge. Further, charge erasure was performed with a low intensity discharge using an obtuse wave, such as an electric discharge by the on-cell reset voltage 87 and the on-cell reset obtuse wave 81.

PDP装置の表示品質は年々改善されているが、より一層の改善が要求されており、特に低輝度表示における階調性表現について改善が求められている。そこで、特開平11−65517号公報は、従来サステイン放電による発光輝度のみを考慮していたのに対して、階調表現において表示に関係する他の放電による輝度も考慮する必要のあることを記載している。   The display quality of the PDP device has been improved year by year, but further improvement is required. In particular, there is a demand for improvement in gradation expression in low luminance display. In view of this, Japanese Patent Laid-Open No. 11-65517 describes that it is necessary to consider luminance due to other discharges related to display in gradation expression, while considering only light emission luminance due to sustain discharge. is doing.

また、AC型カラープラズマディスプレイにおいて、輝度の異なるサブフィールドを組み合わせて階調表示を行う場合、最も低輝度のサブフィールドの輝度により低輝度階調の表現能力が決定される。そこで、上記の特開平11−65517号公報及び特開2003−66897号公報は、サステイン期間を設けず、リセット期間とアドレス期間のみで構成したサブフィールドを設ける構成を記載している。   Further, in the AC color plasma display, when gradation display is performed by combining subfields having different luminances, the low luminance gradation expression ability is determined by the luminance of the subfield with the lowest luminance. Therefore, the above-mentioned Japanese Patent Application Laid-Open Nos. 11-65517 and 2003-66897 describe a configuration in which a sustain field is not provided, but a subfield configured only by a reset period and an address period is provided.

図4は、フレーム中にサステイン期間を有さないサブフィールドを設けた場合のサブフィールド構成を示す図であり、図5はその場合のSF1とSF2の駆動波形の例を示す図である。図5は、図3の駆動波形に対して特開平11−65517号公報及び特開2003−66897号公報に記載された構成を適用した例を示す。図4及び図5に示すように、SF1はリセット期間Rとアドレス期間Aのみを有する。これにより、SF1の輝度を小さくでき、低輝度階調の表現能力が向上する。図5に示すように、SF1のアドレス期間の動作とSF2のアドレス期間の動作は同じである。   FIG. 4 is a diagram showing a subfield configuration when a subfield having no sustain period is provided in the frame, and FIG. 5 is a diagram showing examples of driving waveforms of SF1 and SF2 in that case. FIG. 5 shows an example in which the configuration described in Japanese Patent Laid-Open Nos. 11-65517 and 2003-66897 is applied to the drive waveform of FIG. As shown in FIGS. 4 and 5, SF1 has only a reset period R and an address period A. Thereby, the luminance of SF1 can be reduced, and the expression capability of low luminance gradation is improved. As shown in FIG. 5, the operation during the address period of SF1 and the operation during the address period of SF2 are the same.

特開平11−65517号公報JP 11-65517 A 特開2003−66897号公報JP 2003-66897 A 特許第2801893号公報Japanese Patent No. 2801893

上記のように、サステイン期間を設けず、リセット期間とアドレス期間のみで構成したサブフィールドを設けることで、低輝度階調の表現能力が向上するが、より一層の改善が求められている。   As described above, by providing a subfield including only a reset period and an address period without providing a sustain period, the ability to express low luminance gradation is improved, but further improvement is demanded.

本発明は、低輝度階調の表現能力を更に改善したプラズマディスプレイ装置を実現することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to realize a plasma display device that further improves the ability to express low luminance gradation.

上記目的を実現するため、本発明の第1の態様のプラズマディスプレイ装置(PDP装置)は、3電極型のPDP装置であり、サステイン期間を設けず、リセット期間とアドレス期間のみで構成したサブフィールドを1フレームに少なくとも1つ設け、そのアドレス放電はY(第2の)電極とアドレス(第3の)電極間のみで行う。これにより、サブフィールドの最小輝度を低減して、プラズマディスプレイ装置の低輝度階調の表現能力を更に改善できる。   In order to achieve the above object, the plasma display device (PDP device) according to the first aspect of the present invention is a three-electrode type PDP device, which is not provided with a sustain period, but includes a reset field and an address period. Are provided in one frame, and the address discharge is performed only between the Y (second) electrode and the address (third) electrode. Thereby, the minimum luminance of the subfield can be reduced, and the low luminance gradation expression capability of the plasma display apparatus can be further improved.

言い換えれば、本発明の第1の態様のPDP装置は、第1の基板上に並行に配置された第1及び第2の電極群と、前記第1の基板に対向する第2の基板上に前記第1及び第2の電極群に対して交差するように配置された第3の電極群とを備え、1フレームを複数のサブフィールドで構成し、前記複数のサブフィールドは、点灯すべきセルを選択するためのアドレス放電を行うアドレス期間と、前記アドレス期間にて選択したセルにおいてサステイン放電を行うサステイン期間とを含む第1のサブフィールドと、前記サステイン期間を伴わずに前記アドレス期間を含む第2のサブフィールドとを備え、前記第1のサブフィールドにおける前記アドレス期間においては、前記第2の電極群と前記第3の電極群との間に引き続いて、前記第1の電極群と前記第2の電極群との間において前記アドレス放電を行い、前記第2のサブフィールドにおける前記アドレス期間においては、前記第1の電極群と前記第2の電極群との間での放電に移行することなく、前記第2の電極群と前記第3の電極群との間において前記アドレス放電を行うことを特徴とする。   In other words, the PDP device according to the first aspect of the present invention includes a first electrode group and a second electrode group arranged in parallel on a first substrate, and a second substrate facing the first substrate. A third electrode group arranged to intersect the first and second electrode groups, and one frame is composed of a plurality of subfields, and the plurality of subfields are cells to be lit A first subfield including an address period in which address discharge is performed to select a cell, a sustain period in which sustain discharge is performed in a cell selected in the address period, and the address period includes the address period without the sustain period. A second subfield, and in the address period in the first subfield, the first electrode continues between the second electrode group and the third electrode group. Between the first electrode group and the second electrode group. In the address period in the second subfield, the discharge is performed between the first electrode group and the second electrode group. The address discharge is performed between the second electrode group and the third electrode group without shifting.

また、上記目的を実現するため、本発明の第2の態様のPDP装置は、リセット期間とアドレス期間のみで構成した第2のサブフィールドを1フレームに少なくとも2つ設け、第2のサブフィールドにおけるアドレス放電の強度を異ならせることにより、更に輝度の低いサブフィールドを設ける。   In order to achieve the above object, the PDP device according to the second aspect of the present invention provides at least two second subfields configured only by a reset period and an address period in one frame. By changing the strength of the address discharge, a subfield with lower luminance is provided.

言い換えれば、本発明の第2の態様のPDP装置は、1フレームを複数のサブフィールドで構成し、前記複数のサブフィールドは、点灯すべきセルを選択するためのアドレス放電を行うアドレス期間と、前記アドレス期間にて選択したセルにおいてサステイン放電を行うサステイン期間とを含む第1のサブフィールドと、前記サステイン期間を伴わずに前記アドレス期間を含む第2のサブフィールドとを備え、前記アドレス放電の強度が異なる少なくとも2個の前記第2のサブフィールドを含んでなることを特徴とする。   In other words, in the PDP device according to the second aspect of the present invention, one frame includes a plurality of subfields, and the plurality of subfields includes an address period for performing an address discharge for selecting a cell to be lit, A first subfield including a sustain period in which a sustain discharge is performed in a cell selected in the address period; and a second subfield including the address period without the sustain period; It comprises at least two second subfields having different intensities.

上記の特開平11−65517号公報及び特開2003−66897号公報によれば、図5に示したように、リセット期間とアドレス期間のみを備えるサブフィールドのアドレス期間には、サステイン期間を有するサブフィールドのアドレス期間と同じ処理が行われ、サステイン放電を選択的に発生させるための壁電荷を形成している。そのため、アドレス放電の強度は、Y(第2の)電極とアドレス(第3の)電極間とX(第1の)電極とY電極間の2回の放電であるため、1組2回のサステイン放電に比べて、同程度の大きさを有している。しかし、サステイン期間を有さない第2のサブフィールドの場合、サステイン放電を選択的に発生させるための壁電荷を形成する必要はないので、アドレス放電の強度を更に小さくすることが可能である。これによりサブフィールドの輝度を更に低下させることができる。このように、サステイン放電を選択的に発生させるための壁電荷を形成するという制約がなくなるので、アドレス放電の強度は任意に設定することが可能であり、アドレス放電の強度を変えて従来より更に低輝度のサブフィールドを設けることができる。   According to Japanese Patent Application Laid-Open No. 11-65517 and Japanese Patent Application Laid-Open No. 2003-66897, as shown in FIG. 5, the address period of the subfield having only the reset period and the address period has a sustain period. The same processing as that in the field address period is performed to form wall charges for selectively generating a sustain discharge. Therefore, the intensity of the address discharge is two discharges between the Y (second) electrode and the address (third) electrode, and between the X (first) electrode and the Y electrode. Compared to the sustain discharge, it has the same magnitude. However, in the case of the second subfield having no sustain period, it is not necessary to form wall charges for selectively generating the sustain discharge, so that the strength of the address discharge can be further reduced. Thereby, the luminance of the subfield can be further reduced. As described above, since there is no restriction of forming wall charges for selectively generating the sustain discharge, the intensity of the address discharge can be arbitrarily set, and the intensity of the address discharge can be changed to further increase the conventional level. A low-luminance subfield can be provided.

本発明は、アドレス・表示分離方式のPDP装置であれば、図1で説明した3電極型のPDP装置でも、2電極型のPDP装置でも適用できる。   The present invention can be applied to the three-electrode type PDP device described in FIG. 1 or the two-electrode type PDP device as long as it is an address / display separation type PDP device.

特開平11−65517号公報及び特開2003−66897号公報に記載された3電極型のPDP装置の場合、アドレス期間では、X電極群とY電極群の間に大きな電圧を印加して、スキャンパルスとアドレスパルスによりアドレス放電が発生すると、それに誘発されてX電極とY電極間でもアドレス放電が発生して、X及びY電極近傍にサステイン放電を選択的に発生させるための壁電荷が形成されるようにしている。これに対して、X電極群とY電極群の間に印加する電圧を小さくして、Y電極とアドレス電極間でアドレス放電が発生してもX電極とY電極の間ではアドレス放電が発生しないようにすれば、アドレス放電の強度が低下して輝度を低くできる。すなわち、サステイン期間を有さない低輝度のサブフィールドを1個設け、アドレス放電時にX電極とY電極の間で放電が発生しないようにする。   In the case of the three-electrode type PDP device described in JP-A-11-65517 and JP-A-2003-66897, scanning is performed by applying a large voltage between the X electrode group and the Y electrode group in the address period. When an address discharge is generated by a pulse and an address pulse, the address discharge is also induced between the X electrode and the Y electrode, and wall charges for selectively generating a sustain discharge are formed in the vicinity of the X and Y electrodes. I try to do it. On the other hand, even if an address discharge is generated between the Y electrode and the address electrode by reducing the voltage applied between the X electrode group and the Y electrode group, no address discharge is generated between the X electrode and the Y electrode. By doing so, the intensity of the address discharge is reduced and the luminance can be lowered. That is, one low-luminance subfield having no sustain period is provided so that no discharge is generated between the X electrode and the Y electrode during address discharge.

このようにサブフィールドの輝度を一層低減できるので、例えば、サステイン期間を有さない少なくとも2個の低輝度サブフィールドを設け、そのうちの1つは、サステイン期間を有するサブフィールドと同じ条件のアドレス期間を有し、すなわちサステイン放電のための壁電荷を形成するサブフィールドとし、他は上記のX電極とY電極の間ではアドレス放電が発生しないより低輝度のサブフィールドとすれば、低輝度で且つ輝度の異なる複数のサブフィールドを設けることが可能である。   Since the luminance of the subfield can be further reduced in this way, for example, at least two low luminance subfields having no sustain period are provided, one of which is an address period having the same condition as the subfield having the sustain period. In other words, a subfield for forming a wall charge for a sustain discharge and a lower subfield in which address discharge does not occur between the X electrode and the Y electrode are low luminance and It is possible to provide a plurality of subfields having different luminances.

更に、サステイン放電を選択的に発生させるための壁電荷を形成するという制約がなくなるので、Y電極とアドレス電極間のアドレス放電の強度を低下させて、Y電極とアドレス電極間のアドレス放電の強度を低下させることも可能である。Y電極とアドレス電極間のアドレス放電の強度を低下させるには、アドレスパルスとサステインパルスを同時に印加した時のY電極とアドレス電極間の電圧の絶対値が、小さくなるようにする。具体的には、アドレスパルス又はスキャンパルス又はその両方の電圧を変更する。   Furthermore, since the restriction of forming wall charges for selectively generating the sustain discharge is eliminated, the strength of the address discharge between the Y electrode and the address electrode is reduced, and the strength of the address discharge between the Y electrode and the address electrode is reduced. Can also be reduced. In order to reduce the strength of the address discharge between the Y electrode and the address electrode, the absolute value of the voltage between the Y electrode and the address electrode when the address pulse and the sustain pulse are simultaneously applied is made small. Specifically, the voltage of the address pulse and / or the scan pulse is changed.

なお、X電極とY電極間のアドレス放電及びY電極とアドレス電極間のアドレス放電の強度をより小さなステップで変更し、それらの変更量を組み合わせることで、低輝度サブフィールドの輝度段階の個数を更に増加させることも可能である。   In addition, the intensity of the address discharge between the X electrode and the Y electrode and the intensity of the address discharge between the Y electrode and the address electrode are changed in smaller steps, and the number of luminance steps in the low luminance subfield can be reduced by combining these changes. Further increase is possible.

2電極型のPDP装置の場合、アドレスパルスとサステインパルスを同時に印加した時の第1電極(横電極)と第2電極(縦電極)間の電圧の絶対値が、小さくなるようにする。   In the case of a two-electrode type PDP device, the absolute value of the voltage between the first electrode (horizontal electrode) and the second electrode (vertical electrode) when the address pulse and the sustain pulse are simultaneously applied is made small.

本発明によれば、サブフィールドの最低輝度をより低くできるので、低輝度階調の表現能力が向上し、表示品質が改善できる。   According to the present invention, since the minimum luminance of the subfield can be further reduced, the expression capability of low luminance gradation is improved, and the display quality can be improved.

3電極型PDPの分解斜視図である。It is a disassembled perspective view of 3 electrode type PDP. フィールド構成の従来例を示す図である。It is a figure which shows the prior art example of a field structure. 駆動波形の従来例を示す図である。It is a figure which shows the prior art example of a drive waveform. フィールド構成の他の従来例を示す図である。It is a figure which shows the other conventional example of a field structure. 駆動波形の他の従来例を示す図である。It is a figure which shows the other conventional example of a drive waveform. 本発明の第1実施例のPDP装置の全体構成を示す図である。It is a figure which shows the whole structure of the PDP apparatus of 1st Example of this invention. 第1実施例のPDP装置の駆動波形を示す図である。It is a figure which shows the drive waveform of the PDP apparatus of 1st Example. 第1実施例のPDP装置の駆動波形の変形例を示す図である。It is a figure which shows the modification of the drive waveform of the PDP apparatus of 1st Example. 第1実施例のPDP装置の駆動波形の変形例を示す図である。It is a figure which shows the modification of the drive waveform of the PDP apparatus of 1st Example. 本発明の第2実施例で使用するPDPの分解斜視図である。It is a disassembled perspective view of PDP used in 2nd Example of this invention. 第2実施例のPDP装置の全体構成を示す図である。It is a figure which shows the whole structure of the PDP apparatus of 2nd Example. 第2実施例のPDP装置の駆動波形を示す図である。It is a figure which shows the drive waveform of the PDP apparatus of 2nd Example. 第2実施例のPDP装置の駆動波形を示す図である。It is a figure which shows the drive waveform of the PDP apparatus of 2nd Example. 本発明の第3実施例で使用するPDPの分解斜視図である。It is a disassembled perspective view of PDP used in 3rd Example of this invention. 第3実施例のPDPの電極形状を示す図である。It is a figure which shows the electrode shape of PDP of 3rd Example. 第3実施例のPDP装置の全体構成を示す図である。It is a figure which shows the whole structure of the PDP apparatus of 3rd Example. 第3実施例のPDP装置の駆動波形を示す図である。It is a figure which shows the drive waveform of the PDP apparatus of 3rd Example.

図6は、本発明の第1実施例プラズマディスプレイ装置(PDP装置)の全体構成を示す図である。プラズマディスプレイパネル(PDP)30は、図1に示した構造を有する。アドレスドライバ31は、各アドレス電極15にグランドレベル又は電圧Vaのアドレスパルスを印加する。Yスキャンドライバ32は、各Y電極に電圧−Vsのスキャンパルスを順次印加すると共に、すべての第2電極(Y電極)12にYサステイン回路33を介して供給されるサステインパルスなどの所定の電圧を共通に印加する。Xサステイン回路34は、第1電極(X電極)11にサステインパルスなどの所定の電圧を共通に印加する。制御回路35は、上記の各部を制御する。   FIG. 6 is a diagram showing the overall configuration of the plasma display apparatus (PDP apparatus) of the first embodiment of the present invention. The plasma display panel (PDP) 30 has the structure shown in FIG. The address driver 31 applies an address pulse of the ground level or voltage Va to each address electrode 15. The Y scan driver 32 sequentially applies a scan pulse of the voltage −Vs to each Y electrode, and a predetermined voltage such as a sustain pulse supplied to all the second electrodes (Y electrodes) 12 via the Y sustain circuit 33. Are applied in common. The X sustain circuit 34 applies a predetermined voltage such as a sustain pulse to the first electrode (X electrode) 11 in common. The control circuit 35 controls each part described above.

第1実施例のPDP装置は、従来から広く知られた構成を有し、1フレームは複数のサブフィールドで構成されるが、低輝度のサブフィールドにおける駆動波形が異なる。PDP装置の構成についてのこれ以上の詳しい説明は省略し、駆動波形についてのみ説明する。   The PDP apparatus of the first embodiment has a configuration that has been widely known, and one frame is composed of a plurality of subfields, but the drive waveforms in the subfields with low luminance are different. Further detailed description of the configuration of the PDP apparatus will be omitted, and only the drive waveform will be described.

図7は、第1実施例のPDP装置における駆動波形を示す図であり、低輝度側の4サブフィールドSF1−SF4の駆動波形を示す。SF5以上の輝度の高いサブフィールドは、SF4と同じ駆動波形を有し、サステインパルスの個数が異なるだけである。   FIG. 7 is a diagram showing drive waveforms in the PDP apparatus of the first embodiment, and shows drive waveforms of the four subfields SF1-SF4 on the low luminance side. A subfield with high luminance of SF5 or higher has the same drive waveform as SF4, and only the number of sustain pulses is different.

図5の従来の駆動波形と比較して明らかなように、第1実施例のSF3及びSF4は、図5の従来例のSF1及びSF2と同じ駆動波形を有する。したがって、SF4では図3を参照して説明した動作と同じ動作が行われ、SF3ではSF4における動作からサステイン期間を除いた動作が行われる。また、SF1及びSF2もサステイン期間を有さない。   As apparent from the comparison with the conventional drive waveform of FIG. 5, SF3 and SF4 of the first embodiment have the same drive waveform as SF1 and SF2 of the conventional example of FIG. Therefore, in SF4, the same operation as that described with reference to FIG. 3 is performed, and in SF3, an operation excluding the sustain period from the operation in SF4 is performed. Also, SF1 and SF2 have no sustain period.

SF2では、リセット期間RにてSF3及びSF4と同じ動作が行われる。その後、アドレス期間Aにおいて、X電極にグランド電位を、Y電極にYバイアス電圧(非選択電位)−Vyを印加した状態で、Y電極に印加位置を変えながら電圧−Vsのスキャンパルスを順次印加し、スキャンパルスに同期して電圧VAのアドレスパルスを印加している。また、SF3と同様に、サステイン期間は設けられていない。言い換えれば、SF3及びSF4ではX電極に電圧Vxを印加していたのに対して、第1実施例ではグランド電位を印加している点が異なる。   In SF2, the same operation as SF3 and SF4 is performed in the reset period R. Thereafter, in address period A, a scan pulse of voltage -Vs is sequentially applied to the Y electrode while changing the application position in a state where the ground potential is applied to the X electrode and the Y bias voltage (non-selection potential) -Vy is applied to the Y electrode. The address pulse of voltage VA is applied in synchronization with the scan pulse. Further, as in SF3, no sustain period is provided. In other words, the voltage Vx is applied to the X electrode in SF3 and SF4, but the ground potential is applied in the first embodiment.

SF3及びSF4ではX電極に電圧Vxを印加しているため、スキャンパルスが印加されたY電極とX電極群の間にはVx+Vsの大きな電圧が印加されており、スキャンパルスとアドレスパルスが同時に印加された点灯セルでY電極とアドレス電極間でアドレス放電が発生すると、このアドレス放電に誘発されてY電極とX電極の間でもアドレス放電が発生し(Y電極とX電極間のアドレス放電に移行し)、Y電極の近傍に正の壁電荷が、X電極の近傍に負の電荷が形成される。SF4ではこの壁電荷を利用して選択的にサステイン放電を発生させる。したがって、SF3及びSF4におけるアドレス放電の強度は、Y電極とアドレス電極間の放電の強度と、Y電極とX電極間の放電の強度を合わせた強度であり、アドレス放電による輝度も同様に2つの放電による輝度を合わせた輝度になる。   In SF3 and SF4, since the voltage Vx is applied to the X electrode, a large voltage of Vx + Vs is applied between the Y electrode to which the scan pulse is applied and the X electrode group, and the scan pulse and the address pulse are simultaneously applied. When an address discharge is generated between the Y electrode and the address electrode in the lighted cell, the address discharge is induced and an address discharge is also generated between the Y electrode and the X electrode (transition to the address discharge between the Y electrode and the X electrode). Thus, a positive wall charge is formed in the vicinity of the Y electrode, and a negative charge is formed in the vicinity of the X electrode. In SF4, a sustain discharge is selectively generated using this wall charge. Accordingly, the intensity of the address discharge in SF3 and SF4 is the intensity of the discharge intensity between the Y electrode and the address electrode and the intensity of the discharge between the Y electrode and the X electrode. The luminance is the sum of luminance due to discharge.

SF2では、X電極にグランド電位を印加しているため、スキャンパルスが印加されたY電極とX電極群の間にはVsの電圧が印加されるだけであり、たとえアドレス放電が発生してもY電極とX電極の間の放電が誘発されない。そのため、SF2におけるアドレス放電はY電極とアドレス電極間の放電のみであり、SF3及びSF4に比べてアドレス放電による輝度は低い。SF2のアドレス期間ではY電極とX電極間のアドレス放電は発生しないので、Y電極とX電極の近傍に選択的にサステイン放電を行うための壁電荷は形成されないが、SF2ではサステイン期間がないので問題はない。   In SF2, since the ground potential is applied to the X electrode, only the voltage of Vs is applied between the Y electrode to which the scan pulse is applied and the X electrode group, and even if an address discharge occurs. A discharge between the Y electrode and the X electrode is not induced. Therefore, the address discharge in SF2 is only the discharge between the Y electrode and the address electrode, and the luminance due to the address discharge is lower than that in SF3 and SF4. Since the address discharge between the Y electrode and the X electrode does not occur in the address period of SF2, no wall charge for selectively performing the sustain discharge is formed in the vicinity of the Y electrode and the X electrode. However, in SF2, there is no sustain period. No problem.

実際に、SF3及びSF4のように、Vs=80V、Vx=80V、VA=60Vでアドレス放電を行った場合の輝度は0.97cd/m2であったが、SF2のようにVx=0Vでアドレス放電を行った場合の輝度は0.36cd/m2であり、半分以下の低輝度にできた。 Actually, the luminance when address discharge was performed at Vs = 80V, Vx = 80V, VA = 60V as in SF3 and SF4 was 0.97 cd / m 2 , but as in SF2, Vx = 0V. The luminance when address discharge was performed was 0.36 cd / m 2 , which was a low luminance of less than half.

SF1では、リセット期間RにてSF2からSF4と同じ動作が行われる。その後、アドレス期間Aにおいて、X電極にグランド電位を、Y電極にVyを印加した状態で、Y電極に印加位置を変えながら電圧−Vsのスキャンパルスを順次印加し、スキャンパルスに同期して電圧VA1のアドレスパルスを印加している。また、SF2及びSF3と同様に、サステイン期間は設けられていない。言い換えれば、SF2で電圧VAのアドレスパルスを印加するのに対して、SF1ではVAより低い電圧VA1のアドレスパルスが印加される点が異なる。   In SF1, the same operation as in SF2 to SF4 is performed in the reset period R. Thereafter, in address period A, with the ground potential applied to the X electrode and Vy applied to the Y electrode, a scan pulse of voltage -Vs is sequentially applied to the Y electrode while changing the application position, and the voltage is synchronized with the scan pulse. An address pulse of VA1 is applied. Further, as in SF2 and SF3, no sustain period is provided. In other words, an address pulse of voltage VA is applied in SF2, whereas an address pulse of voltage VA1 lower than VA is applied in SF1.

したがって、SF1ではSF2と同様にY電極とX電極間のアドレス放電は発生しない。更に、アドレスパルスの電圧がVAより低いVA1であるため、Y電極とアドレス電極間のアドレス放電の強度も小さくなり、SF1の輝度はSF2の輝度より更に低くなる。   Therefore, in SF1, as in SF2, address discharge between the Y electrode and the X electrode does not occur. Further, since the voltage of the address pulse is VA1 lower than VA, the intensity of the address discharge between the Y electrode and the address electrode is reduced, and the luminance of SF1 is further lower than that of SF2.

以上説明したように、第1実施例のPDP装置のサブフィールド構成では、サステイン期間を有する最小輝度のサブフィールドより、更に輝度の小さいサブフィールドが3段階で設けられており、更に図5の従来のサブフィールド構成に比べても、輝度の小さいサブフィールドが更に2段階で設けられている。このため、低輝度階調の表現能力が向上する。   As described above, in the subfield configuration of the PDP apparatus according to the first embodiment, the subfield having a lower luminance than the minimum luminance subfield having the sustain period is provided in three stages. Compared with the sub-field configuration, sub-fields with lower luminance are provided in two stages. For this reason, the ability to express low luminance gradation is improved.

図7に示した第1実施例の駆動波形では、SF1及びSF2では、アドレス期間におけるX電極の電位をグランドとした。しかし、このX電極の電位は、Y電極とアドレス電極間のアドレス放電に誘発されてY電極間とX電極間でアドレス放電が発生しない電圧であればよい。図8は、アドレス期間におけるX電極の電位を変更した駆動波形の変形例を示す図である。この変形例では、アドレス期間におけるX電極の電位を、アドレス期間にスキャンパルスが印加されるY電極以外のY電極に印加するYバイアス電圧(非選択電位)−Vyとしている。これにより、Y電極とアドレス電極間のアドレス放電に誘発されてY電極間とX電極間でアドレス放電が発生する可能性が一層小さくなる。   In the driving waveform of the first embodiment shown in FIG. 7, in SF1 and SF2, the potential of the X electrode in the address period is set to the ground. However, the potential of the X electrode may be a voltage that is induced by an address discharge between the Y electrode and the address electrode and does not generate an address discharge between the Y electrode and the X electrode. FIG. 8 is a diagram illustrating a modified example of the drive waveform in which the potential of the X electrode is changed in the address period. In this modification, the potential of the X electrode in the address period is set to Y bias voltage (non-selection potential) −Vy applied to the Y electrodes other than the Y electrode to which the scan pulse is applied in the address period. As a result, the possibility of address discharge occurring between the Y electrodes and the X electrodes caused by the address discharge between the Y electrodes and the address electrodes is further reduced.

また、図7に示した第1実施例の駆動波形では、SF1においてアドレスパルスの電圧をVA1にして、Y電極とアドレス電極間のアドレス放電の強度を小さくしている。しかし、図9に示すように、アドレスパルスの電圧はVAとし、スキャンパルスの電圧を−Vs1(Vs1はVsより小さい)にして、アドレスパルスとスキャンパルスを同時に印加した時のY電極とアドレス電極間の電圧を小さくして、アドレス放電の強度を小さくすることも可能である。   In the driving waveform of the first embodiment shown in FIG. 7, the address pulse voltage is set to VA1 in SF1 to reduce the strength of the address discharge between the Y electrode and the address electrode. However, as shown in FIG. 9, when the address pulse voltage is VA, the scan pulse voltage is −Vs1 (Vs1 is smaller than Vs), and the address pulse and the scan pulse are applied simultaneously, the Y electrode and the address electrode It is also possible to reduce the strength of the address discharge by reducing the voltage between them.

図10は本発明の第2実施例のPDP装置で使用するPDPの分解斜視図であり、図11は第2実施例のPDP装置の全体構成を示す図である。第2実施例は、特許第2801893号に記載されたALIS方式のPDP装置に本発明を適用した実施例である。ALIS方式のPDP装置については特許第2801893号に記載されているので詳しい説明は省略するが、n+1本のX電極11とn本のY電極12を等間隔で配置し、各Y電極12の両側に位置するX電極11との間で放電を行い、2n本の表示ラインを形成する。したがって、各X電極11も両側に位置するY電極12との間で放電を行うことになる。ALIS方式のPDP装置ではインターレース表示が行われ、2n本の表示ラインのうち奇数番目の表示ラインが奇数フィールドで表示され、偶数番目の表示ラインが偶数フィールドで表示される。奇数番目の表示ラインは、奇数番目のX電極と奇数番目のY電極間及び偶数番目のX電極と偶数番目のY電極間に形成され、偶数番目の表示ラインは、奇数番目のY電極と偶数番目のX電極間及び偶数番目のY電極と奇数番目のX電極間に形成される。   FIG. 10 is an exploded perspective view of the PDP used in the PDP apparatus of the second embodiment of the present invention, and FIG. 11 is a diagram showing the overall configuration of the PDP apparatus of the second embodiment. The second embodiment is an embodiment in which the present invention is applied to an ALIS PDP apparatus described in Japanese Patent No. 2801893. The ALIS system PDP device is described in Japanese Patent No. 2801893 and will not be described in detail. However, n + 1 X electrodes 11 and n Y electrodes 12 are arranged at equal intervals, and both sides of each Y electrode 12 are arranged. Discharge is performed between the X electrode 11 and the 2n display lines. Therefore, each X electrode 11 also discharges between the Y electrodes 12 located on both sides. In the ALIS PDP apparatus, interlaced display is performed, and among the 2n display lines, odd-numbered display lines are displayed in odd-numbered fields, and even-numbered display lines are displayed in even-numbered fields. The odd-numbered display lines are formed between the odd-numbered X electrodes and the odd-numbered Y electrodes and between the even-numbered X electrodes and the even-numbered Y electrodes, and the even-numbered display lines are connected to the odd-numbered Y electrodes and the even-numbered Y electrodes. It is formed between the Xth electrodes and between the even-numbered Y electrodes and the odd-numbered X electrodes.

図10に示すように、ALIS方式のPDPは、X電極11とY電極12が等間隔で配置されている点を除けば、図2のPDPとほぼ同様の構成を有する。図11に示すように、アドレスドライバ11は、アドレス電極15を駆動する。Yスキャンドライバ32は、各Y電極12にスキャンパルスを印加すると共に、奇数Yサステイン回路33Oから供給される電圧を奇数番目のY電極に共通に印加し、偶数Yサステイン回路33Eから供給される電圧を偶数番目のY電極に共通に印加する。奇数Xサステイン回路34Oは奇数番目のX電極に共通に電圧を印加し、偶数Xサステイン回路34Eは偶数番目のX電極に共通に電圧を印加する。制御回路35は各部を制御する。   As shown in FIG. 10, the ALIS PDP has substantially the same configuration as the PDP in FIG. 2 except that the X electrode 11 and the Y electrode 12 are arranged at equal intervals. As shown in FIG. 11, the address driver 11 drives the address electrode 15. The Y scan driver 32 applies a scan pulse to each Y electrode 12, and applies a voltage supplied from the odd-numbered Y sustain circuit 33O to the odd-numbered Y electrodes in common, and a voltage supplied from the even-numbered Y sustain circuit 33E. Is applied in common to even-numbered Y electrodes. The odd-numbered X sustain circuit 34O applies a voltage to the odd-numbered X electrodes in common, and the even-numbered X sustain circuit 34E applies a voltage to the even-numbered X electrodes in common. The control circuit 35 controls each part.

図12と図13は、第2実施例の奇数フィールドにおけるSF1からSF4の駆動波形を示す図であり、X1は奇数番目のX電極に印加する波形を、X2は偶数番目のX電極に印加する波形を、Y1は奇数番目のY電極に印加する波形を、Y2は偶数番目のY電極に印加する波形を示す。なお、偶数フィールドの駆動波形は省略する。この波形図は第1実施例の駆動波形を示した図7に対応しており、SF5以上の高輝度のサブフィールドの駆動波形は図示を省略しているが、SF4と同様の波形で、サステインパルス数のみが異なる。図示のように、SF1からSF3にはサステイン期間Sが設けられていない。なお、奇数表示ラインのうちの奇数番目の表示ラインL1、L5、L9、…、L4n−3は、X1電極とY1電極間に形成され、奇数表示ラインのうちの偶数番目の表示ラインL3、L7、L11、…、L4n−1は、X2電極とY2電極間に形成される。参考にいえば、偶数表示ラインのうちの奇数番目の表示ラインL2、L6、L10、…、L4n−2は、Y1電極とX2電極間に形成され、偶数表示ラインのうちの偶数番目の表示ラインL4、L8、L11、…、L4nは、Y2電極とX1電極間に形成される。   FIGS. 12 and 13 are diagrams showing driving waveforms of SF1 to SF4 in the odd field of the second embodiment, where X1 is a waveform applied to the odd-numbered X electrode, and X2 is applied to the even-numbered X electrode. Y1 represents a waveform applied to odd-numbered Y electrodes, and Y2 represents a waveform applied to even-numbered Y electrodes. Note that the drive waveform in the even field is omitted. This waveform diagram corresponds to FIG. 7 showing the drive waveform of the first embodiment, and the drive waveform of the sub-field with high luminance of SF5 or higher is not shown, but the waveform is the same as that of SF4 and the sustain waveform. Only the number of pulses is different. As shown in the figure, the sustain period S is not provided in SF1 to SF3. The odd display lines L1, L5, L9,..., L4n-3 among the odd display lines are formed between the X1 electrode and the Y1 electrode, and the even display lines L3, L7 among the odd display lines. , L11,..., L4n-1 are formed between the X2 electrode and the Y2 electrode. For reference, the odd display lines L2, L6, L10,..., L4n-2 of the even display lines are formed between the Y1 electrode and the X2 electrode, and the even display lines of the even display lines. L4, L8, L11,..., L4n are formed between the Y2 electrode and the X1 electrode.

まず、SF4の駆動波形を説明する。図示のように、リセット期間RにおいてX1及びX2電極、Y1及びY2電極、及びアドレス電極に印加される波形は、図3及び図7と同じであり、説明は省略する。リセット期間の終了時には、Y1及びY2電極の近傍に負の壁電荷が、X1電極及びX2電極の近傍とアドレス電極の近傍に正の壁電荷が形成される。   First, the driving waveform of SF4 will be described. As shown in the figure, waveforms applied to the X1 and X2 electrodes, the Y1 and Y2 electrodes, and the address electrodes in the reset period R are the same as those in FIGS. At the end of the reset period, negative wall charges are formed near the Y1 and Y2 electrodes, and positive wall charges are formed near the X1 and X2 electrodes and the address electrodes.

次のアドレス期間Aは前半部と後半部に分かれ、前半部においては奇数表示ラインのうちの奇数番目の表示ラインL1、L5、L9、…、L4n−3に書き込みを行い、後半部においては奇数表示ラインのうちの偶数番目の表示ラインL3、L7、L11、…、L4n−1に書き込みを行う。   The next address period A is divided into the first half and the second half. In the first half, the odd-numbered display lines L1, L5, L9,..., L4n-3 are written in the odd-numbered display lines. Writing is performed to even-numbered display lines L3, L7, L11,..., L4n-1 among the display lines.

前半部においては、X2及びY2電極にグランド電位を印加した上で、X1電極にXバイアス電圧Vxを、Y1電極にYバイアス電圧(非選択電位)−Vyを印加した状態で、印加するY1電極の位置を順次変えながら電圧−Vsのスキャンパルスを印加し、スキャンパルスに同期して点灯セルのアドレス電極に電圧VAのアドレスパルスを印加する。言い換えれば、奇数番目のX1電極とY1電極、及びアドレス電極に第1実施例のSF4と同じ駆動波形を印加する。これにより、奇数表示ラインのうちの奇数番目の表示ラインの点灯セルではY1電極とアドレス電極間でアドレス放電が発生し、それに誘発されてY1電極とX1電極間でもアドレス放電が発生する。そして、奇数番目のX1電極の近傍に負の壁電荷が、奇数番目のY1電極の近傍に正の壁電荷が形成される。   In the first half, after applying the ground potential to the X2 and Y2 electrodes, the Y1 electrode to be applied with the X bias voltage Vx applied to the X1 electrode and the Y bias voltage (non-selection potential) −Vy applied to the Y1 electrode The scan pulse of voltage -Vs is applied while sequentially changing the position of, and the address pulse of voltage VA is applied to the address electrode of the lighting cell in synchronization with the scan pulse. In other words, the same drive waveform as that of SF4 of the first embodiment is applied to the odd-numbered X1 electrode, Y1 electrode, and address electrode. As a result, an address discharge is generated between the Y1 electrode and the address electrode in the lighted cell of the odd display line among the odd display lines, and an address discharge is also generated between the Y1 electrode and the X1 electrode. A negative wall charge is formed in the vicinity of the odd-numbered X1 electrode, and a positive wall charge is formed in the vicinity of the odd-numbered Y1 electrode.

アドレス期間の後半部においては、X1及びY1電極にグランド電位を印加した上で、X2電極にXバイアス電圧Vxを、Y2電極にYバイアス電圧−Vyを印加した状態で、印加するY2電極の位置を順次変えながら電圧−Vsのスキャンパルスを印加し、スキャンパルスに同期して点灯セルのアドレス電極に電圧VAのアドレスパルスを印加する。言い換えれば、偶数番目のX2電極とY2電極、及びアドレス電極に第1実施例のSF4と同じ駆動波形を印加する。これにより、奇数表示ラインのうちの偶数番目の表示ラインの点灯セルではY2電極とアドレス電極間でアドレス放電が発生し、それに誘発されてY2電極とX2電極間でもアドレス放電が発生する。そして、偶数番目のX2電極の近傍に負の壁電荷が、偶数番目のY2電極の近傍に正の壁電荷が形成される。   In the second half of the address period, the ground potential is applied to the X1 and Y1 electrodes, the X bias voltage Vx is applied to the X2 electrode, and the Y bias voltage −Vy is applied to the Y2 electrode. A voltage -Vs scan pulse is applied while sequentially changing the voltage, and an address pulse of voltage VA is applied to the address electrode of the lighting cell in synchronization with the scan pulse. In other words, the same drive waveform as that of SF4 of the first embodiment is applied to the even-numbered X2 electrode, Y2 electrode, and address electrode. As a result, an address discharge is generated between the Y2 electrode and the address electrode in the even-numbered display line of the odd display lines, and an address discharge is also generated between the Y2 electrode and the X2 electrode. A negative wall charge is formed in the vicinity of the even-numbered X2 electrode, and a positive wall charge is formed in the vicinity of the even-numbered Y2 electrode.

以上のようにして、奇数番目の表示ラインに書き込みが行われる。   As described above, writing is performed on the odd-numbered display lines.

サステイン期間においては、X2、Y2及びアドレス電極にグランド電位を印加した状態で、X1電極に電圧−Vsのサステインパルスを、Y1電極に電圧Vsのサステインパルスを印加する。これによりX1電極とY1電極間に2Vsの電圧が印加され、X1電極及びY1電極近傍の壁電荷の電圧が加算されて放電開始電圧に達し、奇数表示ラインの奇数番目の表示ラインの点灯セルでサステイン放電が発生する。この時、偶数表示ラインを構成するY1電極とX2電極間及びY2電極とX1電極間にはVsの電圧が印加され、壁電荷による電圧も加算されるが、放電開始電圧には達しないので放電は発生しない。上記の点灯セルにおけるX1電極とY1電極間のサステイン放電により、X1電極の近傍には正の壁電荷が、Y1電極の近傍には負の壁電荷が形成される。X2電極とY2電極は放電しないので壁電荷が維持され、X2電極の近傍には負の壁電荷が、Y2電極の近傍には正の壁電荷がある。   In the sustain period, a sustain pulse of voltage -Vs is applied to the X1 electrode, and a sustain pulse of voltage Vs is applied to the Y1 electrode while a ground potential is applied to X2, Y2 and the address electrode. As a result, a voltage of 2 Vs is applied between the X1 electrode and the Y1 electrode, and the wall charge voltages in the vicinity of the X1 electrode and the Y1 electrode are added to reach the discharge start voltage. Sustain discharge occurs. At this time, a voltage of Vs is applied between the Y1 electrode and the X2 electrode and between the Y2 electrode and the X1 electrode constituting the even display line, and the voltage due to the wall charge is also added, but the discharge start voltage is not reached, so the discharge Does not occur. Due to the sustain discharge between the X1 electrode and the Y1 electrode in the lighting cell, a positive wall charge is formed in the vicinity of the X1 electrode and a negative wall charge is formed in the vicinity of the Y1 electrode. Since the X2 electrode and the Y2 electrode are not discharged, the wall charge is maintained, and there is a negative wall charge near the X2 electrode and a positive wall charge near the Y2 electrode.

次に、X1及びY2電極に電圧Vsのサステインパルスを、Y1及びX2電極に電圧−Vsのサステインパルスを印加する。すなわち、X1−Y1電極間とX2−Y2電極間に逆相のサステインパルスを印加する。上記のように、X1、Y1、X2及びY2電極近傍の壁電荷による電圧は、X1−Y1電極間及びX2−Y2電極間の電圧を大きくするので放電開始電圧に達して、X1−Y1電極間及びX2−Y2電極間でサステイン放電が発生する。この放電により、X1、Y1、X2及びY2電極近傍の壁電荷は極性が反転する。なお、Y1−X2電極間及びY2−X1電極間には電圧が印加されないのでサステイン放電は発生しない。   Next, a sustain pulse of voltage Vs is applied to the X1 and Y2 electrodes, and a sustain pulse of voltage -Vs is applied to the Y1 and X2 electrodes. That is, reverse-phase sustain pulses are applied between the X1-Y1 electrodes and between the X2-Y2 electrodes. As described above, the voltage due to the wall charges in the vicinity of the X1, Y1, X2, and Y2 electrodes increases the voltage between the X1-Y1 electrodes and between the X2-Y2 electrodes, and thus reaches the discharge start voltage, and between the X1-Y1 electrodes. And a sustain discharge is generated between the X2-Y2 electrodes. This discharge inverts the polarity of the wall charges near the X1, Y1, X2, and Y2 electrodes. Note that no sustain discharge occurs because no voltage is applied between the Y1-X2 electrodes and between the Y2-X1 electrodes.

以下、X1−Y1電極間とX2−Y2電極間に印加するサステインパルスの極性を反転させながら印加すると、サステイン放電が繰り返し発生する。   Hereinafter, when the sustain pulse is applied while reversing the polarity of the sustain pulse applied between the X1-Y1 electrodes and between the X2-Y2 electrodes, a sustain discharge is repeatedly generated.

最初のサステイン放電はX1−Y1電極間のみで発生し、X2−Y2電極間では発生しなかったので、X2−Y2電極間のサステイン放電は1回分少ない。そこで、サステイン期間の最後には、X1、Y1及びアドレス電極にグランド電位を印加した状態で、X2電極に電圧Vsのサステインパルスを、Y2電極に電圧−Vsのサステインパルスを印加して、X2−Y2電極間のみでサステイン放電を発生させる。このX2−Y2電極間のサステイン放電により、X2及びY2電極近傍の壁電荷が反転して、X1及びY1電極近傍の壁電荷と同じ極性になる。これにより、リセット期間に、すべてのX電極に共通のオンセルリセット電圧を、すべてのY電極にオンセルリセット鈍波を印加して、前のサブフィールドの点灯セルの壁電荷を消去できる。ここでは、各奇数表示ラインで2回のサステイン放電が発生する。   Since the first sustain discharge occurred only between the X1-Y1 electrodes and did not occur between the X2-Y2 electrodes, the sustain discharge between the X2-Y2 electrodes is reduced by one time. Therefore, at the end of the sustain period, with the ground potential applied to X1, Y1, and the address electrode, a sustain pulse of voltage Vs is applied to the X2 electrode, and a sustain pulse of voltage -Vs is applied to the Y2 electrode. Sustain discharge is generated only between the Y2 electrodes. Due to the sustain discharge between the X2 and Y2 electrodes, the wall charges near the X2 and Y2 electrodes are inverted to have the same polarity as the wall charges near the X1 and Y1 electrodes. As a result, during the reset period, a common on-cell reset voltage is applied to all the X electrodes and an on-cell reset blunt wave is applied to all the Y electrodes, so that the wall charges of the lighted cells in the previous subfield can be erased. Here, two sustain discharges occur in each odd display line.

SF3は、SF4からサステイン期間Sの駆動波形を除いた波形であり、アドレス期間AにおいてX電極とY電極間のアドレス放電が発生してサステイン放電のための壁電荷が形成されるが、サステイン放電は発生しない。したがって、SF3の輝度はSF4の輝度よりサステイン放電による輝度分だけ低い。   SF3 is a waveform obtained by removing the drive waveform of the sustain period S from SF4. In the address period A, an address discharge is generated between the X electrode and the Y electrode to form a wall charge for the sustain discharge. Does not occur. Therefore, the luminance of SF3 is lower than the luminance of SF4 by the luminance due to the sustain discharge.

SF2は、SF3において、アドレス期間AにおけるX1及びX2電極の電位をVxからグランド電位に変更した点が異なる。これによりアドレス期間AにおけるX電極とY電極間のアドレス放電は発生せず、サステイン放電のための壁電荷は形成されない。したがって、SF2の輝度はSF3の輝度よりX電極とY電極間のアドレス放電による輝度分だけ低い。   SF2 differs from SF3 in that the potentials of the X1 and X2 electrodes in the address period A are changed from Vx to the ground potential. As a result, the address discharge between the X electrode and the Y electrode in the address period A does not occur, and the wall charge for the sustain discharge is not formed. Therefore, the luminance of SF2 is lower than the luminance of SF3 by the luminance due to the address discharge between the X electrode and the Y electrode.

SF1は、SF2において、アドレスパルスの電圧が電圧VAより低い電圧VA1である点が異なる。これにより、Y電極とアドレス電極間のアドレス放電の強度が低下し、SF1の輝度はSF2の輝度よりこのアドレス放電の強度低下分だけ低い。   SF1 is different from SF2 in that the voltage of the address pulse is a voltage VA1 lower than the voltage VA. As a result, the intensity of the address discharge between the Y electrode and the address electrode is lowered, and the luminance of SF1 is lower than the luminance of SF2 by the amount of the intensity reduction of the address discharge.

以上、奇数フィールドのSF4の動作を説明したが、偶数フィールドでは上記のX1電極の駆動波形をX2電極に、X2電極の駆動波形をX1電極に印加する。   The operation of SF4 in the odd field has been described above. In the even field, the driving waveform of the X1 electrode is applied to the X2 electrode, and the driving waveform of the X2 electrode is applied to the X1 electrode.

第2実施例でも、第1実施例で説明したアドレス期間中のX電極の電位を変更する変形例や、アドレスパルスの電圧をVA1に変更する替わりにスキャンパルスの電圧を変更する変形例が適用可能である。   Also in the second embodiment, a modification in which the potential of the X electrode during the address period described in the first embodiment is changed, or a modification in which the voltage of the scan pulse is changed instead of changing the voltage of the address pulse to VA1 is applied. Is possible.

以上説明したように、第2実施例のPDP装置のサブフィールド構成では、サステイン期間を有する最小輝度のサブフィールドより、更に輝度の小さいサブフィールドが3段階で設けられているため、低輝度階調の表現能力が向上する。   As described above, in the subfield configuration of the PDP apparatus of the second embodiment, the subfield having a lower luminance than the minimum luminance subfield having the sustain period is provided in three stages. Improves the ability to express

図14は、本発明の第3実施例のPDP装置で使用するPDPの分解斜視図である。第3実施例は、2電極型のPDP装置に本発明を適用した実施例である。2電極型のプラズマディスプレイパネル(PDP)には、交差する電極を一方の基板に形成する形式と、対向する基板に形成する形式があるが、ここでは交差する電極を一方の基板に形成する形式に本発明を適用した例を説明する。ただし、本発明はこれに限定されず、交差する電極を対向する基板に形成する形式にも適用可能である。   FIG. 14 is an exploded perspective view of a PDP used in the PDP apparatus according to the third embodiment of the present invention. The third embodiment is an embodiment in which the present invention is applied to a two-electrode type PDP apparatus. In the two-electrode type plasma display panel (PDP), there are a form in which intersecting electrodes are formed on one substrate and a form in which the intersecting electrodes are formed on opposite substrates. Here, a form in which intersecting electrodes are formed on one substrate. An example to which the present invention is applied will be described. However, the present invention is not limited to this, and can be applied to a form in which intersecting electrodes are formed on opposing substrates.

図14に示すように、2電極型のPDPは、透明基板1に透明電極51とバス電極52で構成される横電極(第1電極)群を平行に配置し、その上を誘電体層53で覆い、その上に横電極群に対して垂直に伸び、透明電極54とバス電極55で構成される縦電極(第2電極)群を平行に配置し、その上に更に誘電体層56を形成し、その上にMgOなどの保護層57を設ける。背面基板42には、縦方向に伸びる隔壁58と横方向に伸びる隔壁59で構成される2次元状の隔壁を設け、背面基板42と隔壁の側面に蛍光体60、61、62を塗布する。   As shown in FIG. 14, in the two-electrode type PDP, a horizontal electrode (first electrode) group composed of a transparent electrode 51 and a bus electrode 52 is arranged in parallel on a transparent substrate 1, and a dielectric layer 53 is placed thereon. And a vertical electrode (second electrode) group composed of a transparent electrode 54 and a bus electrode 55 is arranged in parallel, and a dielectric layer 56 is further formed thereon. Then, a protective layer 57 such as MgO is provided thereon. The back substrate 42 is provided with a two-dimensional partition wall composed of partition walls 58 extending in the vertical direction and partition walls 59 extending in the horizontal direction, and phosphors 60, 61, 62 are applied to the back substrate 42 and the side surfaces of the partition walls.

図15は、図14のPDPを電極形状を示す図である。図示のように、横バス電極52から突き出た横透明電極51と縦バス電極55から突き出た縦透明電極54のエッジが、所定の間隔になるように形成されており、横透明電極51と縦透明電極54の間で放電が可能である。隔壁は横バス電極52と縦バス電極55に重なるように設けられているので、横バス電極52と縦バス電極55の間では放電は発生しない。   FIG. 15 is a diagram showing the electrode shape of the PDP of FIG. As shown in the drawing, the edges of the horizontal transparent electrode 51 protruding from the horizontal bus electrode 52 and the vertical transparent electrode 54 protruding from the vertical bus electrode 55 are formed at a predetermined interval. Discharge is possible between the transparent electrodes 54. Since the partition wall is provided so as to overlap the horizontal bus electrode 52 and the vertical bus electrode 55, no discharge occurs between the horizontal bus electrode 52 and the vertical bus electrode 55.

図16は、第3実施例のPDP装置の全体構成を示す図である。縦電極ドライバ61は、PDP60の縦電極にアドレスパルスをそれぞれ印加すると共に、縦サステイン回路63から供給される所定の電圧を縦電極に印加する。横電極ドライバ62は、PDP60の横電極にスキャンパルスをそれぞれ印加すると共に、横サステイン回路64から供給される所定の電圧を横電極に印加する。制御回路65は各部を制御する。   FIG. 16 is a diagram showing the overall configuration of the PDP apparatus in the third embodiment. The vertical electrode driver 61 applies address pulses to the vertical electrodes of the PDP 60 and applies a predetermined voltage supplied from the vertical sustain circuit 63 to the vertical electrodes. The horizontal electrode driver 62 applies scan pulses to the horizontal electrodes of the PDP 60 and applies a predetermined voltage supplied from the horizontal sustain circuit 64 to the horizontal electrodes. The control circuit 65 controls each part.

図17は、第3実施例の駆動波形を示す図であり、H1は横電極に印加する波形を、Vは縦電極に印加する波形を示す。この波形図は第1実施例の駆動波形を示した図7に対応しており、SF4以上の高輝度のサブフィールドの駆動波形は図示を省略しているが、SF3と同様の波形で、サステインパルス数のみが異なる。図示のように、SF1及びSF2にはサステイン期間Sが設けられていない。   FIG. 17 is a diagram showing drive waveforms of the third embodiment, where H1 shows a waveform applied to the horizontal electrode, and V shows a waveform applied to the vertical electrode. This waveform diagram corresponds to FIG. 7 showing the drive waveform of the first embodiment, and the drive waveform of the subfield with high luminance of SF4 or higher is not shown, but the waveform is the same as that of SF3 and the sustain waveform. Only the number of pulses is different. As illustrated, the sustain period S is not provided in SF1 and SF2.

まず、SF3の駆動波形を説明する。図示のように、リセット期間Rにおいて横電極と縦電極に印加される波形は、図3及び図7においてX電極とY電極に印加される波形と類似している。したがって、リセット期間では前のサブフィールドの点灯セルの壁電荷を消去すると共に、全セルに同じ壁電荷を形成する。   First, the driving waveform of SF3 will be described. As shown, the waveforms applied to the horizontal and vertical electrodes in the reset period R are similar to the waveforms applied to the X and Y electrodes in FIGS. Therefore, in the reset period, the wall charges of the lighted cells in the previous subfield are erased and the same wall charges are formed in all the cells.

アドレス期間Aでは、横電極にバイアス電圧−Vyを、縦電極にグランド電位を印加した状態で、電圧−Vsのスキャンパルスを印加位置を順次変化させながら横電極に印加し、スキャンパルスに同期して電圧VAのアドレスパルスを点灯セルの縦電極に印加する。これにより、点灯セルでアドレス放電が発生して選択的にサステイン放電を発生させるための壁電荷が形成される。この場合は、点灯セルの横電極の近傍に正の壁電荷が、縦電極の近傍に負の壁電荷が形成される。   In the address period A, with the bias voltage −Vy applied to the horizontal electrode and the ground potential applied to the vertical electrode, a scan pulse of voltage −Vs is applied to the horizontal electrode while sequentially changing the application position, and is synchronized with the scan pulse. Then, an address pulse of voltage VA is applied to the vertical electrode of the lighting cell. As a result, an address discharge is generated in the lighted cell, and a wall charge for selectively generating a sustain discharge is formed. In this case, a positive wall charge is formed near the horizontal electrode of the lighting cell, and a negative wall charge is formed near the vertical electrode.

サステイン期間Sでは、電圧Vsのサステインパルスを横電極に、電圧−Vsのサステインパルスを縦電極に印加する。これに壁電荷による電圧が加算されて放電開始電圧を超え、サステイン放電が発生する。このサステイン放電により壁電荷の極性が反転するので、次に極性を反転したサステインパルスを印加すると再びサステイン放電が発生する。それ以降、極性を反転しながらサステインパルスを繰り返し印加するとサステイン放電が繰り返される。   In the sustain period S, a sustain pulse of voltage Vs is applied to the horizontal electrode, and a sustain pulse of voltage -Vs is applied to the vertical electrode. The voltage due to the wall charges is added to this, exceeding the discharge start voltage, and sustain discharge occurs. Since the sustain discharge reverses the polarity of the wall charges, the sustain discharge is generated again when the sustain pulse having the reversed polarity is applied next. Thereafter, when the sustain pulse is repeatedly applied while inverting the polarity, the sustain discharge is repeated.

SF2は、SF3においてサステイン期間Sを設けない点が異なる。これにより、アドレス期間Aでサステイン放電のための壁電荷が形成されるが、サステイン放電は行われないので、SF2はSF3よりサステイン放電による輝度分だけ輝度が低い。   SF2 is different in that the sustain period S is not provided in SF3. Thereby, wall charges for the sustain discharge are formed in the address period A, but since the sustain discharge is not performed, the brightness of SF2 is lower than that of SF3 by the brightness due to the sustain discharge.

SF1は、SF2において、スキャンパルスの電圧が−Vsから−Vs1(Vs1はVsより小さい)に、アドレスパルスの電圧がVAからVA1(VA1はVAより小さい)に変更された点が異なる。これにより、点灯セルにおけるアドレス放電時に横電極と縦電極間に印加される電圧が小さくなり、アドレス放電の強度が低下して、SF1の輝度はSF2の輝度より、アドレス放電の強度低下の分だけ低くなる。   SF1 is different from SF2 in that the scan pulse voltage is changed from -Vs to -Vs1 (Vs1 is smaller than Vs) and the address pulse voltage is changed from VA to VA1 (VA1 is smaller than VA). As a result, the voltage applied between the horizontal electrode and the vertical electrode at the time of address discharge in the lighted cell is reduced, the intensity of address discharge is reduced, and the brightness of SF1 is lower than the brightness of SF2 by the amount of intensity reduction of address discharge. Lower.

以上説明したように、第3実施例のPDP装置のサブフィールド構成では、サステイン期間を有する最小輝度のサブフィールドより、更に輝度の小さいサブフィールドが2段階で設けられているため、低輝度階調の表現能力が向上する。   As described above, in the subfield configuration of the PDP apparatus of the third embodiment, the subfield having a lower luminance than the minimum luminance subfield having the sustain period is provided in two stages. Improves the ability to express

本発明によれば、プラズマディスプレイ装置の表示品質を向上でき、特にCRTに比べてPDP装置が劣っているとされる低輝度階調の表現能力が向上するので、プラズマディスプレイ装置の一層の普及に役立つ。   According to the present invention, the display quality of the plasma display device can be improved, and the ability to express low luminance gradation, which is considered to be inferior to that of the CRT, is improved. Useful.

1…前面基板
2…背面基板
11…第1(X)電極
12…第2(Y)電極
15…第3(アドレス)電極
30…プラズマディスプレイパネル
31…アドレスドライバ
32…Yスキャンドライバ
33…Yサステイン回路
34…Xサステイン回路
DESCRIPTION OF SYMBOLS 1 ... Front substrate 2 ... Back substrate 11 ... 1st (X) electrode 12 ... 2nd (Y) electrode 15 ... 3rd (address) electrode 30 ... Plasma display panel 31 ... Address driver 32 ... Y scan driver 33 ... Y sustain Circuit 34 ... X sustain circuit

Claims (3)

第1の基板上に並行に配置された第1及び第2の電極群と、前記第1の基板に対向する第2の基板上に前記第1及び第2の電極群に対して交差するように配置された第3の電極群とを備え、
1フレームを複数のサブフィールドで構成し、前記複数のサブフィールドは、
点灯すべきセルを選択するために前記第2の電極群にスキャンパルスを印加し前記第3の電極群にアドレスパルスを印加するアドレス期間と、前記第1及び第2の電極群に前記点灯表示のためのサステインパルスを印加するサステイン期間とを含む複数のサブフィールドから成る第1のサブフィールド群と、
前記サステイン期間を伴わずに前記アドレス期間を含む、前記第1のサブフィールド群のサブフィールドよりも輝度重みが小さい複数のサブフィールドから成る、第2のサブフィールド群とを備え、
前記第2のサブフィールド群に含まれる輝度重みが小さい側のサブフィールドにおいて、前記アドレス期間の前記第2及び第3の電極群に前記スキャンパルス及び前記アドレスパルスを印加する際前記第1の電極に印加する電圧値を、前記第2のサブフィールド群に含まれるのサブフィールドよりも低い電圧とすることを特徴とするプラズマディスプレイ装置。
The first and second electrode groups arranged in parallel on the first substrate and the second substrate facing the first substrate intersect with the first and second electrode groups. And a third electrode group disposed on
One frame is composed of a plurality of subfields, and the plurality of subfields are:
An address period in which a scan pulse is applied to the second electrode group to select a cell to be lit and an address pulse is applied to the third electrode group, and the lighting display is applied to the first and second electrode groups A first subfield group comprising a plurality of subfields including a sustain period for applying a sustain pulse for
A second subfield group comprising a plurality of subfields having a luminance weight smaller than a subfield of the first subfield group, including the address period without the sustain period,
In the subfield of the second subfield side luminance weights is less included in the group, the first when applying the scan pulse and the address pulse to the second and third electrode groups of the address period A plasma display device characterized in that a voltage value applied to the electrode is set to a voltage lower than that of other subfields included in the second subfield group.
前記第2のサブフィールド群に含まれる前記他のサブフィールドにおいて前記アドレス期間に前記第1の電極群に印加する電圧値を、前記第1のサブフィールド群での前記アドレス期間に前記第1の電極群に印加する電圧値と同じ電圧値とし、
前記第2のサブフィールド群に含まれる輝度重みが小さい側のサブフィールドにおいて前記アドレス期間に前記第1の電極群に印加する電圧値を、グランド電位とすることを特徴とする請求項1に記載のプラズマディスプレイ装置。
The second sub-field the address period to the first you applied to the electrode group voltage values in the other sub-fields included in the group, the said address period in the first subfield group first The voltage value is the same as the voltage value applied to one electrode group,
Claim 1, characterized in that the second of said first electrode to that voltage values applied to groups in the address period in the subfield of luminance weight smaller side included in the subfield group, and a ground potential 2. The plasma display device according to 1.
前記第2のサブフィールド群に含まれる前記他のサブフィールドにおいて前記アドレス期間に前記第1の電極群に印加する電圧値を、前記第1のサブフィールド群での前記アドレス期間に前記第1の電極群に印加する電圧値と同じ電圧値とし、
前記第2のサブフィールド群に含まれる輝度重みが小さい側のサブフィールドにおいて前記アドレス期間に前記第1の電極群に印加する電圧値を、前記第2の電極群における前記アドレス期間の非選択電位とすることを特徴とする請求項1に記載のプラズマディスプレイ装置。
The second sub-field the address period to the first you applied to the electrode group voltage values in the other sub-fields included in the group, the said address period in the first subfield group first The voltage value is the same as the voltage value applied to one electrode group,
Wherein the second of said first electrode to that voltage values applied to groups in the address period in the subfield of luminance weight smaller side included in the sub-field group, non of the address period in the second electrode group The plasma display device according to claim 1, wherein the plasma display device has a selection potential.
JP2009094535A 2009-04-09 2009-04-09 Plasma display device Expired - Fee Related JP5107958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094535A JP5107958B2 (en) 2009-04-09 2009-04-09 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094535A JP5107958B2 (en) 2009-04-09 2009-04-09 Plasma display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003397220A Division JP4322101B2 (en) 2003-11-27 2003-11-27 Plasma display device

Publications (2)

Publication Number Publication Date
JP2009199088A JP2009199088A (en) 2009-09-03
JP5107958B2 true JP5107958B2 (en) 2012-12-26

Family

ID=41142557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094535A Expired - Fee Related JP5107958B2 (en) 2009-04-09 2009-04-09 Plasma display device

Country Status (1)

Country Link
JP (1) JP5107958B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454680B2 (en) * 1997-08-19 2003-10-06 株式会社日立製作所 Driving method of plasma display panel
JP3271598B2 (en) * 1999-01-22 2002-04-02 日本電気株式会社 Driving method of AC plasma display and AC plasma display
JP3555546B2 (en) * 2000-03-23 2004-08-18 日本電気株式会社 Driving method of plasma display panel
US6791516B2 (en) * 2001-01-18 2004-09-14 Lg Electronics Inc. Method and apparatus for providing a gray level in a plasma display panel
JP4058299B2 (en) * 2001-06-12 2008-03-05 松下電器産業株式会社 Plasma display panel display device and driving method thereof
JP2004021181A (en) * 2002-06-20 2004-01-22 Nec Corp Driving method for plasma display panel

Also Published As

Publication number Publication date
JP2009199088A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
KR100737194B1 (en) Plasma display apparatus
US6373452B1 (en) Plasma display panel, method of driving same and plasma display apparatus
JP2003345292A (en) Method for driving plasma display panel
JPH09244578A (en) Plasma display device and its driving method
JP2002082650A (en) Plasma display panel and drive method therefor
KR100503603B1 (en) Method of driving plasma display panel
JP2005274881A (en) Plasma display device
JPH11316571A (en) Method for driving ac pdp
JPH10319901A (en) Method for driving plasma display panel
JP3644712B2 (en) Flat panel display
JP4068089B2 (en) Driving method of discharge display panel by address-display mixture
JP4264044B2 (en) Panel driving method and display panel
KR100811603B1 (en) Plasma Display Apparatus AND Driving method thereof
JP5107958B2 (en) Plasma display device
KR100482349B1 (en) Method And Apparatus Of Driving Plasma Display Panel
KR100438805B1 (en) A plasma display panel with multiple data electrodes and a driviving method thereof
KR100646319B1 (en) Plasma Display Apparatus and Driving Method thereof
JP2007133291A (en) Driving method of plasma display panel
JP2005055807A (en) Ac type plasma display device and its driving method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees